


Vertex-Constrained Transversals in a Bipartite Graph

P. Feofiloff and D.H. Younger

1. Introduction

Let G be a finite directed graph with directed bipartition (V’,Vn),
and u a positive integer function on V. McWhirter and Younger [McWY]
proved that G has a u-constrained transversal of directed coboundaries if
and only if for each nonnull subset M of V’ or V, the number of com-
ponents in the subgraph induced by V—M is no greater than uM. This
paper proves the following generalization:

"Theorem: For any finite directed bipartite graph G and positive
integer function u on V, a subset r of e includes o u-constrained
transversal if and only if |X| = uM for every r-supported nondegen-
erate structure (X, M). -

A directed graph G consists of a set V of vertices and a set e of
edges, each edge having a positive end and a negative end in V. A positive
set in G is a subset S of V such that no edge has its negative end in S and
its positive end in V—S. A negative set is defined dually, that is, by inter-
changing "positive’ and 'negative’ in the previous definition. A signed set is
either a positive set or a negative set. A signed set is nondegenerate if it is
distinct from V. A positive partition is a disjoint collection of nonnull
positive sets. A negative partition is defined dually. A signed partition is
either a positive or a negative partition; it is nondegenerate if distinct from
{v}.

For a subset t of ¢ and a signed set S, let tS denote the set of edges
in ¢ that have one end in S and the other in V—S. Sets of the form eS
are directed coboundaries. For a signed partition X, let tX abbreviate
t(UX) or, equivalently, u{ts : s ¢X}.

A transversal (of directed coboundaries) is a subset ¢t of e such that
tS # & for every nonnull nondegenerate signed set S. (Hence, a discon-
nected graph has no tramsversal.) A transversal ¢ is u-constrained if
| ¢{v}] = uv for each vertex v. Here, u is a positive integer function on
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V, that is, a function from V to the set of strictly positive integers. The
domain of u is extended to subsets of V by the definition -
uM = X{uv : v € M} for each subset Af of V.

A source is a vertex v such that {v} is a positive set. A sink is
defined dually. The set of sources of the graph is denoted by V"; the set of
sinks, by V,,. The graph is directed bipartite il each vertex is a source or a
sink, that is, if each edge has positive end in V, and negative end in V.

In a directed bipartite graph, a positive structure is a pair (X,M)
where X is a positive partition and M is a subset of V,, —UX. A negative
structure is defined dually. The null structure is (J,J). A structure
X,M) is nondegenerate is X is nondegenerate; it is marginal if
1}(] = uM; submarginal if |X| = uM; and supermarginal if
IX] = uM.

The McWhirter-Younger theorem gives necessary and sufficient con-
ditions under which a directed bipartite graph has a wu-constrained
transversal. The conditions can be restated as follows: every nondegen-
erate structure (X,M) such that eX C eM is submarginal. This paper
shows that a recursive generalization of these conditions is necessary and
sufficient for the existence of a u-constrained transversal within a specified
subset r of e. The motivation for studying constrained transversals comes
from the following conjecture by Woodall [W] and Edmonds-Giles [EG}:

In apy finite directed graph, a maximum disjoint collection of
transversals of directed coboundaries is equal in cardinality to a
minimum set of the form eS, S a nonnull nondegenerate signed set.

The equality has been proved for source-sink connected graphs [S] [FY].
The present Theorem may be relevant to the bipartite case of the conjec-
ture.

We proceed to define a recursive generalization of the class of struc-
tures (X,M) for which rX C eM. The definition uses the following termi-
nology. A signed partition Y is internal to a signed set Sif UY C S. A
structure (Y,N) is internal to S if Y is internal to S and N C S,

Let r be a subset of ¢ and (X, M) a positive structure. An r-support
of an element S of X is a negative structure (Xg,Mg), internal to S, such
that | Xg| = uMg, rS C eM U eMg, and each element of X has an r-
support. The dual definition holds when (X, M) is negative. To emphasize
the dependence on M, we may say that (Xg,Mg) is an r-support of S rela-
tive to M. A structure (X,M) is r-supported if each element S of X has
an r-support.

, Examples: The null structure is r-supported. Any structure (X, M)



suc.h that r X C el is r-supported.

The size of a signed partition X is the number | UX]|. If an element -
S of X has a support, then it has a support whose first coordinate is
strictly smaller than X, as the following argument shows. Let (Xg,Mg) be
a support of S, and suppose that X is not strictly smaller than X. Since
the support is internal to S, therefore UXg = S, and so Mg = . But
then the null structure is a support of S.

We adopt the following convention. For an r-supported structure
(X, M), if (Xg,Ms) is said to be an r-support of an element of X, it is to
be understood that X is strictly smaller that X. '

A subset r of ¢ is feasible if every r-supported nondegenerate struc-
ture is submarginal, The Theorem can now be stated as follows: A subset
r of e includes a u-constrained transversal if and only if r is feasible.

