
The Geology of Colombia book provides an updated background 
of the geological knowledge of Colombia by integrating the most 
up–to–date research covering paleontology, biostratigraphy, sed-
imentary basin analysis, sedimentology, sequence stratigraphy, 
stratigraphy, geophysics, geochronology, geochemistry, thermo-
chronology, tectonics, structure, volcanology, petrology, environ-
mental science, climate change, and space geodesy.

Each chapter has a complete framework of a major branch of ge-
ology providing an invaluable resource for geologists interested in 
the geological history of Colombia.

The third volume has seventeen chapters that present the best pre-
served record of Chicxulub impact deposits at the Cretaceous/Pa-
leogene boundary on Gorgonilla Island; geologic evolution of the 
Tumaco Forearc, Amagá, the San Jacinto fold belt, the Middle and 
Lower Magdalena and Llanos Basins; uplift and structural styles of 
the Eastern Cordillera; fluvial–lacustrine and volcanic records of the 
Morales Formation; Cenozoic marine carbonate systems of Colom-
bia; provenance in modern rivers draining the Eastern and Central 
Cordilleras, as well as different levels of exhumation across the Bu-
caramanga Fault in south–western Santander Massif; new informa-
tion on the Chocó–Panamá Arc and the Isthmian bedrock geology; 
Miocene tholeiitic and calc–alkaline magmatism from the northern 
Andes; and Cenozoic geologic evolution of the Sierra Nevada de 
Santa Marta.

Other volumes in The Geology of Colombia book
Volume 1: Proterozoic – Paleozoic
Volume 2: Mesozoic
Volume 4: Quaternary
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Late Cretaceous to Cenozoic Uplift of the 
Northern Andes: Paleogeographic Implications

Andrés MORA1 , Diego VILLAGÓMEZ2 , Mauricio PARRA3 ,  
Víctor M. CABALLERO4 , Richard SPIKINGS5 , Brian K. HORTON6 ,  
Josué Alejandro MORA–BOHÓRQUEZ7 , Richard A. KETCHAM8 ,  
and Juan Pablo ARIAS–MARTÍNEZ9 

Abstract In this chapter, we summarize recent work on the geologic evolution of the 
northern Andes. Our intention is to present current information so that scientists 
from other disciplines can differentiate data from interpretations. In this effort, we 
focus on thermochronological data that provide precise places, dates, and rates. 
Thermochronological data provide cooling histories for rocks of the upper crust, 
whereas provenance data offer insights on rocks that have been eroded away. In 
reviewing published data, we provide a critical overview of recent paleogeographic 
interpretations. Specifically, we discuss hypotheses such as (i) Eocene proto–Magda-
lena River draining toward the Maracaibo Basin, (ii) the presence of a closed proto–
Magdalena basin from the late Eocene to middle Miocene, (iii) the Miocene closure of 
the Isthmus of Panamá, (iv) the late Cenozoic surface uplift of the Eastern Cordillera, 
and (v) the Cenozoic eastward advance of the Orinoco River. We conclude that in 
most cases, favored ideas remain as intriguing hypotheses, but there remains room 
for alternative interpretations. The present summary is intended to provide a cau-
tionary note on the use of limited datasets to make paleogeographic interpretations 
of the northern Andes.
Keywords: paleogeography, thermochronology, U–Pb geochronology, sedimentary provenance, 
rock uplift, surface uplift, paleoelevation, paleodrainages.

Resumen En este capítulo se resumen trabajos recientes relacionados con la evo-
lución geológica de los Andes del norte. La principal intención es presentar infor-
mación actual para que los científicos de otras disciplinas puedan diferenciar entre 
datos e interpretaciones. Este trabajo se enfoca en datos termocronológicos que 
brindan localizaciones, edades y tasas precisas. Los datos termocronológicos propor-
cionan historias de enfriamiento para las rocas de la corteza superior, mientras que 
los de procedencia sedimentaria contribuyen con información sobre las rocas que 
se han erosionado. A partir de la revisión de datos públicos se da una visión crítica 
de las interpretaciones paleogeográficas publicadas recientemente. Específicamente, 
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se discuten las siguientes hipótesis: (i) el proto río Magdalena del Eoceno drenando 
hacia la Cuenca de Maracaibo, (ii) la presencia de una proto cuenca cerrada del 
Magdalena entre el Eoceno tardío y el Mioceno medio, (iii) el cierre del Istmo de 
Panamá durante el Mioceno, (iv) el crecimiento topográfico de la cordillera Oriental 
en el Cenozoico tardío y (v) el avance hacia el este del trazo del río Orinoco durante 
el Cenozoico. Se concluye que, en la mayoría de los casos, las ideas más sustentadas 
permanecen como hipótesis interesantes, pero queda espacio para otras interpreta-
ciones. Este trabajo intenta advertir sobre el uso de una cantidad limitada de datos 
para hacer interpretaciones paleogeográficas de los Andes del norte. 
Palabras clave: paleogeografía, termocronología, geocronología U‒Pb, procedencia 
sedimentaria, levantamiento de roca, levantamiento de superficie, paleoelevación, 
paleodrenajes.

1. Introduction

The northern Andes, which are positioned north of the Huan-
cabamba Deflection at 6° S (Gansser, 1973), differ from other 
segments of the Andes because of the presence of accreted 
oceanic material and a transpressional deformation regime 
during Cenozoic mountain building (Figure 1; Aleman & Ra-
mos, 2000; Mégard, 1989; Taboada et al., 2000; Trenkamp 
et al., 2002). The evolution of the northern Andes is of inter-
est not only for geologists and tectonicists, but also for other 
disciplines. For example, biologists rely on the evolution of 
topography interpreted by geologists to infer linkages between 
landscape evolution and the distribution of species deduced 
from phylogenetics (e.g., Bacon et al., 2012). However, hy-
potheses proposed by geologists are often imprecise because 
of the poor preservation of stratigraphic and structural records 
and a lack of high resolution 3D constraints. With the dawn of 
the XXI century, techniques such as geochronology and low–
temperature thermochronology have become more precise and 
modeling approaches have become more sophisticated, pro-
viding higher resolution timing constraints on tectonic events 
and episodes of exhumational cooling in the upper crust. In re-
cent years, pioneering studies (Figures 2, 3) have highlighted 
the role of low temperature thermochronology (Mora, 2015; 
Mora et al 2010a, 2013a, 2013b, 2015a, 2015b; Parra et al., 
2009a, 2009b, 2010, 2012; Saylor et al., 2012a; Spikings et 
al., 2000, 2001; Villagómez et al., 2011a, 2011b) and detrital 
geochronology (Caballero et al., 2013a, 2013b; Horton et al., 
2010a, 2010b, 2015; Nie et al., 2010, 2012; Saylor et al., 2011, 
2012b, 2013; Silva et al., 2013) in the Cretaceous to Cenozoic 
evolution of the northern Andes. Paleoelevation techniques 
have also become more sophisticated, but their use has been 
limited in the tropical northern Andes (Anderson et al., 2015) 
relative to their use in the arid central Andes (Garzione et al., 
2017; Saylor & Horton, 2014).

These developments have prompted a revolution in our 
understanding of interrelated processes pertaining to rock up-
lift, surface uplift, and exhumation as defined by England & 

Molnar (1990; Figure 3). Unfortunately, in the northern Andes 
and elsewhere, these terms have been commonly and incor-
rectly grouped under a broad and vague definition of “uplift”. 
For example, some classic interpretations of the Eastern Cor-
dillera of Colombia suggest that molasse deposition, defor-
mational cross–cutting relationships, and topographic growth 
(e.g., Hooghiemstra et al., 2006; van der Hammen et al., 1973) 
were all manifestations of a single Miocene event that could be 
grouped under the broad term of “uplift” (Cooper et al., 1995; 
Dengo & Covey, 1993).

