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Bifurcation structures for nonlinear dynamical systems in a space of two parameters often display
geometric shapes resembling shrimps. For one-dimensional maps with two parameters and multiple
extrema, the underlying structure of the shrimps can be elucidated by computing the locus of superstable
cycles which form a “skeleton” that supports the shrimps. Here we use continuation methods to identify
and compute structures in two-dimensional maps that play the same role as the skeleton in one-
dimensional maps. This facilitates determining the complex geometries for situations in which there is
multistability, and for which the regions of parameter space supporting stable orbits get vanishingly
small.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Complex dynamics are found as parameters are varied in dy-
namical systems. In one-parameter, one-dimensional maps with
a quadratic maximum, universal sequences of stable periodic or-
bits and period-doubling bifurcations leading to chaos occur [1,2].
A next step up in complexity involves one-dimensional maps with
two parameters such as the sine circle map that captures crucial
features of periodically forced oscillators [3]. As the amplitude and
frequency of the periodic forcing change, complex geometries, con-
sisting of interlocking and overlapping zones emerge, Fig. 1 [4–6,8].

Superstable cycles, which are cycles passing through one or
more extremal points in a one-dimensional map, provide insight
into the organization of these zones. The “skeleton” is the lo-
cus of superstable cycles in a two-dimensional parameter space of
one-dimensional maps. In the 1980s, several groups described the
remarkable self-similar structure of the skeleton for several differ-
ent one-dimensional maps with multiple extrema including circle
maps of various degree, cubic maps, and quartic maps [7–12].

Related studies by Kapral and colleagues recognized the pres-
ence of “a rather odd ‘fishhook’ shape” in studies of bifurcations in
the two-dimensional parameter space of the Rössler equation [8]
and the two-dimensional Hénon map [13]. However, systematic
analyses of two-dimensional parameter spaces were not carried
out until a series of influential papers by Gallas and colleagues de-
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Fig. 1. Period-1 resonance zone for the sine circle map xt+1 = xt + τ + b sin 2πxt

showing the first period-doubling bifurcation and the period-1 and 2 superstable
cycles. This geometry including all the adjacent 2 × 2k , k = 1,2, . . . , regions and
associated chaotic regions is called a shrimp. In this and subsequent figures, the
red curves represent lines of saddle-node bifurcations, the green curves represent
period-doubling bifurcations, and the black curves represent the skeleton (where
the trace of the associated Jacobian matrix is 0). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Letter.)

scribed “complicated pleopodic shrimplike structures” in the two-
dimensional parameter space of the Hénon map [14,15].

A recent paper [16], which should be consulted for extensive
references to papers by Gallas and others, proposes the following
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Fig. 2. (a) The stability triangle [23]. For values of the determinant D and trace T falling in the colored regions, the eigenvalues lie in the unit circle leading to local stability.
Blue, red, green and black regions represent D and T obtained by real eigenvalues, while yellow and magenta arise from complex eigenvalues. (b) Typical trajectories of
eigenvalues for two-dimensional maps as a parameter is varied from a boundary that gives a saddle-node bifurcation to a period-doubling bifurcation. This case is for the
Hénon map with b = 0.2, showing the eigenvalues of period-5 and period-10 cycles. To the left of the period-doubling PD, D < 0, the eigenvalues are always real and the
trajectories as a increases do not cross. To the right of PD, D > 0 and there exists a small region where the eigenvalues are complex (the blue curve in the inset gives
the imaginary part of the eigenvalues). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
definition: “Shrimps are formed by a regular set of adjacent win-
dows centered around the main pair of intersecting superstable
parabolic arcs. A shrimp is a doubly infinite mosaic of stability
domains composed by an innermost main domain plus all the ad-
jacent stability domains arising from two period-doubling cascades
together with their corresponding domains of chaos”. Shrimps, as
these geometric structures are now known, have been widely ob-
served in electrical circuits, delay differential equations, and chem-
ical oscillators [17,16,18].

Although cycles containing an extremum are guaranteed to be
stable in one-dimensional maps, and thus are suitable for defining
the skeleton of bifurcation structures, for two-dimensional maps,
we need a new method to determine the skeleton. In the fol-
lowing, we combine continuation techniques [19,20] with earlier
results on the stability of cycles in higher dimensional maps [21]
to show how to determine the skeleton of two-dimensional maps.
We illustrate the method on the Hénon map [22,13,14].

