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Late Cretaceous to Cenozoic Uplift of the
Northern Andes: Paleogeographic Implications
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Abstract In this chapter, we summarize recent work on the geologic evolution of the
northern Andes. Our intention is to present current information so that scientists
from other disciplines can differentiate data from interpretations. In this effort, we
focus on thermochronological data that provide precise places, dates, and rates.
Thermochronological data provide cooling histories for rocks of the upper crust,
whereas provenance data offer insights on rocks that have been eroded away. In
reviewing published data, we provide a critical overview of recent paleogeographic
interpretations. Specifically, we discuss hypotheses such as (i) Eocene proto-Magda-
lena River draining toward the Maracaibo Basin, (ii) the presence of a closed proto-
Magdalena basin from the late Eocene to middle Miocene, (iii) the Miocene closure of
the Isthmus of Panama, (iv) the late Cenozoic surface uplift of the Eastern Cordillera,
and (v) the Cenozoic eastward advance of the Orinoco River. We conclude that in
most cases, favored ideas remain as intriguing hypotheses, but there remains room
for alternative interpretations. The present summary is intended to provide a cau-
tionary note on the use of limited datasets to make paleogeographic interpretations
of the northern Andes.

Keywords: paleogeography, thermochronology, U-Pb geochronology, sedimentary provenance,
rock uplift, surface uplift, paleoelevation, paleodrainages.

Resumen En este capitulo se resumen trabajos recientes relacionados con la evo-
lucion geologica de los Andes del norte. La principal intencion es presentar infor-
macion actual para que los cientificos de otras disciplinas puedan diferenciar entre
datos e interpretaciones. Este trabajo se enfoca en datos termocronologicos que
brindan localizaciones, edades y tasas precisas. Los datos termocronologicos propor-
cionan historias de enfriamiento para las rocas de la corteza superior, mientras que
los de procedencia sedimentaria contribuyen con informacion sobre las rocas que
se han erosionado. A partir de la revision de datos plblicos se da una vision critica
de las interpretaciones paleogeograficas publicadas recientemente. Especificamente,
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se discuten las siguientes hipotesis: (i) el proto rio Magdalena del Eoceno drenando
hacia la Cuenca de Maracaibo, (ii) la presencia de una proto cuenca cerrada del
Magdalena entre el Eoceno tardio y el Mioceno medio, (iii) el cierre del Istmo de
Panama durante el Mioceno, (iv) el crecimiento topografico de la cordillera Oriental
en el Cenozoico tardio y (v) el avance hacia el este del trazo del rio Orinoco durante
el Cenozoico. Se concluye que, en la mayoria de los casos, las ideas mas sustentadas
permanecen como hipotesis interesantes, pero queda espacio para otras interpreta-
ciones. Este trabajo intenta advertir sobre el uso de una cantidad limitada de datos

para hacer interpretaciones paleogeograficas de los Andes del norte.
Palabras clave: paleogeografia, termocronologia, geocronologia U-Pb, procedencia

sedimentaria, levantamiento de roca, levantamiento de superficie, paleoelevacion,

paleodrenajes.

1. Introduction

The northern Andes, which are positioned north of the Huan-
cabamba Deflection at 6° S (Gansser, 1973), differ from other
segments of the Andes because of the presence of accreted
oceanic material and a transpressional deformation regime
during Cenozoic mountain building (Figure 1; Aleman & Ra-
mos, 2000; Mégard, 1989; Taboada et al., 2000; Trenkamp
et al., 2002). The evolution of the northern Andes is of inter-
est not only for geologists and tectonicists, but also for other
disciplines. For example, biologists rely on the evolution of
topography interpreted by geologists to infer linkages between
landscape evolution and the distribution of species deduced
from phylogenetics (e.g., Bacon et al., 2012). However, hy-
potheses proposed by geologists are often imprecise because
of the poor preservation of stratigraphic and structural records
and a lack of high resolution 3D constraints. With the dawn of
the XXI century, techniques such as geochronology and low—
temperature thermochronology have become more precise and
modeling approaches have become more sophisticated, pro-
viding higher resolution timing constraints on tectonic events
and episodes of exhumational cooling in the upper crust. In re-
cent years, pioneering studies (Figures 2, 3) have highlighted
the role of low temperature thermochronology (Mora, 2015;
Mora et al 2010a, 2013a, 2013b, 2015a, 2015b; Parra et al.,
2009a, 2009b, 2010, 2012; Saylor et al., 2012a; Spikings et
al., 2000, 2001; Villagémez et al., 2011a, 2011b) and detrital
geochronology (Caballero et al., 2013a, 2013b; Horton et al.,
2010a,2010b, 2015; Nie et al., 2010, 2012; Saylor et al., 2011,
2012b,2013; Silva et al., 2013) in the Cretaceous to Cenozoic
evolution of the northern Andes. Paleoelevation techniques
have also become more sophisticated, but their use has been
limited in the tropical northern Andes (Anderson et al., 2015)
relative to their use in the arid central Andes (Garzione et al.,
2017; Saylor & Horton, 2014).