An appreciation of the role of surface processes only arrived 
well after many studies of orogenesis in the northern Andes 
were conducted. Whereas studies in the central Andes recog-
nized the interplay of tectonics, erosion, and climate (Horton, 
1999; Masek et al, 1994; Montgomery et al., 2001; Sobel et 
al., 2003; Strecker et al., 2007, 2009), their role in the northern 
Andes was only recognized when palynological and thermo-
chronological techniques were combined with structural and 
geomorphic analysis (e.g., Mora et al., 2008).

Understanding and differentiating rock uplift from surface 
uplift and exhumation, with their attendant implications for 
landscape evolution and mountain building, was so new to the 
northern Andes that, in the words of Henry HOOGHIEMSTRA, 
it gave a “new eye” to numerous scientists from diverse disci-
plines. These expanded perspectives have positively impacted 
new generations of geologists, so it is not uncommon for cur-
rent studies of the northern Andes to integrate paleoelevation 
studies with exhumation and structural analyses (Cuervo–Go-
mez et al., 2015).

Although many pioneering studies have applied state–of–
the–art techniques, their results have not been compiled or in-
tegrated in a critical way. In this review, we provide an updated 
summary of recent studies with the intention to filter, present, 
and discuss the evidence of crustal deformation, surface uplift, 
and exhumation in the northern Andes and their diverse impacts 
on Cenozoic surface processes. This manuscript is organized 
in chronological order with each time interval considered from 
west to east across the northern Andes.
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Figure 1. Shaded relief image of northwestern South America and surrounding tectonic plates showing the main cordilleras, faults, and 
the subducting Carnegie Ridge (background model from Gómez et al., 2007). Cretaceous sutures are shown as thick black and yellow lines, 
and the three sample regions (a, b, c) by Villagómez & Spikings (2013) in Figure 4 are highlighted. Major rock sequences of the Central 
Cordillera (Colombia) and Eastern Cordillera (Ecuador) are shown. (SNSM) Sierra Nevada de Santa Marta; (SMF) Santa Marta–Bucaramanga 
Fault; (GF) Garrapatas Fault; (MMV) Middle Magdalena Valley Basin; (PF) Palestina Fault; (OPF) Otú–Pericos Fault; (WC) Western Cordillera; 
(CPV) Cauca–Patía valley; (CAF) Cauca–Almaguer Fault; (IF) Ibagué Fault; (UMV) Upper Magdalena Valley Basin; (EC) Eastern Cordillera; 
(CC) Central Cordillera; (LB) Llanos Basin; (SJF) San–Jeronimo Fault; (AzBF) Amazon Border Fault; (ECE) Eastern Cordillera Ecuador; (WC) 
Western Cordillera; (SZ) Sub–Andean Zone (Ecuador); (PE) Peltetec Unit; (OB) Oriente Basin; (RC) Raspas Complex. After Villagómez & 
Spikings (2013).

2. Geological Setting

The northern Andes are the result of complex interactions be-
tween the Nazca, Caribbean, and South American Plates. The 

northern Andes of Ecuador and Colombia comprise an orogenic 
system with three N– to NNE–trending mountain chains—the 
Western, Central, and Eastern Cordilleras, which are separated 
by prominent topographic depressions (Figures 1, 2). The Cen-
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Figure 2. Shaded relief image with the main geographic features (mostly rivers and mountain ranges) discussed in the text as well as the 
main studies cited. Panels a, b, and c are based on different studies and study areas. White dashed lines with arrows show the inferred 
locations of the proto–Orinoco River (after Reyes–Harker et al., 2015) at the following times: 1—Paleocene (ca. 60 Ma); 2—middle Eocene 
(ca. 44 Ma); 3—middle Miocene (ca. 14 Ma); 4—close to recent times.

tral Cordillera of Colombia is referred to as Cordillera Real (or 
Eastern Cordillera) in Ecuador, whereas the Eastern Cordillera of 
Colombia has no topographic expression in Ecuador (Figure 2). 

The main orogenic phases of the northern Andes have been 
attributed to Cenozoic changes in plate convergence, the ac-
cretion of oceanic terranes (plateaus and island arcs), and the 
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Figure 2. Shaded relief image with the main geographic features (mostly rivers and mountain ranges) discussed in the text as well as the 
main studies cited. Panels a, b, and c are based on different studies and study areas. White dashed lines with arrows show the inferred 
locations of the proto–Orinoco River (after Reyes–Harker et al., 2015) at the following times: 1—Paleocene (ca. 60 Ma); 2—middle Eocene 
(ca. 44 Ma); 3—middle Miocene (ca. 14 Ma); 4—close to recent times (continued).

subduction and collision of aseismic ridges. In Colombia, alloch-
thonous oceanic terranes are exposed in the Western Cordillera 
and forearc region (serranía de Baudó) and have been juxtaposed 

against South America along the diffuse, regional–scale Romeral 
Fault System and its southern continuation toward Ecuador (the 
Cauca–Almaguer Fault; Figure 1). These allochthonous oceanic 



94

MORA et al.

78
° 

W

74
° 

W

70
° 

W

12° N

4° N

8° N8° N

0°

1

2 3

4

reviR ateM

reviR ateM

re
v i

R 
oc

o
n i r

O

reviR anela
d

ga
M

reviR anela
d

ga
M

re
vi

R acua
C

re
vi

R acua
C

revi
R e

groJ anS

A
tra

to
 R

iv
e r

Pacific Ocean

Caribbean Sea

Maracaibo
Lake

Maracaibo
Lake

Western 
Cordillera
Western 

Cordillera

Central 
Cordillera
Central

Cordillera

Sabana de
Bogotá

Sabana de
Bogotá

Eastern 
Cordillera
Eastern

Cordillera

Baudó RangeBaudó Range

Cordillera
Real

Cordillera
Real

Venezuela

Colombia

Perú

Ecuador

Panamá

0 100 200 km

Proto–Orinoco River

Parra et al. (2009a)

Parra et al. (2009b)

Parra et al. (2012)

Horton et al. (2015)

Carrillo et al. (2016)

Bayona et al. (2013)

1

c

Figure 2. Shaded relief imagel with the main geographic features (mostly rivers and mountain ranges) discussed in the text as well 
as the main studies cited. Panels a, b, and c are based on different studies and study areas. White dashed lines with arrows show the 
inferred locations of the proto–Orinoco River (after Reyes–Harker et al., 2015) at the following times: 1—Paleocene (ca. 60 Ma); 2—middle 
Eocene (ca. 44 Ma); 3—middle Miocene (ca. 14 Ma); 4—close to recent times (continued).

rocks, which are termed the Panamá–Chocó and Calima Ter-
ranes, include areas west of the Garrapatas Fault (Figures 1, 2). 
The terranes correspond to relict slivers of the Caribbean Large 