2. Reduction of the Theorem to the Fringe Lemma

An edge is internal to a signed set X if it has both ends in X. An
edge is erxternal to X if it is internal to V—X . These definitions extend
naturally to a signed partition X: an edge is internal or ezternal to X if it
is internal or external to UX. For a subset ¢ of ¢, let ¢[X] denote the set
of edges in { that are internal to X. Let ¢[X] and t[V~X] abbreviate
t|UX] and ¢|V-UX]. .

The fringe of a structure (X,M) is the set eM N e[V~X], that is,
the set of edges in eM that are external to X. The fringe of (X,M) in a
subset ¢ of e is tM N e[V~X]. )

Property A: For a negative partition Y internal to a positive set S,
each edge in eY is internal to 5 and each edge in ¢S is external to Y. -

Corollarys For a negative structure (Y,N) internal to a positive set
S, the intersection of eS and el is a subset of the fringe of (Y,N).

The proofs are elementary.

Proof of the ‘only H' assertlon In the Theorem: Suppose r
includes a u-contained transversal t. We proceed to show that t is feasi-
ble, that is,

(1) Every r-supported nondegenerate structure (X, M) is submarginal.
In order to carry out a proof by induction, we expand 1 by the addition of
(1') If (X,M) is marginal, then its fringe in ¢ is null.

The proof is by induction on the size of X. If the size is 0, then X = &
and so the assertion 1,1’ is trivially true. Now suppose the size of X is



nonzero. Assume [X| = uM, for otherwise 1,1' is trivially true. Let S be
an arbitrary element of X and (XS,MS) an r-support of S. Then, by the .
Corollary of Property A, tS CeM U fg, where fg is the fringe of
(Xs,Mg) in t. By induction hypothesis, (X¢,Ms) is marginal, and there-
fore fo = (D. So, tS C eM. Since this holds for each S in X, therefore
tX C eM. Hence, [tX]| = |tM]. But |tX| = | X| since X is nonde-
generate and ¢ is a transversal; |X| = uM by hypothesis; and
uM = [tM| since ¢ is u-constrained. Hence |tX| = |tM| and equali-
ties hold throughout. In particular, | X| = uM and tX = tM. The first
equality verifies 1; the second, 1'. This completes the induction and so
proves the ‘only if’ assertion. O

The proof of the 'if’ assertion proceeds by induction on r: given a
feasible subset ¢ of r, we search for an edge a in ¢ such that t-a is not
feasible. Here t-a is an abbreviation of ¢ — {a}. An edge a is critical if
t-a is not feasible. Critical edges can be characterized in terms of the fol-
lowing concept.

For subset ¢t of ¢ and edge a in ¢, a structure (X,M) is tmoda-
supported if each element S of X has a (¢t-a)support (Xg,Mg) that is ¢-
supported. Our convention about supports is naturally extended: for any.
t moda-supported structure (X,M), if a structure (Xg,Ms) is said to be a
tmoda-support of an element of X, it is to be understood that Xg is
strictly smaller than X. )

Critlcal Edge Lemma: Let t be a feasible subset of e. For any
critical edge a in t, there ezists a tmoda-supported nondegenerate struc-
ture (X,M) such that | X| > uM.

Proof. Observe that
(1) For every (t-a)supported structure (Y,N), if a is external to Y, then

(Y,N) is t-supported.

The proof of this observation is a simple exercise.

Since t-a is not feasible, there exists a (t-a)-supported nondegenerate
structure (X, M) such that | X| > uM. Let 2 denote the collection of all
such structures. We will show that some structure in 2 is tmoda-
supported.

For each (X,M) in 22, a is nonexternal to some element S of X. Oth-

erwise, by 1, (X, M) would be t-supported, contrary to the feasibility of ¢.
We call § the a-element of X.

Choose (X, M) in 12 so that the a-element of X is minimal. Then



(2) a is noninternal to X,

as we proceed to show. Suppose the contrary. Then a is internal to the -
a-element, S, of X. Let (Y,N) be a (t-a}-support of 5. Since (Y,N) is
internal to S, therefore YV =Y u{V—S} is a signed partition and
(Y+,N) a structure. In this structure, each element of Y 6ther than
V=S has a (t-a)support. Now consider V~S. Let X~ = X — {S} and
observe that the structure (X, M) is internal to V~S5, supermarginal, and
(t-a)-supported.  Since (t-a)(V—S) = (t-a)S C eM U eN, therefore
(X7 ,M) is a (t-a)support of V—S. So, the structure (Y+,N) is (t-a)
supforted. Moreover, [Y¥| = |Y| + 1= uN +1 > uN. Hence,
(Y™,N) lies in 2. The a-element, T, of Y is in Y. Since Y is internal to
S and strictly smaller than X, therefore T is a proper subset of S. This is
contrary to the minimality of S. The contradiction establishes 2.

We can show now that
(3) (X,M)is tmoda-supported.

Let S be an arbitrary element of X and (Xg,Ms) a (t-a)support of S.
Since X is internal and a is noninternal to X, Property A implies that a
is external to Xg. Now, by 1, (Xq,M) is t-supported. This holds for
each S in X, whence (X, M) is t moda-supported. This completes the proof
of the Lemma. O

Reduction of the If” assertion in the Theorem to the Fringe
Lemma: Suppose r is feasible and let ¢ be a minimal feasible subset of r.
The following argument shows that ¢ is a transversal. Let S be a nonnull
nondegenerate positive set and M a minimal subset of V, —S such that
tS C eM. Then the structure ({S},M) is t-supported. Since t is feasible,
uM = [{S}|, whence M # . By minimality of M, tS # &. The same
argument shows that t5 # J for every nonnull nondegenerate negative set
S. Hence, t is a transversal.

