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Abstract—Nowadays, there are several devices that can provide
GPS information continuously. The availability of all this infor-
mation combined with the improvement of techniques to analyze
massive amount of geolocation data opens up new possibilities
of services related to human mobility. Smart traffic control,
safety planning routes, and smart and safe driving are among
the domains that can benefit from models to predict human
mobility. In this paper we present a new approach to predict
human mobility based on Case Based Reasoning (CBR). Using
the Geolife GPS dataset to apply and analyze our proposal,
we obtained as result 72% of accuracy, a value similar to the
obtained by other studies. Our conclusion is that CBR can be
successfully applied to geolocation prediction. Moreover, there are
still many improvements that can greatly improve its accuracy.
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I. I NTRODUCTION

The massive amount of geolocation personal data can
provide useful information about user’s mobility. Nowadays
the user’s historical location can be provided by devices with
embedded geolocation position systems (GPS) such as smart
phones, navigators, trackers, notebooks, wearables, vehicular
navigation systems, and others [1]. The wide variety of devices
and their ability to generate records in short intervals, 1 to 5
seconds [2] [3], [4] enables the collection of massive amount
of geolocation data and introduces the concept of Mobility Big
Data (MBD) [1].

Geolocation data can feed Geolocation Prediction Models
(GPM) [1] in order to predict personal information about a
next geolocation based on current geolocation. Moreover, the
MBD analysis can provide meaningful inputs to the GPM,e.g.
information about the region where the user is at the moment
may have more value to the model than a GPS point (latitude,
longitude and altitude). According to Xu et al [1], this com-
bination of GPM and MBD can provide or improve several
location-based services such as smart traffic control, safety
planning routes, resources recommendations, smart and safe
driving, social interaction, personalized notifications, among
others.

In a recent survey, Xu et al. [1] categorize solutions to
GPM associated with MBD as: (i) Markov-based methods; (ii)
Bayesian network-based methods; (iii)Neural Networks-based
methods; and (iv) Regression-based methods. The use of such

approaches present an average accuracy that range from 39%
to 78% [1]. Nevertheless, Lu et al [5] and Song et al [6]
presented that human mobility is 93% and 95% predictable
respectively, which means that there is still room to improve
the average accuracy of GPM.

In this paper we propose CBLP, an CBR approach to
estimate geolocation prediction. The CBLP results in a real
life dataset indicates a promising method that should be more
explored. This document is organized as follows: section II
presents some background for understanding our proposal;
section III some existing work on the theme; section IV our
proposal and section V the application of our model to a
dataset. In section VI we present the evaluation of our model
and associated results and, finally, our conclusions and future
work in section VII.

II. B ACKGROUND

A. Mobility Big Data Analysis

Mobility Big Data analysis consists of processing and clus-
tering geolocation raw data into popular geolocation regions
(PGR), followed by mining personal trajectories (PT) from
the PGR’s [1]. In order to apply our approach, Geolife [4], a
dataset containing mobility raw data, was chosen as the data
source, and DBSCAN as the algorithm for clustering such
data. Having the clusters, each PGR is represented by the
cluster it belongs and PT are mined considering clusters as
abstractions to their starting, middle and ending PGR’s [1].
1) Mobility Dataset: Geolife is a GPS trajectory Dataset

collected by Microsoft Research on Asia. It contains data
from 182 users collected from 2007 to 2012 and describes
more than 17 thousands trajectories. The Geolife database is
composed of several files each one representing one or more
trajectories on a specific day for a specific user. By trajectory
we mean a sequence of records where the di�erence between
two subsequent records is at most 300 meters or 30 minutes. Its
files contain logs o�ocation and time records. Each record is
represented in a row and composed by seven fields< latitude,
longitude, 0, altitude, #daysfrom 12/30/1899, date, time> . The
number of records in Geolife dataset is23.42 � 106 .
2) Clustering Algorithm: The density-based spatial clus-

tering of applications with noise (DBSCAN) algorithm [7]
is a clustering algorithm that groups points that are closely
packed with a minimum near points and mark as noise points
alone in a region with few near points. DBSCAN require two
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parameters to be executed: EPS and MinPoints. EPS defines
that a point P is part of a cluster C, whenever the distance from
P to any existing point of C is equal or less than EPS. The
MinPoints defines the density of the clusters and determine
the minimum density of points necessary to form a cluster.

