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RESUMO
O presente trabalho lida com o problema da mochila bidimensional considerando o

corte de itens irregulares em uma placa com defeitos. Enquanto os defeitos só são conhecidos no
momento do corte, deve-se selecionar de antemão quais itens poderão ser cortados da placa. Os
itens finais não podem ter qualquer defeito e o objetivo é maximizar o lucro com o corte da placa.
Propomos um modelo de programação estocástica de dois estágios que faz uso de um conjunto
discreto de cenários contendo a realização dos defeitos. As decisões de primeiro estágio envolvem
selecionar os itens para o corte, enquanto as de segundo estágio consideram o posicionamento
dos itens na placa considerando os defeitos existentes podendo, então, haver o cancelamento de
itens selecionados. Realizamos testes computacionais em instâncias adaptadas da literatura que
consideram três tipos de defeitos e oito cenários.

PALAVRAS CHAVE. Programação Estocástica de Dois Estágios. Problema da Mochila com
Itens Irregulares. Defeitos.

POI - PO na Indústria. OC - Otimização Combinatória.

ABSTRACT
The present work deals with the two-dimensional knapsack problem considering the cut

of irregular items in a defective plate. While defects are only known at the time of cutting, we
should select in advance which items can be cut from the plate. The final items must not contain
defects, and the objective is to maximize the profit by cutting the plate. We propose a two-stage
stochastic programming model that uses a discrete set of scenarios containing the realization of
defects. The first stage decisions involve selecting the items to be cut. In contrast, the second
stage decisions consider the positioning of the items on the plate considering the existing defects
and, therefore, there may be the cancellation of selected items. We perform computational tests on
instances adapted from the literature that consider three types of defects and eight scenarios.

KEYWORDS. Two-Stage Stochastic Programming. Knapsack Problem with Irregularly sha-
ped Itens. Defects.
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1. Introdução
Nas empresas de corte de couro, de tecido e metal-mecânica, uma placa (isto é, uma peça

grande de couro, de tecido ou de metal) está disponı́vel para ser cortada e obter itens, que podem
apresentar formato irregular. Esses itens são usados para a produção de roupas, bolsas, calçados,
artefatos de esporte, entre outros. É comum que a placa apresente defeitos em algumas partes, seja
oriundos da extração, manuseio ou transporte, inviabilizando o corte de itens sobre essas partes
[Baldacci et al., 2014].

Nesse trabalho consideramos uma empresa que realiza o corte de itens irregulares a partir
de uma placa retangular que pode apresentar defeitos. A empresa faz o pedido da placa com ante-
cendência, devido a questões de preparo e transporte por parte do fornecedor. O pedido da placa
inclui suas dimensões (e caracterı́sticas de material) e está relacionado com os itens que a empresa
selecionou inicialmente para obter da placa. Todavia, os defeitos na placa são identificados somente
após a entrega e quando ela adentra o estágio de corte, momento em que alguns itens previamente
selecionados podem ter a sua produção cancelada.

A empresa deseja um plano de corte (para a placa) que dê o máximo lucro lı́quido, que
depende do lucro obtido com a produção e entrega de itens e do custo dado pelo possı́vel cance-
lamento de alguns itens selecionados. O plano de corte contém os itens previamente selecionados
para serem obtidos da placa e deve ser elaborado no momento de compra da placa. Porém, como
os possı́veis defeitos na placa não são conhecidos a priori, pode ser necessário o cancelamento de
alguns itens quando do efetivo corte da placa. Dessa forma, tratamos os defeitos como dados incer-
tos. Esse é um Problema do tipo Mochila bidimensional com itens Irregulares e Incerteza sobre os
Defeitos da placa, que denominamos de 2PMI-ID.

