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Vertex-Constrained Transversals in a Bipartite Graph 

P. Feofilof f and D.H. Younger 

l. lntroductlon 

Let G be a finite directed graph with directed bipartition (V,,V11 ), 

and u a positive integer Cunction on V. McWbirter and Younger (McWYJ 

proved that G bas a u-constrained transversal of directed coboundaries ii 
and only if Cor each nonn.ull subset M of v, or V11 the number or com­

ponents in the 11ubgraph induced by V-M is no greater than uM. This 

paper proves the following generalization: 

· Theorems Fer any finite directed bipartite graph G and poaitive _ 

integer /unction u on V, a aubaet r of e includu a u-conatrained 

tranaveraal if and only if I XI S uM for every r-aupported nondegen­

erate atructure (X,M). 

A directed graph G consist11 or a set V oC verticea and a 11et e of 

edge.,, each edge having a poaitive end and a negative en~ in V. A poaitive 

ut in G is a subset S of V such that no edge bas its negative end in S and 

its positive end in V-S. A negative aet is defined dually, that is, by inter­

changing 'positive' and 'negative' in the previous definition. A aigned 1d is 

either a positive set or a negative set. A signed set is nondegenerate if it is 

distinct Crom V. A poaitive partition is a disjoint collection or nonnull 

positive sets. A negative partition is defined dually. A aigned partition is 

either a positive or a negative partition; it is nondegenerate it distinct from 

{V}. 

For a subset t or e and a signed set S, let tS denote the set of edges 

in t that have one end in S and the other in V- S. Sets of the form eS 
are directed coboundariea. For a signed partition X, let tX abbreviate 

t(UX) or, equivalently, U{tS : S EX}. 

A tranaveraal (of directed coboundariea} is a subset t ot e such that 

tS -:la 0 for every nonnull nondegencrate 6igned 11et S. (Hence, a discon­

nected graph has no transvenal.) A transversal t is u-conatrained ii 
I t{v}I :S uv for each vertex v. Here, u is a positive integer (unction on 
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V, that is, a runction rrom V to the set of strictly positive integers. The 
domain or u is extended to subsets or V by the dermition 
uM = L'{uv : v E M} for each subset Al of V. 

A aource is a vertex v such that { v} ia a positive set. A ,ink is 
defined dually. The set or sources or the graph ia denoted by v;; the set of 

sinks, by v •. Tbe graph is direded bipartite if each vertex is a source or a 
sink, t.hat is, if each edge has positive end in v, and negative end in V

11
• 

In a directed bipartite graph, a po,itive atructure is a pair (X,M) 
where X is a positive partition and M is a subset or V,. - UX. A negative 
atructure is defined dually. The null structure is (0,0). A structure 
(X,M} is nondegenerate is X is nondegenerate; it is marginal if ..... 
I XI = uM; aulnnarginal if I XI :S uM; and aupermarginal if 
txl :i!: uM. 

The McWhirter-You.nger theorem gives necessary and sufficient con­
ditions under which a directed bipartite graph has a u-c:onstrained 
transversal. The conditions can be restated as fallows: every nondegen­
erate structure {X,M) such that eX C eM is submarginal. This paper 
shows that a recursive generalization or these conditions is necessary and 
sufficient for the existence or a u-constrained transversal within a specified -
subset r of e. The motivation for studying constrained transveraala comes 
Crom the following conjecture by Woodall (W] and Edmonds-Giles (EG): 

In any finite directed graph, a maximum disjoint collection of 
transversals of directed coboundaries is equal in cardinality to a 
minimum set of the form eS, S a nonnull nondegenerate signed set. 

The equality has been proved for source.sink connected graphs (SJ (FY}. 
The pr1:5ent Theo.rem may be relevant to the bipartite case of the conjec­
ture. 

We proceed to define a recursive generalization of the class of struc­
tures (X,M) for which rX C eM. The dermition uses the following termi­
nology. A signed partition Y is internal to a signed set S it UY C S. A • 
structure (Y,N} is internal to S if Y is internal to S and NC S. 

Let r be a subset of e and (X,M) a positive structure. An r-aupporl 
or an element S or Xis a negative structure (X5 ,M5 ), internal to S, such 

· · that I X 5 I ~ uM5 , rS C eM U eM5 , and each element of X 5 has an r­
support. The dual definition holds when {X,M) is negative. To emphasize 
the dependence on M,.we may say that {X5 ,M5 ) is an r-support of S rela­
tive to M. A &tructure (X,M) is r-aupporled it each element S of X baa 
an r-support. 

, Examples: The null structure is r-supported. Any structure (X,M) 

' ., 
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such that rX C eM is r-supported. 

The iize of a signed partition Xis the number I UXI. Ir an element 
S or X has a support, then it has a support whose first coordinate is 
strictly smaller than X, as the following argument shows. Let {X5 ,M5 ) be 
a support or S, and suppose that X 5 is not a;trictly smaller than X. Since 
the support is internal to S, therefore UX5 = S, and so Ms = 0. But 
then the null structure is a support of S. 

We adopt the following convention. For an r-supported structure 
(X,.M), if (X5 ,M5 ) is said to be an r-support of an element of X, it is to 
be understood that X 5 is strictly smaller that X. · 

A subset r or e is /eaiible ii every r-supported noodegeoerate struc- .... 
ture is submarginal. The Theorem can now be stated as follows: A subset 
r of e includes a u-constrained transversal if and only if r is feasible. 