Igneous Province (100–88 Ma; Kerr et al., 1997; Sinton et al., 
1998; Villagómez et al., 2011a) accreted to northwestern South 
America between the latest Cretaceous and middle Miocene.
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Figure 3. (a) Diagram summarizing definitions of rock uplift, surface uplift, and exhumation. Surface uplift is the displacement of the 
earth’s surface relative to the geoid. Rock uplift is the displacement of rock relative to the geoid and exhumation is the displacement of 
rock relative to the surface. Rock uplift equals the sum of exhumation plus surface uplift. The diagram shows as an example a two–phase 
model of progressive cooling in the upper crust that considers the exhumation of an apatite crystal from several kilometers depth to 
the surface. The process also involved some rock uplift and surface uplift. (b) Simplified diagram showing a typical context in which 
detrital geochronology is applied. In this case, there is a river from which tributaries drain from basement terrains (mountain areas) 
of different but typical geochronological ages. All age signals are then collected by the main river trunk. When detrital geochronology 
analyses (e.g., U–Pb) are carried out on active sediments drained by the river, data are typically presented as age versus probability 
histograms that document different age populations. Different horizons (a, b, and c) can also be sampled in the sedimentary record and 
show to what extent different basement terrains contributed sediments to the river in geological history. If those basement terrains 
occupied thousands to even hundreds of thousands of square kilometers in the past and only crop out in specific areas today, one of 
the challenges is to infer the configuration or headwaters of past drainages. In most cases, geologists do not have enough information 
to accurately perform such reconstructions.
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The Romeral Fault System and Cauca–Almaguer Fault bor-
der the Central Cordillera in Colombia (Figure 1) and mark the 
western limit of the continental lithosphere. The continental 
basement is traditionally considered to include the Tahamí and 
Chibcha Terranes (Toussaint &Restrepo, 1989). The Tahamí 
Terrane forms the core of the Central Cordillera, whereas the 
Chibcha Terrane forms the basement of the easternmost Cen-
tral Cordillera, Eastern Cordillera, Santander Massif, and Sierra 
Nevada de Santa Marta (Figure 1; Martens et al., 2014). This 
broad continental domain is a complex assemblage of poor-
ly mapped lower Paleozoic ortho– and para–gneisses, which 
were reheated during Triassic magmatism (e.g., Cochrane et 
al., 2014; Litherland et al., 1994; Restrepo–Pace et al., 1997). 
Pre–Jurassic rocks were subsequently intruded by elongated 
Jurassic granitoids and localized Upper Cretaceous batholiths.

3. Methods Discussed in This Review

In this review we summarize previous research on the northern 
Andes focused on bedrock low temperature thermochronolo-
gy and subordinate detrital geochronology. Low temperature 
thermochronology (Figure 3a) seeks to determine the time at 
which rocks at depth reached a particular temperature in the 
upper crust. Apatite fission track (AFT) and zircon fission track 
(ZFT) techniques (e.g., Ketcham et al., 1999; Wagner & van 
den Haute, 1992; Reiners et al., 2004) use different mineral spe-
cies to date the timing when rocks at depth were at temperatures 
of ca. 140 °C to ca. 50 °C (AFT) and ca. 250 °C (ZFT). Other 
thermochronological techniques include the use of apatite (U–
Th)/He (AHe) and zircon (U–Th)/He (ZHe) for temperatures of 
ca. 40 °C to ca. 90 °C (AHe) and ca. 100 °C to 190 °C (ZHe) 
and the use of 40Ar/39Ar techniques for temperatures of >300 °C.

As an example (Figure 3), a two–phase model of progres-
sive cooling in the upper crust considers the exhumation of 
an apatite crystal from several kilometers depth to the surface. 
Because the age when the apatite reached those temperatures 
can be determined via low temperature thermochronology, the 
amount of cooling over geological time can be evaluated. More-
over, when assuming a uniform, time–invariant temperature 
gradient with depth, the original rock overburden and amount 
of erosional exhumation can be assessed.

While thermochronological data can be simply represented 
in ages, it is desirable to generate thermal models from those 
ages that provide cooling histories in the form of time–tempera-
ture (T–t) paths that define rock locations through time relative 
to isotherms (lines of the same temperature in the upper crust). 
Models and ages obtained through thermochronology can be 
confidently linked to the exhumation of the precise areas and 
locations from which samples are taken.

Detrital geochronology is another technique used to evalu-
ate exhumation and the evolution of landscapes and river drain-

ages. It relies on the fact that resilient minerals such as zircons 
crystallize at very high temperatures (>700 °C) and persist as 
hard, dense, chemically stable, and often diagnostic signatures 
of different geological terranes and crustal provinces (e.g., 
Ibañez–Mejia et al., 2015 and references therein) forming at 
different temperatures (e.g., Figure 3b). Various basement and 
sedimentary rocks have diagnostic populations of zircons that 
can be discriminated on the basis of their contrasting crystalli-
zation ages (Figure 3b). For example, the predominantly igne-
ous rock units of the Central and Western Cordilleras (Figure 2) 
are younger than ca. 250 Ma while most basement rocks of the 
Eastern Cordillera and South American Craton are older than 
ca. 250 Ma (Aspden et al., 1987; Cordani et al., 2005; Horton 
et al., 2010a, 2010b; McCourt et al., 1984; Restrepo–Pace et al., 
1997; Silva et al., 2013).

Detrital zircon U–Pb ages (e.g., Ibañez–Mejia et al. 2015 
and references therein) have the technical advantage of effi-
ciently dating hundreds of zircon crystals from sedimentary 
rocks (Figure 3b). In identifying major zircon age popula-
tions in the northern Andes, multiple studies have been able 
to more precisely suggest when particular sediment sources 
in the northern Andes shed sediments to adjacent basins (e.g., 
Bande et al., 2012; Caballero et al., 2013a, 2013b; Horton, 
2018a; Horton et al., 2010a, 2010b, 2015, 2020; Nie et al., 
2010, 2012; Silva et al., 2013;). In addressing the timing of 
terrane accretion, other works have applied this technique to 
reveal that basement rocks of the Panamá–Chocó Terrane have 
a dominant Eocene age signature (ca. 59 to ca. 42 Ma) that 
contrasts with that of older basement rocks to the east (e.g., 
Montes et al., 2015).

One issue of detrital geochronology pertains to the fact that 
contributions of different source areas are often mixed in large 
drainage systems and may be recycled from older sedimentary 
rocks. Therefore, the method relies on the presence or absence 
of diagnostic age populations diagnostic of particular source 
areas. In practice, interpretations of the northern Andes focus 
on whether sediment was derived from particular regions (for 
example, the Eastern Cordillera, Central Cordillera, or Pan-
amá–Chocó Terrane). As a result, geologists have developed 
hypothesis regarding regions of elevated topography that may 
have once acted as sources of sediments. Because these source 
materials have been largely eroded away, there remains con-
siderable ambiguity regarding the precise locations of former 
regions of positive relief. This problem can be addressed in 
regions that have not been eroded away, by using low tem-
perature thermochronology results in areas where cooling has 
occurred in situ in the upper ca. 3–6 km of crustal blocks. In 
those provinces ages can still be measured today. In this paper, 
we review several key data sets and discuss interpretations that 
impact our understanding of the paleogeographic evolution and 
uplift of the northern Andes.
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4. Latest Cretaceous to Early Eocene 
Accretionary and Deformational Events
4.1. Western and Central Colombia  
and Ecuador

To decipher the timing and consequences of the accretion of 
Cretaceous oceanic terranes, several authors have obtained 
thermochronological data from accreted oceanic rocks and 
adjacent continental rocks (Figures 1, 2a, 4, 5; e.g., Restrepo–
Moreno et al., 2009; Spikings et al., 2000, 2001; Villagómez 
& Spikings, 2013).