These developments have prompted a revolution in our
understanding of interrelated processes pertaining to rock up-
lift, surface uplift, and exhumation as defined by England &
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Molnar (1990; Figure 3). Unfortunately, in the northern Andes
and elsewhere, these terms have been commonly and incor-
rectly grouped under a broad and vague definition of “uplift”.
For example, some classic interpretations of the Eastern Cor-
dillera of Colombia suggest that molasse deposition, defor-
mational cross—cutting relationships, and topographic growth
(e.g., Hooghiemstra et al., 2006; van der Hammen et al., 1973)
were all manifestations of a single Miocene event that could be
grouped under the broad term of “uplift” (Cooper et al., 1995;
Dengo & Covey, 1993).

An appreciation of the role of surface processes only arrived
well after many studies of orogenesis in the northern Andes
were conducted. Whereas studies in the central Andes recog-
nized the interplay of tectonics, erosion, and climate (Horton,
1999; Masek et al, 1994; Montgomery et al., 2001; Sobel et
al., 2003; Strecker et al., 2007, 2009), their role in the northern
Andes was only recognized when palynological and thermo-
chronological techniques were combined with structural and
geomorphic analysis (e.g., Mora et al., 2008).

Understanding and differentiating rock uplift from surface
uplift and exhumation, with their attendant implications for
landscape evolution and mountain building, was so new to the
northern Andes that, in the words of Henry HOOGHIEMSTRA,
it gave a “new eye” to numerous scientists from diverse disci-
plines. These expanded perspectives have positively impacted
new generations of geologists, so it is not uncommon for cur-
rent studies of the northern Andes to integrate paleoelevation
studies with exhumation and structural analyses (Cuervo—Go-
mez et al., 2015).

Although many pioneering studies have applied state—of—
the—art techniques, their results have not been compiled or in-
tegrated in a critical way. In this review, we provide an updated
summary of recent studies with the intention to filter, present,
and discuss the evidence of crustal deformation, surface uplift,
and exhumation in the northern Andes and their diverse impacts
on Cenozoic surface processes. This manuscript is organized
in chronological order with each time interval considered from
west to east across the northern Andes.
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Figure 1. Shaded relief image of northwestern South America and surrounding tectonic plates showing the main cordilleras, faults, and
the subducting Carnegie Ridge (background model from Gomez et al., 2007). Cretaceous sutures are shown as thick black and yellow lines,
and the three sample regions (a, b, c) by Villagdmez & Spikings (2013) in Figure 4 are highlighted. Major rock sequences of the Central
Cordillera (Colombia) and Eastern Cordillera (Ecuador) are shown. (SNSM) Sierra Nevada de Santa Marta; (SMF) Santa Marta-Bucaramanga
Fault; (GF) Garrapatas Fault; (MMV) Middle Magdalena Valley Basin; (PF) Palestina Fault; (OPF) Oti-Pericos Fault; (WC) Western Cordillera;
(CPV) Cauca-Patia valley; (CAF) Cauca-Almaguer Fault; (IF) Ibagué Fault; (UMV) Upper Magdalena Valley Basin; (EC) Eastern Cordillera;
(CC) Central Cordillera; (LB) Llanos Basin; (SJF) San-Jeronimo Fault; (AzBF) Amazon Border Fault; (ECE) Eastern Cordillera Ecuador; (WC)
Western Cordillera; (SZ) Sub-Andean Zone (Ecuador); (PE) Peltetec Unit; (OB) Oriente Basin; (RC) Raspas Complex. After Villagomez &
Spikings (2013).