2. Reduction ot the Theorem to the Fringe Lemma 

An edge is internal to a signed set X ii it has both ends in X. An 
edge is ezt ernal to X ii it is in tern al to V- X. These definitions extend 
naturally to a signed partition X: an edge is internal or ezternal to X if it 
is internal or external to UX. For a subset t of e, let t IXI denote the set 
or edges in t that are internal to X. Let t [X] and tjV~XJ abbreviate 
tjUXJ and tjV-UXJ. 

The fringe of a structure (X,M) is the set eM n ejV~XJ, that is, 
the set of edges in eM that are external to X. The fringe of (X,M} in a 
subset t of e is tM n e(V~XJ. 

Property A: For a negative partition Y internal to a positive set S, 
each edge in eY is internal to S and each edge in eS is external to Y. 

Corollarys For a negative structure (Y,N) internal to a positive set 
S, the intersection or eS and eN is a subset or the fringe or (Y,N). 

The proofs are elementary. 

Proof ot the 'only If' aasertlon In the Theorem, Suppose r 
includes a u-contained transversal t. We proceed to show that t is feasi­
ble, that is, 

(1) Every r-supported nondegenerate structure (X,M) is submarginal. 

lo order to carry out a proof by induction, we expand 1 by the addition of 

(1') Ir (X,M) is marginal, then its fringe in t is null. 

The proof is by induction on the size or X. Ir the size is 0, then X = 0 
and so the assertion 1,1' is trivially true. Now suppose the size of X is 
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nonzero. Assume I XI 2: uM, for otherwise 1,1' •is trivially true. Let S be 
an arbitrary element or X and (X5 ,M5 ) an ,-support or S. Then, by the . 
Corollary or Property A, tS C eM u / 5 , where / s ia the lringe of 
(X5 ,M5 ) in t. By induction hypothesis, (X5 ,M5 ) is marginal,· and there­
fore / 5 = 0. So, tS C eM. Since this holds for each S in X, therefore 
tX C eM. Hence, I tXI !!i: I tMI. But I tXI ~ I XI since X ia nonde­
generate and t is a transversal; I XI 2: uM by hypothesis; and 
uM 2: I tMI 6ince t is u-constrained. Hence I tXI = I tMI and equali­
ties bold throughout. In particular, I XI = uM and tX = tM. The rant 
equality verifies 1; the second, 1'. Thia completes the induction and so 
proves the 'only ir assertion. a 

The proof of the 'if' assertion proceeds by induction on r: given a 
feasible subset t of r, we search for an edge a in t such that t-a is not 
feasible. Here t-a is an abbreviation or t - {a}. An edge a is critical if 
t-a is not feasible. Critical edges can be characterized in terms of the fol­
lowing concept. 

For subset t of e and edge a in t, a ·structure (X,M) ia tmodci­
aupported if each element S of X has a (t-a)-support (X5 ,M5 ) that is t­
supported. Our convention about supports is naturally extended: for any. 
tmoda-supported structure (X,M), if a structure (X5 ,M5 ) is said to be a 
t mod a-support or an element of X, it ia to be understood that X 5 is 
strictly smaller than X. 

Crltlcal Edge Lemma.a Let t he a /etuible aub.,et of e. For any 
critical edge a in t, there ezid., a tmoda-aupported nondegenerate drue­
ture (X,M) auch that I XI > uM. 

Proof. Observe that 

(1) For every (t-a)-supported structure (Y,N), if a is external to Y, then 
(Y,N) is t-supported. 

The proof of this observation i& a simple exercise. 
Since t-a is not reasible, there exists a (t-a)-supported nondegenerate 

structure (X,M) such that I XI > uM. Let n denote the collection of all 
such i;tructures. We will 6how that some structure in O is tmoda­
supported. 

For each (X,M) in n, a is nonexternal to some element S or X. Oth­
erwise, by 1, (X,M) would be t-supported, contrary to the feasibility or & • 
We call S the a-demerit or X. 

Choose (X,M) in n so that the a-element of X is _minimal. Then 
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(2) a is noninternal t.o X, 

. as we proceed to show. Suppose the contrary. Then a is internal to the 
a-element, S, or X. Let (Y,N) be a (t-a}-support or S. Since (Y,N) is 
internal to S, therefore y+ = Y U {V-S} is a signed partition and 
(Y+ ,N) a structure. In this structure, each element or y+ 6tber than 
V-S has a (t-a}-support. Now consider V-S. Let x- = X - {S} and 
observe that the structure (X-,M) is internal to V-S, supermarginal, and 
(t-a)-supported. Since (t-a){V-S) = (t-a)S C eM u eN, therefore 
(X-,M) is a (t-a}-support or V-S. So, the structure (Y+,N) is (t-a)­
sup,eorted. Moreover, I y+ I = I YI + 1 2:: uN + 1 > uN. Hence, 
(Y ,N) lies in n. The a-element, T, or y+ is in Y. Since Y is internal to 
S and strictly smaller than X, therefore T is a proper subset or S. This is 
contrary to the minimality or S. The contradiction establishes '2. 

We can show now that 

(3) (X,M) is tmoder-supported . .. 