The proof that ¢ is u-constrained is based upon the following

Fringe Lemma: Let (Y,N) be a supermarginal nondegenerate struc-
ture such that tY C eN. For any edge a in the fringe of (Y,N),
every ¢ moda-supported nondegenerate structure is submarginal.

The proof of the Lemma is given in section 5. To show that ¢t is u-
constrained we use the following corollary of the Lemma:

(1) The fringe in ¢t of every ¢-supported supermarginal nondegenerate
structure (Y,IN) is null.

The proof of 1 is by induction on the size of Y. If the size is 0, then
Y = N = @ and so the assertion is trivially true. Now suppose the size
of Y is nonzero. Let S be an arbitrary element of Y and (Yg,Ng) a -



support of S. By the Corollary of Property A, tS CeN U f s» Where fo is
the fringe of (Yg5,Ng) in ¢t. By induction hypothesis, f¢ = @. So, -
tS C eN. This holds for each S in Y, whence tY C eN. Now, by the
Fringe Lemma and the Critical Edge Lemma, no edge in the fringe of
(Y,N) is critical. Since ¢ is minimal feasible, the fringe of (Y,N) in ¢ must
be aull.

This corollary has the following consequence:
(2) For each a in t, there exists a signed set S such that tS = {a}.

Here is a proof of this statement. By the Critical Edge Lemma, there
exists a tmoda-supported nondegenerate structure (X,M) such that
IX| > uM. Let S be an arbitrary element of X and (X, M) a tmoda-"
support of S. By the Corollary of Property A, tS CeM U fg U {a},
where [g is the fringe in ¢t of (Xg,Mg). By 1, f¢ =@. Hence
tS C eM U {a}. This holds for each S in X, whence tX C eM U {a}.
Observe that a € tS for some S in X, for otherwise (X,M) is t-supported,
contrary to the feasibility of ¢t. Let X~ = X — {S} and let f be the
fringe in ¢ of the structure (X™,M). Then tS C{a}uU f. Since
tX” CeM and |X™| = uM, therefore, by 1, f = &. So, tS C {a}.
This establishes 2.

Let v be any vertex in V,. We deduce the inequality |¢{v}] =< uv
from 2. For each a in t{v}, let S, be a signed set such that tS, = {a}.
Adjust notation, by substituting V—S, for S, if necessary, so that S, is
positive. Let X denote the collection {S, : a € t{v}}. For distinct a and
B, the set S, N Sy is null since ¢(S, N Sﬁ) = J and ¢ is a transversal. So,
X is a partition. Since tX C e{v}, the structure ﬁx,{v}) is t-supported.
Since X is nondegenerate and ¢ is feasible, |X| = u{v}. Hence,
[t{v}| = uv. The same argument shows that |t{v}| = uv for each v in
V’. So, t is u-constrained. D

The proof of the Theorem has now been reduced to the Fringe
Lemma.

3. Properties of Supported Structures

Positive structures (X,M) and (Y,N) are disjoint if
UXNUY =0, MnUY=0, and NnUX=0. If (X,M) and
(Y,N) are disjoint, let (X,M)U(Y,N) denote the structure
XuY,MUuUN) ' ‘

Disjolnt Structures Property: Let t be a subsel of e. If struc-
tures (X,M) and (Y,N) are disjoint and t-supported, then the structure
(X, M) U (Y,N) is t-supported.



The proof is elementary.

Let X and Y be signed partitions. The part of X internal to Y,
denoted X x Y, is the partition {X € X:X CY for some Y in Y). The
part of X noninternal to Y is X — (X x Y). The partition X is internal
toYifX=XxY. For asubset Mof V, M x Y is an alternative nota-
tion for M N UY. For a negative set Y, M x Y and X X Y are abbrevia-
tions of M x {Y} and X x {Y}. For a structure (X,M), let (X, M} xY
denote the structure (X x Y, M x Y).

Internal Part Property: Let t be ¢ subset of ¢, Y a negative set,
and (X,M) @ positive structure. If (X,M) is t-supported, then so0 is™
(X,M) x Y. For any edge a external to Y, if (X,M) is tmoda-supported,
then (X,M) x Y is t-supported.

Proof. Let S be an arbitrary element of X x Y, and (Xq,Ms) a t-
support or tmoda-support of 5. Then tS C eMUeMg or
tS C eM U eMg U {a}. By Property A, tSC e[Y]. Since {a} Ne[Y] =
@ and eM N e[Y] C e(M x Y), therefore t5 C e(M x Y) U eMs. The
game argument can be made for each S in X X Y. Hence, (X,M)xYis
t-supported. O

A refinement of a positive partition X is any positive partition X
such that UX = X and each element of X is a subset of some element of
X. A refinement X of X is proper if X # X it is finest if X has no
proper refinement. The relevant properties of any refinement X of X are:
eX =eX: |X| = XX =X X=X

For a positive partition X and a negative partition Y, let XY
denote the collection of all nonnull sets of theform X NY, X eX, Y €Y.

