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ABSTRACT
The clustering properties of the Universe at large scales are currently being probed at various
redshifts through several cosmological tracers and with diverse statistical estimators. Here
we use the three-point angular correlation function (3PACF) to probe the baryon acoustic
oscillation (BAO) features in the quasars catalogue from the Sloan Digital Sky Survey
Data Release 12, with mean redshift z = 2.225, detecting the BAO imprint with a statistical
significance of 2.9σ , obtained using lognormal mocks. Following a quasi-model-independent
approach for the 3PACF, we find the BAO transversal signature for triangles with sides θ1 =
1.◦0 and θ2 = 1.◦5 and the angle between them of α = 1.59 ± 0.17 rad, a value that corresponds
to the angular BAO scale θBAO = 1.◦82 ± 0.◦21, in excellent agreement with the value found
in a recent work (θBAO = 1.◦77 ± 0.◦31) applying the two-point angular correlation function
(2PACF) to similar data. Moreover, we performed two types of test: one to confirm the
robustness of the BAO signal in the 3PACF through random displacements in the data set, and
the other to verify the suitability of our random samples, a null test that in fact does not show
any signature that could bias our results.
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1 IN T RO D U C T I O N

Studies of the large-scale structure (LSS) have revealed properties
of the Universe that confirm the � cold dark matter (�CDM)
hierarchical scenario for galaxy formation and cosmic evolu-
tion (Peacock 1999; Springel, Frenk & White 2006; Piattella 2018).
The information about LSS has been accessed mainly using the n-
point correlation function statistics (Peebles & Groth 1975; Groth &
Peebles 1977; Peebles 2001). Thereby, the two-point correlation
function (2PCF) was extensively employed to search for the baryon
acoustic oscillations (BAO) imprint in the galaxy and quasar
surveys (Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Bond &
Efstathiou 1984; Cole et al. 2005; Eisenstein et al. 2005; Paris et al.
2017; Marra & Isidro 2018). The next order statistics, the three-
point correlation function (3PCF), has been used to probe the non-
Gaussian features expected in the galaxy distribution (Frieman &
Gaztañaga 1999; Slepian et al. 2017a,b), and to confirm the
predictions of non-linear cosmological perturbation theory (see e.g.
Bernardeau et al. 2002 for a review).

The 3PCF is being also used to confirm the BAO features; the
first analyses of this type were done by Gaztañaga et al. (2009) with

� E-mail: edilsonfilho@on.br

the sixth and seventh data releases (DR6 and DR7) from the Sloan
Digital Sky Survey (SDSS), where they found the BAO signature at
∼100 Mpc h−1. Recently, Slepian et al. (2017a,b) detected the BAO
signal in the 3PCF with 4.5σ statistical significance using the SDSS
Data Release 12 (DR12) galaxy sample. Many of the reported works
assume a fiducial cosmology to calculate the three-dimensional
(3D) comoving distances between the pairs of cosmic objects
that form a triangle configuration to finally compute the 3PCF.
Some of these works, e.g. Frieman & Gaztañaga (1999), Jing &
Börner (2004), McBride et al. (2011), perform their analyses in the
projected space (Davis & Peebles 1983). To minimize the impact
of redshift distortions, they first calculate the 2PCF as a function of
two coordinates: the redshift-space distance into line of sight, π , and
projected separation, rp, such that (π2 + r2

p )1/2 is the observational
distance in redshift space. Because the anisotropic redshift-space
distortion is primarily contained in the π coordinate, they integrate
along this coordinate resulting in the projected 2PCF, and then the
projected 3PCF is obtained through analogous definitions (see e.g.
McBride et al. 2011 for a review).

In 2011, Sánchez et al. (2011) proposed an approach to cal-
culate the two-point angular correlation function (2PACF) in a
quasi-model-independent way. This methodology was then applied
by Carnero et al. (2012) to study the angular BAO signature of
the SDSS DR7 sample of luminous red galaxies. After that, the

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/3/4469/5707432 by U
niversidade de Sao Paulo - EESC

 user on 22 February 2021

http://orcid.org/0000-0003-1642-3190
http://orcid.org/0000-0002-5845-3649
mailto:edilsonfilho@on.br


4470 E. de Carvalho et al.

2PACF has been applied to several data sets to investigate the BAO
signal at different redshifts (Carvalho et al. 2016, 2017; Salazar-
Albornoz et al. 2017; de Carvalho et al. 2018; Abbott et al. 2019;
Crocce et al. 2019). Here, we extend to the three-point statistics
the approach proposed by Sánchez et al. (2011) and perform
for the first time analyses of the three-point angular correlation
function (3PACF) based only in the sky angular separation of
SDSS quasars located in a thin redshift shell, with mean redshift
z = 2.225. We successfully confirm the BAO transversal signature
at the same angular position already found in a recent work
analysing these data with the 2PACF (de Carvalho et al. 2018,
hereafter EdC18).