3) Mining Trajectories from Clusters: Mining a trajectory
from clusters consists of reducing dimensionality by obtaining
a personal trajectory (PT) based on popular geolocation region
(PGR).Therefore, having a GPS dataset such as Geolife,
mining a representation of a GPS trajectory to a PT basically
consists of mapping the dataset geolocation records to a
sequence of PGR where each geolocation record belongs.
An example of a trajectory dimensionally reduced is: PT =
< ClusterA,ClusterB,ClusterA >.

B. CBR: Case Based Reasoning

CBR is Artificial Intelligence approach to solve problems
based on similar past cases [8]. A CBR system solves new
problems (target problems) by adjusting or using solutions
from old problems (analogue problems) [9].The CBR method-
ology have four main steps: (i) retrieve similar analogue cases
to the target problem; (ii) reuse analogue solutions to propose
a new solution to the target problem; (iii) revise if necessary
to improve the solution of target problem; and (iv) retain the
new solution to improve knowledge.

Some advantages of using CBR are: (i) only deal with
real problems avoiding to worry about all possible problems;
(ii) handle risk cases by identifying scenarios with high error
degree; (iii) there is no need of having a good understanding
about scenario domain because solutions are based on past
cases data collected; (iii) large number of solution applied to
different domain including recommendation systems.

III. RELATED WORK

Ashbrook [10] used Markov models to calculate a matrix of
probabilities of movements between locations. They collected
the data used in experiments and they did not exposed average
accuracy for all users.

Herder et al [11] implemented a method that use proba-
bilistic functions, Markov methods and closest locations to the
user current location to predict the next location. Their work
applied techniques used to predict revisitations in websites to
geolocation prediction. They state the existence of a strong
dependence between destinations and period of the day and
use it as an additional input to their method. Moreover, they
adopted Geolife as the dataset and considered that each dataset
file contains only one user trajectory. Such choice can hide
important information, where an interval of more than 60
minutes may indicates the end and the beginning of two
subsequent trajectories.

Khoroshevsky and Lerner [12] proposed a method based
on probabilistic functions to compute the location prediction.
Geolife was chosen as the dataset. Diversely from [11], they
pre-processed the dataset to shrink it while maintaining the
utility of information collected in its files. Therefore, they
established a limit of 20 minutes and 50 meters between

subsequent records in a file as a way to discard trajectory
middle points. We advocate that by using such limits they
may have discarded starting and ending points of trajectories,
since a Geolife file may contain more than one trajectory in a
file.

Gambs et al [13] used Markov method to predict if a
user is at home, at work, or at other place. They use a
probabilistic method based on user’s last visitations to predict
the next locations. Their approach is limited in respect to the
possibilities of different destinations.

Different from methodologies cited above our approach
strongly depends on finding similar cases to the target tra-
jectory. Naturally, more data should result in more assertive
choices for similar cases, but our model does not need to limit
the amount of data necessary to execute the prediction. In other
words our approach accuracy is not restricted by a big amount
of data, but by the similarity of data.

IV. THE CASE-BASED LOCATION PREDICTION MODEL
(CBLP)

The CBLP is based on CBR and it is composed of two
steps extracted from CBR: (i) retrieve most similar analogue
trajectories to a target trajectory; (ii) reuse analogue data to
predict the target trajectory. Our model assumes that the most
similar the trajectories are, the greater the likelihood of their
destination be the same. These assumptions considers that
human mobility is strongly influenced by past behavior [5].
An overview of our model is presented in figure 1.

Fig. 1: Case Based Location Prediction (CBLP) Model.