Let S be an arbitrary element or X and (X5 ,M5 ) a (t-er)-support of S. 
Since X 5 is internal and er is noninternal to X, Property A implies that a 
is external to X 5 • Now, by 1, (X5 ,M5 ) is t-supported. This bolds for 
each S in X, whence (X,M) is t moda-supported. This completes the proof 
or the Lemma. a 

Reduction or the 'If' assertion In the Theorem to the Fringe 
Lemma: Suppose r is feasible and let t be a minimal feasible subset or r. 
The following argument shows that t is a transversal. Let S be a nonnull 
nondegenerate positive set and M a minimal subset or v. -S such that 
tS C eM. Then the structure ({S},M) is t-supported. Since t is feasible, 
uM 2:: I {S}I, whence M -:J:. 0. By minimality or Af, tS * 0. The same 
argument shows that tS -:J:. 0 for every nonnull nondegenerate negative set 
S. Hence, t is a transversal. · 

The proof tha.t t is u-constrained is based upon the following 

Fringe Lemma: Let (Y,N) be a aupermarginal nondegenerate struc­
ture such that tY C eN. For any edge a in the fringe of (Y,N), 
every t moder-supported nondegenerate structure is submarginal 

The proof of the Lemma is given in section s.· To show that t is •· 
constrained we use the following corollary or the Lemma: 

(1) The fringe in t of e_very t-supported supermarginal nondegenerate 
structure (Y,N) is null. 

The proof or 1 is by induction on the size or Y. It the size is 0, then 
Y = N = 0 and so the assertion is trivially true. Now suppose the size 
or Y is nonzero. Let S be an arbitrary element or Y and (Y 5 ,N5 ) a t-
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support or S. By the Corollary of Property A, tS C eN u / s, where / s la 
the Cringe or (Y 5 ,N5 ) in t. By induction hypothesis, / 5 = 0. So, · 
tS C eN. This holds Cor each S in Y, whence tY C eN. Now, by the 
Fringe Lemma and the Critical Edge Lemma, no edge in the fringe of 
(Y,N) is critical. Since t is minimal feasible, the fringe ol (Y,N) in t must 
be null. 

This corollary has the following consequence: 

(2) For each a ia t, there exists a aigned set S such that tS :a {a}. 
Here is a proof ol this statement. By the Critical Edge Lemma, there 
exists a t moder-11upported nondegenerate structure (X,M) auch that 
I XI > uM. Let S be an arbitrary element or X and (X5 ,M5 ) a tmoda-' · 
support ol S. By the Corollary or Property A, tS C eM u / s U {er}, 
where / 5 is the fringe in t oC (X5 ,M5 ). By I, / 5 = 0. Hence 
tS C eM U {er}. This bolds for each S in X, whence tX C tM U {a}. 
Observe that a E tS for some S in X, for otherwise (X,M) is t-supported, 
contrary to the lea11ibility of t. Let x- = X - {S} and let / be the 
fringe in t ol the structure (X-,M). Then tS C {a} u /. Since 
ix- C tM and I x-1 ~ uM, therefore, by 1, / == 0. So, ts C {a}. 
This establishes 2. 

Let 11 be any vertex in V,.. We deduce the inequality I t{11}1 :!ii uv 
from 2. For each a in t{11}, let S

0 be a signed set such that tS0 = {a}. 
Adjust notation, by substituting V-S0 for Sa ii necessary, so that S0 is 
positive. Let X denote the collection {Sa: a E t{11}}. For distinct a and 
P, the set SO n S ~ is null 11ince t (SO n S ~) == 0 and t is a transvenal. So, 
X is a partition. Since tX C e{v }, the structure (X,{v }) is t-supported. 
Since X is nondegenerate and t is fea11ible, I XI :!ii u{v}. Hence, 
I t{v}I :s uv . . The same argument !hows that I t{v}I :!ii uv for each v in 
v,. So, tis u-constrained. a 

The proof or the Theorem has now been reduced to the Fringe 
Lemma. 

3. Properties of Supported Structures 
Positive structurl!S (X,M) and (Y,N) are 

UX n UY = 0, M n UY = 0, and N n UX = 0. 
(Y,N) are disjoint, let (X,M) u (Y,N) denote 
(X uY, Mu N). 

diajoint ii 
It (X,M) and 
the structure 

Dlajolnt Structure11 Property, Let t be a aubaet of e. 1/ ,truc­
ture., (X,.M) and (Y,N) are di.,joint and t-aupported, thrn the atructure 
(X,M) u (Y,N) ia t-,upported . 
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The proof is elementary • 

. Let X and Y be signed partitions. The p4rf of X internal to Y, 

denote-d X x Y, is the partition {X E X : X C Y for some Y in Y}. The 

part of X noninternal to Y is X - (X x Y). The partition X is internal 

to Y if X = X x Y. For a 11ubset M or V, M >< Y iB an alternative nota­

tion for M n UY. For a negative set Y, M >< Y and X x Y are abbrevia­

tions or M x {Y} and Xx {Y}. For a 11tructure (X,M), let (X,M) x Y 

denote the structure (X x Y , M x Y). 

Internal Part Propertys Let t he a au6ad of e, Ya neg4tive •d, 
4nd (X,M) a poaitive atructure. If (X,M) ia t-8upported, then ao i.t ' · 

(X,M) x Y. For 4ny edge a external to Y, if (X,M) ;., tmoda-aupported, 

then (X,.M) x Y ia t-aupported. 

Proof. Let S be an arbitrary element or X x Y, and (X5 ,M5 ) at• 

support or t moda-supP,Ort of S. Then tS C eM U e.M5 or 

tS C eM u e.M5 u {a}. By Property A, ts C e!YJ. Since {o} n e(Y) = 
0 and eM n e!YJ C e(M x Y), therefore tS C e(M x Y) u eM5 • The 

same argument can be made for each S in Xx Y. Hence, (X,M) x Y ia 

t-11upported. a 

A refin_ement or a posith•e partitioti X is any positive partition X 
such that UX = X and each element of X is a subset or some element of 

X. A refinement X or X is proper it X ¢ X; it is /inut if X has no 

pr.oper rerinerpent. The relt;vant propertie~ or any refmement X of X are: 

eX = eX; I XI ;;'a!! I XI; I XI = I XI itr X = X . 

