

39th Topical Meeting

of the International Society of Electrochemistry

23 - 26 March 2025

Natal, Brazil

The Role of Electrochemistry
in Sustainable Energy
and the Environment

PROGRAM

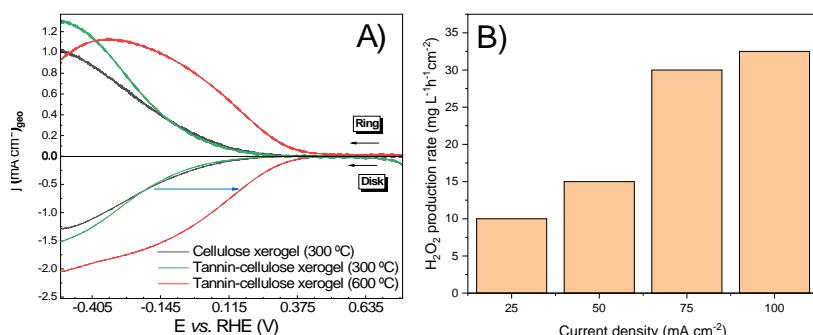
<https://topical39.ise-online.org>

e-mail: events@ise-online.org

Sustainable H₂O₂ electrogeneration employing gas diffusion electrodes produced from tannin-cellulose xerogel

Julio César Lourenço¹, Nicolas Perciani de Moraes¹, Robson da Silva Rocha², Liana Alvares Rodrigues², Guilherme Vilalba Fortunato³, Marc Ledendecker³, Marcos Roberto de Vasconcelos Lanza¹

1 - São Carlos Institute of Chemistry – USP, Trabalhador São Carlense Avenue, 400, São Carlos, SP, Brazil


2 - Lorena School of Engineering - USP, Campinho Municipal Road, Campinho, Lorena, São Paulo, Brazil

3 - Sustainable Energy Materials, TUM, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany

julio.lourenco@usp.br

Nowadays, on-demand hydrogen peroxide (H₂O₂) electrogeneration via 2-electron-oxygen reduction reaction (ORR) stands out as a promising chemical route, offering a sustainable and versatile alternative to the conventional methodology fraught with environmental concerns and centralized production constraints [1]. In this context, gas diffusion electrodes (GDEs) have been proven to be highly effective in H₂O₂ electrogeneration [2]. Carbonaceous materials, including graphene, graphene oxide, carbon nanotubes, and carbon blacks, find extensive use in the fabrication of GDEs [3]. However, producing these materials typically entails high costs and complex procedures, posing challenges to their cost-effective application [3]. Therefore, the pursuit of sustainable GDEs emerges as a promising avenue. There is growing enthusiasm surrounding using natural carbon sources derived from plants, like cellulose and tannin, to synthesize functional materials. Biomass-based carbon gels have emerged as promising materials within this domain, offering a pathway to create low-cost multifunctional carbonaceous materials[4,5]. However, there needs to be more insights on the utilization of these materials in electrochemical processes.

Thus, this study presents the production and application of novel and sustainable gas diffusion electrodes based on cellulose/tannin carbon xerogel for the electrogeneration of H₂O₂. Initial electrochemical characterization by using a rotating ring-disk electrode setup (RRDE) reveals that integrating tannin into the carbon xerogel enhances selectivity towards H₂O₂ electrogeneration while subjecting it to higher calcination temperatures prompts a positive shift in the ORR activity (Figure 1A). This behavior was related to morphological changes induced by the tannin inclusion and calcination temperature, such as an altered morphology and increased surface area. Regarding H₂O₂ electrogeneration, the GDE developed exhibits a peak production rate of 32.5 mg L⁻¹ h⁻¹ cm⁻² of H₂O₂ at 100 mA cm⁻² (Figure 1B), highlighting the applicability of this GDE towards H₂O₂-based processes.

Figure 1 – A) Linear sweep voltammetry for the synthesized materials (O₂-saturated, 0.05 mol L⁻¹ K₂SO₄, pH 3); B) H₂O₂ production rate using the synthesized GDE-Tannin-cellulose (600 °C) (O₂ flow = 0.05 L min⁻¹, 0.05 mol L⁻¹ K₂SO₄, pH 3)

Acknowledgments

The authors are to the funding provided by the Brazilian National Council for Scientific and Technological Development - CNPq (grants no. 465571/2014-0, 302874/2017-8, and 427452/2018-0) and São Paulo Research Foundation (FAPESP – grants no. #2023/04230-2, #2023/07750-7, 2022/04058-2, #2021/12053-8, #2019/04421-7, #2017/10118-0, and #2013/02762-5).

References

1. N. Wang, S. Ma, P. Zuo, J. Duan, and B. Hou, *Adv. Sci.* **8**, 1 (2021).
2. J. Wang, C. Li, M. Rauf, H. Luo, X. Sun, and Y. Jiang, *Sci. Total Environ.* **759**, 143459 (2021).
3. P. J. M. Cordeiro-Junior, M. S. Kronka, L. A. Goulart, N. C. Veríssimo, L. H. Mascaro, M. C. dos Santos, R. Bertazzoli, and M. R. de V. Lanza, *J. Catal.* **392**, 56 (2020).
4. R. J. White, N. Brun, V. L. Budarin, J. H. Clark, and M. M. Titirici, *ChemSusChem* **7**, 670 (2014).

5. D. K. Sam, E. K. Sam, A. Durairaj, X. Lv, Z. Zhou, and J. Liu, *Carbohydr. Res.* **491**, 107986 (2020).