
Problema Restrito dos tres Corpos: Um Teorema de Poincare­ 
Birkhoff sobre Existencla de Orbitas Periodicas 

W. M. OLIVA 

J\prcsentaremos, ncsta exposicao, uma demonstracao de Moser ([ 4], p. 67) 
dc uma questao proposta por Poincare (l I]) e resolvida por Birkhoff ([3 ]), 
sobrc a cxistencia de determinadas orbitas pcri6dicas no problerna restrito 
dos I rcs corpos, 

L: bcm conhccido quc cxistem 6rbitas periodicas no movimento de uma 
particula P, scm rnassa, em volta de um corpo S, com massa; sao orbitas 
cliticas. Pcrturbando-se o movimento de P com a introducao de um segundo 
corpo ./, coru massa positiva, 110 plano do movimento, de rnodo que .J e S 
dcscrcvam movimcntos circulares uniformes ao redor de seu centro dc massa, 
pcrgunta-se: persistcrn movimentos peri6dicos da particula P? A resposta 
c alirmativa ; uma infinidade de tais movimentos periodicos continua a existir 
apos a perturbacao. 

O metodo proposto por Poincare foi o de olhar para o espaco cle fase clos 
movimentos (no caso ern questao e um aberro do 1~4), escolher um conveniente 
valor rcgular de uma integral primeira do movirnento (integral de Jacobi), 
dcterrninar a natureza da variedade tridimensional correspondente a tal 
valor regular (no caso e o espaco projetivo tri-dimensional PJ), escolher urna 
superficie L, transversal as trajet6rias em P\ que admita uma trw1sfi:mna1·ao 
de Poinrnre ([ 5 J, p. 159) (L e, 110 caso, uma coroa circular), e finalmenle, mos­ 
trar que tal transformac;ao admitc um po11to fixo. Poincare chegou mesmo 
a enunciar uma conjetura geometrica que, se vcrcladeira, permitiria deter­ 
minar pontos fixos para a rclcricla transformac;ao cla coroa; essa conjetura 
foi mais tarde provada por Birkhoff ([2]). 

Para escrcvcr as cquac;oes clo movirnento de P cscolhc-se um relcrencial 
fixo (0, i, J) cm quc O c o ccntro dc massa dos pontos matcriais S e J; para 
simr,lil'icar, admitc-sc quc scjarn iguais a I: a distancia S.J, a soma das massas 
dc S c J c a vclocidadc angular dc S c dc ./ crn torno dc 0. lndicando-sc por 11 
a massa dc J, por (111, u J as coordcnaclas dc P no rclercncial (0, i, J), por a 
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a distancia J-JS c por p a distancia FJ, a particula P scra acelcrada por 
"1i1 i' + i.i27 c as lcis dc Newton tomecem 

p 

J 

<V 
11; = - V i = 1,2, 

(ll/; - "i' 

V= 1-p + /i 
(J fi 

s 
A translonnacao dcssc sisiema dc 2." ordern cm um dc I." ordcrn c obt ida 
introduzindo-se novas variaveis v1 = i"11 e 112 = i'12. Charnando dc /~ a hamil­ 
loniana dependente do tempo: 

- I ' , /-/ = 
7
-(111 + LJ:i) - L' 

obtern-sc 
ii;= FI,., 

i= 1,2. 

A Iirn de se obtcr urn sistcma harml ioruano autonorno (independcntc do icmpo) 
introduz-se um rclerencial movcl (0, e1, e2) de mcsma orientacao quc o Iixo 
c tal que e1 seja o versor de OJ. Scndo (,1,x2) as coordenadas dc P no re­ 
Ierencial movel icm-se 

.\ = .\1 + i\2 = /II!" 
J'= l'I!", 

cm que u = 111 + i112 e L' = v1 + iu2, quc constitui urna transforrnacao canonica 
em que a nova hamiltoniana e independcntc do tempo c toma a lorma 

H = } I )f - v - D 
(integral de Jacobi) em que D = l m xy (parte imaginana de xy ). Nas coorde­ 
nadas rnoveis os pontos J e S tern, respectivarnente, coordenadas ( I - J.I, 0) 
e (-r1, O); o espaco de configuracoes e ~2 - [J, S} c o espaco dc fasc c 
(~2 [J, 5)) x ~2- 