For a positive partition X and a negative partition Y, Jet X • Y 

denote ~he collection or all nonnull sets of the form X n Y, X E X, Y E Y. 

Property Rs For a positive partition X and a negative partition Y, 

it X is internal to UY, then X • Y is a refinement or X 

The proof is elementary. 

Reflneme.nt Propertys Let t he a f e4$i6le au but of e, (X,M) a 

at_ructure, and X 4 refinement of X 1/ (X,M} ia t-aupported, thpi ao i, 

(X,M}. For 4ny a int, i/ (X,M) ia tmoda-aupported then ao ia (X,M). 

Proof. The proof of the first assertion process by induction on the 

11ize or X. If the size is 0, then X = 0 and so the assertion is trivially 

true. Now suppose the size of X is not 0. We give a proof or the case 

I XI 1 = I XI + }; the general c~e will follow by induction. Specifically, 

we assume that X can be obtained from X by partitioning an element S ot 

X into two signed sets, S1 and S2• To prove that (X,M) is t-supported, 

we need only show that S1 and S2 have t-supporta. 
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Let (Y,~) be a t-support or S, and let Y denote Y • {S1,s,}. By 
Property R; Y is a refmement or Y. By induction hypothesis, (Y,N) ia. 
t-supported. For i = 1,2, by the Internal Part Property, 

(1) the structure (Y,N) x S, is t-supported. 

Since tSi C tS C eM u eN and one end or each edge in eN n tSi is in 
N X s,, 
(2) tS, C eM u e(N x S,) . . 
From 1, since Y is nondegenerate and t is feasible, 

(3) IY x s,I :s u(N x S.)fori = 1,2. 

Since "X is internal to {S1,S2}, therefore I Y x Sil + I Y x S21 ~ I YI ...... 
But I YI ~ I YI c!: uN and N is the disjoint union of N x S 1 and • 
N x S2• Hence 

(4) IY x S11 + IY x S21 c!: u(N x S1) + u(N x S2). 

By virtue of 4, equality bolds in 3. So, by 1 to 4, the structure (Y,N) x Si 
is a t-support of s •. The proof or the first assertion is complete. For a 
proof or the second assertion, replace 2 by ts, C eM U e(N x S,) u {a}. 
a . 

4. Meet/ Join, and Dltrerence 
This section defmes the meet, join, and dirrerence or two structures. 

The context in which these operations will be used, the proof or the Fringe 
Lemma, contains the Collowing elements: a feasible subset t or e, a super­
marginal structure (Y,N) such that tY C eN, an edge a in the fringe of 
(Y,N), and a t moda-supported structure (X,M). The object of the proof 
is to show that (X,M) is submarginal. There are two cases: either both 
structures are positive, or one is negative and the other positive. In each 
case, (X,M) and (Y,N) are combined into two new structures. In the fint 
case, the new structures are called the meet and join of (X,M) and (Y,N); 
they are analogous to the intersection, X n Y, and union, X U Y, or posi­
tive sets X and Y. In the second case, the resulting structures are called 
differences; these are analogous to the differences X - Y and Y - X or a 
negative set X and a positive 11et Y. Each new structure is submarginal; 
this is because it, or some related structure, is t-supported. The submar­
ginality of (X,M) is then deduced by a cardinality relation. In the case 
where (X,M) and (Y,N) are positive, this cardinality relation, described in 
the Lemma on . Meet and Join, is analogous to the identity 
I X n YI + I X u YI = I XI + I YI . In the second case, this relation, 
given in the Lemma on Differences, is analogous to the aet relation 
IX - YI + IX n YI + I Y - XI + I Y n XI = IX I + I YI . 
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The· first hair or this section considers the meet and the join; the 
second hair studi~ the dirrcrence. 

The meet or positive partitions X and Y, denoted X /\ Y, is the col­
lection or all nonnull sets or the form X n Y, X E X, YE v: The join, 
X v Y, is the collection or all sets or the form UJ, where J is a minimal 
nonnull subcollection or X u Y such that UJ is disjoint from 
U(X u Y - J). Since the intersection and the union or positive sets are 
positive sets, X /\ Y and X v Y are positive partitions. 

Let (X,M) and (Y,N) be positive structures. The meet or these 
structures, denoted (X,M) /\ (Y,N), is the structure (X A Y, ... 
(M x Y) U (N x X) u (Mn N)). The join, denoted (X,M) v (Y,N), is . 
the structure (Xv Y, (M ~ Y) u (N - X)), where M - Y is an abbre­
viation or M - UY. When X and Y are understood, the second coordi­
nates of the meet and the join are denoted by M A N and M v N respec­
tively. 

Meet and join have the following property: for any subset t of e, if 
tX C eM and tY C eN, then t(X A Y) C e(M /\ N) and 
t(X v Y) C e(M v N). The generalization or the second part of this pro­
perty to the context of the Fringe Lemma is true: if (X,M) is tmoda- · 
supported and tY C eN, then the join (X,M) v (Y,N) is t-supported. 
This is the main assertion or Lemma J below. The generalization of the 
fir&t part or the property is not true: the meet may not be t-support.ed. 
Despite that, if t is feasible, the meet is submarginal. The proof of this 
submarginality is one or the objectives or the Main Lemma in the next sec­
tion. 

Lemma J: Let t be a aubaet of e and (X,M) and (Y,N} poaitit,e 
atructurea. If t Y C eN and (X,M) ia t •aupported or t moda•aupporte4 
for aome edge a in the fringe of (Y,N), then (X,M) v (Y,N) ia t­
aupported. 

