Problema Restrito dos trés Corpos: Um Teorema de Poincaré-
Birkhoff sobre Existéncia de Orbitas Periodicas

W. M. OLIVA

Apresentaremos, nesta exposicao, uma demonstragio de Moser ([4], p. 67)
de uma questao proposta por Poincar¢ ([ 1]) e resolvida por Birkhoff (13)),
sobre a existéncia de determinadas orbitas periodicas no problema restrito
dos trés corpos.

- bem conhecido que existem orbitas periddicas no movimento de uma
particula P, sem massa, em volta de um corpo S, com massa: sio oOrbitas
cliticas. Perturbando-se o movimento de P com a introdugio de um segundo
corpo J, com massa positiva, no plano do movimento, de modo que J ¢ S
descrevam movimentos circulares uniformes ao redor de seu centro de massa.
pergunta-se: persistem movimentos periodicos da particula P? A resposta
¢ afirmativa; uma infinidade de tais movimentos periddicos continua a existir
apos a perturbagio.

O metodo proposto por Poincaré foi o de olhar para o espaco de fase dos
movimentos (no caso em questao ¢ um aberto do [2*), escolher um conveniente
valor regular de uma integral primeira do movimento (integral de Jacobi),
determinar a natureza da variedade tridimensional correspondente a tal
valor regular (no caso ¢ o espago projetivo tri-dimensional P*), escolher uma
superficie X, transversal as trajetorias em P, que admita uma transformagdo
de Poincaré ([ 5], p. 159) (£ €, no caso, uma coroa circular), ¢ finalmente. mos-
trar que tal transformagao admite um ponto fixo. Poincaré chegou mesmo
a enunciar uma conjetura geométrica que, se verdadeira, permitiria deter-
minar pontos fixos para a referida transformacio da coroa: essa conjetura
foi mais tarde provada por Birkhoff ([2]).

Para escrever as equagoes do movimento de P escolhe-se um referencial
fixo (0, 7. /) em que O ¢ o centro de massa dos pontos materiais S ¢ J: para
simplificar, admite-se que sejam iguais a 1: a distancia SJ. a soma das massas
de S e J e avelocidade angular de S e de J em torno de 0. Indicando-se por
a massa de J, por (uy,u,) as coordenadas de P no referencial 0,7, 7), por @
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a distancia PS ¢ por p a distancia PJ, a particula P sera acelerada por
Ui + 1, ¢ as leis de Newton fornecem

il 2. I F
J CUu; !
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[ — Jl } l &
a0 /)

A transformagao desse sistema de 2.* ordem em um de 1. ordem ¢ obtida
mtroduzindo-se novas variaveis v, = i, ¢ v, = i,. Chamando de H a hamil-
toniana dependente do tempo:

A = L(r. + v3) — L
obtem-se
=1L,
=2,
= TI,,I

A lim de se obter um sistema hamiltoniano autonomo (independente do tempo)
mtroduz-se um referencial movel (0, é,, ¢,) de mesma orientagio que o fixo
¢ tal que ¢, seja o versor de OJ. Sendo (x,, x») as coordenadas de P no re-
ferencial movel tem-se

XN =X+ ix; = ue

y = ve,

emque u = uy + iuy e v = vy + iv,, que constitul uma transformagao canonica
em que a nova hamiltoniana ¢ independente do tempo ¢ toma a forma

Lo
H= % |yff=V-D

(integral de Jacobi)em que D = Im xy (parte imaginaria de xy). Nas coorde-
nadas moveis os pontos J ¢ S tém, respectivamente, coordenadas (1 — 1, 0)
e (1,0); o espago de configuragoes ¢ [R* — [J, S} ¢ o espago de fase ¢
(R2-1J,8}) x R~

Como x = ue" + e = ve'" + iue' = v + ix, chega-se facilmente a
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| - .
H = {|%x|* - F(x)}
em que F(x)=|x|*+ 2V,

Os pontos criticos do problema sido os pontos da forma (x,, x,,0,0) tais
que dF (x;,x;) = 0. Suas projegoes no espago das configuragoes sao os cinco
pontos L; (i = 1,...,5) dispostos como na figura

Ly
/'.\\
s \
/ N
% 53
/ \
7/ N\

I;l // L.’_ \\\ lq
B ( B 3B
\ r 4
S " /’ J
\\ /

Y Fd
N /

N /

' 4

Ls

As posigoes de L, L, ¢ Ly dependem’ de i enquanto que os triangulos L, SJ
e LsSJ sao equilateros.