Problemas de corte de itens irregulares vêm sendo estudados na literatura de problemas de
corte e empacotamento, com um número de contribuições relativamente menor comparado aos pro-
blemas com itens regulares, especialmente aqueles com formato retangular [Wäscher et al., 2007].
Restrições comuns em problemas dessa natureza dizem respeito a garantir a não sobreposição en-
tre itens e que o posicionamento dos itens não venha a extrapolar as dimensões da placa. Devido
à geometria irregular dos itens, torna-se necessário o uso de ferramentas adicionais para que se-
jam escritas essas restrições. Algumas ferramentas incluem a discretização dos itens em matri-
zes de pontos (método raster), o cálculo da posição relativa, com o uso de funções de distância
(phi-functions), a construção de polı́gonos de obstrução entre pares de itens (no-fit polygon) e a
verificação da interseção entre segmentos e de inclusão de pontos (trigonometria direta) [Bennell e
Oliveira, 2008].

Com relação ao problema da mochila com itens irregulares, Martins e Tsuzuki [2010]
propuseram uma heurı́stica baseada em recozimento simulado para os casos com placas retangula-
res e irregulares. O posicionamento dos itens é baseado no cálculo de polı́gonos de obstrução e de
regiões livres de sobreposição. Valle et al. [2012] desenvolveram heurı́sticas baseadas em GRASP
(Greedy Randomized Adaptive Search Procedure), com a resolução dos casos em que existe apenas
uma cópia de cada item e quando há ilimitadas cópias de cada item. O posicionamento dos itens
é feito observando os polı́gonos de obstrução. Silveira [2013] utilizou um algoritmo genético cu-
jos cromossomos representam a sequência em que os itens devem ser posicionados na placa. Os
itens são posicionados por uma heurı́stica de agrupamento que faz uso dos polı́gonos de obstrução.
Dalalah et al. [2014] consideraram placas retangulares e irregulares e fizeram a proposta de uma
heurı́stica construtiva, que posiciona os itens conforme a utilização da envoltória convexa.

Por sua vez, Baldacci et al. [2014] resolveram o caso com placa irregular que surge na
indústria de couro. Os autores consideraram a placa discretizada em uma matriz de pontos e apre-



sentaram um modelo de programação linear inteira e uma relaxação lagrangeana. Mundim et al.
[2018] desenvolveram uma heurı́stica geral para problemas de corte de itens irregulares, como o da
mochila e de corte de estoque. Os autores propuseram diferentes regras de posicionamento, algumas
delas baseadas na bottom-left, e conseguiram melhorar grande parte dos resultados anteriormente
apresentados na literatura. Souza Queiroz e Andretta [2020b] propuseram duas heurı́sticas, a pri-
meira baseada em um algoritmo genético de chaves aleatórias viciadas e a outra é uma busca em
vizinhança variável. Nas heurı́sticas a solução é codificada através de um vetor e o posicionamento
dos itens considera o cálculo de polı́gonos de obstrução e três regras inspiradas na bottom-left.

Alguns poucos estudos têm considerado defeitos e zonas de qualidade nas placas. Heis-
termann e Lengauer [1995] lidaram com um caso real encontrado na indústria de couro, em que
a placa é irregular e contém zonas de qualidade e defeitos. A heurı́stica dos autores considera um
conjuntos de itens candidatos e tenta posicioná-los sem gerar sobreposição caso seja possı́vel, senão
posiciona apenas o item que resulta na melhor ocupação da placa. Em Yuping et al. [2005], as pla-
cas possuem zonas de qualidade e os autores adotaram uma estratégia de penalização para que os
itens sejam posicionados de forma viável. Em Lee et al. [2008], o problema considera múltiplas
placas irregulares e com defeitos, sendo que os itens são posicionados observando o seu valor, em
ordem decrescente.

