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A B S T R A C T

Numerical testing is crucial for the design of composite fuselages, which have strict crashworthiness regu-
lations. However, the majority of studies on numerical fuselage impacts do not account for the effects of
strain rate in simulations. A damage model considering strain rate dependence has been implemented to
accurately predict the impact behaviour of a composite fuselage structure. This model enhances the existing
three-dimensional Hashin criterion by incorporating strain rate effects and its implemented numerically using
a VUMAT subroutine in ABAQUS/explicit. Validation of the model is done through a low-velocity impact
problem, showing a better correlation with experimental data compared to previous numerical analyses
available in the literature. The study focuses on high-energy impact on a composite stanchion in the lower lobe
of an aircraft fuselage. Results demonstrate that the newly proposed model effectively predicts failure zones
and modes, indicating its potential in addressing dynamic composite problems typical of impact scenarios.
1. Introduction

As the aeronautical industry seeks to increase performance and op-
timise maintenance costs, Carbon Fibre Reinforced Plastic (CFRP) ma-
terials have been incorporated into civil aircraft such as the A350 due
to their superior properties, including high specific strength, excellent
resistance to corrosion, and extended fatigue life [1–3]. Airworthiness
regulations require that no change in occupant safety should occur
whether composite or metal structures are employed [4]. As a proof of
compliance, manufacturers are required to show either by direct tests or
test supported analysis (building block-approach [4,5]) that the aircraft
satisfies different criteria, such as retention of items of mass (e.g. over-
head bins) or maintenance of a survivable volume [4,6]. Given that
experimental tests are costly, manufacturers rely on computational
tools such as finite element analysis to evaluate different geometries or
design variables such as different number of plies, stacking sequence or
even impact orientation and therefore, it is of great interest to employ
accurate models to aid the design process [4].

There are many different works on the behaviour of composite
structures under impact [7–11], where it is observed that contrar-
ily to metals where energy is absorbed by plastic deformation, the
main energy composite absorption mechanisms come for intra (in-
side the ply) and inter-laminar (delamination) damage [12,13]. To
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numerically predict these failure modes, researchers have proposed
various models [14–17], having some (mostly Hashin [18] and Chang–
Chang [19]) been employed in simulating both thin-walled composite
columns [20–22] and composite fuselage components under compres-
sion and impact scenarios [23–29]. However, for fuselage components,
sometimes a noticeable difference is observed between numerical and
experimental results. One factor that is rarely present in past studies,
and practically not addressed in composite fuselage related problems,
is the strain rate effect. Carbon fibres are considered to be practically
strain insensitive [30], however, the polymeric material is not, and
can influence the behaviour of the laminate, specially under compres-
sion [31]. There have been some models proposed to account for the
strain rate effect in CFRP [31–33] such as the one proposed by Millen
et al. [34]. Although there are some examples in literature of works
which incorporate strain rate effects in impact simulations, adjusting
the material properties a priori [35] or by direct calculation during the
analysis [36], their generalised employment in numerical simulations
of impact problems is still limited, specially for fuselage components,
as pointed out by Liu et al. [37] in their extensive review.

Building on this groundwork, the present study investigates the
potential benefits of incorporating strain rate effects into the numerical
impact analysis of composite parts and fuselage structures. A 3D Hashin
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strain rate dependent failure model based on the strategy employed by
illen et al. [34] is used in the impact simulation of composite parts.

The material damage model is introduced as well as the strategy fol-
lowed to include the strain rate effect. The developed model is verified
using a simple one element displacement controlled test. The material
model is then validated with a Low Velocity Impact (LVI) problem
and bench-marked against experimental and numerical results from
the literature. After validating the model, an impact of a composite
stanchion is simulated, where the failure mode is studied and the results
are compared to documented experimental observations.

The key novelty of this study is the incorporation of strain rate
sensitivity in impact simulations of composite structures, which has
been largely overlooked in previous works, specially regarding fuselage
components (e.g., [23,25,27]). By introducing this feature, this work
offers a more accurate and comprehensive framework for predicting
material failure under dynamic conditions, which can be applied not
only for aeronautical structures, but also for all problems related to
crashworthiness analysis.

2. Material model

In this section, the material laws employed in this study are pre-
sented, beginning with the intra-laminar model and concluding with
the inter-laminar damage model. The intra-laminar model is organised
in subsections: damage onset (failure criterion), damage evolution, and
the effect of strain rate.