Para € suficientemente grande o conjunto dos movimentos possiveis que
correspondem a relagio

: (5 [ .
Hx,x)= — A= (| % |* = Flx)),

isto ¢, F(x) = C + | X%, estao dispostos no espago das configuragoes no
interior de duas ovais menores ¢ no exterior de uma oval maior que envolve
0s cinco pontos criticos; as regioes hachuradas correspondem a relagao
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F(x) = C. C ¢ um valor regular de F(x) e a igualdade F(x) = C corresponde
as trés ovais. Quando C diminui as ovals menores aumentam enquanto
que a maior diminui ¢ a regido 1 para um dado C chama-se regidao de Hill;
¢ esta a regiao aonde verificaremos a existéncia de movimentos periodicos.

Introduzindo a transformagao canonica

I
X ="

!
y=1

. ! , C .
a nova hamiltoniana K = H + 4 toma a forma

. I : ; = 2 e
K =557 ';/,“4—((“/’I)l>‘g{‘~4(l—/1)

onde C, = C — 2D.

A unica singularidade na expressao de K ¢ a origem ¢ = 0 (na regido de Hill
a distancia p ¢ #0). O campo de vetores no aberto 4-dimensional (¢, 1) cor-
respondente ao sistema diferencial obtido podera ser reparametrizado pela
mudanga di = | ¢ |“dt ¢ chega-se ao sistema hamiltoniano

(/\_;,' L
i = %a
i=12

dn; !

dr g

. 1 ) o 2N i

K=~ {‘)/[‘ +<(n = /t) Jg/“ — 4(1 —/l)}
¢ K =0 corresponde a variedade tridimensional H = — g :

Teorema. Para C > 0 suficientemente grande, e para p < p, (C), o sistema
hamiltoniano descrito acima tem um numero infinito de solugoes periodicas de

. C . .
nivel de energia H = — -, na regiao de Hill.
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Observagao. Estas solugdes sdo perturbagoes de orbitas encontradas no
caso p = 0 e sao caminhos fechados em volta de S, mesmo em coordenadas
moveis.
No caso de se ter u = 0 obtem-se

K =1 l 1 2 G £ 12 4|

=) ‘M' of “‘S‘ =y
em que Co >0 para C suficientemente grande. A variedade K = 0 ¢ um
clipsoide ¢ podera transformar-se em uma esfera S* com a mudanca de co-
ordenadas
w=n-+ i v ('() C

z=n—-i/C &

De fato K = {[w]* 4+ |z]|* — 8} ¢ K = 0 corresponde a |lwi* +|z)* =8.
O sistema sera dado por
w = aw = idw
dt
dz
Z=——=iBz
dt
onde A ¢ B sao fungoes reais
|w—z|? o
_—— = - /
B, e
B |w—z|? i
e WG, W

E facil constatar-se que w ¢ z sdo integrais primeiras.

Observagoes. Pode-se notar que existe a correspondéncia +(w, z) — (x, y),
isto ¢, os pontos de uma 3-esfera, identificando-se pontos diametralmente
opostos, esta em correspondéncia (1, 1) com H = — 5 Isto ¢, a variedade

dos estados de movimento de nivel H = —(C/2 ¢ homeomorfa ao .



| LN : . : 3
Se, de algum modo, um toro solido invariante puder estar contido em 7,
a secgdo desse toro por um plano definira uma coroa como campo de definigao
de uma transformagiao de Poincaré.

k= bem conhecido que o P pode ser realizado no ¥ como uma bola fechada
em que se identificam pontos da fronteira, diametralmente opostos.