A. Retrieve Similar Trajectories

In order to retrieve similar analogue trajectories it is neces-
sary to define some distance to compare trajectories. Similarity
is evaluated by calculating the distance between each analogue
trajectory and the target one. The closest ones are considered
similar to the target. We used the ED to measure the similarity.
To properly use ED it is necessary to convert a trajectory into
an n-dimensional array containing features with high relevance
to the trajectory destination. According to [6], [14] in most
cases human mobility are re-visitations with high temporal
and spatial regularity, because Geolife is composed exactly
with spatial and temporal data this understanding justifies the
use Geolife of predict mobility. Focusing on comparing and
retrieving similar trajectories is possible to infer several inputs
from Geolife data such as the nearest buildings or places
for spatial attributes and the day of week or period of the
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TABLE I: Time features to numbers

Time feature Symbol Number
Period of the day AM/PM 0/1
Day type Week/Weekend Day 0/1
Day of the week Mon/Tue/Wed/Thu/Fri/Sat/Sun 0/1/2/3/4/5/6

Source: Adapted

day for temporal attributes. All these features can be used to
characterize a trajectory focusing on space and time.

We use latitude and longitude because the ED of geolocation
attributes are proportional to the geographic distance, this
means the closer to 0 is the ED between two trajectories’ spa-
tial attributes, the more geographic closer are the trajectories’
points.

According to Herder, Siehndel and Kawase [11], trajectory
destination (end point) is dependent on the time of day which
the trajectory begins (start point) and it is also dependent
on the type of day it occurs (week or weekend). Based on
this understanding, we also defined the features (i) period
of the day (AM or PM), (ii) day type (weekday or week-
end day), and (iii) day of the week (Monday, Tuesday, ...,
Sunday) for representing the time attributes which represent
a trajectory. Both attributes (time and geolocation) refer to
the starting point of a trajectory and were obtained at the
moment of mining PT’s. Then, we assign numerical values
to each time feature, as indicates table I. Since time features
and geolocation attributes are represented using different units,
a normalization is necessary to ensure that each attribute has
the same impact on the result.

An example of the normalized array is given by

< 0, 0.00854, 0.03342, 0.45609, 0.97231 >,

where the array entries represents, respectively, the period of
the day; the day type; the day of the week; the latitude of
the starting point; the longitude of the starting point. Having
calculated the distance between each analogue trajectory to
the target one, we consider the closest three as the similar
analogue trajectories.

B. Reuse Similar Trajectories

The reuse of similar trajectories to derive the next destina-
tion considers the fact that they have similar features of time
and space of the target trajectory by construction. Therefore,
the algorithm has to choose, among the similar analogue
trajectories, a single one to serve as the derived solution.
Whenever possible, our algorithm chooses the most frequent
(the mode) among the most similar analogues to the target
trajectory, otherwise, it chooses the one most similar analogue.

V. APPLYING CBLP TO GEOLIFE

A. Geolife Data Analysis

In order to apply our approach to Geolife, we first need to
conduct the MBD analysis to it and extract the PGR’s and
PT’s for each user. These steps are applied to all dataset
with no restrictions. We already defined on section II our
understanding of what is a trajectory as well as the algorithm
used to cluster points into PGR, the DBSCAN. To implement

DBSCAN we use the Apache Machine Learn Library [15]. In
addition, for the purpose of avoiding DBSCAN performance
issues while running with large datasets, we decided to dis-
card middle points of all trajectories, following the approach
already adopted by [12]. By doing this, the number of records
to be clustered by DBSCAN decrease from 23.42 ∗ 106 to
1.09 ∗ 105.

As aforementioned, the algorithm requires EPS and Min-
Points as input parameters. Nevertheless, such values impacts
the result of the DBSCAN execution depending on the number
of records for a user. In order to mitigate the impact of
the choice for EPS and MinPoints values in the algorithm
accuracy, we ran DBSCAN for EPS ranging from 5 to 30,
with a step of 5 units, for each user. Also, MinPoints are set
to range from 1 to 4, because we do not want to restrict the
creation of a new cluster. Since all points are departures or
destinations, larger values of MinPoints may exclude locations
that were visited just a few times.Therefore, all combinations
for (Users, EPS, MinPoints) were considered to generate the
dataset that serves as input for CBLP resulting in 24 (6 EPS
* 4 MinPoints) experiments executed for each user.

Mining PT follows the approach described on section II-A3
and the resulting data serve as input for the Prediction Model
of CBLP. A total of 62544 PT populate the PT dataset.Having
the personal trajectories (PT) yielded by the Geolife data
analysis, the next step is applying the Prediction Model to
them. Therefore, retrieving and reusing similar trajectories are
the steps to be conducted using the PT dataset.

