

APL Machine Learning

Machine Learning for Applied Physics
Applied Physics for Machine Learning

Chaos: An Interdisciplinary Journal of Nonlinear Science

[HOME](#)[BROWSE](#)[MORE ▾](#)

[Home](#) > [Chaos: An Interdisciplinary Journal of Nonlinear Science](#) > [Volume 22, Issue 2](#) > [10.1063/1.3699465](#)

[!\[\]\(3342c215b2a8b663596a81468d5dc314_img.jpg\) PREV](#)[!\[\]\(56549452e01ca28bdf2500ced9653143_img.jpg\) NEXT >](#) No Access

Submitted: 23 November 2011

Accepted: 13 March 2012

Published Online: 25 June 2012

Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard

Chaos **22**, 026122 (2012); <https://doi.org/10.1063/1.3699465>

André L. P. Livorati¹, Iberê L. Caldas¹, and Edson D. Leonel²

[View Affiliations](#)

[View Contributors](#)

-

 PDF

ABSTRACT

The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon.

ACKNOWLEDGMENTS

A.L.P.L and I.L.C. thank FAPESP and CNPq for the financial support. E.D.L thanks FAPESP, CNPq, and Fundunesp, Brazilian agencies. This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). The authors also thank Carl Dettmann for a careful reading on the manuscript.

SELECT YOUR ACCESS

INDIVIDUAL ACCESS

If you have an individual subscription, a subscription provided by one of AIP's Member Societies, have claimed access to a Conference Proceeding, or have made an individual purchase, sign in below.

Username:

Password

Remember me

LOG IN

[Forgot password?](#)

INSTITUTIONAL ACCESS

Access through
USP - Universidade de Sao Paulo

Access via the **USP - Universidade de Sao Paulo** is not supported.

Please [choose one of the other institutional login options](#)

PURCHASE

Standard PPV for \$40.00

[ADD TO CART](#)

PDF

Resources

AUTHOR

LIBRARIAN

ADVERTISER

General Information

ABOUT

CONTACT

HELP

PRIVACY POLICY

TERMS OF USE

FOLLOW AIP PUBLISHING:

Website © 2023 AIP Publishing LLC.

Article copyright remains as
specified within the article.

Scitation