Property R: For a positive partition X and a negative partition Y,
it X is internal to UY, then X * Y is a refinement of X.

The proof is elementary.

Refinement Property: Let t be a Jeasible subset of e, (X,M) ¢
structure, and X a refinement of X. If (X,M) is t-supported, then 80 is
(X,M). For any aint,if (X,M)is t moda-supported then g0 is (X, M).

Proof. The proof of the first assertion process by induction on the
size of X. If the size is 0, then X = & and so the assertion is trivially
true. Now suppose the size of X is not 0. We give a proof of the case
|X| = | X| + 1; the general case will follow by induction. Specifically,
we assume that X can be obtained from X by partitioning an element S of
X into two signed sets, S; and S,. To prove that (X,M) is t-supported,

we need only show that S; and S, bave t-supports.



Let (Y,N) be a t-support of S, and let Y denote Y » {Sl,Sz} By
Property R, Y is a refinement of Y. By induction hypothesis, (Y N) is .
t-supported. For ¢ = 1,2, by the Internal Part Property,

(1) the structure (Y,N) x S; is t-supported.
Since tS; C tS C eM U eN and one end of each edge in eN N tS; is in -
N x S;,

(2) tS; CeMue(N x S;).

From 1, since Y is nondegenerate and ¢t is feasible,
@)[?xs|5uwxs)Mi=12

Since Y is internal to {S,,S,}, therefore | Y x S,| + 1Y x S,|l = Y]~
But |Y] = |Y| = uN and N is the disjoint union of N X S, and
N x §,. Hence

@) Y xS +1YxS,] =uN xS5)+u(NxS5,).

By virtue of 4, equality holds in 3. So, by 1 to 4, the structure (?,N) x S;
is a t-support of S;. The proof of the first assertion is complete. For a
proof of the second assertion, replace 2 by tS; C eM U ¢(N x S;} U {a}.
pl ,

4. Meet, Join, and Difference

This section defines the meet, join, and difference of two structures.
The context in which these operations will be used, the proof of the Fringe
Lemma, contains the following elements: a feasible subset ¢t of e, a super-
marginal structure (Y,N) such that tY C eN, an edge « in the fringe of
(Y,N), and a t moda-supported structure (3{,M). The object of the proof
is to show that (X,M) is submarginal. There are two cases: either both
structures are positive, or one is negative and the other positive. In each
case, (X,M) and (Y,N) are combined into two new structures. In the first
case, the new structures are called the meet and join of (X,Af) and (Y,N);
they are analogous to the intersection, X N Y, and union, X U Y, of posi-
tive sets X and Y. Ibp the second case, the resulting structures are called
differences; these are analogous to the differences X — Y and Y — X of a
negative set X and a positive set Y. Each new structure is submarginal;
this is because it, or some related structure, is t-supported. The submar-
ginality of (X,M) is then deduced by a cardinality relation. In the case
where (X,M) and (Y,N) are positive, this cardinality relation, described in
the Lemma on  Meet and Join, is analogous to the identity
| XNnY|l +|XuY| =|X] + |Y]. In the second case, this relation,
given in the Lemma on Differcnces, is analogous to the set relation

I X-7Y] +|XnY|+|Y=-X|+]|YnXx|=]|X] +|Y].



The first half of this section considers the meet and the join; the
second half studies the difference,

The meet of positive partitions X and Y, denoted X A Y, is the col-
lection of all nonnull sets of the form X NY, X € X, Y ¢ Y. The join,
X vY, is the collection of all sets of the form UJ, where J is a minimal
ponnull subcollection of X UY such that UJ is disjoint from
UX UY — J). Since the intersection and the union of positive sets are
positive sets, X A Y and X v Y are positive partitions.

Let (X,M) and (Y,N) be positive structures. The meet of these
structures, denoted (X,M)A(Y,N), is the structure (XAY,-
(M xY)U (N xX)U (M N N)). The join, denoted (X,M)v (Y,N), is
the structure (X v Y, (M ~ Y) U (N ~ X)), where M ~ Y is an abbre-
viation of M — UY. When X and Y are understood, the second coordi-
nates of the meet and the join are denoted by M A N and M v N respec-
tively.

Meet and join have the following property: for any subset ¢ of e, if
tXCeM and tYCeN, then ¢(XAY)Ce(MAN) and
t(XvY)C e(Mv N). The generalization of the second part of this pro-
perty to the context of the Fringe Lemma is true: if (X,M) is tmoda-
supported and tY C eN, then the join (X,M)v (Y,N) is t-supported.
This is the main assertion of Lemma J below. The generalization of the
first part of the property is not true: the meet may not be t-supported.
Despite that, if t is feasible, the meet is submarginal. The proof of this
submarginality is one of the objectives of the Main Lemma in the next sec-
tion.