Corno \ = 1w" + iue" = re" + iuc" = \' + ix, chcga-sc lacilmcntc a 
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H 2 ( I .,· I" - F(x) j 
cm que F(x) = /x/L + 2V 
0s pontos criucos co problema sao os pontos da lorrna (x 1, x2, 0, 0) tais 
que dF(,1,x2) = 0. Suas projecoes no espaco das configuracoes sao os cinco 
pontos L; (i = I, ... , 5) dispostos como na tigura 

---- L_,, 
/ ' / ' / ' / " / ' / ' L1 / L2 ' L3 ' / ' • -:: • • • , s " / J " / 

" / 

" / 

" / 
/ 

" / 

' / 

'W 
Ls 

As posicoes de L1, L2 e L.1 dependem de J,L enquanto que os triangulos L4SJ 
e L5SJ sao equilateros. 

Para C suficientemente grande o conjunto dos movimentos possiveis que 
correspondern {1 relacao 

H(x,x) = - ~=½(I x I" - F(x)), 
isto e, F(x) = C + I x I'\ estao dispostos no espaco das conliguracoes no 
interior dc duas ovais menorcs e no exterior de uma oval rnaior que cnvolve 
os cinco pontos criticos; as regioes hachuradas corrcspondem ~t relacao 
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F(x) 2 C. C e um valor regular de F(x) e a igualdade F(x) = C corresponde 
21s tres ovais. Quando C diminui as ovais menores aumentam cnquanto 
que a rnaior diminui e a regiao l para urn clado C charna-se reqiiio de H ii/; 
e csta a regiao aonde verificarernos a existencia cle rnovimentos peri6dicos. 

lntroduzindo a transformacao canonica 

.\ + p == ~2 2 
17 y= ~ 2 

c a nova hamiltoniana K = H + 
2 

torna a forrna 

K =ii~ 11 l1,1 IL + ( C1 - 
2f )i~ IL - 4(1 - /l) j 

onde C0 = C - 2D. 

A unica singularidade na expressao de K e a origem ½ = 0 (na regiao dc H ill 
a distancia p e #0). 0 campo de vetores no abcrto 4-dimensional (~, 11) cor­ 
respondente ao sistema diferencial obtido podcra scr reparametrizado pcla 
rnudanca dl = / ~ jLd, e chega-se ao sisterna harniltoniano 

d(i = K d, ,,; 

d17; = K 
dt .;; 

I= 1,2 

e K = 0 corresponde a variedade iridirnensional H = c 
2 . 

Teorerna. Para C> 0 suiicientemenie qrande, e para ~L < ~10 (C), o sistema 
hamiltoniano descrito acima tem utn m1111em injinito de solucoes periodicas de 

c nirel de euerqia H = - 2 , 1w reqic7o de H ii/. 
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Obseroacao. Estas solucoes sao perturbacoes de 6rbitas encontradas no 
caso f,L = 0 e sao caminhos fechados em volta de S, rnesmo em coordenadas 
movers. 

No caso de se tcr /L = 0 obtern-se 

crn quc C0 > 0 para C suficientemerue grande. A variedade K = () e um 
clips6idc c podera translormar-sc em uma eslera SJ com a rnudanca de co­ 
ordcnadas 

I\'= 17 + i J C1 ~ 
z = 11 - i J Co ~- 

De fato K = l(l1vj2 + 1:12 - 8} e K = Ocorrespondea lwl2 + 1:12 = 8. 
O sistema sera dado por 

J dw . 
w =··-= 1Aw dt 

, dz .B 
Z =-= I Z dt 

onde A e B sao Iuncoes reais 

jw-zj1- - 
A= 8Co + JCu 

I w-z 12 -,- 
B= sc;- - J Co . 

E Iacil constatar-se que w e z sao integrais primeiras. 

Obsevvaciie« Pode-se notar que existc a correspondcncia ±(11', z)- (x,y), 
isto c, os pontos dc urna 3-eslera, identificando-se pontos diametralmente 

opostos, esta cm corrcspondcncia (I, I) corn /-J = - ~-, isto e, a variedade 
dos cstados dc movimento dc nivel /-J= -C/2 e homeomorla ao IP.,_ 
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Se, de algurn modo, urn toro solido invariante puder estar contido em IP-', 
a seccao desse toro por um plano delinira urna coroa como carnpo de definicao 
de urna transformacao de Poincare. 

E bern conhecido que o IP.1 pode ser rcalizado no [~J como uma bola fcchada 
em que se identificam pontos da lronteira, diamctralrnentc opostos. 