Villagómez & Spikings (2013) concluded that the collision 
of the Caribbean Large Igneous Province in Colombia started 
in the Campanian and triggered shortening in the continental 
interior. The collision is interpreted to have driven uplift and 
erosional exhumation (at rates of 1 km/my) that persisted until 
ca. 65 Ma based on modeled AFT and ZFT time–temperature 
histories for the oceanic and continental blocks (Figures 4–7). 
Villagómez & Spikings (2013) provide AFT and ZFT data for 
the Bolívar Batholith in the Western Cordillera that show rapid 
Late Cretaceous to Paleocene exhumation (Figure 6) similar to 
that observed in the Central Cordillera (Figure 7 after Villagó-
mez & Spikings, 2013). In northern Colombia, more moderate 
exhumation rates probably lasted until ca. 55 Ma in the east 
consistent with progressively more recent cooling east of the 
Romeral Fault System. Syn– and post–accretionary sedimen-
tary rocks within the accreted terranes and adjacent continental 
margin confirm the onset of this accretionary event (Villagó-
mez & Spikings, 2013). Similarly, Spikings et al. (2001, 2010) 
constrained rapid exhumation (>1 km/my) in Ecuador between 
73 and 55 Ma and attributed this exhumation to the collision 
and accretion of the Caribbean Large Igneous Province (Fig-
ure 8). A similar Late Cretaceous – Paleocene onset of Andean 
orogenesis is recorded along the length of the Andes, including 
the central and southern Andes where oceanic materials were 
not accreted (Horton, 2018a, 2018b; Ramos, 2009; Ramos & 
Aleman, 2000).

4.2.  Exhumation and Deformation in the 
Middle Magdalena Basin

By Late Cretaceous time, the Middle Magdalena Valley formed 
part of an active foreland basin of the proto–Andean orogen. 
In this area, a widespread unconformity marks a pre–Eocene 
contractional event in which inverted Jurassic grabens and 
shortened Cretaceous rocks are documented in surface and 
subsurface datasets (Figure 2c for location; e.g., Gómez et al., 
2003, 2005; Parra et al., 2012). The age of this contractional 
event was originally attributed to the middle Eocene (Villa-
mil, 1999) or late Paleocene – late Eocene (Restrepo–Pace et 
al., 2004). However, using thermochronology combined with 

vitrinite reflectance data, Parra et al. (2012) demonstrated that 
deformation predating the widespread unconformity mostly 
occurred in latest Cretaceous – Paleocene time (Figure 9). Ro-
dríguez–Forero et al. (2012) dated the oldest deposits above the 
unconformity, the La Paz Formation, and found that they were 
actually deposited by the earliest Eocene. In addition, Caballe-
ro et al. (2010, 2013a, 2013b) documented a folded Paleocene 
Lisama Formation beneath the unconformity in northern areas 
of the Middle Magdalena Valley.

Along the western margin of the Eastern Cordillera close to 
the Arcabuco Anticline, late Paleocene shortening and exhuma-
tion are consistent with structural relationships (Restrepo–Pace 
et al., 2004) and ZHe ages from rocks in which vitrinite reflec-
tance data suggest temperatures sufficient to fully reset the ZHe 
thermochronometer (Caballero et al., 2013a; Reyes–Harker et 
al., 2015). Bayona et al. (2013; Figure 2c) further documented 
thickness changes in Paleocene strata within the axial zone of 
the Eastern Cordillera, and Mora et al. (2013a) documented 
minor cooling in the Llanos Basin.

To the south, the Amazon Foreland Basin shows evidence of 
the initial uplift of the Eastern Cordillera in Ecuador (southern 
continuation of the Central Cordillera) as recorded by initial 
input of Andean material within nonmarine sandstones and 
shales of the Tena Formation (Horton, 2018a; Martin–Gombo-
jav &Winkler, 2008; Spikings et al., 2010).

From the above–mentioned evidence, we suggest that de-
formation during the collision of the Caribbean Large Igneous 
Province persisted from the latest Cretaceous through Paleo-
cene time and influenced the growth of the early Andean Fore-
land Basin. This early shortening prompted strong exhumation 
in the Central Cordillera and localized basement uplifts in the 
Middle Magdalena Valley with deformation possibly persisting 
into the early Eocene (Mora et al., 2013a).

5. Middle Eocene to Early Oligocene 
Evolution of the Northern Andes  
(48–28 Ma)

5.1. Middle Eocene to Early Oligocene in 
Western and Central Colombia and Ecuador: 
Increased Exhumation and Convergence

Spikings et al. (2001) suggested that in Ecuador <1 km/my ex-
humation occurred along the Western and Eastern Cordilleras 
from ca. 43 to 30 Ma (Figure 8). Spikings et al. (2001, 2010) 
proposed that this exhumation was the product of an abrupt 
increase in Farallon–South America convergence rather than 
accretion of an Eocene island arc. This increased exhumation 
was accompanied by foreland deposition of the coarse–grained 
Upper Tiyuyacu Formation (Baby et al., 2013). Similarly, the 
Central Cordillera of Colombia experienced moderate exhu-
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Figure 4. Geological maps of the study regions of Villagómez & Spikings (2013) (see Figures 1, 2a) within the Central and Western Cor-
dilleras and the Cauca–Patía valley of Colombia (after Gómez et al., 2007) showing sample locations and the thermochronological ages 
acquired in this study. (a) Northern Colombia; (b) Central Colombia; (c) Southern Colombia. All ages are given in Ma with an uncertainty 
of ±2σ, and sample codes are shown in blue (DV#). (OPF) Otú–Pericos Fault; (PF) Palestina Fault; (SJF) San–Jeronimo Fault; (MB) Mande 
Batholith; (CAF) Cauca–Almaguer Fault; (SPF) Silvia–Pijao Fault; (HP) Hatillo Pluton; (CPF) Cali–Patía Fault; (IF) Ibagué Fault; (PP) Piedrancha 
Pluton; (AzBF) Amazonian Border Fault.
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Figure 5. Compilation of thermochronological ages (±2σ) of the Central and Western Cordilleras and of the Cauca–Patía valley in Colombia 
(after Villagómez & Spikings, 2013). Apatite FT and (U–Th)/He ages decrease toward the south of the Central Cordillera.

mation (<0.3 km/my) at 40–30 Ma near major faults such as 
the Palestina, Ibagué, and Otú–Pericos Faults (Figure 10; e.g., 
Villagómez & Spikings, 2013). A modest ca. 45 to 40 Ma 
episode of exhumation (<0.2 km/my) has also been identified 
in the northern Central Cordillera and ascribed to a shift in 
Farallon–South America convergence (Restrepo–Moreno et 
al., 2009).

5.2. Middle Eocene in Eastern Colombia: 
Tectonic Quiescence (48–38 Ma)

Mora et al. (2013a) suggest that the middle Eocene was a time 
of tectonic quiescence in the Magdalena Basin and Eastern Cor-
dillera on the basis of: (a) Low accumulation rates in the middle 
Eocene Upper Mirador and Lower Esmeraldas Formations of 
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the Eastern Foothills and Middle Magdalena Valley, respectively 
(Mora et al., 2013a) and (b) U–Pb data suggestive of drainage 
divide advance toward the deformation front (Silva et al., 2013).