A resolução de um problema de corte de couro para a indústria automobilı́stica foi feita
em Alves et al. [2012]. Os autores consideraram a maximização do uso da placa para obter os itens
finais, sendo apresentada uma heurı́stica de busca em vizinhança variável. Os autores considera-
ram quatro operadores para gerar posicionamentos diferente dos itens na placa e, assim, gerar uma
solução final melhor. Mundim e Andretta [2014] consideraram o problema com vários recipientes
irregulares, visando minimizar o número de recipientes necessários para o corte dos itens demanda-
dos. Os autores apresentaram duas heurı́sticas baseadas na regra de posicionamento bottom-left. A
não sobreposição entre os itens e com os defeitos é garantida pelos polı́gonos de obstrução. Pinto
et al. [2016] melhoraram os resultados de Alves et al. [2012], propondo uma heurı́stica construtiva
que simula o posicionamento de itens na placa, então selecionando o item e ponto que geram a me-
lhor ocupação da placa. Os autores propuseram uma busca local para testar itens não posicionados
e, assim, aumentar a ocupação da placa.

A literatura é ainda mais escassa quando se busca pelo tratamento de incertezas dentro
do problema. Mundim [2017] considerou incertezas na demanda dos itens para o problema com
múltiplas placas, propondo um modelo de programação estocástica de dois estágios. No modelo
se penaliza a falta ou o excesso de itens produzidos a mais que o necessário, conforme um con-
junto amostrado de cenários. Em Souza Queiroz e Andretta [2020a] há também um modelo de
programação estocástica de dois estágios, porém para o problema de corte em faixa com incertezas
associadas a demanda dos itens. Os resultados obtidos com o modelo indicaram que desconsiderar
as incertezas acarretaria em soluções de maior custo total.

Nesse trabalho, propomos um modelo de programação estocástica de dois estágios para o
2PMI-ID. O primeiro estágio considera decisões sobre quais itens selecionar, para obter da placa,
enquanto o segundo estágio contém os cenários com a realização dos defeitos na placa e, então,
alguns itens poderão ser cancelados por não mais haver um posicionamento viável na placa. O
posicionamento dos itens é feito observando os polı́gonos de obstrução que são discretizados em
uma matriz de pontos, isto é, da junção do método raster com o no-fit polygon, resultando no no-
fit raster [Toledo et al., 2013]. A definição do problema é dada na Seção 2, enquanto a Seção 3
apresenta o modelo proposto. A Seção 4 contém o estudo computacional realizado sobre o modelo,
que é resolvido por um algoritmo branch-and-cut e aplicado para resolver instâncias adaptadas da



literatura de problemas de corte de itens irregulares. Por fim, conclusões finais e direções para a
continuação desse trabalho são dadas na Seção 5.

2. Definição do Problema
O problema da mochila bidimensional com itens irregulares e incerteza sobre os defeitos

da placa (isto é, 2PMI-ID) é uma generalização do problema da mochila bidimensional, que por sua
vez é NP-Difı́cil [Garey e Johnson, 1979]. O problema é definido sobre o plano Cartesiano, com
uma placa posicionada no primeiro quadrante e com origem em (0, 0). O eixo das abscissas (eixo x)
está associado com a dimensão da largura (W ) e o eixo das ordenadas (eixo y) está associado com
a dimensão do comprimento (H), que são valores fixos e conhecidos a priori. Existe um conjunto
de itens I disponı́veis para seleção e cada item i ∈ I possui área ai e um vértice de referência
ri = (rxi , r

y
i ) que é o menor retângulo, em termos de dimensões e sem rotação, que circunscreve

o item. Assumimos que os itens possuem orientação fixa (isto é, não podem ser rotacionados) e
são posicionados nessa orientação através do seu vértice de referência, que é o vértice de menor
ordenada e, em caso de empate, de menor abscissa. Além disso, cada item i tem um lucro pi, dada
a sua seleção e produção, e um custo de cancelamento ci.

O problema considera um conjunto D de possı́veis defeitos que a placa pode ter. Cada
defeito d ∈ D é modelado como um item irregular de dimensões, área e vértice de referência
conhecidos. Por outro lado, não se conhece quais defeitos e seu posicionamento dentro da placa,
sendo tratados como dados incertos. O objetivo do problema é determinar um plano de corte viável
que retorne o máximo lucro ao cortar a placa. Um plano de corte é viável quando os itens a serem
produzidos podem ser posicionados sem sobreposição, inteiramente dentro da placa e não contêm
partes com defeito.