Proof. For each S in X, let (X5 ,M5 ) be a t-support or tmoda­
support of S. Let J be an arbitrary element of X v Y and X' and Y' the 
subcollections or X and Y such that J :::: U(X' u vi. Let (X1,M1) 
denote the structure U{(X5 ,M5 ): S EX'}. We wish to show that 
(X1,M1) is at-support of J relative to M v N. 

By construction, (X1 ,M1 ) is supermarginal and internal to J. By the 
Disjoint Structures Property, (X1 ,M1 ) is t-supported. There remains the 
proof that tJ C e(M v N) U eM1. An elementary argument shows that 
tJ ~ tX' U tY' - e[X) U eM. By hypothesis, tY' C eN and 
tX' C eM u eM1 U eN, since a E eN. Hence, tJ C (eN - e[X]) U 
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(eM - eM)u eM1 C e(N - X) u e(M ~ Y) u eM1 C 
e(M v N) U eM1• 

So, (X1,M1) is a t-support of J. This holds for each J in Xv Y. 
Hence, (X v Y,M v N) is t-supported. a 

Lemma on Meet and Joins Let (X,M) and (Y,N) be poaitive ,truc­
ture,. If (X,M) A (Y,N) and (X,M) v (Y,N) are ,ubmcirginal, then 
I XI + I YI :S uM + uN. · If (X,M) and {Y,N) 11re 1uperm11'rginal, 
then IX A YI + IX v YI 2: u(M /\ N) + u(M v N). 

Proof. We begin by showing the supermodular inequality ... 
IX A YI + IX v YI 2: I XI + I YI. Let B be a bipartite graph whose 
vertex-set is the disjoint union or X and Y and whose edges are the pairs · 
(X,Y) such that X EX, YE Y, and X n Y :I: 0. Then the number or 
edges or B is IX" Y I and the number or components or B is IX v YI. 
For any graph, the number or edges plus the number or components is no 
smaller than the number or vertices. The supermodular inequality followa. 

. . 
The inten1ection and union of M A N and M v N are equal to 

Mn N and MUN respectively . . Hence, u(M AN)+ u(M v N) • 
uM + uN. This equality and the supermodular inequality in the previous . 
paragraph prove the Lemma. a 

Now con~ider the difrerence between structures. -

For negative set X and positive partition Y, let X - Y abbreviate 
X - UY. For negative partition X, let X - Y denote the collection or 
all nonnull 11ets or the Corm X - Y, X EX Note that X - Y is a nega­
tive partition. 

For a negative partition X and -a positive structure {Y,N), the part 
of X with aupermarginal (Y,N)-Jilling is the collection or all X in X for 
which (Y,N) x X is supermarginal. 

Let (X,M) be a negative 11tructure and (Y,N) a positive structure. 
The difference between these 11tructuree, denoted (X,M) - (Y,N), is the 
structure (x• ~ y•, M ~ Y\ where X:a. is the part or X with supermar­
ginal (Y,N}-filling; y• is Y - (Y x x•), that is, the part of Y noninter-• . . nal to X ; and M ~ Y is M - UY . · 

The dirrerence bas the following property: for any subset t of e, it 
tX C eM and tY C eN, then (X,M} ~ (Y,N) is t-supported; specifically, 
each element S - y• or Xa ~ y' baa (Y,N) x S Cor support. The gen­
eralization of this p~operty to the context or the Fringe Lemma is true: for 
feasible t, if (X,M) is tmodo-supported and tY C tN, then 
(X,M) ~ (Y,N) is t-supported. This will be shown within the proof of 
Main Lemma in the next section. Under the same conditions, 
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(Y,N) - (X,M) may not be t-snpported. But a I-supported structure ia 
obtained by adjoining to {Y,N) - (X,M) the supports of &0me of the ele­
ments of X .. This is shown within the proof of the following lemma. 

Lemma Ds Let t be a fea~ible ,ubaet of e, (Y,N) a nondegenerate 
po8itive itructure, and (X,M) a negative ,tructure. If tY C eN U eM 
and (X,M) i, t-,upporled or tmoda-iupporled for ,ome edge a in the 
fringe of (Y,N), then (Y,N) - (X,M) i, aubmarginal. 

Proof. Let Ylll be the part of Y with aupermarginal (X,M)-ralling, 
and x• the part of X noninternal to v•. For each S in x•, let (Xs,Ms) 
be a t-support or tmoda-support of S. Let (X1,M1) denote the structure .... 
U{(X5 ,.M5 ): S Ex•}. Since (X1,M1) is internal to x•, it is disjoint from 
the structure (Y• - x•, N - X'}_ So, the pair ((Ya ~ x•) u X1, 

(N - x') u M1) is a structure. We will show that it is t-supported. The 
submarginality of (Y,N) ~ (X,M) will then follow directly. 

By the Disjoint Structures Property, (X1,M1) is t-supported. In par­
ticular, each element of X1 is t-supported relative to (N ~ x•) U M1• 
There remains the proof that each element of y• - x• is t-supported • relative to (N ~ X ) U M1• 

Let Y be an arbitrary element or v•. By the Internal Part Property, 
since a is external to Y, therefore (X,M) x Y is t-supported. We proceed-

• to verify that this structure is a support of Y ~ X relative to 
(N ~ x•) u M1• By definition of y•, (X,M) x Y is supermarginal; since 
X x Y is parallel to x• and Mis disjoint from UX, therefore (X,M) x Y • is internal to Y - X . There remains the proof of the inclusion 
t(Y ~ x•) C e(N ~ x•) u eM1 u e(M x Y). An elementary argument 
shows that t(Y ~ X") C tY n e!V ~ x"j u ex• n e[Yl u tX" n tY. By 
hypothesis, tY C eN u eM and ,x• C: eM U eM1 U e!V ~ Y) since 
er E ejV ~ Y). Hence, t(Y ~ x") C: e(N ~ x") u eM1 u eM. Since the • positive end or each edge in eM U t (Y ~ X ) is in M x Y, therefore 
t(Y ~ x·) C e(N ~ x·) U eM1 U e(M X Y). 