Elevated exhumation rates in Ecuador during the middle 
Eocene are difficult to reconcile with regional quiescence in 
Colombia. We speculate that this could be related to along–
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Figure 7. Summary of good–fit thermal history solutions for a 
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ings, (2013). Figure 6 explains their calculation and constraining 
data. The solutions highlight the main periods of exhumation of 
the Central and Western Cordilleras. Vertical bands highlight the 
timing of rapid cooling and exhumation in Colombia, and labels 
denote sample numbers. (CLIP) Caribbean Large Igneous Province. 
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strike variations in Pacific margin architecture and Farallon–
South America convergence.

5.3.  Late Eocene to Early Oligocene in Central 
and Eastern Colombia: Renewed Deformation

Saylor et al. (2012b) used lag time analyses of detrital zircon 
low–temperature thermochronological data (Figure 11) to pro-
pose late Eocene to early Miocene deformation in the East-
ern Cordillera. These findings were interpreted by Mora et al. 
(2013a) and Reyes–Harker et al. (2015) to represent renewed 
tectonic activity along the western half of the Eastern Cordille-
ra. In this context, the Soápaga and Machetá Faults would rep-
resent the active deformation front of the northern Andes during 
late Eocene to early Oligocene time with the rapid subsidence 
of the developing Llanos Foreland Basin to the east. This facil-
itated a deposition of fine–grained marine units corresponding 
to the shaly C8 Member of the Carbonera Formation.

6. Middle to Late Oligocene Evolution 
(28 to 23 Ma)
6.1.  Western and Central Colombia  
and Ecuador

Spikings et al. (2010) linked the fragmentation of the Farallon 
Plate and associated changes in convergence at 23 Ma (Lons-
dale, 2005) to cooling and moderate exhumation (<0.5 km/my) 
in the Eastern Cordillera of Ecuador. Spikings et al. (2010) 
suggested that this Oligocene deformation was limited in the 
Western Cordillera and only affected fault blocks with a favor-
able orientation.

No evidence of significant Oligocene exhumation has been 
detected in the Western and Central Cordilleras of Colombia 
from available, albeit limited, thermochronological data (Vi-
llagómez & Spikings, 2013). This could be a consequence of 
strain partitioning through which the preferential reactivation of 
the Amazonian Border Fault System and Santa Marta–Bucara-
manga Fault deformed and exhumed the Eastern Cordillera of 
Colombia (Mora et al., 2010a; Parra et al., 2012; Saylor et al., 
2012a) and uplifted the Sierra Nevada de Santa Marta (Villa-
gómez et al., 2011b; Piraquive et al., 2018), thus isolating the 
Central and Western Cordilleras.

6.2.  Eastern Cordillera of Colombia

Different studies suggest that the eastern flank of the Eastern 
Cordillera (Figure 2c) was actively exhuming (Figure 12; Parra 
et al., 2009b) and shedding sediments (Figure 13; Horton et 
al., 2010a, 2010b; Parra et al., 2010) to the Llanos Foreland 
Basin by the Oligocene. Mora et al. (2010a, 2013a; Figure 2b) 
further employed thermochronological analyses to demonstrate 

that this behavior can be related to the inversion of the entire 
Neocomian graben of the Eastern Cordillera. In addition, Mora 
et al. (2013b) use fracture patterns, fluid inclusions, and ther-
mochronology to document several locations with Oligocene 
low–amplitude folding in the Eastern Cordillera and in coeval 
growth strata (Figure 14; Mora et al., 2013a). The study covers 
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western and eastern sectors of the Eastern Cordillera, in the 
Magdalena and Llanos Foothills, respectively.

7.  Latest Oligocene to Early Miocene in 
Northern Colombia (25–16 Ma)
In studying the northernmost Central Cordillera (Figure 1), Re-
strepo–Moreno et al. (2009) used apatite (U–Th)/He data to 
constrain modest exhumation in discrete fault blocks during the 
latest Oligocene – early Miocene (ca. 25–20 Ma). Exhumation 
rates reached roughly ca. 0.2 km/my and are attributed to in-
creased Nazca–South America convergence (Restrepo–Moreno 
et al., 2009). Farris et al. (2011) suggest that the early Miocene 
involved the most interactions of the Panamá–Chocó Terrane 
with northern Colombia. This exhumation might have been a 
response to initial Panamá accretion, which ultimately led to the 
closure of the Central American Seaway (Duque–Caro, 1990; 
Montes et al., 2015).

For the Eastern Cordillera, Parra et al. (2009a, 2009b; Figure 
2c) document continued tectonic activity and exhumation. How-
ever, there is no direct evidence of elevations of above 1 km; in 
fact, pollen records (Figure 15; Hooghiemstra et al., 2006) show 
that areas of above 2 km elevation today are inferred to be at tem-
peratures equivalent to those of low elevation tropical areas. New 
paleoelevation records based on geochemistry (lipid biomarkers) 
support this interpretation (Anderson et al., 2015).

8. Middle Miocene to the Present  
(16 to 0 Ma)
8.1. Western and Central Colombia  
and Ecuador

In Ecuador, Spikings et al. (2001) identified a northward–
younging, along–strike progression of exhumation during the 
middle to late Miocene. Spikings et al. (2001, 2010) suggested 
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that the Eastern Cordillera of northern Ecuador (Central Cordil-
lera of Colombia) was positioned at depths of roughly 3.5 km 
at ca. 15 Ma while southern latitudes were positioned at depths 
≤1.3 km. This variation is attributed to rock uplift and exhuma-
tion driven by the collision of the Carnegie Ridge with South 
America. Villagómez & Spikings (2013) similarly constrained 
amplified exhumation rates at which rocks were exhumed from 
depths of ≥3 km since ca. 15 Ma in the southern Central Cor-
dillera of Colombia (Figure 5).

On the other hand, the northernmost continuation of the 
northwestern Andes and of southern Central America experi-
enced increased tectonic deformation and uplift in the Miocene 
potentially related to the main collision of the Panamá–Chocó 
Terrane (Duque–Caro, 1990; Farris et al., 2011; Montes et al., 
2015). After the middle Miocene accretion of the Panamá–
Chocó Terrane, renewed coupling and the increased conver-
gence of the Nazca Plate beneath South America led to intense 
magmatism in Colombia and Ecuador south of ca. 5.5° N. Far-
ther north, arc volcanism started to vanish from 9 to 4 Ma due 
to slab flattening. In around 4 Ma, slab rollback and renewed 
magmatism occurred as a result of slab failure along the Caldas 
Tear (Wagner et al., 2017), possibly renewing sedimentation in 
the Cauca and Magdalena intermontane basins.

8.2. Eastern Cordillera of Colombia

In the Eastern Cordillera of Colombia (Figure 2b), a recent ac-
celeration of exhumation is recorded in the Quetame Massif and 
Cocuy Range (Figure 16; Mora et al., 2008, 2015a). In these 
areas, young AFT ages (<3 Ma) indicate accelerated cooling, 
and cross–cutting relationships show that most shortening oc-
curred from the late Miocene onward (e.g., Mora et al., 2013a). 
Finally, paleoelevation data from palynology (Wijninga, 1996) 
and lipid biomarkers (Anderson et al., 2015) support an inter-
pretation of topographic growth starting by the middle Miocene 
and finalized by 3 Ma.