A seleção dos itens que poderão fazer parte do plano de corte ocorre no momento inicial,
em que se faz o pedido da (ou se define a) placa. Nesse momento, a empresa define os itens do
conjunto I que deveriam ser produzidos a partir do corte da placa. Como a placa está sujeita a
defeitos, que são conhecidos somente em um segundo momento (de entrega e produção dos itens),
alguns itens selecionados poderão ser cancelados, incorrendo um custo de cancelamento. O plano
de corte somente é definido nesse segundo momento, onde há o conhecimento dos defeitos e, assim,
pode-se confirmar quais dos itens selecionados se pode posicionar de forma viável, enquanto alguns
poderão vir a ser cancelados. Dessa forma, deseja-se um plano de corte viável que resulte no
máximo lucro.

Com relação ao posicionamento dos itens, usamos o no-fit raster para garantir a não
sobreposição entre itens e o inner-fit raster para assegurar que os itens estejam completamente
dentro da placa [Toledo et al., 2013]. O no-fit raster NFRij consiste no cálculo do polı́gono de
obstrução para cada par de itens i e j, sendo um item fixo (i) e o outro orbital (j). O item orbital
é transladado ao redor do item fixo, sempre encostando no item fixo, mas sem gerar sobreposição,
formando um polı́gono cujo interior indica sobreposição entre os itens. Esse polı́gono é, então,
discretizado em uma matriz de pontos, com valores iguais a “1” indicando a sobreposição e, caso
contrário, valores iguais a “0”. Por outro lado, o inner-fit raster IFRi consiste no polı́gono obtido
ao transladar cada item i, internamente, sempre encostando uma das bordas da placa. Esse polı́gono
é, então, discretizado em uma matriz de pontos, com valores iguais a “0” indicando que o item pode
ser posicionado sem extrapolar as dimensões da placa e, caso contrário, com valores iguais a “1”.

3. Modelo de Programação Estocástica
Apresentamos um modelo de programação estocástica de dois estágios para o 2PMI-ID.

Os defeitos (e suas localizações na placa) são considerados variáveis aleatórias com realizações dis-
cretas conforme uma distribuição de probabilidade conhecida. Seja Ω = {1, 2, . . . , S} o conjunto



de possı́veis estados, isto é, de cenários s ∈ Ω amostrados e contendo a realização dos defeitos na
placa.

No modelo desenvolvido, o primeiro estágio do problema está relacionado com decisões
here-and-now envolvendo a seleção dos itens conforme a placa a ser entregue pelo fornecedor. Por
outro lado, no segundo estágio são tomadas decisões wait-and-see envolvendo o posicionamento
dos itens selecionados e, devido à realização das variáveis aleatórias, isto é, o conhecimento dos
defeitos na placa, temos ainda decisões envolvendo o possı́vel cancelamento de itens. O plano de
corte da placa deve ser viável e ter o máximo lucro esperado, que envolve o lucro com os itens
selecionados e produzidos menos o custo esperado com o cancelamento de itens.

Os parâmetros e as variáveis de decisão do modelo de programação estocástica são:

• I: conjunto de itens irregulares disponı́veis para a seleção;

• vi: lucro associado com a seleção do item i no primeiro estágio;

• ci: custo associado ao cancelamento do item i no segundo estágio;

• πs: probabilidade de ocorrência do cenário s ∈ Ω;

• Ds: defeitos na placa, dado o cenário s ∈ Ω;

• yi: variável binária, de primeiro estágio, que recebe o valor 1 se o item i ∈ I faz parte dos
itens selecionados para produção; ou, o valor 0, caso contrário;

• xsipq: variável binária, de segundo estágio, que recebe o valor 1 se o item i escolhido (isto é,
yi = 1), tem o seu vértice de referência posicionado no ponto (p, q) da malha associada a
placa; ou, o valor 0, caso contrário; para o cenário s ∈ Ω;

• zsi : variável binária, de segundo estágio, que recebe o valor 0 se o item i selecionado deve ser
cancelado; ou, o valor 1, caso contrário; para o cenário s ∈ Ω;

• M : número suficientemente grande.