2.1. Intra-laminar damage

2.1.1. Damage onset
To determine the damage onset, a 3D Hashin failure criterion [18]

as used, being able to distinguish 4 different failure modes which are
efined by the following equations:

• Fibre tensile failure (𝜎11 ≥ 0)

𝐹𝑓 𝑡 =
(

𝜎11
𝑋𝑇

)2
+ 𝛼

(

𝜎12
𝑆12

)2
+ 𝛼

(

𝜎13
𝑆13

)2
≥ 1 (1)

• Fibre compressive failure (𝜎11 < 0)

𝐹𝑓 𝑐 =
(

𝜎11
𝑋𝐶

)2
≥ 1 (2)

• Matrix tensile failure (𝜎22 + 𝜎33 ≥ 0)

𝐹𝑚𝑡 =
(

𝜎22 + 𝜎33
𝑌𝑇

)2
+ 1
𝑆2
23

(𝜎223−𝜎22𝜎33) +
(

𝜎12
𝑆12

)2
+
(

𝜎13
𝑆13

)2
≥ 1 (3)

• Matrix compressive failure (𝜎22 + 𝜎33 < 0)

𝐹𝑚𝑐 =
(

𝜎22 + 𝜎33
2𝑆23

)2
+

𝜎22 + 𝜎33
𝑌𝐶

[

(

𝑌𝐶
2𝑆23

)2
− 1

]

+ 1
𝑆2
23

(𝜎223 − 𝜎22𝜎33)+

(

𝜎12
𝑆12

)2
+
(

𝜎13
𝑆13

)2
≥ 1

(4)

where 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3) are the stress tensor values, 𝑋𝑇 , 𝑋𝐶 , 𝑌𝑇 and
𝑌𝐶 are the tensile and compressive strengths in the fibre and matrix
directions respectively. The values 𝑆12, 𝑆13 and 𝑆23 represent the shear
trengths in different directions and 𝛼, is a parameter which controls
he influence of the shear stress in tensile failure, which, in this work
s set to 1 [38].

2.1.2. Degradation model
An energy based linear degradation model was employed, i.e. after

damage onset, as seen in Fig. 1 the stiffness decreases linearly so that
2 
the total energy equals the fracture energy of the material for that
specific failure mode.

In Fig. 1, 𝛿𝑓𝐼 ,𝑒𝑞 , 𝛿0𝐼 ,𝑒𝑞 and 𝛿𝐼 ,𝑒𝑞 are the equivalent displacements
at total failure, damage onset and at the respective time increment,
respectively. The values of equivalent displacement and stress are
dependent on the failure mode and are defined as follows [39]:

• Fibre tensile failure (𝜎11 ≥ 0)

𝛿𝑓 𝑡𝑒𝑞 = 𝑙𝑐
√

⟨𝜀11⟩2 + 𝜀212 + 𝜀213 (5)

𝜎𝑓 𝑡𝑒𝑞 =
𝑙𝑐 (⟨𝜎11⟩⟨𝜀11⟩ + 𝜎12𝜀12 + 𝜎13𝜀13)

𝛿𝑓 𝑡𝑒𝑞

• Fibre compressive failure (𝜎11 < 0)

𝛿𝑓 𝑐𝑒𝑞 = 𝑙𝑐⟨−𝜀11⟩ (6)

𝜎𝑓 𝑐𝑒𝑞 =
𝑙𝑐⟨−𝜎11⟩⟨−𝜀11⟩

𝛿𝑓 𝑐𝑒𝑞

• Matrix tensile failure (𝜎22 + 𝜎33 ≥ 0)

𝛿𝑚𝑡𝑒𝑞 = 𝑙𝑐
√

⟨𝜀22⟩2 + ⟨𝜀33⟩2 + 𝜀212 + 𝜀223 + 𝜀213 (7)

𝜎𝑚𝑡𝑒𝑞 =
𝑙𝑐 (⟨𝜎22⟩⟨𝜀22⟩ + ⟨𝜎33⟩⟨𝜀33⟩ + 𝜎12𝜀12 + 𝜎23𝜀23 + 𝜎13𝜀13)

𝛿𝑚𝑡𝑒𝑞

• Matrix compressive failure (𝜎22 + 𝜎33 < 0)

𝛿𝑚𝑐𝑒𝑞 = 𝑙𝑐
√

⟨−𝜀22⟩2 + ⟨−𝜀33⟩2 + 𝜀212 + 𝜀223 + 𝜀213 (8)

𝜎𝑚𝑐𝑒𝑞 =
𝑙𝑐 (⟨−𝜎22⟩⟨−𝜀22⟩ + ⟨−𝜎33⟩⟨−𝜀33⟩ + 𝜎12𝜀12 + 𝜎23𝜀23 + 𝜎13𝜀13)

𝛿𝑚𝑐𝑒𝑞

where 𝑙𝑐 is the characteristic length, defined by the cubic root of the
lement volume and ⟨∙⟩, the Macaulay operator, defined as:

⟨𝑎⟩ =
𝑎 + |𝑎|

2
,∀𝑎 ∈ R (9)

To follow the bi-linear behaviour, each element stiffness matrix
needs to be changed once damage is initiated and is represented by
the following expression:

[𝐶𝑑 ] = 1
𝛬

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where the subscript 𝑑 indicates that it is a damaged stiffness matrix,
which following the approach used by Zhou et al. [39] (based on
Matzenmiller et al. [40]) is defined as follows:

𝐶11 = 𝑑𝑓𝐸11(1 − 𝑑𝑚𝜈23𝜈32) (11)

𝐶22 = 𝑑𝑚𝐸22(1 − 𝑑𝑓 𝜈13𝜈31)

𝐶33 = 𝐸33(1 − 𝑑𝑓𝑑𝑚𝜈12𝜈21)

𝐶12 = 𝑑𝑓𝑑𝑚𝐸11(𝜈21 + 𝜈23𝜈31)