Lemma J: Let t be a subset of ¢ and (X,M) and (Y,N) positive
structures. If tY C eN and (X,M) is t-supported or tmoda-supported
Jor some edge a in the fringe of (Y,N), then (X,M)v (Y,N) is t-
supported.

Proof. For each S in X, let (X5,Mg) be a t-support or {moda-
support of S. Let J be an arbitrary element of X vY and X’ and Y the
subcollections of X and Y such that J = U(X'UY’). Let (X,M,)
denote the structure U{(Xs,Mg):S €X'} We wish to show that
(X;,M;) is a t-support of J relative to M v N.

By construction, (X;,M/) is supermarginal and internal to J. By the
Disjoint Structures Property, (X,,M,) is t-supported. There remains the
proof that ¢tJ C e(M v N) U eM;. An elementary argument shows that
tJ CtX'utY — e[X]Ue[Y]. By hypothesis, tY' CeN and
tX'CeM ueM; UeN, since a€eN. Hence, tJ C (eN = e[X])u
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((M=clYlu eM;, C ¢(N~X) U ¢(M~Y) U cM, C
e(M v N) U eM,. S : )

So, (X,;,M;) is a t-support of J. This holds for each J in X v Y.
Hence, (X v Y,M v N) is t-supported. O .

Lemma on Meet and Join: Let (X, M) and (Y,N) be positive struc-
tures. If (X,M)A(Y,N) and (X,M)v (Y,N) are submarginal, then
IX| + [Y] s uM +uN. If (X,M) ond (Y,N) are supermarginal,
then | XAY| + | XvY| = u(MAN)+ u(MvN).

Proof. We begin by showing the supermodular inequality.
[XAY] + [XvY| = |X]| +]Y]. Let B be a bipartite graph whose
vertex-set is the disjoint union of X and Y and whose edges are the pairs
(X,Y) such that X ¢ X, Y €Y, and X NY # &. Then the number of
edges of B is | X A Y| and the number of components of B is IXvyY].
For any graph, the number of edges plus the number of components is no
smaller than the number of vertices. The supermodular inequality follows.

The intersection and union of M AN and M v N are equal to
M NN and M UN respectively. Hence, u(MAN)+ u(MyN)=
uM + uN. This equality and the supermodular inequality in the previous
paragraph prove the Lemma. O

Now consider the difference between structures, -

For negative set X and positive partition Y, let X ~ Y abbreviate
X — UY. For negative partition X, let X ~ Y denote the collection of
all nonnull sets of the form X ~ Y, X € X. Note that X ~ Y is a nega-
tive partition.

For a pegative partition X and a positive structure (Y,N), the part
of X with supermarginal (Y,N)-filling is the collection of all X in X for
which (Y,N) x X is supermarginal.

Let (X,M) be a negative structure and (Y,N) a positive structure.
The difference between these structures, denoted (X,M) ~ (Y,N), is the
structure (X® ~ Y , M ~ Y ), where X* is the part of X with supermar-
ginal (Y,N)filling; Y’ is Y - (Y x X¥), that is, the part of Y noninter-
pal to X% and M ~ Y’ is M — UY".

The difference has the following property: for any subset ¢t of e, if
tX C eM and tY C eN, then (X, M) ~ (Y,N) is t-supported; specifically,
each element § ~ ‘.{‘ of X* ~ Y has (Y,N) x S for support. The gen-
eralization of this property to the context of the Fringe Lemma is true: for
feasible ¢, if (X,M) is tmoda-supported and tY C eN, then
(X,M) ~ (Y,N) is t-supported. This will be shown within the proof of
Main Lemma in the next section. Under the same conditions,
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(Y,N) ~ (X,M) may not be t-supported. But a t-suppbrtcd structure is
obtained by adjoining to (Y,N) ~ (X, M) the supports of some of the ele- -
~ ments of X. This is shown within the proof of the following lemma.

Lemma D: Let t be a feasible subset of e, (Y,N) a nondegenerate
positive structure, and (X,M) a negative structure. If tY C eN UeM
end (X,Af) is t-supported or tmoda-supported for some edge a in the
[ringe of (Y,N), then (Y,N) ~ (X,M) is submarginal.

Proof Let Y™ be the part of Y with supermargmal (X, M)-filling,
and X" the part of X noninternal to Y*. For each S in X’ » let (X, M)
be a t-support or tmoda-support of S. Let (X;,M,) dcnote the structure
U{(Xs,Ms): S €X'} Since (X, M) is internal to X’ itis disjoint from
the structure (Y™ ~ X", N~X"). So, the pair (Y*~X")u X,,
(N~X ) U M,) is a structure. We will show that it is t-supported. The
submarginality of (Y,N) ~ (X,M) will then follow directly.

By the Disjoint Structures Property, (X,,M,) is t-snpported In par-
ticular, each element of X, is t-supported relative to (N X )U M,.
There remains the proof that each element of Y™ ~ X is t-supported
relative to (N ~ X ) U M,.