N 

JA O-"·--·-~---- 

s 
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Se retirarmos desse modelo o equador e o eixo N -S o remanescente pode 
scr deforrnado, inicialmente em um cilindro com parede espessa e este, por 
identificacao, num toro s61ido. 

No modelo inicial, isso correspondc a serem extraidos dois circulos contidos, 
por cxcmplo, nos planos z = 0 e w = 0. 0 remanescente cilindro espesso 
e o seguinte subconjunto do IR4: 

{(w, z) I O < I w 1
1 < 8, w2 + z2 = 8}. 

Convem observar que esses dois circulos sao 6rbitas de movimentos peri6dicos 
triviais no espaco de lase: 

\V= 0 z=O 
e 

z = J8 e''" w = J8 e''', 
/ 

Assim 1v = 0 satisfaz w' = iA ,v e z = fi eik, \evada na equacao z' = iBz fornece 
ikJS e11

" = iBJ8 e''" ou k = B que para w = 0 fornece 

l ~ 
k=~-JC · Co o ' 

por outro lado o valor de C0 para J.J = 0 e dado por 

I d I I C C' 2 "d. que ao ongo c ta curva resu ta: 0 = . + -=, que perrmte eterrru- 
Co 

nar a constantc real /c De modo analogo determina-se a constante real ii. 

Como dc [P3 forarn retiradas duas orbitas, o remanescente ainda e invariante 
pclo fluxo dos rnovirncntos. E claro quc (I w I", c1r9 w, ary ::) podem cons­ 
tituir uma tcrna dc coordcnadas para o ll-J1.1 mcnos os dois circulos. Para 
lcvar cm conta as ncccssarias idcntificacocs dc pontos diamctralmcntc opostos 
introduzcrn-sc as coordcnadas: I\\' I", ! = ory 111, t/1 = wg ,,, - ory :. Dcstc 
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modo a idcntificacao de (w, z) com ( -w, -z) ou, equivalentemente, de 
arg(w+kn), arg(z+kn), k inteiro, pode ser substituida pela exigencia dc 
que </> e 1f sejam variaveis angulares modulo 2n. Consequentementc a varie- 

dadc H = - ~·, apos a rctirada de um par de solucoes triviais, e dada por 
O < I w 1

1 < 8, c/> e 1/1 modulo 2n. Este e o espaco produto, um toro solido 
I x S1 ·x 1s1 

Como I 1v I e integral primeira do movimento, a transformacao de Poincarc 
da coroa esta definida, corn as seguintes propriedades: 
I.") Os crescimentos de c/> nos coniornos interno e ext erno da coroa sdo distintos. 
2.") A transjormaciio de Poincare preseroa a area. 

Prooa da I." propriedade. Como 

c/>' 2A = t/1 A-B 

temos: 

2A 
A=H ch/1: 
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porem 

c como 

ternos 

\111-z\L=I \\\1\-\z\e "11 IL I \w\-\z\ (co.s 1/1-1.sen 1/1) 

= (\ 1v I - I z I cos 1/1)L + I z \2 senLt/1 = I w \L + I z \L - 2 I z I I w cos 1/1 

logo 

j
-Lrr 2A j-Lrr ( 8 ~ W LJ~ . . ) 
0 

A _ 8 ch/1 = u 1 + SCdt2 - SC61 L cos 1/1 c/1/1 

onde o valor de C512 s6 depende da integral I w \2. Portanto, 

c/J2rr - c/)0 = 2n (1 + C~IL), 
ou seja, a variacao do angulo c/) e (uncao de I w IL· 

Mas e Iacil mostrar que J C0 e Iuncao monotonica crescente de I 1v 1
1 donde 

se conclui que a variacao angular e diferente nos contornos interno e externo 
da coroa. 