2. Geological Setti ng northern Andes of Ecuador and Colombia comprise an orogenic

system with three N— to NNE—trending mountain chains—the
The northern Andes are the result of complex interactions be-  Western, Central, and Eastern Cordilleras, which are separated
tween the Nazca, Caribbean, and South American Plates. The by prominent topographic depressions (Figures 1, 2). The Cen-
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Figure 2. Shaded relief image with the main geographic features (mostly rivers and mountain ranges) discussed in the text as well as the
main studies cited. Panels a, b, and c are based on different studies and study areas. White dashed lines with arrows show the inferred
locations of the proto-Orinoco River (after Reyes—Harker et al., 2015) at the following times: 1—Paleocene (ca. 60 Ma); 2—middle Focene
(ca. 44 Ma); 3—middle Miocene (ca. 14 Ma); 4—close to recent times.

tral Cordillera of Colombia is referred to as Cordillera Real (or The main orogenic phases of the northern Andes have been
Eastern Cordillera) in Ecuador, whereas the Eastern Cordillera of  attributed to Cenozoic changes in plate convergence, the ac-
Colombia has no topographic expression in Ecuador (Figure 2).  cretion of oceanic terranes (plateaus and island arcs), and the
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Figure 2. Shaded relief image with the main geographic features (mostly rivers and mountain ranges) discussed in the text as well as the
main studies cited. Panels a, b, and c are based on different studies and study areas. White dashed lines with arrows show the inferred
locations of the proto-Orinoco River (after Reyes—Harker et al., 2015) at the following times: 1—Paleocene (ca. 60 Ma); 2—middle Eocene
(ca. 44 Ma); 3—middle Miocene (ca. 14 Ma); 4—close to recent times (continued).

subduction and collision of aseismic ridges. In Colombia, alloch-  against South America along the diffuse, regional-scale Romeral
thonous oceanic terranes are exposed in the Western Cordillera  Fault System and its southern continuation toward Ecuador (the
and forearc region (serrania de Baudo) and have been juxtaposed =~ Cauca—Almaguer Fault; Figure 1). These allochthonous oceanic
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rocks, which are termed the Panam4d—Chocé and Calima Ter-  Igneous Province (100-88 Ma; Kerr et al., 1997; Sinton et al.,
ranes, include areas west of the Garrapatas Fault (Figures 1,2).  1998; Villagémez et al., 2011a) accreted to northwestern South
The terranes correspond to relict slivers of the Caribbean Large =~ America between the latest Cretaceous and middle Miocene.
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Figure 3. (a) Diagram summarizing definitions of rock uplift, surface uplift, and exhumation. Surface uplift is the displacement of the
earth’s surface relative to the geoid. Rock uplift is the displacement of rock relative to the geoid and exhumation is the displacement of
rock relative to the surface. Rock uplift equals the sum of exhumation plus surface uplift. The diagram shows as an example a two-phase
model of progressive cooling in the upper crust that considers the exhumation of an apatite crystal from several kilometers depth to
the surface. The process also involved some rock uplift and surface uplift. (b) Simplified diagram showing a typical context in which
detrital geochronology is applied. In this case, there is a river from which tributaries drain from basement terrains (mountain areas)
of different but typical geochronological ages. All age signals are then collected by the main river trunk. When detrital geochronology
analyses (e.g., U-Pb) are carried out on active sediments drained by the river, data are typically presented as age versus probability
histograms that document different age populations. Different horizons (a, b, and c) can also be sampled in the sedimentary record and
show to what extent different basement terrains contributed sediments to the river in geological history. If those basement terrains
occupied thousands to even hundreds of thousands of square kilometers in the past and only crop out in specific areas today, one of
the challenges is to infer the configuration or headwaters of past drainages. In most cases, geologists do not have enough information
to accurately perform such reconstructions.
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The Romeral Fault System and Cauca—Almaguer Fault bor-
der the Central Cordillera in Colombia (Figure 1) and mark the
western limit of the continental lithosphere. The continental
basement is traditionally considered to include the Tahami and
Chibcha Terranes (Toussaint &Restrepo, 1989). The Tahami
Terrane forms the core of the Central Cordillera, whereas the
Chibcha Terrane forms the basement of the easternmost Cen-
tral Cordillera, Eastern Cordillera, Santander Massif, and Sierra
Nevada de Santa Marta (Figure 1; Martens et al., 2014). This
broad continental domain is a complex assemblage of poor-
ly mapped lower Paleozoic ortho— and para—gneisses, which
were reheated during Triassic magmatism (e.g., Cochrane et
al., 2014; Litherland et al., 1994; Restrepo—Pace et al., 1997).
Pre—Jurassic rocks were subsequently intruded by elongated
Jurassic granitoids and localized Upper Cretaceous batholiths.