The main motivations to perform two-dimensional (2D) BAO
analyses, instead of the 3D approach, are the following. Differently
from the 3D case where one needs to assume a fiducial cosmology
to calculate the comoving distances between pairs of objects in
order to construct the 2PCF, in 2D analyses one only uses the
angular coordinates, given by the survey catalogue, to calculate
angular distances between pairs to search for the BAO features in
the 2PACF and 3PACF. An advantage of such model-independent
approach is that their results can be combined with other model-
independent (or weakly model-dependent) data to impose restric-
tions on cosmological models or parameters, or simply to compare
results obtained in a 3D approach. One can also perform 2D analyses
in several non-correlated thin redshift bins to obtain the best-fitting
angular diameter distance DA(z; rs), to be used in cosmological
model or parameter analyses as done by de Carvalho et al. (2016,
2018), Carnero et al. (2012), and Sánchez et al. (2011). In addition,
if the main target in BAO analyses is a statistically significant
measurement of the BAO signature, another advantage is that some
undesired phenomena that affect such measure in 3D are minimal
or negligible in 2D analyses considering data in thin redshift bins
(e.g. the redshift-space distortions).

We organize this work as follows. Section 2 gives the details of
the quasars, the random, and the mock catalogues employed in the
analyses; and the angular correlation function estimators applied to
these data sets are presented in Section 3. The data analyses and
results are discussed in Section 4, while in Section 5, we summarize
our conclusions.

2 TH E DATA , R A N D O M , A N D M O C K
C ATA L O G U E S

2.1 The quasars and random data set

The data used are part of the public Data Release 12 Quasar
catalogue (DR12Q) from the SDSS-III (Eisenstein et al. 2011).1

The DR12Q sample contains 297 301 quasars from the Baryon
Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013),
among which 184 101 have z ≥ 2.15, covering a total sky area of
9376 deg2. The full sample has been spectroscopically confirmed
based on a visual inspection of the spectra of each quasar. The
SDSS-III/BOSS limiting magnitudes for quasar target selection
are r ≤ 21.85 or g ≤ 22 (Paris et al. 2017). The main challenge
faced in the quasar BOSS survey was to obtain a high number
density sample, satisfying the proposed minimum threshold of
15 quasars deg−2 (Paris et al. 2017). This sample is dense enough
to perform 2D analyses in thin redshift bins.

1www.sdss.org/dr12/algorithms/boss-dr12-quasar-catalog/

In EdC18, we performed a detailed evaluation of the signal-to-
noise ratio to select the quasars data for BAO analyses. As a result,
we selected a sample of quasars in the thin shell z∈ [2.20, 2.25], with
width δz = 0.05, containing a total of 13 980 quasars distributed
between the North and South Galactic hemispheres (in EdC18 we
consider only the data in the North Galactic region). The number
density of this data set is large enough to measure the angular BAO
signature with a good statistical significance using the 3PACF.

The random catalogues are used to extract the BAO features
from the data, for this they must share common properties as
those observed in the quasar catalogue. The random samples were
generated according to the procedure described in EdC18; for the
present analyses, we produced 150 random sets with equal number
of objects, homogeneously distributed in the same sky region as
the quasars catalogue; 50 of these sets were used for the two- and
three-point correlation functions statistics, while we employed the
other 100 sets for the null test analyses.

2.2 The mocks

The mock quasar catalogues used in this work are full-sky lognormal
realizations created with the FLASK code2 (Xavier, Abdalla &
Joachimi 2016). To generate such mocks in a single redshift shell,
we provided as inputs: the expected projected number density
of quasars of 1.49 deg−2 (the same as in BOSS data); and a
fiducial angular power spectrum C	 computed with CAMB SOURCES3

(Challinor & Lewis 2011) for a top-hat redshift bin (2.20 < z <

2.25), assuming a quasar linear bias of 4.25, the �CDM cosmo-
logical parameters measured by Planck (Planck Collaboration XIII
2016), and a minimal Neutrino contribution (effective number of
neutrinos Neff = 3.046 and sum of masses 
mν = 0.06 eV). All
C	 contributions available in CAMB SOURCES (e.g. lensing, redshift-
space distortions, and non-linear clustering) were included. The
shift parameter λ of the lognormal probability distribution (−λ is
the minimum value attained by the quasar density contrast) was
set to 1.