Let Y be an arbitrary element of Y™, By the Internal Part Property,
since a is external to Y, therefore (X,M) x Y is ¢-supported, We proceed
to venfy that this structure is a support of Y ~ X relative to
(N~X')u M,. By definition of Y*, (X,M) x Y is supermarginal; since
X x Y is parallel to X’ ,and M is disjoint from UX, therefore (X,M) x Y
is mternal to Y ~ X There remains the proof of the inclusion
t(y ~X’)c e(N~X Yu eM; U e(M x Y). An elementary argument
shows that ¢(Y ~ X') C tY N eV ~ X TutX’ nerjutX’ ney. By
hypothesis, tY C eN UeM and tX' CeM U eM; UelV ~ Y] since
a € e[V ~ Y]. Hence, t(Y ~ X ‘JCTe(N~X )U eM; U eM. Since the
positive end of each edge in eM U (Y ~ X ) is in M x Y, therefore
(Y ~X')Ce(N~X )UeMXUc(MxY)

Smce Y and Xl are nondegenerate and ¢ is feasible,
(Y*~X")uX,,(N~X")UM,) is submarginal. But lxll =
21Xs| = LuMg = uM,, with summatlons over all S in x whence
(X;,M,) is supermarginal. So, (Y™ ~ X', N ~X')is subma.rgmal This

completes the proof of the Lemma. O

Lemma on Differences: Let (X,M) be a negative structure and
(Y,N) o positive structure such that each of X and Y has no proper
refinement. If (a) (X,M) XY is submarginal for eack Y in Y, (b)
(Y,N) x X is submarginal for each X in X, and [c) the differences
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X,M)~ (Y,N) and (Y,N)~(X,M) are submarginal, then
X| + |Y| s «M + uN.

Proof. The proof consists of the following chain of inequalities:
IX] + Y] = [X*~Y"| + |X*xUY"| + |X-X*|

+|Y*~X"] +|Y*x ux’| +|Y—Y‘|' (1)
< | X*~Y']|+|XxY'| +[X° - X

+ Y ~X"| + Y xX"| +]Y - Y7 (2)
Ssu(M~Y')+u(MxY’)

+ (N ~X") + u(N xX") (3)

=uM + uN

To verify 1, observe ghat one part of X™ is internal to UY., the
other is noninterngl to UY . And the latter has the same number of ele-
ments as X* ~ Y . Symmetric considerations hold for Y.

The part of X™ internal to UY" is a subcollection of X x UY".
Since X has no proper refinement, Property R implies that
X x UY® =X x Y". This verifies the first part of 2. For the second
part, observe that ech element of X — X* intersects N and is therefore
noninternal to Y, in particular noninternal to Y™. Hence
X-X*"=X - X'

By hypothesis, |X*~Y’| < u(M~Y’) and IY'-X | =
uN~X ) To complete the verification of 3 let Y ™ abbreviate
Y N Y?* and observe that
IXxY'| + 1Y -Y* =

= |XxY™* +Z|XxY|:YeY =-Y}+|Y - Y*
Su(MxY )+ Z{e(MxY)-1:YeY - Y}+ Y - Y|
=u(MxY*)+u(Mx(Y -Y")
=u(MxY)
Similarly, | Y x X°| + |X" = X*| =< u(N x X°). This completes the
proof of the Lemma. O

5. Proof of the Fringe i.emmn

Fringe Lemma: Let t be a feasible subset of ¢ and (Y,N) a super-
marginal nondegenerate structure such that tY C eN. For any edge a of
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t in the fringe of (Y,N), cvery tmoda-supported nondegenerate structure
is submarginal.

Proof. Let (X,A) be a tmoda-supported nondegenerate structure.
Adjust notation so that X has no proper refinement. The adjustment con-
sists of replacing X by its finest refinement X, and is justified as follows:
by the Refinement Property, (X M) is tmoda-supported; since
|X| = |Xl the submarginality of (X M) will imply the submarginality
of (X, M).

'Let Y be a refinement of Y. Since tY = tY C eN, therefore (Y, N)
is t-supported, and consequently submarginal. By hypothesis, (Y,N) la
supermarginal. Hence Y =Y. This argument shows that Y has no
proper refinement.

Structures (X,M) and (Y,N) satisfy the hypothesis of the Main
Lemma below with (Y,N) in place of (Y°,N°). So, if (X,M) and (Y,N) are
positive, then
(1) (X,M) A (Y,N) is submarginal;
if (X, M) is negative and (Y,N) positive, then
(2) (X,M)~ (Y,N)is submarginal.

Now the proof follows up these alternatives.

Case 13 (X, M) and (Y,N) are positive.

If « is not in eX, then (X, M) is t-supported; since ¢ is feasible and X

is nondegenerate, (X,M) is submarginal. Now suppose « is in eX. Then
the negative end of a is in V ~ X as well as V ~ Y, whence X v Y is
nondegenerate, By Lemma J, (X,M) v (Y,N) is t-supported. Since ¢ is
feasible,
(3) (X,M)v (Y,N)is submarginal.
From 1 and 3, by the Lemma on Meet and Join,
|X] + | Y] = uM + uN. Now, since (Y,N) is supermarginal, (X M)is
submarginal.

Case 2: (X,M) is negative and (Y,NN) positive.