Other geomorphic features in Colombia such as deep can-
yons in the northern Cauca River valley between the Western 
and Central Cordilleras may suggest youthful rock uplift and 
river incision. Another outstanding feature is the Sierra Nevada 
de Santa Marta (Figure 1), whose prominent relief adjacent to 
the Caribbean Sea suggests renewed tectonic activity consis-
tent with thermochronometric data (Villagómez et al., 2011b). 
These geomorphic features appear to suggest that recent topo-
graphic growth is a ubiquitous phenomenon in the northern 
Andes. Such rock uplift has been instrumental in renewing 
coarse–grained sedimentation and basin compartmentalization 
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Figure 11. Double–dated ZHe ages plotted by stratigraphic age and lag time (dashed diagonal lines). Zircons are identified as of volcanic 
origin when their ZHe and Zircon U–Pb ages overlap within their 2σ uncertainty. Volcanic zircons (red) are excluded from the lag time 
analysis. The three stages are interpreted as episodes of rapid exhumation (Stages 1 and 2) and of the introduction of new supra–partial 
retention zone sedimentary sources (Stage 3). Lag time values (L) are given in my. Note that the Socha Group includes data from both 
the Upper Socha and Lower Socha Formations. After Saylor et al. (2012b).

within the Amazonas Foreland and Upper Magdalena Basin. 
For example, continued fault activity in southern Colombia 
accommodated the uplift and exhumation of the Garzón Massif 
(Anderson et al., 2016) between the Late Miocene and Plio-
cene. This uplift is of paramount importance to large river 
systems draining northern South America, topographically 
isolating the Magdalena, Orinoco, and Amazon watersheds 
(Anderson et al., 2016; Mora et al., 2010b).

In contrast, neotectonic studies have dated Late Pleistocene 
to Holocene deformation in the Eastern Foothills (Ketcham et 
al., 2018; Mora et al., 2010c; Veloza et al., 2015). Relative to 
late Miocene to Pliocene topographic growth, where vertical 
uplift appears to dominate, the neotectonic deformation of the 
Eastern Foothills suggests the occurrence of mostly horizontal 
shortening perpendicular to frontal ranges (Mora et al., 2006, 
2009, 2010c, 2014; Veloza et al., 2012)

Recent thermochronometric and kinematic analyses (Carril-
lo et al., 2016; Mora et al., 2015b) summarize different defor-
mational styles in a single geometric reconstruction. Carrillo et 
al. (2016) suggested that the Eastern Cordillera reconstructions 
require late Miocene to Plio–Pleistocene topographic growth 
unrelated to fault–related folding with subsequent Pleistocene 
to Holocene horizontal shortening in the Eastern Foothills. It is 
intriguing that vertical topographic growth and horizontal short-
ening in the foothills appear to be non–synchronous phenomena.

9. Discussion

9.1. Discussion of Paleogeographic Implications

Regional geological reconstructions are important for several 
disciplines and help address recent appreciation of the interac-
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tions between genetics and geology (e.g., Baker et al., 2014). 
This diversification of scientific interest has been particularly 
impressive in studies of the northern Andes. In the preceding 
synthesis, we summarize evidence for the timing of different 

geological processes from thermochronological records. In this 
section, we emphasize key interpretations while recognizing 
that geological reconstructions of past configurations are lim-
ited and must be used with caution to review major processes 
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Figure 12. Fission track data and vitrinite reflectance (Ro) values for samples from the (a) central and (b) southern transects of the 
Colombian Eastern Cordillera at roughly 4.5° N. The data are plotted against the stratigraphic position of the base of Cretaceous rift–re-
lated units (see Figure 1 for the location). Stratigraphic thicknesses and ages are compiled from Ulloa & Rodríguez (1979) and Mora et al. 
(2008). Vertical green bars represent the range of Ro values corresponding to the temperature delimiting the base of the AFT (central 
transect) and ZFT (southern transect) partial annealing zones (blue and pink shaded areas, respectively). Stacked pseudovertical profiles 
are obtained for the (c) central and (d) southern transects. AFT data are plotted at their original stratigraphic positions as in Figure 9a 
and 9b, but ZFT data are offset upward by an amount proportional to the depth difference between the ZFT and AFT isotherms estimated 
at 5.7 km. The first break in slope denoted by the vertical light gray band at ca. 40 – 25 Ma (central profile) and 20 Ma (southern profile) 
marks the onset of thrust–induced cooling through the AFT and ZFT total annealing isotherms, respectively.

Figure 13. Compositional trends in Eocene to upper Miocene conglomerates of the Medina Basin. Black circles denote the stratigraphic 
positions of conglomeratic samples. Clasts of Upper Cretaceous glauconitic sandstone, phosphatic sandstone, and siliceous siltstone 
occur in Miocene strata of the Carbonera Formation and Guayabo Formation, documenting the progressive unroofing of the Eastern 
Cordillera (right panel). Figure after Parra et al. (2010).
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Figure 14. Oligocene growth strata in the Provincia Oil Field of the Middle Magdalena Basin.

and paleogeographic conditions of the Cenozoic evolution of 
the northern Andes.

Thin– and thick–skinned fold–thrust deformation has pre-
vailed in Colombia throughout the Cenozoic. By the early 
Cenozoic, the basement of the present–day Western Cordillera 
was already juxtaposed to the continental margin. The accre-
tion of a buoyant oceanic plateau coincided with the growth 
of a proto Western and Central Cordillera and the delivery of 
west–derived sediment to the proto–Magdalena Basin. How-
ever, the early Cenozoic accretion of the Western Cordillera 
did not require complete land emergence or ubiquitous moun-
tain building.

The northern Central Cordillera and Cordillera Real of  
Ecuador record renewed exhumation during the Eocene based 
on very limited thermochronological data. A paucity of data on 

western Colombia has hampered paleogeographic reconstruc-
tions and hindered the identification of Eocene tectonic events. 
Systematic sampling for thermochronology, paleoelevation, and 
provenance investigation is required. Fortunately, sedimentary 
records of the Eastern Cordillera and Magdalena Basin provide 
valuable information for Eocene and younger reconstructions.

9.1.1. Eocene Proto–Magdalena River Draining 
to the Maracaibo Basin

Evidence for Eocene mountain building in the Central Cordil-
lera and western Eastern Cordillera allowed Caballero et al. 
(2013a, 2013b) and Silva et al. (2013) to interpret a proto–Mag-
dalena River draining toward the Maracaibo Basin rather than 
its present outlet in the Caribbean (Figure 2). Using detrital 
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Figure 15. Inferred paleoelevation from reconstructed altitudinal vegetation belts based on characteristic pollen and paleobotanical 
associations found in sections Salto del Tequendama I and II, Río Frío 17, Subachoque 39, Facatativá 13, and Guasca 103 and in sedimen-
tite core Funza–2. Sections are located in the outer parts of the Bogotá Basin. Uncertainties in age control and inferred paleoaltitude 
are shown as arrows. Biozones I to VII refer to stages of the uplift history and paleobiogeography of main (arboreal) taxa of the Eastern 
Cordillera (after van der Hammen et al., 1973; Wijninga, 1996).

zircon U–Pb age signatures, Horton et al. (2015) suggest that 
local small drainages were not fully integrated into a continuous 
proto–Magdalena River. Therefore, the main question is not 
whether Eocene rivers drained toward the Maracaibo region 
(e.g., Reyes–Harker et al., 2015) but whether a proto–Magda-
lena River existed. Although there was likely positive relief ad-
jacent to the modern Magdalena valley, current ideas regarding 
the associated paleodrainage remain speculative.