Once the mean number density, the shift parameter, and the
angular power spectra are defined in the lognormal model, all
other statistical properties are set in accordance, including the
3PACF (Xavier et al. 2016). We adopted an angular resolution for
the mocks of ∼0.◦06, set by the HEALPIX4 (Górski et al. 2005)
parameter Nside = 1024. On scales smaller than this, the mock
quasars are distributed homogeneously (their distribution inside a
pixel is random). In conformity with the simulation’s resolution, we
band-limited the realizations to 	max = 2560. A total of 200 full-sky
mock catalogues were produced for our analyses.

3 TH E A N G U L A R C O R R E L AT I O N F U N C T I O N S

Many BAO analyses assume a fiducial cosmology to compute the
comoving distance among pairs, then the characteristic scale is
found through the 2PCF, and similarly for the computation of the
3PCF. We are interested in the transversal BAO signal, for this we
use the angular version of this estimator, i.e. the 2PACF and the
next order, the 3PACF, that will be applied to the quasars data in a
thin redshift shell.

2http://www.astro.iag.usp.br/ flask
3http://camb.info/sources
4http://healpix.sourceforge.net
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3.1 The three-point angular correlation function

The 3PCF is a complementary tool to characterize the clustering of
cosmological tracers like galaxies, quasars, etc. For other applica-
tions of the 3PCF, see e.g. Fry & Seldner (1982), Jing & Börner
(2004), Gaztañaga et al. (2005b), Kulkarni et al. (2007), McBride
et al. (2011), Marı́n (2011), and Marı́n et al. (2013); for alternative
statistical tools and clustering analyses, see e.g. Novaes et al. (2014,
2016, 2018) and Marques et al. (2018, 2019). Basically, the 3PCF
compares the number of triplets of cosmic objects from a data set
that form a triangle configuration, to be called DDD, with respect
to the number of triplets from a simulated random set of data,
termed RRR.

Let us start briefly reviewing the basics of the 2PCF. This
statistical tool measures the excess probability over a random data
set of finding pairs of cosmic objects from a given catalogue. It has
been used for many applications in astrophysical problems (Peebles
2001; Bernui, Ferreira & Wuensche 2008; Salazar-Albornoz et al.
2014; Avila et al. 2018, 2019). To calculate the 2PCF, the widely
used estimator is the Landy–Szalay (LS) estimator (Landy & Szalay
1993), which has a better performance when compared with other
estimators (Kerscher, Szapudi & Szalay 2000) because it results in
the smallest deviations for a given cumulative probability, besides
having minimal variance and no bias. The LS estimator is defined
by

ξ (s) ≡ DD(s) − 2DR(s) + RR(s)

RR(s)
, (1)

where DD(s), RR(s), and DR(s) are the normalized pair counts
between data–data, random–random, and data–random objects,
respectively, where the pairs are separated by the comoving distance
s (Landy & Szalay 1993; Sánchez et al. 2011). In addition, to
estimate the 3PCF, we consider the Szapudi–Szalay (SS) estima-
tor (Szapudi-Szalay 1998), which is a general extension for all
n-point correlation functions in 3D. For the case of the 3PCF, n =
3, the SS estimator assumes the form

ζ (S) ≡ DDD(S) − 3DDR(S) + 3DRR(S) − RRR(S)

RRR(S)
, (2)

where the DDD and the other terms are all normalized triplet counts
such that three cosmic objects form a triangle of sides given by
the triplet S = {s12, s23, s31}, where s12 is the comoving distance
between the objects 1 and 2 and so on (see Marı́n 2011).

The correlation functions that explore the clustering of objects
in the 3D space need to assume a fiducial cosmological model to
calculate the 3D distances first and then the comoving distance
s between pairs of cosmic objects. However, using the angular
version, i.e. the 2PACF and 3PACF, one can minimize this model
dependence, by considering just angular distances in the transversal
plane (actually, a thin shell) to the line of sight. In this case, the
data are located in a thin redshift bin, and the 2PACF measures the
transversal BAO signature. The angular version of the LS estimator,
w(θ ), for data in a thin redshift bin with mean redshift, z, is given
by (see e.g. Sánchez et al. 2011; Carnero et al. 2012; Carvalho et al.
2016)

w(θ ) ≡ DD(θ ) − 2DR(θ ) + RR(θ )

RR(θ )
, (3)

where θ is the angular separation between any pair in the data
and/or in the random sample. Analogously, the angular version of
the SS estimator (Peebles & Groth 1975; Materne 1988; Frieman &
Gaztañaga 1999; Cárdenas et al. 2017) for the 3PACF involves three

variables that define the triangle formed by three cosmic objects is

W (�)≡ DDD(�)−3DDR(�)+3DRR(�)−RRR(�)

RRR(�)
, (4)

where � represents the triplet of angular distances {θ1, θ2, θ3} of
the triangle. Specifically, θ1 (θ2, θ3) is the angular distance between
the cosmic objects number 2 (3, 1) and number 3 (1, 2).