O modelo para o 2PMI-ID é de programação linear inteira com dois estágios e risco neu-
tro, assumindo que a solução terá desempenho de longo prazo. O objetivo é maximizar o lucro espe-
rado, considerando a seleção dos itens a produzir (primeiro estágio) e o posicionamento e possı́vel
cancelamento de itens conforme os defeitos na placa (segundo estágio). A função objetivo (1) do
primeiro estágio considera o lucro pela seleção de itens (viyi) e o custo esperado pelo cancelamento
de itens no segundo estágio (Q(y, ξ)), em que ξ = [ξs], com ξs = {xsipq, zsi }, representa o vetor
aleatório do cenário s. As restrições (2) definem o domı́nio das variáveis de decisão de primeiro
estágio.

Maximizar viyi +Q(y, ξ) (1)

yi ∈ {0, 1}, ∀ i ∈ I. (2)

O modelo de segundo estágio possui função objetivo (3), que busca pela minimização da
soma dos custos de cancelamento de itens considerando a probabilidade de ocorrência πs de cada
cenário s ∈ Ω. Como itens selecionados, porém cancelados, não podem ter seu lucro contabilizado
na solução, assumimos que ci ≥ vi, para cada item i.



Q(y, ξ) = Minimizar
∑
s∈Ω

πs

(∑
i∈I

ci(yi − zsi )

)
(3)

zsi ≤ yi, ∀ s ∈ Ω, i ∈ I; (4)∑
j∈I

∑
(u,v)∈NFR

(p,q)
ij

xsjuv ≤ (1− xsipq)M, ∀ s ∈ Ω, i ∈ I, (p, q) ∈ IFRs
i ; (5)

∑
(p,q)∈IFRs

i

xsipq = zsi , ∀ s ∈ Ω, i ∈ I; (6)

zsi ∈ {0, 1}, ∀ s ∈ Ω, i ∈ I; (7)

xsipq ∈ {0, 1}, ∀ s ∈ Ω, i ∈ I, (p, q) ∈ IFRs
i . (8)

As restrições (4) do modelo de segundo estágio impõem que um item não selecionado no
primeiro estágio deve ser marcado com o mesmo estado que os itens cancelados, dado cada cenário
s ∈ Ω. As restrições (5) asseguram, para cada cenário s ∈ Ω, que se o item i está posicionado
em (p, q) na placa, então o item j não pode ser posicionado em qualquer um dos pontos (u, v) do
conjuntoNFR(p,q)

ijs . As restrições (6) impõem que somente os itens i selecionados e não cancelados
devem ser posicionados na placa, para cada cenário s ∈ Ω. Por fim, as restrições (7) e (8) definem
que as variáveis de segundo estágio são binárias.

Nas restrições (5) e (6), definimos o NFR(p,q)
ij como sendo o conjunto de pontos (u, v)

que estão no interior do NFRij , entre i, o item fixo, e j, o item orbital, dado que i está com o seu
vértice de referência posicionado em (p, q). Os pontos (u, v) são aqueles em que, se o item j tem
o seu vértice de referência posicionado em algum deles, faz com que haja sobreposição com i, que
está posicionado em (p, q). Por outro lado, o conjunto IFRs

i ⊆ IFRi contém os pontos da placa,
dado o cenário s ∈ Ω, onde o vértice de referência do item i pode ser posicionado de forma que o
item não contenha partes com defeito e que esteja inteiramente contido na placa.