2. Theory

Consider the n-dimensional map, where n = 1,2

x′ = f (x). (1)

The Jacobian, J, is an n × n matrix composed of the elements
J i, j = ∂ f i/∂x j . To determine the stability of a cycle of period p,
we compute the product

M = J
(
xp) · . . . · J

(
x1), (2)

where xk , k = 1, . . . , p, are the points x, . . . , f (p−1)(x) on the cy-
cle. The eigenvalues λk , k = 1, . . . ,n, determine the stability of the
cycle. If all eigenvalues lie in the unit circle, then the cycle is sta-
ble. The largest Lyapunov exponent is (1/p) ln |λ1|, where |λ1| is
the absolute value (or modulus) of the leading eigenvalue. Thus, in
one-dimensional maps for a cycle containing an extremal point, we
find that M = 0, the Lyapunov exponent is −∞, and it is straight-
forward to determine the locus of period-p superstable cycles in a
two-dimensional parameter space, by taking the extremal point as
the initial condition and looking for fixed points on the period-p
map [4]. A saddle-node bifurcation occurs when the leading eigen-
value crosses 1, and a period-doubling bifurcation occurs when
the leading eigenvalue crosses −1. For two-dimensional parame-
ter spaces the boundaries of the saddle-node and period-doubling
bifurcations are typically lines in parameter space that bound a
set of parameter values in which a stable periodic orbit exists for
some set of initial conditions. In one-dimensional maps, the locus
of the superstable cycle of the same period is a line in between
both boundaries – called a “skeleton” [4] or a “spine” [23].

For two-dimensional maps the trace T = M1,1 + M2,2 = λ1 +λ2,
and the determinant D = M1,1M2,2 − M1,2M2,1 = λ1λ2, where also
λ1, λ2 = T /2 ± √

T 2 − 4D/2, help us understand the structure of
the bifurcations in parameter space. For a given cycle, the sta-
bility triangle [23,21] in Fig. 2(a) determined for M in Eq. (2)
defines the values of D and T for which the periodic orbit is
stable, and can be used to code the regions of parameter space.
Provided |D| < 1, the locus of points in parameter space for which
T = 0 defines a structure that plays the same role as the skele-
ton in one-dimensional maps since it lies between the boundaries
at which there is a saddle-node bifurcation (right-hand boundary)
and a period-doubling boundary (left-hand boundary). In this Let-
ter we consider situations in which D is either always positive
or always negative. Fig. 2(b) shows schematic trajectories of the
eigenvalues as a parameter is varied from a boundary that gives a
saddle-node bifurcation to a period-doubling bifurcation. There are
two cases. If −1 < D < 0 there is necessarily a point where T = 0.
For 1 > D > 0 there will be a region in which the eigenvalues be-
come complex. In this case, there are typically two values where
the eigenvalues are real and equal.

Continuation methods can be used to trace the loci of points
where T = 0 or where the eigenvalues are real and equal in pa-
rameter space for a given periodic orbit and its period-doubled
descendants. To do this, after doing a one-parameter continuation
for f (p)(x)−x = 0 detecting zeros of T = M1,1 + M2,2, we consider
the following extended algebraic system:

f (p)(x) − x = 0,

T = M1,1 + M2,2 = 0. (3)
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Fig. 3. Bifurcation structure of a shrimp in the Hénon map. (a) The largest Lyapunov exponent. Yellow represents chaotic regions, with a positive largest Lyapunov exponent.
(b) Coloring based on the region of D and T in the stability triangle. (c) Bifurcation diagram for period-5 cycles in the Hénon map. (d) The same diagram as (c), but also
including the same curves for period-10 cycles. (e) Magnification of (d) showing the Type B unfolding. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)
A continuation package like AUTO [20,19] considers this a three-
dimensional system with one parameter. Therefore, one of the two
parameters needs to be the third state vector coordinate in the
continuation system, and the other parameter can then be the con-
tinuation parameter.

Similarly the points where the eigenvalues are real and equal
can be continued. To do this we simply replace the second condi-
tion in (3) as follows:

f (p)(x) − x = 0,

T 2 − 4D = (M1,1 + M2,2)
2 − 4(M1,1M2,2 − M1,2M2,1) = 0. (4)

3. Results

We now apply these results to compute the skeleton of shrimps
in the Hénon map [22,13,14,24] x′ = a − x2 + by, y′ = x. For this
map we investigate period-5 orbits that, using numerical contin-
uation, can be traced back to an eigenvalue resonance on the
Neimark–Sacker bifurcation at b = −1 for a ≈ 2.276 where the
eigenvalues are equal to exp(±(2/5) × 2π i). The Hénon map has
the special property that its determinant D = −bp . Therefore, for
period-5 D = −b5 < 0 and for all doubled cycles D > 0. If |b| < 1,
for periodic orbits of high period, D can be quite small.