One can introduce the reduced 3PACF, defined by Groth &
Peebles (1977) as

q(�) = W (�)

w1w2 + w2w3 + w1w3
, (5)

where wi ≡ w(θi), i = 1, 2, 3, with θ i as explained above. Ac-
cording to de Carvalho et al. (2018), the angular BAO scale is
1.◦77 ± 0.◦31 for this redshift bin z ∈ [2.20, 2.25], therefore we
have an expectation for the triangle configuration and its scale.
Furthermore, we choose to analyse q instead of W, because, as noted
by Marı́n et al. (2013), it appears to be more suitable to study the
shape dependence of matter clustering. Besides this advantage, Fry
(1994) has shown that the non-linear bias affects just the amplitude
of the reduced 3PACF but not the triangle shape considered in the
analysis (see also Zheng 2004; Gaztañaga et al. 2009).

Additionally, one can parametrize the triplet configurations in the
following way. One first fixes the values θ1 (the angular distance
between objects 2 and 3) and θ2 (the angular distance between
objects 3 and 1), and then calculates the function q(�) = q(α[θ3]),
for α ∈ [0◦, 180◦], which is the angle formed by the sides 2–3
and 3–1 of the triangle 1–2–3 (fig. 1 from Gaztañaga et al. 2005b
illustrates the meaning of α):

cos α = θ2
1 + θ2

2 − θ2
3

2 θ1 θ2
. (6)

For α = 0◦ the configuration is termed collapsed triangle and the
size of the third side of the triangle is θ3 = |θ2 − θ1|. For the case
α = 180◦, termed elongated triangle, the third side is θ3 = θ2 +
θ1 (Gaztañaga & Scoccimarro 2005a; McBride et al. 2011).

To find the angular scale of the BAO bump in the reduced 3PACF,
q(α), we follow the approach of Sánchez et al. (2011) based on
an empirical parametrization of q(α) that consists of a quadratic
function to describe the overall shape, in some works called the
‘U’-form, plus a Gaussian function to describe the BAO bump:

q(α) = m + n α + p α2 + C exp−(α−αFIT)2/2σ 2
FIT , (7)

where m, n, p, C, αFIT, and σFIT are free parameters. The best fit of
the reduced 3PACF obtained with this expression provides C, αFIT,
and σFIT that describes the BAO signal shape. The parameters m, n,
and p control both the amplitude and the form of the parabola.

4 DATA A NA LY SES AND RESULTS

In this section, we perform the analyses that lead us to a robust
measurement of the angular BAO scale in the SDSS DR12 quasar
catalogue through the reduced 3PACF statistic, q(α). This work
extends the analyses done in EdC18, where the 2PACF was applied
to the North Galactic hemisphere data of the DR12 quasar catalogue,
in the same redshift bin as here, finding a BAO signal at 1.◦77 ± 0.◦31
with statistical significance of 2.12σ .

4.1 The reduced 3PACF results

Now we shall compute the reduced 3PACF, q(�), given in equa-
tion (5), but before we need to calculate the functions W(�) and
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Figure 1. The reduced 3PACF (dots), q(α), calculated from the quasars
sample SDSS DR12 with z = 2.225, for fixed values θ1 = 1.◦0 and θ2 =
1.◦5. The best fit of these data is αFIT = 1.57 ± 0.081(stat) rad (vertical line;
error bar represented by the grey region), where the continuous line was
obtained using the equation (7) considering Nb = 10 bins. The dashed
line corresponds to the best-fitting curve for the non-BAO signal case, i.e.
C = 0 in equation (7).

wi for i = 1, 2, 3, using the equations (3) and (4) for triangle
configurations with fixed θ1 = 1.◦0 and θ2 = 1.◦5. To compute these
functions we use 50 random samples, generated according to the
procedure described in EdC18. In this way, we obtain the three-
point angular correlations for our quasars catalogue, in the redshift
range z ∈ [2.20, 2.25], with mean redshift z = 2.225, as shown in
the Fig. 1.

The procedure for computing the reduced 3PACF consists on
calculating the 2PACF and 3PACF of the quasar catalogue using
each random sample. The final results are obtained as the mean
over the 50 sets of each w(θ ) and W(α) data points for every θ and
α/π bins. Finally, we used the equation (5) to obtain the reduced
3PACF. The error bars shown in Fig. 1 were obtained from the quasar
mocks’ covariance matrix (estimated according to Section 4.2) as
the square root of the main diagonal for each function, namely w(θ ),
W(α), and q(α) (see Fig. 2).