3. Methods Discussed in This Review

In this review we summarize previous research on the northern
Andes focused on bedrock low temperature thermochronolo-
gy and subordinate detrital geochronology. Low temperature
thermochronology (Figure 3a) seeks to determine the time at
which rocks at depth reached a particular temperature in the
upper crust. Apatite fission track (AFT) and zircon fission track
(ZFT) techniques (e.g., Ketcham et al., 1999; Wagner & van
den Haute, 1992; Reiners et al., 2004) use different mineral spe-
cies to date the timing when rocks at depth were at temperatures
of ca. 140 °C to ca. 50 °C (AFT) and ca. 250 °C (ZFT). Other
thermochronological techniques include the use of apatite (U—
Th)/He (AHe) and zircon (U-Th)/He (ZHe) for temperatures of
ca. 40 °C to ca. 90 °C (AHe) and ca. 100 °C to 190 °C (ZHe)
and the use of “°Ar/**Ar techniques for temperatures of >300 °C.

As an example (Figure 3), a two—phase model of progres-
sive cooling in the upper crust considers the exhumation of
an apatite crystal from several kilometers depth to the surface.
Because the age when the apatite reached those temperatures
can be determined via low temperature thermochronology, the
amount of cooling over geological time can be evaluated. More-
over, when assuming a uniform, time—invariant temperature
gradient with depth, the original rock overburden and amount
of erosional exhumation can be assessed.

While thermochronological data can be simply represented
in ages, it is desirable to generate thermal models from those
ages that provide cooling histories in the form of time—tempera-
ture (T-t) paths that define rock locations through time relative
to isotherms (lines of the same temperature in the upper crust).
Models and ages obtained through thermochronology can be
confidently linked to the exhumation of the precise areas and
locations from which samples are taken.

Detrital geochronology is another technique used to evalu-
ate exhumation and the evolution of landscapes and river drain-
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ages. It relies on the fact that resilient minerals such as zircons
crystallize at very high temperatures (>700 °C) and persist as
hard, dense, chemically stable, and often diagnostic signatures
of different geological terranes and crustal provinces (e.g.,
Ibafiez—Mejia et al., 2015 and references therein) forming at
different temperatures (e.g., Figure 3b). Various basement and
sedimentary rocks have diagnostic populations of zircons that
can be discriminated on the basis of their contrasting crystalli-
zation ages (Figure 3b). For example, the predominantly igne-
ous rock units of the Central and Western Cordilleras (Figure 2)
are younger than ca. 250 Ma while most basement rocks of the
Eastern Cordillera and South American Craton are older than
ca. 250 Ma (Aspden et al., 1987; Cordani et al., 2005; Horton
et al.,2010a, 2010b; McCourt et al., 1984; Restrepo—Pace et al.,
1997, Silva et al., 2013).

Detrital zircon U-Pb ages (e.g., Ibafiez—Mejia et al. 2015
and references therein) have the technical advantage of effi-
ciently dating hundreds of zircon crystals from sedimentary
rocks (Figure 3b). In identifying major zircon age popula-
tions in the northern Andes, multiple studies have been able
to more precisely suggest when particular sediment sources
in the northern Andes shed sediments to adjacent basins (e.g.,
Bande et al., 2012; Caballero et al., 2013a, 2013b; Horton,
2018a; Horton et al., 2010a, 2010b, 2015, 2020; Nie et al.,
2010, 2012; Silva et al., 2013;). In addressing the timing of
terrane accretion, other works have applied this technique to
reveal that basement rocks of the Panamd—Choc6 Terrane have
a dominant Eocene age signature (ca. 59 to ca. 42 Ma) that
contrasts with that of older basement rocks to the east (e.g.,
Montes et al., 2015).

One issue of detrital geochronology pertains to the fact that
contributions of different source areas are often mixed in large
drainage systems and may be recycled from older sedimentary
rocks. Therefore, the method relies on the presence or absence
of diagnostic age populations diagnostic of particular source
areas. In practice, interpretations of the northern Andes focus
on whether sediment was derived from particular regions (for
example, the Eastern Cordillera, Central Cordillera, or Pan-
ama—Choco6 Terrane). As a result, geologists have developed
hypothesis regarding regions of elevated topography that may
have once acted as sources of sediments. Because these source
materials have been largely eroded away, there remains con-
siderable ambiguity regarding the precise locations of former
regions of positive relief. This problem can be addressed in
regions that have not been eroded away, by using low tem-
perature thermochronology results in areas where cooling has
occurred in situ in the upper ca. 3—6 km of crustal blocks. In
those provinces ages can still be measured today. In this paper,
we review several key data sets and discuss interpretations that
impact our understanding of the paleogeographic evolution and
uplift of the northern Andes.
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4, Latest Cretaceous to Early Eocene
Accretionary and Deformational Events