4. Resultados Computacionais
O modelo apresentando na seção anterior foi implementado na linguagem C++, sendo

resolvido com o algoritmo branch-and-cut presente no resolvedor Gurobi Optimizer, versão 9.1,
com as configurações padrões. O computador usado nos experimentos possui sistema operacional
linux Ubuntu 16.04.7 LTS, processador Intel Xeon E3-1245v5 de 3,5 GHz e 32 GB de RAM.

As instâncias utilizadas nos testes foram adaptadas da literatura do problema da mochila
bidimensional com itens irregulares e disponibilizadas por Souza Queiroz e Andretta [2020b]. Os
principais dados de cada instância são apresentados na Tabela 1, contendo o nome, a quantidade
total de itens disponı́veis para a seleção e as dimensões da placa. Adotamos a escala de 1 ponto
a cada 1 unidade de distância para obter as matrizes com os no-fit raster e inner-fit raster. Com
relação à função objetivo de primeiro e segundo estágios do modelo, consideramos vi = ai, com ai
sendo o valor da área do item, e ci = 1, 5vi, para cada item i ∈ I .

A geração dos cenários considerou uma árvore de possibilidades [Ma et al., 2010], com
três tipos diferentes defeitos (um triângulo, um quadrado e um losango). Cada cenário considera a
presença ou não de cada um dos defeitos e a posição do defeito na placa foi determinada de forma
aleatória usando uma distribuição uniforme. Há um total de 8 cenários por instância, que são as
possibilidades entre não ter qualquer defeito na placa até ter todos os defeitos presentes na placa.



Tabela 1: Instâncias adaptadas para os testes computacionais.
Instância Trabalho #itens H W Instância Trabalho #itens H W

blasz2 Oliveira et al. [2000] 16 15 16 blazewicz1 Toledo et al. [2013] 7 15 6
rco1 Toledo et al. [2013] 7 15 7 shapes2 Toledo et al. [2013] 8 40 14
fu5 Alvarez-Valdes et al. [2013] 5 38 14 shirts1-2 Rodrigues e Toledo [2017] 13 40 13
three Alvarez-Valdes et al. [2013] 3 7 4 threep2 Alvarez-Valdes et al. [2013] 6 7 7
poly1c Rodrigues e Toledo [2017] 15 40 13 threep3 Alvarez-Valdes et al. [2013] 9 7 10

Cada instância está associada a três casos de probabilidade para a ocorrência dos cenários, que são:
equiprovável, com a probabilidade de 50% associada a ter o defeito d na placa e os outros 50%
para não ter tal defeito presente na placa; otimista, com a probabilidade de 25% associada a ter o
defeito d na placa e os outros 75% para não ter tal defeito presente na placa; e pessimista com a
probabilidade de 75% associada a ter o defeito d na placa e os outros 25% para não ter tal defeito
presente na placa. Por exemplo, para o caso otimista, o cenário onde não há qualquer defeito na
placa possui probabilidade de ocorrência igual a 75%×75%×75% = 42.19%, onde a probabilidade
de 75% está associada ao evento de não ter o defeito d na placa. Por outro lado, no cenário cuja placa
contém todos os defeitos, a sua probabilidade de ocorrência é dada por 25%×25%×25% = 1.56%,
com a probabilidade de 25% associada ao evento de sim, ou seja, de ter o defeito d na placa, para
d = 1, 2, 3. A Tabela 2 apresenta a árvore de cenários com a probabilidade de ocorrência de cada
cenário.