The binning choice, mainly for the 3PACF case, is a compromise
that has a strong impact in the signal-to-noise ratio (see Marı́n 2011
and references therein). Besides that, triplet configurations depend
on the angular separation θ between pairs and, to form a reasonable
number of triplets, one must choose a value for �θ , which will
define the resolution of the results, in such a way that we actually
do not have exact values of θ1 and θ2, but bins of θ1 ± �θ and
θ2 ± �θ . A low resolution implies a small number of triplets by
bin and a small signal-to-noise ratio. For our analyses, after several
tests, we have chosen �θ = 0.◦15 that allows us to find a significant
number of triplet configurations providing a BAO signature with a
good statistical significance, as we shall see.

Note that the reduced 3PACF was estimated for equally spaced
bins of α/π in the range 0.0 ≤ α/π ≤ 1.0, in a total of Nb = 10
bins. Then, to extract the BAO features we fit equation (7) to the
reduced 3PACF data using the covariance matrix obtained from
quasar mocks (see Fig. 2). The BAO bump is identified at the
position αFIT = 1.57 ± 0.081(stat) rad or αFIT = 89.◦89 ± 4.◦6(stat).

The statistical error, denoted ‘stat’, was obtained in the following
way. We produce 10 000 synthetic q(α) data sets and extract the
U-form and BAO bump parameters by fitting them according to

Figure 2. The correlation matrix for the reduced 3PACF, q(α), obtained
from 200 quasar mocks (see Section 2 for details of how these mocks were
produced, and Section 4.2 for the matrix calculation).

Figure 3. Histogram of best-fitting αFIT for 10 000 synthetic realizations
of q(α), assuming the model given by equation (7), the parameters given
by Table 1 (C 	= 0), and the Gaussian random errors generated from the
covariance matrix estimated from the data. The red vertical line shows
the true value, and the standard deviation of the recovered αFIT is σ stat =
0.081 rad.

the empirical parametrization q(α), given by equation (7). Each
synthetic data set was generated by setting the measured q(α) as
the true one and adding to it Gaussian random errors according
to the measured covariance matrix. Fig. 3 shows the histogram
of the recovered BAO bumps, αFIT, from these 10 000 synthetic
realizations, whose standard deviation, σ stat = 0.081 rad, gives a
measure of the statistical uncertainty in our procedure.

The systematic error, denoted ‘sys’, will be calculated in detail
in another section. According to the values considered for θ1, θ2

above and using the equation (6) the angle α = αFIT corresponds
to θFIT ≡ θ3 = 1.◦80.

4.2 The covariance matrix estimation

To estimate the covariance matrix and the significance of our results
we have used a sample with N = 200 quasar mocks described above
(see the Section 2.2). For each mock, we extract the information
about the 2PACF and the 3PACF and finally calculate the reduced
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Table 1. The best-fitting parameters of equation (7), for the BAO (C 	= 0)
and non-BAO (C = 0) cases (see Fig. 1), obtained through the χ2 statistics,
equation (9), using the covariance matrix shown in Fig. 2.

Parameters Equation (7) (C = 0) Equation (7) (C 	= 0)

m 2.68 ± 0.31 3.01 ± 0.19
n − 0.38 ± 0.30 − 1.56 ± 0.54
p 0.11 ± 0.10 0.48 ± 0.17
C 0.0 0.93 ± 0.30
σ FIT – 0.41 ± 0.12
αFIT – 1.57 ± 0.081 (stat)

3PACF, q(α). The covariance matrix for w(θ ), W(�), and q(�)
was estimated using the following expression (see Gaztañaga et al.
2009):

Covij = 1

N

N∑
k=1

[xk(i) − x̂(i)] [xk(j ) − x̂(j )] . (8)

Here, the xk(i) represents the statistic used [i.e. w(θ ), W(�), or q(�)]
in the bin i for each mock k, and the x̂(i) is the mean value for this
statistic over the 200 mock samples in that bin.

The error of x(i) is the square root of the main diagonal, δx(i) =√
Covii . We show the covariance matrix in Fig. 2 for the case of the

reduced 3PACF, q(α).
The statistical significance of the BAO signal measurement is

obtained through the χ2 methodology, using the inverse of the
covariance matrix as

χ2(α) =
[
q(α) − qFIT(α)

]T
Cov−1

[
q(α) − qFIT(α)

]
. (9)

The symbols [· · · ] and [· · · ]T represent column vectors and row
vectors, respectively. We adjusted the parameters of equation (7),
based in the minimum χ2 method, for two cases: considering C as
free parameter, C 	= 0 (χ2

min = 2.24), and imposing C = 0 (χ2
min =

16.00), the latter representing the non-BAO case (see Fig. 1). Table 1
shows the best-fitting parameters for each case.