<>
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Se retirarmos desse modelo o equador e o eixxo N—S o remanescente pode
ser deformado, nicialmente em um cilindro com parede espessa ¢ este, por
identificagdo, num toro solido.

No modelo inicial, isso corresponde a serem extraidos dois circulos contidos,

por exemplo, nos planos z =0 ¢ w = 0. O remanescente cilindro espesso
¢ o seguinte subconjunto do [R*:

{w,z) | 0< |w|* <8, w*+4z*=8}

Convem observar que esses dois circulos sdo Orbitas de movimentos periodicos
triviais no espago de fase:

w=0 z=0
z=/8 (s w=./8 Mt

Assim w = 0 satisfaz w' = idw e z = /8 ¢ levada na equagio z'= iBz fornece
iky/8 e =iBy8 " ou k=B que para w =0 fornece

|
T VG

por outro lado o valor de €y para p =0 ¢ dado por

l ) )
Co=0C+ = (Wi - |z1")
(] 4\/ (() \ \ l l

que ao longo de tal curva resulta: €y = C+ = que permite determi-
AV, 0
nar a constante real k. De modo analogo determina-se a constante real h.

Como de " foram retiradas duas Orbitas, o remanescente ainda ¢ invariante
pelo fluxo dos movimentos. E claro que (|w|*, arg w, arg z) podem cons-
tituir uma terna de coordenadas para o P* menos os dois circulos. Para
levar em conta as necessarias identificagoes de pontos diametralmente opostos
introduzem-se as coordenadas: |w | §=arg w, f =arg w — arg z. Deste
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modo a identificagdo de (w, z) com (—w, —z) ou, equivalentemente, de

arg(w+kn), arg(z+kn), k inteiro, pode ser substituida pela exigéncia de

que ¢ e sejam variaveis angulares modulo 2z, Consequentemente a varie-
C ; g - s

dade H = — 5> apos a retirada de um par de solugdes triviais, ¢ dada por

0 < |wl|* <8, ¢ ey modulo 2. Este ¢ o espago produto, um toro solido
I %8 %8,

Como |w | ¢ integral primeira do movimento, a transformagio de Poincare
da coroa esta definida, com as seguintes propriedades:

1Y) Os crescimentos de ¢ nos contornos interno e externo da coroa sao distintos.
24 A transformagdo de Poincaré preserva a drea.

Prova da 1. propriedade. Como

d¢p ¢ 24

dy W A-B

temos:

ba=dot | 2wy
Do = Py + ays;
J“ A-B

-—
|5}
o



porem

24 . A4 | |w—z \‘
A—B \/ (YU x((#) 2
¢ Como
w—z=|w]| 2% |z (.i('ﬁ’ W) (,i‘ﬂ' (w|—]|z]e™)
remos
1\\'—~_’: {J — ‘ I\\" — ‘: ‘ e uy = le - |:‘ (('()S l// — isen l//)
= (] = |z cosyp? + | seny = [+ |2 = 2| 2] || costp
logo
Ln 24 B 2n | 8 . 27I \)ilrJ :l -
J“ 4=In ([l// = J“ (l + 8((§J 8('(3’1 cos ([l//
3/2

onde o valor de C5'? s0 depende da integral |w

(/)27‘( e (/)() = 27[ (l + 7‘15 l>\
(()

ou seja, a variagdo do angulo ¢ ¢ fungio de

. Portanto,

wl

Mas ¢ facil mostrar que \/ C, ¢ fungdo monotonica crescente de | w | donde
se conclul que a variagdo angular é diferente nos contornos interno e externo
da coroa.