Tabela 2: Árvore de cenário para as instâncias usadas nos testes computacionais.
Probabilidades

Defeito 1 Defeito 2 Defeito 3 Cenário Equiprovável Otimista Pessimista

NÃO
NÃO

NÃO #1 NÃO-NÃO-NÃO 12.50% 42.19% 1.56%
SIM #2 NÃO-NÃO-SIM 12.50% 14.06% 4.69%

SIM
NÃO #3 NÃO-SIM-NÃO 12.50% 14.06% 4.69%
SIM #4 NÃO-SIM-SIM 12.50% 4.69% 14.06%

SIM
NÃO

NÃO #5 SIM-NÃO-NÃO 12.50% 14.06% 4.69%
SIM #6 SIM-NÃO-SIM 12.50% 4.69% 14.06%

SIM
NÃO #7 SIM-SIM-NÃO 12.50% 4.69% 14.06%
SIM #8 SIM-SIM-SIM 12.50% 1.56% 42.19%

As Tabelas 3 a 5 contêm os resultados após aplicar o modelo sobre as instâncias conside-
rando, respectivamente, os três casos, equiprovável, otimista e pessimista. Os resultados indicam
que todas as instâncias foram resolvidas na otimalidade, com gap igual a zero. Além disso, o tempo
computacional requerido pelo Gurobi ficou abaixo dos 410 segundos no pior caso (instância blasz2).
De forma geral, é perceptı́vel a variação em termos de função objetivo quando se passa de um caso
ao outro, em que se observa um melhor valor objetivo para o caso otimista (cujos cenários com
menos defeitos na placa possuem maior probabilidade de ocorrência), seguido do equiprovável e,
por fim, do pessimista. Notamos que somente nas instâncias poly1c, shapes2 e shirts1-2 todos os
itens são selecionados e há o mesmo valor de função objetivo, o que pode ser explicado pela pouca
influência dos cenários (defeitos) sobre o posicionamento dos itens.

Analisando o cancelamento de itens conforme os casos nas Tabelas 3 a 5, observamos que
o cenário 1 não requer cancelamento em qualquer caso, visto que neste cenário não há defeitos. Nos
demais cenários, o cancelamento de itens ocorre com maior frequência quando há mais defeitos e
no caso otimista. Nesse caso, em particular, a probabilidade de ocorrência dos cenários com maior



número de defeitos é menor. O caso com menor quantidade de cancelamentos é o pessimista, já
que os cenários com maior número de defeitos têm maior probabilidade de ocorrência. Em geral,
os cenários 4, 6, 7 e 8 possuem o maior número de itens cancelados, independente do caso.

Tabela 3: Resultados do caso equiprovável.
instância #itens #itens objetivo gap (%) tempo (s) #itens cancelados no cenário

selecionados #1 #2 #3 #4 #5 #6 #7 #8
blasz2 16 12 165,8 0,0 130,4 0 1 1 1 0 0 1 0
blazewicz1 7 5 49,5 0,0 2,0 0 0 0 0 0 1 1 1
fu5 5 4 347,1 0,0 2,4 0 0 0 0 0 0 1 0
poly1c 15 15 315,5 0,0 277,4 0 0 0 0 0 0 0 0
rco1 7 6 61,2 0,0 9,2 0 1 1 2 0 1 1 1
shapes2 8 8 320,0 0,0 14,6 0 0 0 0 0 0 0 0
shirts1-2 13 13 275,0 0,0 5,8 0 0 0 0 0 0 0 0
three 3 1 5,6 0,0 0,0 0 0 0 1 0 1 0 0
threep2 6 4 23,0 0,0 0,1 0 1 1 1 0 0 2 2
threep3 9 5 37,1 0,0 0,3 0 0 0 1 0 0 1 0

Tabela 4: Resultados do caso otimista.
instância #itens #itens objetivo gap (%) tempo (s) #itens cancelados no cenário

selecionados #1 #2 #3 #4 #5 #6 #7 #8
blasz2 16 12 174,4 0,0 404,9 0 0 0 0 0 0 0 0
blazewicz1 7 5 52,9 0,0 5,9 0 0 0 0 0 1 1 1
fu5 5 4 380,8 0,0 1,3 0 0 0 0 0 0 1 1
poly1c 15 15 315,5 0,0 291,8 0 0 0 0 0 0 0 0
rco1 7 6 70,2 0,0 6,6 0 1 1 2 0 1 1 1
shapes2 8 8 320,0 0,0 14,3 0 0 0 0 0 0 0 0
shirts1-2 13 13 275,0 0,0 5,8 0 0 0 0 0 0 0 0
three 3 2 9,0 0,0 0,0 0 1 1 1 1 2 1 1
threep2 6 4 27,6 0,0 0,1 0 1 1 1 0 0 2 2
threep3 9 6 42,3 0,0 0,3 0 1 1 1 1 0 1 0