As a result, the best fit of the non-BAO case (7 degrees of freedom,
dof), compared to the BAO case (4 dof), is disfavoured by �χ2 =
13.76 (7 − 4 = 3 dof). Therefore, our detection of the BAO signal
has a significance of 2.9σ .

It is worth to notice that this statistical significance depends on the
covariance matrix derived from the lognormal simulations, which
could underestimate the error bars and, consequently, overestimate
the statistical significance. As a comparison, we have used the
jackknife approach to extract the covariance matrix and finding
a significance of 1.95σ . However, Norberg et al. (2009) have
shown that the jackknife approach could overestimate the error
bars, underestimating the statistical significance.

4.3 Spectroscopic-z error

As shown by Sánchez et al. (2011), the primary source of systematic
errors in the 2PACF and, consequently, in the 3PACF, comes from
the uncertainty in the measurement of the redshift, z, particularly
large in the case of photometric redshift surveys with broad-
band filters as the Dark Energy Survey (DES).5 On the other
hand, narrow-band filters from current (Eriksen et al. 2019) and
forthcoming (Benitez et al. 2014) surveys deal with photo-z errors
that are competitive with spectro-z errors.

5https://www.darkenergysurvey.org/

Figure 4. Histogram of the difference �αFIT between the αFIT obtained
from the quasars data compared to the values obtained from the simulated
spec-z samples. This spec-z errors impact the measurements of the BAO
signature as a systematic error with a relative amplitude of 5 per cent.

In the case of the sample studied here, the DR12Q catalogue
from the SDSS, the data are spectroscopic and the estimation of z is
very precise, as described by Paris et al. (2017). The error associated
with spectroscopic measurements is δz = 0.003 (a 3σ error; Laurent
et al. 2016) that we shall call spec-z error.

To estimate the impact of a redshift uncertainty, δz, in our
analyses, we shall perform a test. Consider that the redshift values,
zi, given in the DR12Q catalogue are the correct ones. For each zi

we produce a simulated error according to a Gaussian distribution
with mean zi and standard deviation (1 + zi) δz. We applied this
methodology to generate 100 spec-z quasar catalogues, where a
given quasar appears in each of these catalogues at a different
redshift, whose displacements from the correct values follow such
Gaussian distribution. In Fig. 4, we show the difference between the
αFIT adjusted from the ‘true’ quasar sample and the one obtained
from each simulated spec-z quasar sample. Then, the relative error
associated with the spec-z error is 5 per cent for the reduced 3PACF
case, and 4 per cent for the 2PACF case. This means that the
systematic error in the 3PACF BAO measurement is 0.08 rad in α.
Other sources of systematic errors are the redshift-space distortions
and the projection effects. However, for the sample in study, their
contribution is expected to be small (see e.g. Sánchez et al. 2011).

4.4 Robustness of BAO signal and the null test

As observed by Gaztañaga et al. (2009), a robustness test of the
analyses in n-point correlation studies is made by confirming the
BAO signature in the 2PACF and 3PACF individually. Once the
signal is detected in both statistics one can consider that the BAO
detection is robust. In our case, we have obtained the BAO signature
using the 2PACF in EdC18, and in the present analyses we confirm
it, with a good statistical significance, with the 3PACF.

We also perform the null test to investigate the behaviour of
the 2PACF and 3PACF estimators when the data are replaced by a
random catalogue; this procedure is repeated with several random
catalogues to compute the average. For this, we generated 100 extra
random samples (see Section 2), to replace the data 100 times, and
for each one we obtained the 2PACF and 3PACF, finally calculating
the mean 2PACF and the mean 3PACF. This procedure follows the
same methodology as described in EdC18. The results are shown in
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Figure 5. The combination of several 2PACF w1w2 + w1w3 + w2w3

(upper panel), and the 3PACF (bottom panel), where the data points (circles)
correspond to the analyses of the quasars sample DR12. In both panels
the data square symbols represent the null test, obtained by replacing the
quasars data catalogue with a random catalogue, performing this operation
100 times, and then considering the mean and standard deviation for the
data (squares) and error bars, respectively.