Prova da 2.* propriedade. Seja T a transformacio de Poincaré¢ na coroa, S
uma variedade com bordo contida na coroa ¢ 1(S) sua imagem.
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A seguinte forma diferencial € ¢ um invariante integral ([ 5], p. 136):

Q=dy; Adx; + dyy, A dxy — dH A dt

‘ ( .
que em H = — reduz-se a Q= dy, A dx, + dy, A dx, e posterior-

=
mente a Q = d¢p A dD. Usando o teorema de Stokes ¢ a relagao d (dw) = 0,

temos
O;J d(dm) = J dQ = J Q= JQ~ J £2+J Q.
Vi M «M > 1(S) ¥l

Pcla definigio de sistema hamiltoniano (| S], p. 107) tem-se J Q=0 pois

M
C

QXy,v)= Xy IQ)= —dH(v) e v € tangente a variedade H = — =

logo dH (v) = 0. Resulta entao J Q= JS!.

S 1(5)

Na seqiicneia serio utilizados dois teoremas, um de ponto fixo para os homeo-

morfismo da coroa ¢ um outro de preservagio de orbitas periodicas por
perturbagao do parametro (ver [4]).

Teorema 1. Seja T wum homeomorfismo de uma coroa sobre si mesma que pre-
serva uma forma de volume e que verifica, para todo ®, a condigao (que ¢ chamada
“twist condition™):

J@,0) - & <2nC, < 2,C, < f(D, 1) — .

'

— e — ——
~
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Entdo, para todo racional £ no intervalo (Cy,C,) existe um ponto fixo Py de
algum iterado de T que tem [ como seu nimero de rotagao, isto ¢,

(p
P — lim ',”7””—)
{ n—=w LTN

onde 1, ¢ a coordenada angular do n-ésimo iterado de T, { = f;.

Teorema 2. Seja xy(p) um sistema hamiltoniano de hamiltoniana H(p) tal que
para i = O admite uma orbita periodica pit) de periodo to. Seja T: 2" S, Yiat
uma transformagao de Poincaré de p(t) no ponto p(0). Se 1 que é sempre auto-
valor de dT(p(O)) for “simples™, entdo T tem um ponto fixo (para cada p proximo
de zero) correspondente a uma solugdo periodica q(t,p) tendo mesmo nivel de
energia que p(t) e cujo periodo tende a v, quando p— 0.

Conclusoes finais. Aplicando-se 0 Teorema 1 chega-se a existéncia de Orbitas
periodicas para o caso p = 0.

O caso geral p# 0. Voltando ao sistema ja considerado:

d<i

:l\’_,

S1

dt

dn; — K i= 12
dt

S T p Y e :
K= v n\’llu“}' Co — \Q‘~‘4(|4,U)|

1%

¢ K =0 representa a variedade H = —
Como antes faz-se
w=n+i/Cy ¢

Z2=h- i\/ Co §
eremos:

w = F(z,z,w,w, 1) = iAw

] ; } quando g — 0
z' = Glz,z,w, W, 1) = iBz



¢ K=0resulta 8 — (|w|* + [z|* + O(u) = 0, que para u pequeno mostra
" Gl o
de modo analogo que H= — ¢ [P para C grande. Para escolher solu-

¢oes periodicas a serem retiradas de ' usa-se o Teorema 2 que se aplica as
orbitas

w=.,/8 e w=0
e

z=10 z=,/8 &**
encontrando-se orbitas periodicas proximas, de mesmo nivel de energia, que
denotaremos:

wy = /8 e J’\\'_w - 0

¢
zy = 0 l:"’ - /8 ik

Uma nova constru¢ao do anel se faz definindo

w=W+wm( W)
=2+ (| Z))
onde w ¢ (" do tipo
0
P ¢
Nas novas coordenadas W= 0 ¢ Z = 0 fazem o papel de w = 0 ¢ z = 0 no

caso it =0 ¢ o toro solido ¢ definido com ¢ ¢ i (mod. 21) dados por
i
‘l

i(4-)

W=|w

Z=|Z]|e
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isto ¢, o toro solido ¢ dado por 0 < |W|* < 8 + 0(u). A forma de volume
preservada ¢ (1+0(u)d¢ A dD ¢ outra vez pode ser utilizado o Teorema
de Birkhoff. A “twis{ condition™ ¢ valida quando p = 0 logo permanece
valida para p # 0 (pequeno). A existéncia de Orbitas periodicas fica assim
constatada.
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