9.1.2. Late Eocene to Middle Miocene Closed 
Middle Magdalena Valley 

A significant element of Paleogene paleogeography concerns 
the hypothesis of Caballero et al. (2013a, 2013b) that the Mid-
dle Magdalena Valley (Figure 2) was an internally drained basin 

with no outlet toward the modern delta or Maracaibo Basin, an 
idea supported by others (e.g., Horton et al., 2015; Mora et al., 
2018; Reyes–Harker et al., 2015). It seems clear that the Central 
and Eastern Cordilleras were topographically positive areas in 
the Paleogene. Because thermochronological data cannot ad-
dress past drainage geometries, we await clear provenance data 
to provide support for this closed–drainage hypothesis or for 
possible alternative hypotheses.

9.1.3. Oligocene Proto–Sabana de Bogotá 

Mora et al. (2013a) suggested that the axial Eastern Cordillera 
(Figure 2; i.e., the proto–Sabana de Bogotá) may have been an 
internally drained basin analogous to closed basins in the Bo-
livian Altiplano (Strecker et al., 2007, 2009). This idea is based 
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on evidence showing active exhumation on both flanks of the 
Eastern Cordillera (Figures 1, 2) while Oligocene deposition 
occurred in the axial zone. An alternative interpretation is that 
a proto–Sabana de Bogotá was externally drained to the Mara-
caibo region. More data are required, and therefore, it remains 
prudent to consider multiple hypotheses.

9.1.4. Middle Miocene Onset of the  
Magdalena River

Neogene provenance data suggest ongoing contributions from 
two different sources: The Central Cordillera to the west and 
the Santander Massif to the east (Caballero et al., 2013a; Hor-
ton et al., 2015; Reyes–Harker et al., 2015). The data suggest 
that the Magdalena Valley Basin (Figure 2) was no longer an 
internally drained basin based on seismic evidence for middle 
Miocene sedimentation above former barriers, although the 
seismic coverage is not robust enough to fully understand the 
3D scenario.

Horton et al. (2015) suggest that the appearance of 100–0 
Ma zircon grains and a regional switch to broad, multimod-
al age distributions reflect the late Miocene integration of 

the longitudinal proto–Magdalena River, linking the Middle 
Magdalena Valley Basin to southern headwaters of the Upper 
Magdalena Valley. The presence of fully integrated Magdalena 
River draining toward its delta should be detected in contem-
poraneous deposits. Mora et al. (2018) suggest that delta plain 
sandstones, mudstones, and coals indicate the presence of a pro-
to–Magdalena delta in the Lower Magdalena Valley by middle 
Miocene time. However, no data yet link these deposits to po-
tential source areas of the Magdalena valley. Near the modern 
delta, sedimentary units of the proto–Magdalena River delta 
and Magdalena submarine fan yield a late Miocene to Pliocene 
age (Cadena & Slatt, 2013). It could be that a middle Miocene 
delta feeding the Lower Magdalena Valley was replaced with a 
larger late Miocene delta in its present location, which was fed 
by an expanded drainage network comparable to the modern 
Magdalena watershed.

In summary, present data cannot determine whether the on-
set of the Magdalena River delta occurred by middle or late 
Miocene times. Fortunately, Miocene sedimentary records for 
the Magdalena headwaters to the modern delta have been pre-
served, providing opportunities for further investigations to 
distinguish among the competing hypotheses.
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9.2. Panamá Accretion and the Central  
America Seaway

The accretion of the Panamá–Chocó Terrane (Figure 1) to con-
tinental Colombia probably commenced in the early Miocene 
(Farris et al., 2011) with the complete accretion and closure of 
the Central American Seaway occurring by the middle to late 
Miocene (Duque–Caro, 1990; Montes et al., 2015) and later 
(e.g., O’Dea et al., 2016). 

Recent studies show that the emergence of Panamá involved 
a long and complex process starting in the Oligocene (Farris 
et al., 2011; Sepulchre et al., 2014). Montes et al. (2015) pro-
posed that the Miocene appearance of significant populations 
of Eocene age zircons (ca. 59 to ca. 42 Ma) near the San Jorge 
River (e.g., Figure 2a) suggests derivation from Panamá. These 
studies make a key argument for a middle Miocene closure of 
the seaway. However, Montes et al. (2015) proposal involves 
an irregular drainage geometry with sediment coming from a 
slightly emergent Panamá in the northwest and making a U–turn 
toward the Lower Magdalena Valley in contrast to the roughly 
rectilinear fluvial drainage network in the south (Chocó) with 
the same Panamanian signature. On the basis of such difficul-
ties and of additional geological challenges (e.g., Babault et 
al., 2013; Silva et al., 2013), paleogeographic reconstructions 
of emerged land masses do not yet provide an unambiguous 
answer regarding the timing of the closure of the Central Amer-
ican Seaway. Therefore, it is important to consider alternative 
hypotheses and to acquire new data regarding the emergence of 
land masses and the closure of the Central American Seaway.

9.2.1. Cauca and San Jorge Rivers

Geologic data for the region near the Cauca and San Jorge 
Rivers (Figure 2) provide evidence of Miocene deformation 
and suggest that positive topography in the westernmost Andes 
served as source areas for these rivers (Montes et al., 2015; 
Villagómez & Spikings, 2013). However, it is virtually impos-
sible to know the elevation and continuity of these emergent 
areas and whether precursors to the modern Cauca and San 
Jorge Rivers were already in place at the time. Regarding this 
point, Mora et al (2018) propose a connection of the Lower 
Magdalena Valley to the Cauca valley as supported by middle 
Miocene provenance signatures and delta–plan facies for the 
Upper Member of the Amagá Formation (Montes et al., 2015; 
Piedrahita et al., 2017). The interpretation of ancestral rivers 
reaching the proto–Caribbean is speculative, but Mora et al. 
(2018) also suggest the presence of a Lower Amagá–Ciénaga 
de Oro delta by the late Oligocene – early Miocene based on 
provenance data (Montes et al., 2015), detrital zircon fission 
track thermochronology, and borehole facies analyses.

Mora et al. (2018) suggest that the first clear appearance of 
fluvial sedimentites in the Lower Magdalena Valley, Urabá, and 

southern Sinú Basins was delayed until the Pliocene deposition 
of the Corpa Formation. The presence of uplifted regions to 
the south near the modern Cauca and San Jorge River valleys 
(Villagómez & Spikings, 2013; Piedrahita et al., 2017) may 
suggest an advancing pair of prograding river deltas by late 
Oligocene to middle Miocene time in the Lower Magdalena 
Valley with the appearance of proximal fluvial sedimentites by 
the Pliocene. This hypothesis provides an alternative expla-
nation according to which Late Paleogene to Neogene rivers 
originated in the south rather than from an emergent Isthmus 
of Panamá. More evidence is needed to discriminate between a 
proto–Cauca and proto–San Jorge Rivers provenance from the 
south and U–shaped river drainage from Panamá.

9.3. Key Neogene Tectonic Events

The Neogene subduction of the Carnegie Ridge (Figure 1) in 
northern Ecuador and southern Colombia had important con-
sequences for the geometry of the subducting slab and the 
post–middle Miocene uplift and exhumation of the northern 
Andes. Miocene tectonic events are largely responsible for the 
present–day topography of Colombia (described in section 7).

9.3.1. Late Cenozoic Surface Uplift  
in the Eastern Cordillera

The Eastern Cordillera of Colombia (Figure 2) is one of the few 
areas of the northern Andes with paleoelevation constraints. In 
one of the oldest studies on this topic, van der Hammen et al. 
(1973) argued, as later reinforced by others (e.g., Andriessen et 
al., 1993; Helmens & van der Hammen, 1994; Hooghiemstra, 
1984; Hooghiemstra & van der Hammen, 1998; Hooghiemstra 
et al., 2006; Kroonenberg et al., 1990; Wijninga, 1996; Wijninga 
& Kuhry, 1990), that late Miocene vegetation records collected 
at high elevations in the Eastern Cordillera resemble modern 
tropical lowland regions adjacent to the Eastern Cordillera.