We now investigate the structure of its period-5 and doubled
period-10 cycles for b ≈ 0.18 in a region already identified as hav-
ing a shrimp [14,15]. We display three views of the same region of
parameter space: the largest Lyapunov exponent; the color based
on the values of D and T in the stability triangle; and the skeleton
determined using the continuation techniques.
In Fig. 3(a) we depict the largest Lyapunov exponent and in
Fig. 3(b) we plot the associated color from the color triangle.
In Fig. 3(b) −b5 ≈ −1.9 × 10−4, and b10 ≈ 3.6 × 10−8. This means
that for the period-5 cycle we always have real eigenvalues, with
blue and red regions separated by curves where T = 0. For the
period-10 cycle the eigenvalues may be complex, but for such
small values of the determinant the complex regions vanish nu-
merically and thus a green–black border can be seen. For such
small values of the determinant, the green–black and red–blue
borders provide good approximations for the loci of points in two-
dimensional maps that play the same role as the skeleton in one-
dimensional maps [21]. Thus it is sufficient to compute only the
T = 0 curves by continuation. The continuation analysis was sup-
plemented by standard numerical continuation of the red saddle-
node and green period-doubling curves. The results are shown in
Fig. 3. For the period-5 orbit the stable region is delimited by a red
saddle-node curve on the left, and a period-doubling bifurcation on
the right. A second saddle-node bifurcation generates a cusp con-
figuration, much like in the one-dimensional map in Fig. 1. Similar
structures exist for the period-10 cycle.

Although the shrimp structures for the Hénon map and the
sine circle map in Fig. 1 appear to be the same, there are dif-
ferences revealed by the current analysis. Consider the schematic
diagram in Fig. 4. The top diagram represents the “classic” struc-
ture that forms the building block of the self-similar bifurcation
structures in bimodal maps [4–6,8–12]. The upper crossing of the
superstable orbits represents a point in the diamond shaped region
of parameter space bounded by the saddle-node bifurcation curve
with the cusp and two period-doubling bifurcation curves, where
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Fig. 4. Unfolding of the skeleton. The top panel represents the “classic” geometry in a bimodal one-dimensional map. In two-dimensional maps the skeleton unfolds in two
different ways – Type A has a loop geometry and Type B a crossing without a loop.
there is bistability, whereas the lower crossing represents a point
in parameter space where there is a periodic orbit for which the
derivative of two of the iterates equals zero.

In two-dimensional maps, the lower crossing represents a non-
generic situation, so generically it will not exist. The reason for this
is that in the continuation system such a point represents a branch
point, which is generically of codimension-three and can only be
of codimension-two if certain symmetries are present [25]. In one-
dimensional maps, the trace of the scalar matrix (that is, the value
of the matrix itself) M in Eq. (2) is the product of the traces of the
matrices J(xk), but for higher dimensions this symmetry is lost.
Rather the skeletal structure unfolds in two different ways which
we show as Type A and Type B. The period-5 structure in Fig. 3(c)
reflects the Type A geometry, whereas the period-10 structure in
Fig. 3(e) represents the Type B geometry.

4. Conclusions

Although the concept of resonance tongues is well established
experimentally, the observation of the fine structures theoretically
predicted from analysis remains an important challenge.

As parameters are changed in nonlinear systems, there are com-
plex bifurcations with possibility of multistability. Although ex-
tremely delicate structures that are observed over minute regions
of parameter space and/or over minute ranges of initial condi-
tions may be difficult to observe experimentally, it is nevertheless
of interest to have numerical and analytical methods that can be
used to dissect bifurcation structures as parameters change. For
one-dimensional bimodal maps, symbolic dynamics and kneading
theory can be used to analyze the structure of the superstable cy-
cles in parameter space [11,12]. However for nonlinear differential
equations and for maps of dimension 2, analyses of bifurcation
structures have largely relied on shooting methods in which the
dynamics are determined for a specific initial condition over a
range of parameter values. The current work enables direct com-
putation of structures that are very difficult to identify and analyze
using shooting methods. Although the term “shrimps” captures
the delicate geometries observed in these numerical studies, the
detailed topological structure of the shrimps for two-dimensional
maps and other types of dynamical systems still needs to be ana-
lyzed. For example, for models of periodically stimulated nonlinear
oscillators with finite relaxation time to the limit cycle, we antic-
ipate that the shrimp structures will display complex evolution as
the relaxation time to the limit cycle varies [26].

The current work shows that continuation methods can be used
to analyze delicate bifurcation structures in the two-dimensional
Hénon map, that are difficult to analyze using shooting methods.
Since the loci at which T = 0 play a similar role to the superstable
cycle in two-dimensional maps continuation methods that identify
where T = 0 should help elucidate the fine details of bifurcations
in a wide range of different examples. For higher n-dimensional
maps there are additional quantities that matter, namely the coeffi-
cients ci of the characteristic polynomial, that comprise all possible
distinct product combinations of eigenvalues taken i at a time for
i = 1,2, . . . ,n [23]. Those quantities can all be restricted in a simi-
lar fashion as T and D using continuation methods.
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