Fig. 5, where we present the n-point statistics (n = 2, 3) calculated
from the quasars data, i.e. the 2PACF, w(θ ), in the upper plot, and
the 3PACF, W(α), in the bottom plot, both data represented by dot
symbols. In the same panels of Fig. 5 we show for comparison the
results from to the null test analyses, represented by square symbols.
All error bars are the standard deviation computed from the 100 data
sets. As observed, for the null test the w(θ ) and W(α) data points
are zero, as expected, confirming that the random samples have no
signature that could contaminate our results.

4.5 Small shift criterion

This criterion is one more test to validate our results by examining
if the signal observed in the 3PACF is not originated by statistical
noise, an effect always present in the n-point correlation analyses.

To apply this test we have followed the same procedure used
in EdC18 (see also Carvalho et al. 2016). We perturb the quasars
original positions in the sky according to a Gaussian distribution,
in three cases: considering its standard deviation as σ s = 0.◦1,
0.◦2, and 0.◦3. Geometrically, this process means that the quasars
positions are randomly shifted in direction and with displacements
of different sizes (following a Gaussian distribution). In Fig. 6, we
illustrate the effect of this procedure, where even for the intense
shake corresponding to σ s = 0.◦2 or maximum displacement of 1.◦0,
the BAO signal is highly suppressed but still survives exhibiting the
robustness of our result. In the most severe case, σ s = 0.◦3, a very
small BAO signature could be there, but due to the error bars the
result appears compatible with the absence of signal.

4.6 Projection effect in the 3PACF

To access the θBAO we need to correct the αFIT with respect
to the projection effect that produces a shift in the BAO bump
position (Sánchez et al. 2011). For this, we convert ζ (S) into W(�)
by using the 3PCF result provided by perturbation theory (see Fry
1984; Frieman & Gaztañaga 1999; Barriga & Gaztañaga 2002;

Figure 6. The reduced 3PACF, q(α), for the original quasars catalogue
(dots), using the small shift criterion as described in the text (see the
Section 4.5). We have used σ s = 0.◦1, 0.◦2, and 0.◦3 (dotted, dashed, and
continuous lines, respectively) to perturb the original quasar positions. As
observed, the BAO signature is very robust, clearly appearing still for shifts
as intense as a Gaussian shift with σ s = 0.◦2 (the angular positions of the
quasars are shifted at a maximum distance of 1.◦0).

Gaztañaga et al. 2009) and the relation

W (θ12, θ23, θ13) =
∫

dz1 φ(z1)
∫

dz2 φ(z2)

×
∫

dz3 φ(z3) ζ (r12, r23, r13; z̄), (10)

where z̄ = (z1 + z2 + z3)/3 and φ(z) is the redshift selection func-
tion normalized to unity within the shell of width δz. In the case
of the 2PACF, we followed the procedure described in Carvalho
et al. (2016) and de Carvalho et al. (2018). As a reference model
we used the �CDM model with cosmological parameters from
Planck (Planck Collaboration VI 2018).

To calculate the projection effect for our data with z∈ [2.20, 2.25],
i.e. in a shell of width δz = 0.05, we evaluated the above relation
in two cases: δz = 0.0 and δz = 0.05, and then calculated the
relative difference, � ≡ (αFIT|δz=0.05 − αFIT|δz=0.0)/αFIT|δz=0.0, in
the BAO bump position. Thus, we obtain a relative difference of
� = 1.12 per cent. Applying this shift to αBAO = (1 + �)αFIT,
we obtain αBAO = 1.59 rad.

4.7 Validation of the results via fiducial cosmology

Finally, we shall test the validity of our results assuming a fiducial
cosmology. In fact, it is important to evaluate if the use of an empir-
ical parametrization, as given by equation (7), could bias our result.
To do this, we use the theoretical realization of the reduced 3PACF
(applying the same procedure described by Barriga & Gaztañaga
2002), considering as fiducial cosmology the flat �CDM, with (�m,
h, �b, σ 8, ns) = (0.31, 0.7, 0.059, 0.8, 0.97), and using a non-linear
power spectrum derived from perturbation theory. We follow a local
biasing model with (Fry & Gaztañaga 1993; Frieman & Gaztañaga
1994; Desjacques, Jeong & Schmidt 2018)

δQ =
∞∑

k=0

bk

k!
δk

m, (11)

where δi is the density contrast, for quasar, i = Q, and for matter, i =
m. This way, in the leading order we have, for the reduced 3PACF,
qQ = (1/b1)qm + b2/b

2
1, where b1 is the usual linear (local) bias,
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Figure 7. Theoretical calculation of the reduced 3PACF (continuous line)
produced according to Barriga & Gaztañaga (2002) using the CDM power
spectrum solution (derived from perturbation theory; Fry 1984), including
the effective bias parameter for quasars (see text for details). The dashed line
represents an illustrative example of the fitting procedure using equation (7).
For comparative purposes, we plotted the curves around the BAO bump. The
precision and accuracy to recover the BAO signal position was also examined
and the results are displayed in the Fig. 8.

used here as the effective bias parameter beff = 4.25 for quasars
(Laurent et al. 2016). Since the non-local bias term contributes only
by shifting the qQ curve, with no effect in its shape, we consider
b2 = 0 (Frieman & Gaztañaga 1999).