𝐶13 = 𝑑𝑓𝐸11(𝜈31 + 𝑑𝑚𝜈21𝜈32)

𝐶23 = 𝑑𝑚𝐸22(𝜈32 + 𝑑𝑓 𝜈12𝜈31)

𝐶44 = 𝛬𝑑𝑓𝑑𝑚𝐺12

𝐶55 = 𝛬𝑑𝑓𝑑𝑚𝐺23
𝐶66 = 𝛬𝑑𝑓𝑑𝑚𝐺13
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Fig. 1. Linear degradation model.

being the damage variables defined as
⎧

⎪

⎨

⎪

⎩

𝑑𝑓 = (1 − 𝑑𝑓 𝑡)(1 − 𝑑𝑓 𝑐 )
𝑑𝑚 = (1 − 𝑆𝑚𝑡𝑑𝑚𝑡)(1 − 𝑆𝑚𝑐𝑑𝑚𝑐 )
𝛬 = 1 − 𝑑𝑓𝑑𝑚𝜈12𝜈21 − 𝑑𝑚𝜈23𝜈32 − 𝑑𝑓 𝜈13𝜈31 − 2𝑑𝑓𝑑𝑚𝜈21𝜈32𝜈13

(12)

where 𝑑𝑓 𝑡, 𝑑𝑓 𝑐 , 𝑑𝑚𝑡, 𝑑𝑚𝑐 represent different damage variable associated
with different failure modes i.e. fibre (aligned with the fibres) and ma-
rix (normal to the fibres) tensile and compressive failure respectively,
hich values can range from 0 (undamaged) to 1 (fully damaged) and

heir evolution is given by the following equation:

𝑑𝐼 =
𝛿𝑓𝐼 ,𝑒𝑞(𝛿𝐼 ,𝑒𝑞 − 𝛿0𝐼 ,𝑒𝑞)
𝛿𝐼 ,𝑒𝑞(𝛿𝑓𝐼 ,𝑒𝑞 − 𝛿0𝐼 ,𝑒𝑞)

(𝑑𝐼 ∈ [0, 1], 𝐼 = 𝑓 𝑡, 𝑓 𝑐 , 𝑚𝑡, 𝑚𝑐) (13)

The values of 𝑆𝑚𝑡 and 𝑆𝑚𝑐 are shear stiffness loss control parameters
which where set to 0.9 and 0.5 respectively, based on [38].

Given that total failure occurs whenever the total fracture energy is
achieved, the equivalent displacement at total failure is determined by:

𝛿𝑓𝐼 ,𝑒𝑞 =
2𝐺𝐼

𝑐

𝜎0𝐼 ,𝑒𝑞
(𝐼 = {𝑓 𝑡, 𝑓 𝑐 , 𝑚𝑡, 𝑚𝑐}) (14)

where 𝐺𝐼 𝑐 is the energy release rate of each failure mode, 𝐼 , and 𝜎0𝐼 ,𝑒𝑞
s the equivalent stress level at damage onset, which, in this work, will

be defined by the expressions below [39]:

𝛿0𝐼 ,𝑒𝑞 =
𝛿𝐼 ,𝑒𝑞
√

𝐹𝐼
(15)

𝜎0𝐼 ,𝑒𝑞 =
𝜎𝐼 ,𝑒𝑞
√

𝐹𝐼
(16)

where 𝐹𝐼 represents the failure index value of the respective failure
mode and thus takes values near unity at damage onset.

2.1.3. Strain rate effect
To account for the strain rate effect, the approach used by Millen

t al. [34] is considered. It consists on using strain rate dependent
scaling factors which act on some mechanical properties. Following
Millen et al. [34], three different regimes are considered, quasi-static,
.1 s−1, high strain rate, 100 s−1, and the intermediate region. From the
xperimental data available in the literature, the authors were able to
etermine some mechanical properties for the lower and upper values
f strain rate, linearly interpolating the property in the intermediate
egion following the expression:

𝛽 =

⎧

⎪

⎪

⎨

⎪

⎪

1.0 if 𝜀2 ≤ 0.1
(𝜀̇2 − 0.1)(1.29 − 1)

100 − 0.1 + 1 if 0.1 < 𝜀2 < 100

1.29 if 𝜀2 ≥ 100

(17)
⎩

3 
Table 1
Maximum scaling factors (𝜀2 ≥ 100) [34].

𝐸2 𝐺𝑚𝑐
𝐶 𝐺𝑚𝑡

𝐶 𝑋𝐶 𝑋𝑇 𝑌𝐶 𝑌𝑇
Scaling Factor 1.29 1.63 1.23 1.39 1.38 1.37 1.38

where 𝛽 is the scaling parameter which adjusts the property such as,
for instance the transversal stiffness:

𝐸2𝑓 = 𝛽 𝐸2 (18)

being 𝐸2𝑓 the effective transversal stiffness. The scaling factors used in
this work, based on the work of Millen et al. [34], are shown in Table 1.

For each time step, 𝑡, the strain rate is calculated by dividing the
train increment by the time increment size, 𝛥𝑡:

̇ 𝑡 = 𝜀𝑡 − 𝜀𝑡−𝛥𝑡

𝛥𝑡
(19)

after which, the scaling parameter to be applied is calculated using
Eq. (17), replacing the already in-place maximum scaling factor (1.29)
by the one relative to the property being considered, found in Table 1.