Based on ZFT age control for sedimentary host units (An-
driessen et al., 1993), it has been suggested that topographic 
growth from elevations <1000 m to present >2500 m eleva-
tions took place between 6 and 3 Ma (Mora et al., 2008). A 
refined magnetostratigraphic chronology suggests roughly 1 
km of elevation increase between 7.6 and 3 Ma (Anderson 
et al., 2016). Mora–Páez et al. (2016) further suggested that 
confining topographic growth to 6–3 Ma is too rapid when 
compared to extrapolated Global Position System (GPS) rates 
of shortening. Ultimately, the original proposal made by van 
der Hammen et al. (1973) of late Miocene topographic growth 
has been generally confirmed by subsequent studies (Anderson 
et al. (2016; Mora et al., 2008).

Despite these paleoelevation estimates, many studies sug-
gest that deformation has been active and that thrust–induced 
denudation was in place in all areas of the current Eastern 
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Cordillera since roughly 25 Ma (Horton et al., 2010a, 2010b; 
Mora et al., 2010d, 2013a, 2013b; Nie et al., 2010, 2012; Parra 
et al., 2009b; Saylor et al., 2011, 2012a, 2012b). This means 
that there was positive topography in the Eastern Cordille-
ra, but the height of the mountains remains unclear. In oth-
er words, paleoelevation studies indicate that late Miocene 
topographic growth was finalized by 3 Ma (e.g., Wijninga, 
1996; Anderson et al., 2016), but given the Paleogene on-
set of shortening, we do not yet know when topographic  
growth commenced. 

For the cases mentioned above, it is important to realize 
that the geological record is incomplete. For example, a lack of 
early to middle Miocene sedimentary records for the Eastern 
Cordillera (e.g., Ochoa et al., 2012) precludes an assessment 
of paleoelevations for that time. Once again, such incomplete 
records suggest the need to consider multiple hypotheses.

9.4. Eastward Advance of the Orinoco River

Based on a detrital (U–Pb) zircon analysis, Escalona & Mann 
(2011) suggest an eastward advance of a proto–Orinoco River 
during the Cenozoic evolution of the northern Andes (Figure 
2). This assessment was further refined by Reyes–Harker et 
al. (2015) and Mora et al. (2019) by correlating abundant new 
provenance data with exhumation in the Eastern Cordillera of 
Colombia. The main basis for this hypothesis is the presence 
of U–Pb ages inferred to originate from the orogen on the west-
ern side of the Llanos–Barinas Foreland Basin rather than from 
cratonic provenance. Although a provenance divide has been 
proposed by Reyes–Harker et al. (2015) and Mora et al. (2019) 
as the trace of a proto–Orinoco channel belt, further data are 
needed to reach a definitive conclusion.

9.5. Tectonic and Climatic Interactions

Mora et al. (2008) reported one of the youngest apatite fission 
track data sets of the Andes so far (Figures 2, 16). This set of 
Plio–Pleistocene ages postdates most topographic growth in the 
Eastern Cordillera of Colombia (e.g., Hooghiemstra et al., 2006  
Anderson et al., 2016), yet coincides with faster deformation rates.

Mora et al. (2008) suggested that faster denudation rates 
may have promoted faster shortening rates during the latest 
Cenozoic. However, other studies have later demonstrated that 
rapid shortening occurred in zones of focused transpressional 
deformation, possibly independent of enhanced denudation 
(e.g., Bermúdez et al., 2013; Graham et al., 2018; Mora et al., 
2015a; Ramirez–Arias et al., 2012). Although focused denu-
dation helps, it is unlikely to be the single main factor in en-
hancing shortening rates. From this discussion, it appears that 
climate, precipitation, and associated denudation are important 
but not the principal factors that induce rapid motion along ma-
jor faults, at least in the northern Andes.

10. Conclusions

In conclusion, although biologists and other scientists under-
standably desire high resolution data and finalized debates 
regarding various aspects of the paleogeography, none of the 
cases we have discussed in the northern Andes and Panamá 
be considered “solved,” and the current data are consistent 
with multiple hypotheses. In our view, the geological record 
has two main problems: (i) In many areas, erosion and general 
preservation factors render the record incomplete and spatially 
fragmented, and (ii) in those areas where it is complete, we do 
not have enough information.

Ideal new information would be 3D seismic data in marine 
areas, where the quality of the seismic images is high. In con-
trast, seismic exploration in the northern Andes has its own 
problems: (i) its quality is poor due to the problems caused 
by the presence of mountains and deformation interfering with 
acquisition of proper images; and (ii) seismic coverage is far 
from being dense. One of the few areas where geological data 
provide a very good picture of complete geological evolution 
with the resolution sought by biologists and other scientists is 
the North Sea in northern Europe (e.g., IHS, 2018).

While some data sets like thermochronology can provide 
precise information on the places being exhumed and eroded, 
provenance tools (U/Pb or to an even greater extent petrogra-
phy) always allow for multiple interpretations regarding drain-
age directions and timing for fluvial networks. The Orinoco, 
Magdalena, and Cauca Rivers histories and the Panamá Isthmus 
history serve as clear examples of this ambiguity. Other studies 
linked to the Amazon are even more difficult.

Definitive statements regarding the growth of topography 
are made even more complex by the fact that topography is 
always destroyed, and thus far we have not considered or been 
able to detect paleo–elevations of the northern Andes for times 
preceding the Oligocene (ca. 33 Ma). While undocumented 
pre–Oligocene high mountains of the northern Andes are possi-
ble, it is also possible that Neogene relief features have been de-
stroyed and rebuilt such that river trajectories and connections 
that we have never imagined may have existed. For example, 
we assume that the Garzón Massif was already a positive topo-
graphic area by the middle Miocene, separating the Orinoco and 
Amazonas Basins from the Magdalena River Basin. However, 
Perez–Consuegra et al. (2018) have found paleontological sig-
nals of Orinoco and Amazonas Rivers connections by the late 
Miocene in the San Jacinto belt.

In general, we can conclude that thermochronological tech-
niques are the most precise of the three tools discussed here in 
achieving location–specific rates while provenance techniques 
are very ambiguous when geologists try to suggest the location 
of ancestral drainages. In the meantime, paleo–elevation stud-
ies of the northern Andes are still very experimental. With the 
data available, we can identify general patterns of the Eastern 
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Cordillera, but data on rates and ages can still be improved. To 
create robust reconstructions, it is necessary to combine bed 
rock exhumation data with provenance and paleo–elevation 
studies. Few studies have combined both or all three since the 
pioneering studies by Mora et al. (2008) and Parra et al (2009a).

In sum, while a number of aspects of Colombia’s Cenozoic 
tectonic evolution remain unclear, our lack of paleogeographic 
knowledge is more severe. Furthermore, our understanding of 
Central and Western Cordilleras responses to different regional 
events is even more limited. Therefore, more detailed and sys-
tematic thermochronological data and provenance and paleo–
elevation studies will be instrumental to geologists providing 
more precise answers and support for other disciplines. In the 
meantime, working with multiple hypotheses and never with 
rigid assumptions is the most convenient and robust approach.
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