In addition, following Sánchez et al. (2011) and Crocce, Cabré,
Gaztañaga (2011), we model the selection function as

φ(z) = dNQ

dz
W (z), (12)

where W(z) is the window function encoding our redshift cuts, z

∈ [2.20, 2.25] (i.e. W = 1 inside the shell and W = 0 outside the
shell). The term dNQ/dz corresponds to the distribution of quasars
as a function of the redshift, chosen to be the Gaussian curve best
fitted to the DR12Q distribution, in the range 1.1 < z < 4.0. The
reduced 3PACF resulting from such theoretical calculation is shown
as a continuous line in Fig. 7. Notice that this theoretical curve is
obtained by fixing the angular distances at θ1 = 1.◦0 and θ2 = 1.◦5,
and the range α = [0, π ], i.e. the same values used in the data
analyses.

Then, to validate the performance of equation (7) in correctly
fitting the data, we repeated the same procedure of generating
10 000 synthetic realizations described in Section 4.1, but using
the theoretical q(α) (continuous line in Fig. 7) as the true one.
Fig. 8 shows the histogram of the relative difference between the
input (true) value αBAO and the αFIT estimates obtained by fitting
the equation (7) to each of these realizations (see Fig. 7 for an
illustrative example of this fitting procedure). The mean value of
these differences has a 2.1 per cent deviation with respect to the
input value, which represents an error of σ param = 0.033 rad. In
fact, this error accounts for only a small fraction of the systematic
error, whose main contribution comes from the spectroscopic
error. Adding both contributions in quadrature we have σ sys =
0.087 rad. Finally, we use equation (6) to find θBAO = 1.◦82 ± 0.◦21,
considering a combined computation using both the statistical and
the systematic errors, as done by Carnero et al. (2012), and the
errors in θ1 and θ2.

Figure 8. Performance test for recovering the αBAO. Histogram of the
relative difference between the αBAO (input value) and the best-fitting αFIT

value obtained by using the equation (7) for 10 000 synthetic realizations
of q(α). This analysis reveals that the mean value of the differences has a
2.1 per cent deviation with respect to the input value, which represents an
error of σ param = 0.033 rad.

5 C O N C L U S I O N S A N D F I NA L R E M A R K S

The clustering of matter structures in the Universe is currently
probed with large deep surveys by the n-point correlation function.
In a previous work, EdC18, we used the angular version of the
two-point statistic, the 2PACF, to study the BAO phenomenon
in the DR12 quasars catalogue from the SDSS, with z ∈ [2.20,
2.25] considering quasars located in the North Galactic hemisphere,
detecting the transversal BAO signal at θ2PACF

BAO = 1.◦77 ± 0.◦31. Here
we also studied the BAO features in the SDSS DR12 quasars
catalogue, in the same redshift bin as the above analyses but
using the angular version of the three-point statistic, the 3PACF,
considering data from the North and South Galactic hemispheres.
We detect a transversal BAO signal with statistical significance,
of 2.9σ , at θ3PACF

BAO = 1.◦82 ± 0.◦21, in excellent agreement with the
measurement done with the 2PACF (de Carvalho et al. 2018),
successfully confirming this BAO signature for quasars at the mean
redshift z̄ = 2.225.

Additionally, we also performed diverse robustness tests to
confirm several steps of our procedure to find the BAO signature
with the reduced 3PACF in these quasars data. To estimate the error
bars and the significance of our results we have used a sample of
200 quasar mocks. For each mock, we extracted the information
about the 2PACF and the 3PACF and finally calculated the reduced
3PACF, q(α). The covariance matrix for each case was estimated
using the procedure explained in the Section 4.2.

The significance of the result was accessed comparing the
parametrization given in the equation (7) with and without BAO
signal and using the inverse of the covariance matrix coming
from the mocks. Finally, the successful result from the null-test
guarantees that the random samples have no signature that could
contaminate our results.
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Frieman J. A., Gaztañaga E., 1999, ApJ, 521, L83
Fry J. N., 1984, ApJ, 279, 499
Fry J. N., 1994, Phys. Rev. Lett., 73, 215
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