Tabela 5: Resultados do caso pessimista.
instância #itens #itens objetivo gap (%) tempo (s) #itens cancelados no cenário

selecionados #1 #2 #3 #4 #5 #6 #7 #8
blasz2 16 12 160,6 0,0 58,1 0 0 0 1 0 0 0 0
blazewicz1 7 5 46,4 0,0 0,9 0 0 0 0 0 1 1 1
fu5 5 4 301,4 0,0 1,2 0 0 0 0 0 0 1 0
poly1c 15 15 315,5 0,0 296,6 0 0 0 0 0 0 0 0
rco1 7 3 59,4 0,0 8,3 0 0 0 1 0 0 0 0
shapes2 8 8 320,0 0,0 6,2 0 0 0 0 0 0 0 0
shirts1-2 13 13 275,0 0,0 5,8 0 0 0 0 0 0 0 0
three 3 1 5,2 0,0 0,0 0 0 0 1 0 1 0 0
threep2 6 3 18,9 0,0 0,1 0 0 0 0 0 0 1 1
threep3 9 5 32,8 0,0 0,3 0 0 0 1 0 0 1 0

A Figura 1 ilustra a solução obtida para a instância rco1 no caso otimista, em que os itens
da cor preta representam os defeitos na placa. Essa instância possui um total de 7 itens, sendo 6
deles selecionados no primeiro estágio, com o cancelamento de itens ocorrendo nos cenários 2, 3, 4,



6, 7 e 8. Observamos que os itens são reposicionados na placa conforme a localização dos defeitos,
embora haja o cancelamento de dois itens no cenário 4.

(a) Cenário 1 (b) Cenário 2 (c) Cenário 3 (d) Cenário 4

(e) Cenário 5 (f) Cenário 6 (g) Cenário 7 (h) Cenário 8

Figura 1: Solução para a instância rco1 no caso otimista.

5. Conclusões
Este trabalho apresentou um modelo de programação estocástica de dois estágios para

o problema da mochila com itens irregulares e defeitos na placa, com incertezas associadas aos
defeitos. O primeiro estágio do modelo decide quais itens selecionar para o corte da placa, enquanto
o segundo estágio lida com as decisões para definir um plano de corte viável. O modelo, que é de
programação linear inteira, foi resolvido com o algoritmo branch-and-cut do resolvedor Gurobi,
fazendo uso das ferramentas no-fit raster e inner-fit raster para garantir um posicionamento viável
dos itens na placa.



Os testes computacionais sobre diferentes configurações de instâncias mostram que o mo-
delo se comporta bem, permitindo ao resolvedor obter a solução ótima para todas as instâncias em
todos os casos. Além disso, os cenários otimistas, com menos defeitos e maior probabilidade de
ocorrência, são os que apresentam maior número de itens cancelados por instância. Por sua vez, o
caso otimista é o que fornece os melhores valores de função objetivo, enquanto o caso pessimista
tem os menores valores de função objetivo e menos itens cancelados.

Como continuação desse trabalho, pretendemos avaliar o impacto e a importância da ale-
atoriedade no problema, a partir da análise do valor esperado da informação perfeita e do valor
da solução estocástica. Buscaremos ainda gerar mais instâncias e investigar outras formas de con-
siderar os defeitos na placa. A proposta de heurı́sticas para acelerar a convergência do algoritmo
branch-and-cut também faz parte dos trabalhos futuros desejados.
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rado em ciências da computação e matemática computacional, Instituto de Ciências Matemáticas
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