2.2. Inter-laminar damage

Inter-laminar damage or delamination is an important failure mode
which can significantly degrade the mechanical behaviour of composite
parts, mainly when impact is involved [41,42]. In this work, cohesive
elements are used to simulate the inter-laminar damage and similarly
to the intra-laminar damage behaviour, it also presents an onset and
volution of damage. A quadratic failure based criterion was employed
o determine the damage onset:
{

⟨𝑡𝑛⟩
𝑡0𝑛

}2

+

{

𝑡𝑠
𝑡0𝑠

}2

+

{

𝑡𝑡
𝑡0𝑡

}2

= 1 (20)

being 𝑡𝑖(𝑖 = 𝑛, 𝑠, 𝑡) the traction forces in the normal and both shear direc-
tions to the delamination area respectively while the denominators are
each direction corresponding force allowable. Regarding the softening
phase i.e. the damage evolution, the damage parameter is determined
by the following equation [43]:

𝐷 =
𝛿𝑓𝑚(𝛿𝑚𝑎𝑥𝑚 − 𝛿0𝑚)

𝛿𝑚𝑎𝑥𝑚 (𝛿𝑓𝑚 − 𝛿0𝑚)
(21)

where 𝛿0𝑚 is the effective displacement at damage initiation, i.e. the
alue of 𝛿𝑚𝑎𝑥𝑚 when Eq. (20) is satisfied, and 𝛿𝑓𝑚 is the effective dis-
lacement at separation. The maximum equivalent or mixed-mode

displacement, 𝛿𝑚𝑎𝑥𝑚 , is defined as

𝛿𝑚𝑎𝑥𝑚 = 𝑚𝑎𝑥
{

√

⟨𝛿𝑛⟩2 + 𝛿2𝑠 + 𝛿2𝑡

}

= 𝑚𝑎𝑥
{

√

⟨𝛿𝑛⟩2 + 𝛿2𝑠ℎ𝑒𝑎𝑟

}

(22)

and being an energy based degradation failure, the effective displace-
ent at total failure is determined by

𝛿𝑓𝑚 =
2𝐺𝐶

𝑇 0
𝑚

(23)

where 𝐺𝐶 is the mixed-mode energy release rate and 𝑇 0
𝑚 the effective

traction, given by:

𝑇 0
𝑚 = 𝐾 𝛿0𝑚 (24)

being 𝐾 the penalty stiffness. Fig. 2 shows the different mentioned
values.

The mixed mode energy release rate, 𝐺𝐶 , can be estimated using
different strategies. One is the power law criterion [44]:
{

𝐺𝑛

𝐺𝑛
𝐶

}2
+
{

𝐺𝑠

𝐺𝑠
𝐶

}2
+

{

𝐺𝑡

𝐺𝑡
𝐶

}2

= 1 (25)

being 𝐺𝐶 = 𝐺𝑛 + 𝐺𝑠 + 𝐺𝑡 when the equation is satisfied, or the
Benzeggagh and Kenane (B–K) [45] model:

𝐺𝐶 = 𝐺𝑛 + (𝐺𝑠 − 𝐺𝑛 )
{

𝐺𝑆 }𝜂
(26)
𝐶 𝐶 𝐶 𝐺𝑇
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Fig. 2. Inter-laminar separation model.

Fig. 3. One element test boundary conditions.

where 𝐺𝑆 = 𝐺𝑠+𝐺𝑡, 𝐺𝑇 = 𝐺𝑛+𝐺𝑆 and 𝜂 is an experimentally obtained
parameter which accounts for the mode ratio.

3. Numerical implementation and verification

For impact and crash problems, explicit methods are more cost effi-
cient and therefore, explicit FE analyses were developed using Abaqus
commercial software. The damage model was implemented using an
user-defined material also known as VUMAT subroutine.

Once the code was created, a one element test was preformed for
each failure mode individually. The test was carried out for a 1 mm
sided cubic C3D8R (three dimensional, 8-noded linear brick element
with reduced integration) where for each direction, longitudinal and
transverse to the fibres. One of the normal faces is constrained on the
load direction and a finite displacement, 𝛿, is imposed at the opposite
face, as seen in Fig. 3.

To ensure that failure was achieved for each failure mode, a 10 mm
displacement was applied in each direction. Additionally, a node of
the constrained face was fixed in order to prevent translational free
body movement. Given that the tested failure criterion is strain rate
dependent, three different strain rates were applied: quasi-static, inter-
mediate and high strain rate were tested at 0.1 s−1, 100 s−1 and 10 s−1

respectively, being the difference between them the simulation time
to achieve the 10 mm displacement. The obtained bi-linear curves are
shown in Fig. 4.