Let Y be an arbitrary element of Y. Since a is external to Y, the
Internal Part Property shows that (X,M) x Y is t-supported. Since X is
nondegenerate and ¢ feasible,

(4) (X,M) x Y is submarginal.

By a similar argument, for each X in X,
(5) (Y.N) x X is submarginal.

By Lemma D,
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(6) (Y,N)~ (X,M)is submarginal.

Recall that neither X nor Y has proper refinements. Then, by the Lemma -
on Differences, assertions 2 and 4-6 imply that | X| + | Y| = uM + uN.
Now, since (Y,N) is supermarginal, {X, M) is submarginal.

The proof is complete except for the Main Lemma. D

Main Lemmas Let t be a feasible subset of e and (X, M) and (Y,N)
nondegenerate structures. Suppose tY C eN U e[V ~ X] and (X,M) is
t-supported or tmoda-supported for some edge a in the fringe of (Y,N).

1. If (X,M) and (Y,N) are positive, then (X, M) A (Y°,N°) is submarginal
Jor every (Y°,N°) such that Y° CY, N°C N, t(Y = Y°) C ¢(N - N°),"
and |Y = Y°| = u(N = N°).

L. If XM is ncga.twe and (Y,N) is positive, then (X,M) ~ (Y,N) is sub-
merginal,

Proof. The proof is by induction on the size of X. If the size is 0,
then X = J and the assertions of the Lemma are trivially true. Now sup-
pose the size of X is nonzero.

Case 1. (X,M) and (Y,N) are positive.

For each S in X, let (Xg,Mg) be a t-support of S. Let (x,,M,)
denote the structure U{(Xg,Ms) : S € X}. By the Disjoint Structures Pro-

perty,
Since (Xg,Ms) is supermarginal for each S in X,
(1.2) (X,,M,) is supermarginal.

Since |X,| = uM; and | Y = Y°| = u(N — N°), the desired ine-
quality | X A Y°| s u(M A N°) is equivalent to
(13) |X,] + Y=Y + |XAY®’] = uM, + u(N = N°) + u(MAN).
Let Y, be a finest refinement of the partition (Y = Y°) U (X A Y®), and
let N, denote (N — N°) U (M A N°). Observe that (Y;,N,) is a positive
structure. Now, 1.3 is implied by

(14) [X,] + |Y,| = uM,; + uN,.

By the Lemma on Differences, 1.4 follows from

(1.5) X, has no proper refinement,

(1.6) (X;,M,) x Y, is submarginal for each Y; in Y,
(1.7) (Yy,IV;) x X, is submarginal for cach X, in X,
(1.8) (X,,M,) ~ (Y,.,N,) is submarginal, and
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(1.9) (Y,,N,) ~ (X,,M,) is submarginal.
So, the proof of this case is reduced to the proofs of 1.5 to 1.9.

This paragraph proves l 5. Let Xl be a refinement of X;. By 1.1
and the refinement Property, \XI,Ml is ¢-supported, and consequently sub-
marginal. By 1.2, (X,,A,) is supermarginal. Hence Xl X, and s0 X,
bas no proper refinement.

Let Y, be an element of Y,. By 1.1 and the Internal Part Property,
(X,,M,) x Y, is t-supported. Since ¢t is feasible and X, is nondegenerate,
1.6 holds.

The proofs of 1.7 to 1.9 depepd on the inclusion ~
(1.10) tY, C eN; U f ,where [, is the fringe of (X;,M,)in ¢.

An elementary argument shows that (X AY’) = tXne[Y] u
tY’nelX] U tXntY By  hypothesis, tY°C eN°uU
e(N—=N)uelV~X] and tXCeMuUeM,UelV~Y], since
a€elV~Y] Infact, tXCeMU f; Ue[V~ Y] by the Corollary of
Property A. Hence, t(X AY®) C ¢(M x Y°) U ¢(N° x X) U ¢(M N N%)
UeN=N)uf, = e(MAN)jUe(N—N°)u/,. Now, tY,
tY =~ Y)UtXAY)Ce(N=N)ue(MAN)U fy=eN,U f,. -

Let X, be an element of X;. By 1.10, tY, CeN, U e[V - X,].
Hence, by Property A, t(Y, x X,) C e(Ny x X;). So, the structure
(Y,,V;) x X, is t-supported. Since ¢ is feasible and Y, is nondegenerate,
1.7 holds.

Claim 1.8 is given by assertion 2 of the induction hypothesis with
(X,;,M,)} and (Y,,N,) in place of (X,M) and (Y,N). Claim 1.9 is given by
Lemma D with (Y,,N,) and (X,,M,) in place of (Y,N) and (X,M). The
conditions for the appeal to the induction hypothesis and Lemma D are
satisfied: X, is smaller than X; X, and Y, are nondegenerate; by 1.1,
(X,.M,) is t-supported; by 1.10, tY, C eN, Ue[V ~ X,| as well as
tY, CeN, UeM,. '

, The proof of case 1 is complete.