Since Y and X 1 are nondegenerate and t is feasible, 
((Ya ~ x') U X1, {N ~ x·) U M1) is submarginal. But I X1 I a • El X 5 I :i!:: EuM5 = uM1, with summations over all S in X , whence 
(X1,M1) is supermarginal. So, (Ya ~ x•, N ~ x•) is submarginal. Thia 
completes the proof of the _Lemma. a 

Lemma on Dtn'erencess Let (X,M) be o negative t!trudure and 
(Y,N) a poaitive -,tructure iuch that each of X and Y ha3 no proper 
refinement. 1/ (a) (X,M) x Y it! aubmarginal /or each Y in Y, (b) 
(Y,N) x X ia 1ubmarginal for each X in X, and (c) the dilfermce• 
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(X,M) ~ (Y,N) and (Y,N) ~ (X,M) 
IXJ + IYI s uM + uN. 

are aubmarginal, 

Proot. The proof consists of the r oUowing chain of inequalities: 

IXI + IYI = ix• - v· 1 + ix• x uv•I + Ix- x•1 
+ Iv· - x·, + I Ya X ux·1 + IY- y•1 (1) 

s Ix• - v•1 + IX x v•1 + 1x• - x•1 
+ Iv• - x· 1 + I Y x x· 1 + Iv• - v•1 (2) 

• • S u(M ~ Y ) + u(M x Y ) 
• • + u(N - X ) + u(N x X ) (3) ... 

= uM + uN 

To verify 1, observe that one part or x• is internal to uy•, the 
• other is noninternal to UY . And the latter has the same number of ele-

ments u x• - v•. Symmetric considerations bold tor Y • 
. · ·. · The part of x• internal to uy• is a subcollectioo or X x uv•. 

Since X bas no proper rermement, Property R implies that . . . . . 
X x UY = X x Y . This verifies the rm;t part or 2. For the second 
part, observe that ech element of X - xa intersects N and is therefore 
noninternal to Y, in particular noninternal to v•. Hence 
x - x• = x· - x•. 

By hypothesis, IX•~ Y•I s u(M ~ Y•) and IY• ~ x•f $ 

u.(JV ~ x•). To complete the verification of 3 let y•• abbreviate 
Y n ya and observe that 

Ix x v· I + Iv· - v• 1 = 
- -

= Ixxv·•1 +E{IX><YI :YEY·-v•}+ 1v•-v•1 
s u(M X y•a) + L'{u(M X Y) - 1: y E y• - y•} + 1v· - v•1 
= u(M X y••) + u(M X (Y. - v·n 
== u(M x Y\ 

Similarly, Iv xx· 1 + Ix· - x·1 ~ u(N xx·). Thia completes the 
proof or the Lemma. D 

&. Proof ot the Fringe Lemma 

Fringe Lemma: Lel t be a /eaaible aubat:t of e and (Y,N) a auper­
marginal nondegrnerate atructure auch that tY C eN. For any edge a of 
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t in the fringe of (Y,N), eve,r t moda-aupported nondegenerate atrudure 
ia aubmarginal. 

Proof. Let. (X,M) be a tmoda-supported nondegenerate structure • 
Adjust notation so that X bas no proper refintment. The adjustment con­

sists of replacing X by its finest refin!ment X, and is justified as follow■: 
by the .Refinement Property, (X,ft!) is t mod a-supported; since 

I XI :s I XI, the submarginality or (X,M) will imply the submarginality 
or (X,M). 

'Let Y be a refmement or Y. Since tY = tY C eN, thererore (Y,N) 
is t-supported, and con~equently submarginal. By hypothesis, (Y,N) is .... 
supermarginal. Hence Y = Y. This argument !hows that Y baa no 
proper ref mement. 

Structures (X,M) and (Y,N) satisfy the hypothesis or the Main 
Lemma below with {Y,N) in place of (r,N'). So, if (X,M) and (Y,N) are 
positive, then 

(1) (X,M) A (Y,N) is submarginal; 

if (X,M) is negative and (Y,N) positive, then · · 

(2) (X,M) ~ (Y,N) is submarginal. 

Now the proof follows up these alternatives. 

Cue ls (X,M) and (Y,N) are positive. 

U a is not in eX, then (X,.M) is t-supported; since t is reasiblc and X 
is nondegenerate, (X,M) is submarginal. Now suppose a is in eX. Then 
the negative end of o is in V ~ X a.s well as V ~ Y, whence X v Y ia 
nondegenerate. By Lemma J, (X,M) v (Y,N) is t-supported. Since t is 
feasible, 

(3) (X,M) v (Y,N) is submarginal. 

From 1 and 3, by the Lemma on Meet and Join, 
I XI + I YI :!ii uM + uN. Now, since (Y,N) is supermarginal, (X,M) is 
submarginal. 

Cue Zs (X,M) is negative and {Y,N) positive. 

Let Y be an arbitrary element or Y. Since a is external to Y, the 
Internal Pa.rt Property shows that (X,M) x Y is t-supported. Since X is 
nondegenerate and t feasible, 

(4) (X,M) x Y is subm~rginal. 

By a similar argument, for each X in X, 

(S) (Y,N) x X is submarginal. 

By Lemma 0, 
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(6) (Y,N) - (X,M) is submarginal. 