As seen from Fig. 4, there is no change in stiffness before damage on-
set in the longitudinal direction with the change in strain rate whereas
the same does not apply to the transverse direction. Furthermore,
it is observed that the strain to failure in the longitudinal direction
decreases with the increase in strain rate, keeping the area enclosed
by the two lines constant for all the different regimes. However, in the
transverse directions the energy release rate at fracture changes with
the strain rate, and therefore, the failure to strain may increase.
4 
Fig. 4. Bi-linear stress–strain curves at different strain rates.
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Fig. 5. Boundary conditions of the low velocity impact model.
4. Material model validation: Low velocity impact

The material model is validated against a well known low velocity
impact problem previously studied by different authors [38,39,46].

4.1. Low velocity impact model

The model is a cylindrical plate with a diameter of 75 mm and a
cross ply [0/90]2S layup, with a layer thickness of 0.25 mm. Addition-
ally, seven cohesive interfaces 0.0075 mm thick were added between
each ply. The impactor has a 15 mm diameter hemispherical head and
is modelled as an analytical rigid body to reduce simulation costs. The
impactor is constrained in all directions but the vertical (Z) to ensure
perpendicularity, has a mass of 2 kg and an initial velocity of 3.83 ms−1,
for a total impact energy of 14.7 J. The composite plate is clamped at
its outer edge as seen in Fig. 5.

The geometry was partitioned to obtain a fully structured mesh
with a finer area of 1 × 1 mm brick elements around the impact zone.
This mesh size was chosen after a preliminary mesh sensitivity study
to obtain a good compromise between mechanical response prediction
accuracy and computational time. The mesh size was also aligned with
previous studies in the literature [38,46], facilitating a more effective
comparison between material models. In total there are 25120 C3D8R
elements belonging to the plies and 21980 COH3D8 representing the
cohesive interfaces. Table 2 and Table 3 list the material properties of
both plies and cohesive elements respectively.

Given that reduced integration elements are being used, a ’RELAX
STIFFNESS’ hourglass algorithm [43] with a scaling factor, 𝑠, set to
1.5 was used, having been selected through an evaluation process
considering several metrics ranging from obtained artificial strain en-
ergy and computational time. Distortion control and the limitation
of the maximum degradation of the cohesive elements to 0.99 were
employed to prevent extreme deformation. A general contact algorithm
is employed for all parts and plies, including self-contacts, featuring
‘hard’ normal behaviour and penalty-type tangential behaviour. The
friction coefficient has been set to 0.5 [38].

4.2. Discussion of results

The obtained results (energy–time, force–time, inter and intra-
laminar damage) are compared to numerical [38,39,46] and experi-
mental [46] data available in the literature in order to evaluate the
proposed damage model.
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Table 2
Material data for numerical impact validation [46].

Data Value

Density 1600 kg/m3

E1 (Longitudinal Young’s Modulus) 153.0 GPa
E2=E3 (Transverse Young’s Modulus) 10.3 GPa
𝜈12 = 𝜈13 (Poisson’s ratio) 0.3
𝜈23 (Poisson’s ratio) 0.4
G12=G13 (Shear Modulus) 6.0 GPa
G23 (Out-of-plane Shear Modulus) 3.7 GPa
XT (Longitudinal Tensile Strength) 2537.0 MPa
XC (Longitudinal Compressive Strength) 1580.0 MPa
YT (Transverse Tensile Strength) 82.0 MPa
YC (Transverse Compressive Strength) 236.0 MPa
S12=S13 ( Shear Strength) 90.0 MPa
S23 (Out-of-plane Shear Strength) 40.0 MPa
𝐺𝑓 𝑡

𝐶 (Fibre tensile fracture energy) 91.6 kJ/m3

𝐺𝑓 𝑐
𝐶 (Fibre compressive fracture energy) 79.9 kJ/m3

𝐺𝑚𝑡
𝐶 (Matrix tensile fracture energy) 0.22 kJ/m3

𝐺𝑓 𝑡
𝐶 (Matrix compressive fracture energy) 1.1 kJ/m3

Table 3
Material data of the cohesive elements for numerical impact validation [46].

Data Value

Density 1600 kg/m3

En=Es=Et ( Young’s Modulus) 5000.0 MPa
𝑇𝑛 = 𝑇𝑠 = 𝑇𝑡 (Normal and shear strengths) 30.0 MPa
𝐺𝑛

𝐶 (Mode I Fracture toughness) 0.6 N/mm
𝐺𝑠

𝐶 = 𝐺𝑡
𝐶 (Mode II and III Fracture Toughnesses) 2.1 N/mm

𝜂 (Mode coupling ratio) 1.45

4.2.1. Energy and force evolution
To obtain the energy absorbed by the plate, the kinetic energy of

the impactor is subtracted from the total energy:

𝐸𝑖𝑚𝑝𝑎𝑐 𝑡𝑜𝑟 = 𝑚
2
𝑣(𝑡)2 (27)

𝐸𝑝𝑙 𝑎𝑡𝑒 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑖𝑚𝑝𝑎𝑐 𝑡𝑜𝑟 (28)

where 𝑣(𝑡) is the impactor velocity. Fig. 6, shows the comparison
between the numerical simulation results and the experimental and
numerical analysis performed by Shi et al. [46] and Shao et al. [38]
respectively.