Case 2: (X, M) is negative and (Y,N) positive

Recall that (X,M)~ (Y,N)=(X>*~Y', M ~ .Y *), where X™ is
the part of X with supermarginal (Y,N}filling ad Y'is Y - (Y x X*).
Let S be an element of X™ and (Xg,Ms) a structure that t-supports or
tmodo-supports S. Let (X's,M's) abbreviate (Xg,Mg) X (§ ~ Y ‘) and
(Y's.N's) abbreviate (Y.N) x (S~ Y ) Let 5 = (X's.M's) v (Y's.N's).
Then
(2.1) j is t-supported,
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(2.2) jis internal to S ~ Y°,

(2.3) j is supermarginal, and

(24) (S~ Y') C e(M ~ Y‘) U e(M's v N'g) ,

Hence, j t-supports S ~ Y’ relative to M ~ Y’. The same argument
can be made for each S in X*. Hence, the structure (X* ~ Y', M ~ Y°)

is t-supported. Since t is feasible and X is nondegenerate, the structure is
submarginal. This reduces case 2 to the proofs of 2.1 to 2.4.

Thls paragraph proves 2.1. By Property A, tY'sCtYnNn
e|S~Y'|]C eNnels ~ Y ] C eN's. By the Internal Part Property
with (Xg,Mg) and S~ Y’ in place of (X,M) and Y, the structure ™
(X's,M's) is t-supported. Now, by Lemma J, j is t-supported.

Since (X's,M's) and (Y's,N's) are internal to S ~ Y’, 5o is their
join. This verifies 2.2.

Claim 2.3 follows, by the Lemma on Meet and Join, from
(2.33) (X's,M's) A (Y's,N'g) is submarginal,

(2.3b) (Y's,N'g) is supermarginal, and
(2.3¢) (X's,M's) is supermarginal.

Claim 2.3a follows from assertion 1 of the induction hypothesis with
(X's,M's) and (Y's,N's) and (Y's,N'g) in place of (X,M) and (Y,N) and
(Y°,N®). The conditions for this appeal to the induction hypothesis are

satisfied: X's is smaller that X; X's and Y's are nondegenerate;
tY's C eN's and (X'g,M's) is t-supported, as shown in the proof of 2.1.

Claim 2.3b is verified as follows. Since Y X (S ~Y')=Y x 5, a
consequence of U(Y x S) disjoint from UY , therefore
[Y's| = |Y x S|. Since S € X", therefore Y x 5} Zu(NxS)
Since NxS=Nx(§~Y ) therefore u(N x S) = uN's. So,
IYs| = uN‘

Claim 2.3c is given by the inequalities
23¢) |X| = |Xg| - [XgA Y|
(23¢") = uMg— u(MgAN'), where N = N — (N x X*)
(2:3¢™) = uMg. '

This paragraph venf' ies 2.3¢’. By definition of X', each element of
Xs = X' mtersects uY’. So, each element of Xo — X includes an ele-
mentofXSAY bence | Xs] — |X's| < [ Xs A Y]

Inequality 2.3¢” follows from IXsl = uM; and
IXsAY ‘| = u(Mg AN °). The former is true by definition of (X5, Ms).
The latter is given by assertion 1 of the induction hypothesis with (Xg, M)

-
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and (Y,N) and(Y N ;in place of (X,M) and (Y,N) and (Y°,N®). The
conditions for this appeal to the induction hypothesis are satisfied, as the -
following analysis shows. First, Xg is smaller than X. Second,
tY C eN Ue|V ~ X since Xg is internal to X. Third, (Xg,Ms) is ¢-
supported.  Fourth, t(Y-Y T=tYyxX*) cC e(N x X*) =
e(N—-N ) where the inclusion follows from Property A. Fifth,
lY-Y"| = IYxX* = rjyxx| = Eu(NxX) =
u(NxX*)=u(N-N ) with summations over all X in X*, where the
inequality is given by the definition of X™.

Since (XS,MS) is internal to X*, therefore Mg A N''=
(Mg x Y')u(N* x Xs) UMs NN e (Mst )u (N° xx') By~
denmtlon of N , N'xX*=0. Hence, ~(MgAN °) =
- (Mg xY ) = M's Inequality 2.3¢’” follows.

There remains the proof of the inclusion 2.4. An elementary argu-
ment shows that t(S~Y') = ¢S Nelv~Y TutY’ nefsju
tY’' nts. By hypothesis tY' CeNuU eV = 5] and
tS C eM U eMg U eN, since a € eN. So, t(S ~ Y)Ce(M~Y)U
eMgs U eN. In fact, since the posmve end of each edge in
eMg Nt(S~Y °) is in Mg X (s~Y"), 2nd the positive end of each
edge in eNNE(S ~Y “Yisin Nx(S~Y* ), therefore ¢(S ~Y )C
e(M~Y)Ue}W'SUeN5 Since Y's and X's are internal to S ~ Y’
therefore, by Property A, ¢(S ~Y ) is a subset of e[V ~ Y's] and of

e[V~X'sl. So, ¢(S~Y') C eM~Y ) Ue(M's ~ Yi5) U
e(N'g ~ X's) = e(M ~ Y)Uc(ll{’st ).

The proof of the Main Lemma is complete. O

Acknt;wledgem‘ent.A private paper by M.R. Rolle suggested how the
complexities of the meet and join of structure could be handled.
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