B. Retrieving similar trajectories

In order to prepare PT data to apply the prediction model,
we split the resulting data from each user into two parts
chronologically ordered: the first 2

3 of PT were considered
as analogue cases and the last 1

3 of PT were considered as
targets to be predicted. The retrieving process consists of, for
each target PT, evaluating similarity between the target PT and
all analogue PT and selecting the three most similar PT.

C. Reusing similar trajectories and deriving destination

For each target, from the three most similar trajectories,
we verify if there is overlap of destinations. If so, we chose
as the target destination the most frequent one, otherwise we
choose the target destination as the one from the most similar
trajectory.

VI. EVALUATION AND RESULTS

In order to evaluate our model we perform the steps
described in section V for each of the 4368 (=182*6*4)
combinations of users, EPS and MinPoints, performed in
the time of 3 days. Therefore, executions with less than 10
personal trajectories (at least 7 considered as analogues and
3 as targets) were ignored to avoid trending data. Each one
execution has a set of destinations to be predicted and the
success of prediction will be given by the comparison of the
predicted destination with the ones of the target PT dataset.
Accuracy was calculated considering the ratio between the
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(a)

(b)

Fig. 2: A - Accuracy due to EPS and MinPoints. B - Accuracy
results performed by each user.

TABLE II: Prediction Accuracy Models
Author Dataset Locations per user Accuracy
CBLP Geolife (182 users) 12 0.72
Gambs et al., 2012 Geolife (175 users) 8 0.7 - 0.95
Khoroshevsky and Lerner1 Geolife (168 users) 4 0.82
Khoroshevsky and Lerner2 Geolife (168 users) 19 0.75

Source: Adapted from Khoroshevsky and Lerner.

number of successful prediction (Succ) and the total number
of target trajectories (Total).

Figure 2 presents a plot with the results of all experiments
performed. Each column represents the results of the average
accuracy for all users, considering an specific value for EPS
and MinPoints. By analyzing the plot, we may infer that
the best values of (EPS, MinPoints) DBSCAN parameters,
considering the accuracy (> 70%), were (10,4), (15,4), (10,3)
and (15,3). If we consider the our best combination for EPS
and MinPoints, our accuracy is 72%. Nevertheless, since we
execute all the possible combinations of (EPS,MinPoints) for
each user, we also calculate the mean average accuracy for all
of them, which results in 60.51%.Figure 2B presents the Max,
the Average, and the Min results of accuracy for all DBSCAN
parameters, with each point representing a user.

A comparison with existing work that used Geolife is pre-
sented in table II and as we see, our approach did not overcome
[12] or [13], but some considerations are relevant. When
comparing to [12], their best results improve ours by 10% and
this difference can be justified by the difference in locations
discovered by user. If the cluster process generates a few
numbers of locations as possible destinations, it is reasonable
that your accuracy will be improved because, statistically, there
is a greater probability of success. When comparing with [13],
it is important to remark that their results are displayed for 3
different datasets, but specifically for Geolife their accuracy
ranges around 60% - 70% so CBLP overcome [13] specifically
for Geolife.

VII. CONCLUSION

Accurate prediction of user’s mobility can improve services
based on geolocation. In this paper we proposed CBLP, an
case-based model to predict the human mobility. Although
CBLP does not overcome other approaches to the same

problem, the accuracy calculated under the same basis is close
of existing work that adopts the same dataset. This was our first
incursion of using a CBR-based approach in such a domain
and our choices were the simple ones, mainly to check if it
could be promising or not.

Differently from others our method is not probabilistic
avoiding restrictions about amount of data. Probabilistic meth-
ods like Markov or Bayesian are the most widely used
according to Xu et al. To our understanding, encouraging new
approaches is crucial to improve the field research. The results
encourage us to advocate that CBLP was successfully applied
in the human mobility and that there is room to improve it.
In fact, Aamodt and Plaza [8] argue that the retrieving step
of a CBR cycle could provide better results with the adoption
of techniques such as nearest neighbor, induction, statistics,
neural networks, fuzzy logic, etc. Improvements may also
come from the inclusion of the revise and retain steps of the
CBR cycle in the CBLP model.
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