As observed in Fig. 6, the proposed model was not only able to
replicate the characteristic energy evolution of this impact problem but
also to obtain a better prediction relatively to the experimental results.
Analysing the initial part of the curve (t≤1 ms), representing the contact
of the impactor with the plate, it is possible to observe that the obtained
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Fig. 6. Energy–time curves.

Table 4
Literature and obtained absorbed energy values.

Studies Experimental [J] Numerical [J] Error (%)

Shi et al. [46]

9.52[46]

9.08 4.62
Shao et al. [38] 8.25 13.34
Zhou et al. [39] 8.85 7.04
Present study 9.27 2.63

energy is closer to the experimental value, this can be explained by
the increased stiffness that the strain rate dependent model brings,
leading to an increased value of internal energy compared to other
models. After all the kinetic energy is absorbed by the sample (peak),
part of the elastic energy absorbed by the plate is returned to the
impactor, decreasing the stored energy and reaching a plateau near the
5 ms mark. This value, represents the total impact energy absorbed the
composite plate, which the numerical model was able to closely predict.
Table 4 lists different absorbed energies obtained by different studies.
It can be observed that the present study managed to achieve the better
prediction relatively to the experimental value.

One other common metric in this type of problem is the force–
time response which is obtained by summing the reaction force in the
impact direction (z-axis) of all the fixed nodes of the plate. This curve
is characterised by an initial steep increase in reaction force due to the
impact which then peaks and goes back to zero, known as the rebound
phase of the impactor as shown in Fig. 7.

Although there is an around 9% under-prediction of the maximum
force value, it can be observed that there is a good agreement between
he obtained numerical and the experimental results, especially on the
eak time and rebound phase.

4.2.2. Damage area analysis
The damage distribution of different failure modes is presented

and compared to previous models and experimental results. Fig. 8
compares the numerically predicted delaminated area to that obtained
xperimentally by Shi et al. [46] showing a good agreement between

the two. The delamination damage, i.e. 𝐷 of Eq. (21), is presented as
the SDEG (Stiffness Degradation) parameter.

The distribution of matrix tensile damage was also compared to pre-
viously obtained numerical results to benchmark the proposed damage
model (Fig. 9).
 q
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Fig. 7. Force–time curves.

The overall shape of the damaged zones aligns with findings from
revious studies, yet notably, some layers exhibit slightly smaller dam-
ged areas, which is counterintuitive given the higher energy absorp-
ion levels observed in the energy–time evolution. This discrepancy can
e attributed to the strain rate effect. At higher strain rates, the matrix

stiffness and fracture energy increase, leading to a smaller damaged
area for the same level of absorbed energy.

Building on previous studies and literature, these findings vali-
date the effectiveness of the developed damage model in accurately
predicting impact-related engineering problems.

5. Material model application: Stanchion impact simulation

The principal subject of analysis in this work is a composite stan-
hion (part of the fuselage floor support), which has previously been

studied numerically and experimentally by several researchers [47–49].

5.1. Finite element model

The stanchion has a C shaped cross section with geometric details
depicted in Fig. 10.

The total thickness is 2.79 mm being the layup [45/-45/90/-45/
45/0/0/0/0/0/45/-45/90/-45/45] with 0.005 mm cohesive element
interfaces between each ply. In order to have a better direct comparison
with previous numerical results, the power law criterion (Eq. (25)) was
used, instead of the B–K. The lamina and cohesive element properties
are shown in Tables 5 and 6 respectively.

A structured mesh with 4 mm three-dimensional linear brick ele-
ents with reduced integration (C3D8R), capable of capturing a three-
imensional stress state, were employed for each composite ply, ac-
ompanied by COH3D8 for the cohesive interfaces. Given that the
xperimental specimen [48] was potted in epoxy resin at its extremities

(at a depth of 25.4 mm each), the outer nodes of those zones were
enforced a 𝑈𝑥 = 𝑈𝑦 = 0 translational constraint, while the bottom face
was fixed (Fig. 11).

The contact algorithm was the same as the one previously employed
in the circular plate impact and all the intra-laminar damage variables
were limited to 0.95 to prevent numerical issues. A quasi-static com-
pression test was performed to assess if the stiffness was in accordance
with experimental results. Table 7 lists the stiffness calculated with the
uasi static compression analysis.
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Fig. 8. Delamination distribution: (a) X-ray radiograph and (b) numerically predicted (SDEG as delamination damage variable).
Source: Adapted from [38].
Fig. 9. Matrix tensile damage for each composite layer: (a) Shao et al. (b) numerically predicted.
Source: Adapted from [38].
5.2. Impact test

To simulate a high energy impact, a 15 ms crash event was simu-
lated, where a plate shaped impactor, modelled as an analytical body,
was set 0.3 mm away from the top face. The impactor had a mass of
77 kg and an initial vertical velocity of 3.9 ms−1 resulting in an impact
energy of 585 J (Fig. 12).

Given that manufacturing processes are not perfect and can signifi-
cantly change the behaviour of shells under compression [50], a linear
buckling analysis was run and the first buckling mode multiplied by a
factor of 0.05 was introduced as initial perturbation to the structure.
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5.3. Results and discussion

The deformed shapes of the structure at different times steps are
shown in Fig. 13.