Prooa da 2." propriedade. Seja Ta transformacao de Poincare na coroa, S 
uma variedade com bordo contida na coroa e 7(S) sua imagem. 
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A seguinte forma diferencial n c um invariantc integral (l5J, p. 136): 

Q = dy, A dx, + c/Ji A dx; - c/H A dt 
c que em H = - 2 reduz-se a n= dy, A dx , + cly2 A dx , e posterior- 

mentc a n= d</) A 1,/D. Usando o teorema de Stokes e a relacao d (dw) = 0, 
temos 

0 =J.c/ (ci<I)) = J. c/n= j"_ Q = jn - j" Q + j/t 
M NI til'J J /(,)) 11/ 

Pela definicao de sistema hamiltoniano (l5J, p. 107) tern-se j_n = 0 pors 
,\1 

c Q(X11, v)= Xu J Q(v) = -d/-f(v) e v e tangente cl variedade H = - 
2 

logo c/J-J (u) = 0. Resulta entao j. Q = j Q_ 
.\ J(.\/ 

Na sequencia serao utilizados dois tcoremas, um de ponto Iixo para os homco­ 
morfisrno da coroa c urn outro dc preservacao cle 6rbitas periodicas por 
perturbacao do pararnetro (ver L 4]). 

Teorema J. Scja T um liomeomorfismo de utna coroa sobre si 111es1110 que pre­ 
seroa umajorma de oolume e que oerijica, para todo (I), o condicao (que e chamada 
"twist coiidition"), 

(') 

\ 
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Entiio, para t odo racional ;f 110 interoaio (C1,C2) existe um pontojixo P0 de 
olg11111 iterado de T que tem lf C0/110 seu numero de rotacdo, isto e, 

_JJ__ = lini j;,(P u) 
q ,,- I) 2nn 

011de f,, e a coordenada anqular clo tv-esimo it erudo de T, f = f1. 

Teorema 2. Seja x11(µ) um sistema hamiltoniano de lw111i/1011io11a H(1,i) to/ que 
para fl = 0 admit e uma orbita periodica p(t) de periodo ,0• Seja T: I:" - 1 --+ I:" - 1 

uma transjovmaciu: de Poincare de p(l) 110 ponto p(0). Se I que e sempre uul O: 
talor de dT(p(0))/or "simples", entiio T teni uin pontojixo ipara cada 1,1 proximo 
de zero) cotrespondente o uma so/11~·ao periodtca q(t,1,i) iendo mesmo nivel de 
meryia que ptt) e cujo periodo iende u ,0 quando !,L--+ 0. 

Co11clu.w"5esfinais. Aplicando-se o Teorema I chega-se a existencia de 6rbitas 
periodicas para o caso /L = 0. 

O caso qera! p # 0. Yoltando ao sistcma ja considerado: 

clf,; - K 
d, - ~i 

!0_;_ - - K d, - q, 

i= 1,2 

e K = 0 representa a variedade /-/ = 

K = ½ [ \17\L + (co - ~~) \f,\2 -4(1-1,i)j 

c 
2 

Como anles Iaz-se 

w = 11 + i Co f, 

z = 17 - i J Co f, 
tercmos: 

\11
1 = F(z, :, w, ,v, /_l) --+ iA11•} 

quando 11 --+ 0 
:' = G(:, :, \\', \V, /l) --+ i B: 
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e K = 0 resulta 8 - (j w j1 + I z j1 + 0(J.t)) = 0, que para {t pequeno mostra 

de modo analogo que H = - ;~ e !Pj para C grande. Para escolher solu­ 

coes periodicas a screm retiradas dc IP3 usa-sc o Tcorerna 2 que sc aplica ~\s 
6rbitas 

{

II'= JB° e'1'' 

::=0 

encontrando-se 6rbitas periodicas pr6ximas, de mesmo nivcl dc energia, quc 
denotarernos: 

{

11·1 --+ J8 e'1'' 
z, -, 0 

e 
{

w = 0 

. : .= J 8 e'1' ' 

c 
{ 

\\'2 --+ 0 

Z2 --+ J8 e'1' '. 
Uma nova construcao do anel se faz definindo 

w = W+ \\12m(j Wj) 
Z = L + Z1(!) (I L ll 

onde w e C I do tipo 

Nas novas coordenadas W = 0 e Z = 0 fazern o papel de w = O e z = 0 no 
caso /t = 0 e o toro s61ido e definido com c/J e 1/; (mod. 2n) dados por 

i'f 
W= I Wje 

L = I z I )('t t/1) 
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isto e, o toro s61ido e dado por O < I W IL < 8 + 0(/,t). A Iorma de volume 
preservada e ( I + 0 (Jt))dc/> I\ c/D e outra vez pode ser utilizado o Teorema 
dc Birkhoff. A "twist condition" c valida quando {l = 0 logo perrnanece 
valida para {L c/ 0 (pequeno). A existencia dc orbitas periodicas lica assirn 
constatada. 
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