Recall that neither X nor Y baa proper rermementa. Then, by the Lemma· 
oo Dirfereuce11, assertions 2 and 4-6 imply that I XI + I YI :5 uM + uN. 
Now, since (Y,N) is supermargiual, (X,M) is submarginal. 

The proof is complete except for the Main Lemma. 0 

Main Lemmas Let t be II feuible aubaet of e and {X,M) and (Y,N) 
nondegenerate atructuru. Suppoae tY C eN U e(V ~ X) and (X,M} i, 
t •aupported or t moda•,upported for ,ome edge a in the fringe of (Y,N). 
1. If (X,M) and (Y,N) are po,itive, then (X,M) A (1"9,N°) ia ,ubmarginal 
for every (Y',N°) ,uch that Y9 CY, N° C N, t(Y - 1"9) C e(N - N°),' 
and I Y - r 1 i!!: u(N - N°). 
t. If X,M ;., negative and (Y,N) i, po,itive, then {X,M) - (Y,N) i, auh­
marginal. 

Proof. The proof is by induction on the size of X U the size is 0, 
then X = 0 and the assertions of the Lemma are trivially true. Now sup­
pose the size of X is non1ero. 

Cue 1. (X,M) and (Y,N) are positive. 

For_ each S in X, let (X5 ,M5 ) be a t-support of S. Let (X1,M1) 

denote the structure U{(X5 ,M5 ): S EX}. By the Disjoint Structures Pr~ 
perty, 

{1.1) (X1,Mi) is t-supported. 

Since (X5 ,M5 ) is supermarginal for each S iD X, 

(1.2), (X1,Mi) is supermarginal. 

Since I X1 I i!!: uM1 and I y - r1 i!!: u(N - N°), the desired ine­
quality Ix A r1 :s u(M AN°) is equivalent to 

(1.3) I X1 I + I y - r1 + IX A r1 :S uM, + u(N - N°) + u(M AN°). 
Let Y 1 be a finest refinement of the partition (Y - Y') u (X A Y'), and 
let N 1 denote (N - N°) U (MAN°). Observe that (Y1,N1) is a positive_ 
structure. Now, 1.3 is implied by 

(1.4) I X 1 I + I Y 1 I :S uM1 + uN1• 

By the Lemma on Difrerences, 1.4 follows from 

(1.5) X 1 has no proper rdinement, 

(1.6) (X1,M1) x Y1 is submarginal for each Y1 in Y 1, 

(1.7) (Y1,N1) x X 1 is 11ubmarginal for each X 1 ill X 1, 

· (1.8) {X1,M1) - (Y1,N1) is submarginal, and 
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(1.9) (Y1,N1) ~ (X1,M1} is submarginal. 

So, the proor or this case is rNtuced to the proofs or 1.5 to 1.9 . . 
This paragraph prov~ 1;5. Ld X1 be a refmement or X 1• By 1.1 

and the refinement Property,{X 1,M1~ is t-supported, a~d consequently sub­
marginal. By 1.2, (X1 ,Mi) is supermarginal. Hence X 1 = X1 and so X1 
has no proper refinement . 

Let Y1 be an element or Y 1. By 1.1 and the Internal Part Property, 
(X1,M1) >< Y1 is t-supported. Since t is reasible and X 1 is nondegenerate, 
1.6 bolds. 

The proofs or 1.7 to 1.9 depend on the inclusion 

(1.10) tY1 C eN1 u / 1 ,where/ 1 is the fringe or (X1,M1) int. 

An elementary argument shows that t(X A ye) = tX n e[Y°) U 
tY° n e(X] u tX n tY°. By hypothesis, tYo C eN9 u 
e(N - N°) U ejV ~ X) and tX C eM U eM1 u e!V - Y); since 
a E ejV - Y). In fact, tX C eM u / 1 u ejV ~ Y) by the Corollary or 
Property A. Hence, t(X /\ Yo) C e(M x Yo) U e(N° x X) U e(M n fr) 
U e(N - N°) u / 1 = e(M AN°) U e(N - N°) U / 1. Now, tY1 • 
t(Y - Yo) u t(X A Yo) C e(N - N°) U e(M II N°) u / 1 = eN1 U / 1• , 

Let X 1 be an element or X 1. By 1.10, tY1 C eN1 u e[V - X 1) .. 

Hence, by Property A, t (Y 1 >< X 1) C e(N1 x X 1). So, the structure 
(Y1,N1) x X 1 is i.:supported. Since t is feasible and Y 1 is nondegenerate, 
1.7 bolds. 

Claim 1.8 is given by assertion 2 or the induction hypothesis with 
(X1,Mi) and (Y1,Ni) in place or (X,M) and (Y,N). Claim 1.0 is given by 
Lemma D with (Y1,N1) and (X1,M1) in place of (Y,N) and (X,M). The 
conditions for the appeal to the induaion hypothesis and Lemma D are 
satisfied: X1 is smaller than X; X 1 and Y I are nondegenerate; by 1.1, 
(X1,M1) is t-supported; by 1.10, tY1 C eN1 U e(V- X 1J as well aa 
tY1 C eN1 U eM1• 

The proof or case 1 is complete. 
! 

Cue Z: (X,M) is negative and (Y,N) positive. 

Recall that (X,M) ~ (Y,N) = (Xa: ~ Y', M - Y'), where x• ia 
the part or X with supermarginal (Y,N}-rtlling and y• is Y - (Y x x•) . 