From a preliminary observation it can be stated that the failure of
the stanchion occurred near the bottom potting region where signif-
icant level of delamination occurred. From a more detailed analysis,
it was observed that 0.6 ms after impact, the fibres of the 0◦central
block of the laminate completely failed under compression due to the
high crushing loads, as shown in Fig. 14, where the fibre compression
damage variable achieves its maximum mainly in the middle of the
laminate. Moreover, complete separation took place between the 0◦and
the 45◦plies due to the high shear stresses induced by the significant
difference in stiffness.
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Fig. 10. Stanchion geometry (dimmensions in [mm]).
Fig. 11. Boundary conditions of the stanchion model.
The continuing crushing force then leads to the matrix compression
failure of the outer sets of plies, which are the remaining load carrying
plies after the initial failure of the central block. A graph showing the
different damage variables through the thickness at t=0.825 ms after
impact is shown in Fig. 15. The generalised loss of stiffness promotes
a local buckling behaviour (documented failure mode of composite
c-stanchions [51]), which is already noticeable to some degree in
Fig. 15(a), after which, the shear induced delaminations propagate due
to ply buckling and the structure practically entirely loses load carrying
capabilities.
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5.3.1. Comparison with experimental results
To evaluate the predictive capabilities of the developed model, a

comparison with real test data is performed. The experimental results
after impact are shown in Fig. 16(a), where a significant amount of
damage can be seen near the potting region. Alternatively, the obtained
numerical results are shown in Fig. 16(b), where the elements inside the
bottom potting region were hidden for the sake of clarity.

As seen in Fig. 16, there is an excellent agreement in relation to
the critical zone, where in the numerical mode is characterised by
the aforementioned local buckling onset already evident in Fig. 16(b).
Furthermore, recalling the damage distribution in Fig. 15, it is possible
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Fig. 12. Rigid impactor.
Fig. 13. Deformation at different time steps.
Table 5
Material data of the stanchion laminae [47].

Data Value

Density 1600 kg/m3

E1 (Longitudinal Young’s Modulus) 137.0 GPa
E2=E3 (Transverse Young’s Modulus) 8.43 GPa
𝜈12 = 𝜈13 (Poisson’s ratio) 0.26
𝜈23 (Poisson’s ratio) 0.4
G12=G13 (Shear Modulus) 4160.0 MPa
G23 (Out-of-plane Shear Modulus) 3328.0 MPa
XT (Longitudinal Tensile Strength) 2256.0 MPa
XC (Longitudinal Compressive Strength) 800.0 MPa
YT (Transverse Tensile Strength) 100.0 MPa
YC (Transverse Compressive Strength) 171.0 MPa
S12=S13 ( Shear Strength) 85.0 MPa
S23 (Out-of-plane Shear Strength) 40.0 MPa
𝐺𝑓 𝑡

𝐶 (Fibre tensile fracture energy) 47.58 kJ/m3

𝐺𝑓 𝑐
𝐶 (Fibre compressive fracture energy) 6.01 kJ/m3

𝐺𝑚𝑡
𝐶 (Matrix tensile fracture energy) 1.53 kJ/m3

𝐺𝑓 𝑡
𝐶 (Matrix compressive fracture energy) 4.48 kJ/m3

to observe that some damage modes were accurately predicted, such as
delaminations and fibre breakage.

Comparing the obtained numerical results (Fig. 17) with other
results from the literature (Fig. 18), it is observed that instead of a
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Table 6
Material data of the cohesive interfaces of the stanchion [47].

Property Value

Density 1600 kg/m3

En=Es=Et ( Young’s Modulus) 100000 MPa
𝑇𝑛 (Normal Strength) 27.5 MPa
𝑇𝑠 = 𝑇𝑡 (Shear Strengths) 60.0 MPa
𝐺𝑛

𝐶 (Mode I Fracture Toughness) 0.288 N/mm
𝐺𝑠

𝐶 = 𝐺𝑡
𝐶 (Mode II and III Fracture Toughnesses) 0.61 N/mm

Table 7
Stanchion stiffness [49].

Studies Experimental [kN/mm] Numerical [kN/mm] Error (%)

Sellitto et al. [49] 54.8[49] 56.3 2.6
Present study 54.673 0.23

diffused damaged area, a highly localised failure zone was predicted,
closer resembling experimental results. The different deformed shape
is due to the local buckling phenomenon, which was not registered in
the previous study.
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Fig. 14. Initial fibre compression failure at the central ply block (t= 0.6 ms after impact).
Although the results obtained differ significantly from those in the
literature [47], it is not certain that this discrepancy can be entirely
attributed to the inclusion of the strain rate. This uncertainty arises be-
cause different elements, such as continuum shell and different number
of element through the thickness, were used in the previous analysis.
The used material model is also not exactly the same, which can add
to those differences.

5.3.2. Strain rate effect
To evaluate the influence of the strain rate, the same simulation was

run neglecting its effect i.e. setting the values of the scaling parameters
to 1. Figs. 19 and 20 compare the fibre and matrix damage distribution
at the bottom of the stanchion, respectively, at a specific time step,
where it is possible to observe that there is a significant damage severity
increase, when considering the effect of the strain rate. This change
in damage distribution can be explained by a stiffening effect [52]
caused by the strain rate inclusion, leading to the embrittlement of the
structure [53].

