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Objetivos

Sintese de semicondutores (g-C;N,) pelo
método de pirdlise da ureia em trés diferentes
temperaturas (600°C, 650°C e 700°C), em
conjunto com a caracterizagdo das amostras e
estudo da deposi¢cdo de cocatalisadores, em
trés diferentes concentracdes, e seus efeitos
no rendimento da reacéo de Water Splitting.

Métodos e Procedimentos

O material g-C;N, foi sintetizado pelo método
de pirdlise da ureia, que consiste na queima da
ureia em forno convencional. Foi utilizado uma
taxa de aquecimento de 3°C/min e de
resfriamento de 5°C/min. As temperaturas de
sintese foram 600°C, 650°C e 700°C durante
2 horas, foi utilizado 60g de Ureia.

Apods a pirolise, foi realizada a moagem das
amostras e a pesagem em balanga analitica
para determinar o rendimento da reagéao.
Foram realizadas analises de difracdo de raios
X, espectroscopia UV/Vis e espectroscopia
XPS. Foram depositados por impregnagao
co-catalisadores de Ruténio em trés
concentragoes: 0,5%, 1% e 2%.

As reacbes de fotossintese artificial foram
realizadas no proéprio laboratério NACA por 5
horas.

Resultados

Ap0ds serem realizados os processos de pirélise
obtivemos o rendimento de cada amostra:
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Figura 1: Grafico de rendimento da pirdlise da ureia.

Além disso, foram realizadas difracbes de raios
X para cada amostra.
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Figura 2: Grafico de DRX para as trés diferentes
temperaturas.

O padrao de difragédo para todas as amostras é
condizente com a estrutura cristalina do
g-C;N,/. Entre as temperaturas o padrdo se
mantém bastante similar com picos em 13,1° e
27,5° que sao caracteristicos dos sistemas
aromaticos com empilhamento intercalar de
camadas, correspondentes aos planos
cristalinos (002) e (100), que sé&o atribuidos ao
empacotamento estrutural planar de unidades
de tri-s-triazina®.
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Para pesquisar a faixa de comprimentos de
onda em que as amostras possuem maior
atividade fotocatalitica foi realizado uma
analise da absortividade dos materiais:

Absorbtividade (u.a.)
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Figura 3: Gréfico de UV-Vis para as trés
temperaturas.

De 400nm a 600nm a amostra de 700°C
apresenta maior absorcdo de luz, que pode
indicar um melhor desempenho na atividade
fotocatalitica.

A amostra com melhor desempenho na
fotocatalise da agua foi a sintetizada a 650°C e
impregnada com 0,5% de Ru:
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Figura 4: Produgao de H, das amostras de 650°C.

Conclusoes

Nitreto de carbono grafitico (g-CsN,) foi
fabricado com sucesso através da pirdlise da
ureia. Os melhores resultados de evolugao de
H, foram obtidos para as amostras sintetizadas
a 650°C e impregnadas com 0,5% de Ruténio,
apesar dos resultados de absorbtividade
indicarem maior absorcéo de luz da amostra de
700°C.
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Objectives

Synthesis of Semiconductors (g-C3N4) by the
Urea Pyrolysis Method at Three Different
Temperatures (600°C, 650°C, and 700°C),
Along with Sample Characterization and Study
of Cocatalyst Deposition at Three Different
Concentrations and Their Effects on the Water
Splitting Reaction Yield.

Materials and Methods

The g-C3N4 material was synthesized using the
urea pyrolysis method, which involves the
combustion of urea in a conventional furnace. A
heating rate of 3°C/min and a cooling rate of
5°C/min  were employed. The synthesis
temperatures were 600°C, 650°C, and 700°C
for a duration of 2 hours, using 60g of urea.
After pyrolysis, the samples were subjected to
grinding and weighed on an analytical balance
to determine the reaction yield. X-ray diffraction
analysis, UV/Vis spectroscopy, and XPS
spectroscopy were conducted. Ruthenium
cocatalysts were deposited via impregnation at
three concentrations: 0.5%, 1%, and 2%.

The artificial photosynthesis reactions were
carried out in the NACA laboratory itself for 5
hours.

Results

After the pyrolysis processes, we obtained the
yield for each sample:
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Picture 1: Yield Graph of Urea Pyrolysis.

In addition, X-ray diffraction analyses were
conducted for each sample.
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Picture 2: XRD Graph for the Three Different
Temperatures.
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The diffraction pattern for all samples is
consistent with the crystalline structure of
g-C3N4. Across the temperatures, the pattern
remains quite similar, with peaks at 13.1° and
27.5°, which are characteristic of aromatic
systems with intercalated layer stacking,
corresponding to the crystallographic planes
(002) and (100). These are attributed to the
planar structural packing of tri-s-triazine units.

To investigate the wavelength range at which
the samples exhibit higher photocatalytic
activity, an analysis of the materials'
absorbance was conducted:
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Picture 3: UV-Vis graph for the three temperatures

From 400nm to 600nm, the sample at 700°C
exhibits higher light absorption, which may
indicate better performance in photocatalytic
activity.

The sample synthesized at 650°C and
impregnated with 0.5% Ru showed the best
performance in water photocatalysis.
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Picture 4: Hydrogen (H,) production from the 650°C

samples.
Conclusions
Graphitic carbon nitride  (g-C3N4) was

successfully fabricated through urea pyrolysis.
The best results for H2 evolution were achieved
for samples synthesized at 650°C and
impregnated with 0.5% Ruthenium, despite the
absorbance results indicating higher light
absorption for the 700°C sample.
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