. Let S be an element or xa and (X5 ,M5 ) a structure that t-supl>C!rts or 
tmoda-supports S. Let (X'5 ,M'5 ) abbreviate (X5 ,M5 ) >< (S - Y ) and 
(Y'5 .N's) abbreviate (Y,N} x (S ~ Y\ Let j = (X's,M's) v (Y's,N's)­
Then 

(2.1) j is t-supported, 
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(2.2) j is internal to S - y•, 
(2.3) j is supermarginal, and 

(2.4), t(S - Y•) c e(M - Y•) u e(M's v N'5 ) • . . , 
Hence, j t-suppor,ts S - Y relative to M - Y . Tbe •a~e argume~t 
can ~ made for each Sin Xa. Hence, the structure (Xa - Y , M - Y ) 
is t-supported. Since t is fea.,ible and X is nondegenerate, the 1trocture is 
gubmarginal. Thia reduces c~ 2 to the proora or 2.1 to 2.4. 

Thia paragraph proves 2.1. By Property A, tY'5 C tY n 
ejS - y•J C eN n e!S ~ Y•J C eN1

5 • By the Internal Part Property . 
· with (X5 ,M5 ) and S - y• in place or (X,M) and Y, the· structure' 
(X'5 ,M'5 ) is t-supported. Now, by Lemma J, j ia t-supported. 

Since (X'5 ,M'5 ) and (Y'5 ,N'5 ) are internal to S - y•, so is their 
join. This verifies 2.2. 

Claim 2.3 rollows, by the Lemma on Meet and Join, rrom 

(2.3a) (X'5 ,M'5 ) /\ (Y'5 ,N'5 ) is submarginal, 

(2.3b) (Y'5 ,N'5 ) is supermarginal, and 

{2.3c) (X's,M's) is supermarginal. 

Claim 2.3a follows from assertion 1 or the induction hypothesis with 
(X'5 ,M'5 ) and (Y's,N'5 ) and (Y's,N'5 ) in place or (X,M) and (Y,N) and 
(r ,N1'). The conditions r or this appeal to the induction hypothesis are 
satisfied: X's is smaller that X; X's and Y' 5 are nondegenerate; 
tY's C eN's and (X's,M's) is t-supported, as shown in the proof of 2.1. 

Claim 2.3b is verified as follows. Since Y x (S ~ Y) = Y x S, a 
consequence of U(Y x S) disjoint from UY , therefore 
I Y'sl = I Y -x s1. Since s ex•. therefore I Y x s1 :i!: u(N x S). 
Since · N _ x S = N x (S - Y•), therefore u(N x S) = uN1

5 • So, 
I Y's I '2:: uN's· 

Claim 2.3c is given by the inequalities 

(2.3c') I X's I '2:: I Xs I - I Xs A y• I 
(2.3c") 2: uM5 - u(Ms I\ N•), where N• = N - (N xx•) 
(2.3c"') '2:: uM'5 • 

This paragraph verifies 2.3c'. By definition or X!5 , each element of 
X 5 - X's intersects uy•. So, each element or X 5 - X's includes an ele­
ment of X 5 A y•; hence I X 5 I - I X's I s I X 5 I\ y• 1. 

Inequality 2.3c" follows · from I Xs I 2! uM5 and 
I X 5 A y• I s u(M5 AN•). The former is true by defmition or (X5 ,M5 ). 
The latter is given by assertion 1 or the induction hypothesis with (X5 ,M5 ) 



• 

17 

and (Y,N) and (y•,N•J in pl:i.ce or (X,M) and (Y,N) and (r,N9). The 
conditions for this appeal to the induction hypothesis are satisfied, as the · 
rollowing analysis ahows. Firat, X5 is amaller than X. Second, 
tY C tN u ejV ~ Xsl since X 5 ~ internal to X. Third, (Xs,Ms) is,_ 
support~. Fourth, t(Y - Y } = t(Y >< x•) C e(N xx•) a 

e(N - N•), where the inclusion follows from Property A. Firth, 
Iv - v· 1 · = Iv x xa1 = El v xx I :i!! Eu(N x X) = 
u(N >< x•) = u(N - N\ "·ith summations over all X in x•, where the 
inequality is given by the definition or x•. 

Since (X5 ,M5 ) is internal to x•, thererore Ms AN• ·a 
(Ms X y•, u(N. )( Xs) u(Ms n N.) C (Ms Xv·) u (N. )( x•). By~­
definition ol N•, N• x x• = 0. Hence, Ms - (Ms A N•) • . . 
M5 - (Ms x Y ) = M's· Inequality 2.3c"' foUowa. 

There remains the proof of the inclusion 2.4. An elementary argu­
me~t shows that t($ - Y•) = tS .n ejV ~ y•I utY• n e(S) u 
tY n tS. By hypothesis tY C eN u e(V- SJ and 
tS C eM U eMs U eN, since a E eN. So, t(S ~ Y•) C e(M ~ v•) U 
eM5 u eN. ln ract, since the positive end of each edge in 
eM5 n t(S ~ v•) is in• Ms x (S ~ Y\ an~ the positive end of !ach . 
edge in eN n t(S ~ Y ) ia in N >< (S ~ Y ), therefore t(S ~ Y ) C 
e(M ~ Y•) u eM's u eN's · Since Y's and X's are internal to S ~ v•; 
thererore, by Property A, t(S ~ Y•) ia a subset of e(V ~ Y's) and or 
e(V ~ X'sJ- So, t(S ~ Y•) C e(M ~ Y•) ue(M's ~ Y's) U 
e(N's ~X's)= e(M ~ Y•) u e(M's v N's)-

The proof or the Main Lemma is complete. a 

- -
Acknowledgement.A private paper by M.R. Rolle suggested how the 
complexities of the meet and join of structure could be handled. 
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