It can also be observed that the local buckling onset zone changes
when using a strain insensitive failure model, which is due to the
change of the spot with higher generalised loss of stiffness. Therefore,
leading to a less accurate prediction relatively to the strain rate depen-
dent model, which presented excellent correlation to the experimental
results.

5.3.3. Crashworthiness metrics
In order to assess the crashworthiness performance of the stanchion

and the effect of the strain rate in the simulation, the impactor kinetic
energy and acceleration are plotted in Figs. 21(a) and 21(b) respec-
tively, being the latter compared to the experimental results obtained
by Riccio et al. [47].

The initial loss of kinetic energy is similar in both models and comes
from its conversion into strain and fracture energy of the stanchion.
After losing load carrying capabilities (around 1 ms after impact), the
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kinetic energy loss decreases at a lower rate, due to the buckling of
the structure. However, the rate at which the kinetic energy decreases
is not the same between models. This difference in due to the different
local buckling onset zones and the different deformation behaviour they
cause, leading to a more progressive and stable evolution of the non-
strain rate dependent model, which is then able to absorb more energy
than a structure with unstable failure. The maximum acceleration value
was obtained when employing the strain rate dependent model, 148 g,
which is approximately 24% less than the experimental predicted value,
however, it is closer than the one obtained employing the non-strain
rate dependent model, where a value of 141 g was registered. This
difference is attributed to the already mentioned stiffening effect. Ad-
ditionally, it was found that these values were significantly sensible
to the number of field output frequency, meaning that numerical time
sampling under-prediction might have taken place.

One other common metric in crashworthiness is the force–
displacement [51], which is plotted in Fig. 22.

The force–displacement curves reveals a sharp peak followed by a
quick decline, ultimately stabilising around 12 kN. Notably, the strain
rate dependent model reaches a maximum value of 93.75 kN, which is
predictably greater than that of the strain rate insensitive model, 90.39
kN, due to the highest value of maximum acceleration of the former.
It can also be observed that the values at the stable crushing zone,
where the higher amount of energy is absorbed [54], are generally
higher when applying the non-strain rate dependent, which is verified
by calculating the mean force, defined as:

𝐹𝑚𝑒𝑎𝑛 =
∫ 𝐹 𝑑 𝑙

𝐿
(29)

where F is the force and L the total crushing distance. Additionally, the
Specific Energy Absorption (SEA) [51] can be obtained:

𝑆 𝐸 𝐴 =
𝐹𝑚𝑒𝑎𝑛
𝜌𝐴

(30)

where 𝜌 is the density and 𝐴 the cross sectional area. A summary of the
crashworthiness metrics is shown in Table 8.
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Fig. 15. (a) Element in the local buckling onset zone and (b) respective damage variables through its thickness (t= 0.825 ms after impact).
Table 8
Summary of crashworthiness metrics.

Criterion Fmax Fmean SEA

Non-strain rate 90.39 kN 20.56 kN 37.69 kJ/kg
Strain rate 93.75 kN 15.70 kN 28.77 kJ/kg

As seen in Table 8, the non-strain rate dependent model leads to a
higher mean force and consequently, a higher SEA, which was already
expected from the kinetic energy evolution (Fig. 21(a)).
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6. Conclusions

A three-dimensional, strain rate-dependent Hashin composite dam-
age model is introduced and numerically implemented using a VUMAT
subroutine to enhance the simulation of impact problems, with par-
ticular focus on composite fuselage components. This model is bench-
marked against a well-documented low-velocity impact problem and
demonstrates improved prediction accuracy compared to experimental
results, reducing the absorbed energy value prediction error by at least
43% relatively to previous studies, primarily due to the incorporation
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Fig. 16. (a) Stanchion at the end of experimental test [48] and (b) numerical results (t= 0.825 ms after impact).

Fig. 17. Numerical (a) vertical displacement and (b) undeformed fibre compressive damage distribution with transparency.
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Fig. 18. Literature (a) vertical displacement at maximum compression and (b) fibre compressive damage distribution [47].
Fig. 19. (a) Non-strain rate and (b) strain rate dependent compressive fibre damage (t= 0.825 ms after impact).
of the strain rate effect. The damage model is also applied to sim-
ulate a high-energy impact on a composite stanchion of a fuselage
structure documented in the literature. The numerical results show
excellent agreement with experimentally observed damaged zones and
failure modes. It leads to an increase in accuracy compared to previous
studies and to the same numerical model employing a strain rate
insensitive damage law, increasing the predicted value of peak force
by nearly 4%. In conclusion, the introduced three-dimensional strain
rate-dependent Hashin failure model proves to be highly effective for
accurately predicting composite fuselage impact problems, indicating
that incorporating strain rate effects could be beneficial for future
simulations.
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Fig. 20. (a) Non-strain rate and (b) strain rate dependent compressive matrix damage (t= 0.825 ms after impact).

Fig. 21. Evolution of impactor (a) kinetic energy and (b) acceleration employing both strain rate and non-strain rate dependent models.
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Fig. 22. Force–displacement curves employing both strain rate and non-strain rate
ependent models.
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