4.1. Western and Central Colombia
and Ecuador

To decipher the timing and consequences of the accretion of
Cretaceous oceanic terranes, several authors have obtained
thermochronological data from accreted oceanic rocks and
adjacent continental rocks (Figures 1,2a,4,5; e.g., Restrepo—
Moreno et al., 2009; Spikings et al., 2000, 2001; Villagémez
& Spikings, 2013).

Villagémez & Spikings (2013) concluded that the collision
of the Caribbean Large Igneous Province in Colombia started
in the Campanian and triggered shortening in the continental
interior. The collision is interpreted to have driven uplift and
erosional exhumation (at rates of 1 km/my) that persisted until
ca. 65 Ma based on modeled AFT and ZFT time—temperature
histories for the oceanic and continental blocks (Figures 4-7).
Villagémez & Spikings (2013) provide AFT and ZFT data for
the Bolivar Batholith in the Western Cordillera that show rapid
Late Cretaceous to Paleocene exhumation (Figure 6) similar to
that observed in the Central Cordillera (Figure 7 after Villagé-
mez & Spikings, 2013). In northern Colombia, more moderate
exhumation rates probably lasted until ca. 55 Ma in the east
consistent with progressively more recent cooling east of the
Romeral Fault System. Syn— and post—accretionary sedimen-
tary rocks within the accreted terranes and adjacent continental
margin confirm the onset of this accretionary event (Villago-
mez & Spikings, 2013). Similarly, Spikings et al. (2001, 2010)
constrained rapid exhumation (>1 km/my) in Ecuador between
73 and 55 Ma and attributed this exhumation to the collision
and accretion of the Caribbean Large Igneous Province (Fig-
ure 8). A similar Late Cretaceous — Paleocene onset of Andean
orogenesis is recorded along the length of the Andes, including
the central and southern Andes where oceanic materials were
not accreted (Horton, 2018a, 2018b; Ramos, 2009; Ramos &
Aleman, 2000).

4.2. Exhumation and Deformation in the
Middle Magdalena Basin

By Late Cretaceous time, the Middle Magdalena Valley formed
part of an active foreland basin of the proto—Andean orogen.
In this area, a widespread unconformity marks a pre—Eocene
contractional event in which inverted Jurassic grabens and
shortened Cretaceous rocks are documented in surface and
subsurface datasets (Figure 2c for location; e.g., Gémez et al.,
2003, 2005; Parra et al., 2012). The age of this contractional
event was originally attributed to the middle Eocene (Villa-
mil, 1999) or late Paleocene — late Eocene (Restrepo—Pace et
al., 2004). However, using thermochronology combined with

vitrinite reflectance data, Parra et al. (2012) demonstrated that
deformation predating the widespread unconformity mostly
occurred in latest Cretaceous — Paleocene time (Figure 9). Ro-
driguez—Forero et al. (2012) dated the oldest deposits above the
unconformity, the La Paz Formation, and found that they were
actually deposited by the earliest Eocene. In addition, Caballe-
ro et al. (2010, 2013a, 2013b) documented a folded Paleocene
Lisama Formation beneath the unconformity in northern areas
of the Middle Magdalena Valley.

Along the western margin of the Eastern Cordillera close to
the Arcabuco Anticline, late Paleocene shortening and exhuma-
tion are consistent with structural relationships (Restrepo—Pace
et al., 2004) and ZHe ages from rocks in which vitrinite reflec-
tance data suggest temperatures sufficient to fully reset the ZHe
thermochronometer (Caballero et al., 2013a; Reyes—Harker et
al., 2015). Bayona et al. (2013; Figure 2c) further documented
thickness changes in Paleocene strata within the axial zone of
the Eastern Cordillera, and Mora et al. (2013a) documented
minor cooling in the Llanos Basin.

To the south, the Amazon Foreland Basin shows evidence of
the initial uplift of the Eastern Cordillera in Ecuador (southern
continuation of the Central Cordillera) as recorded by initial
input of Andean material within nonmarine sandstones and
shales of the Tena Formation (Horton, 2018a; Martin—-Gombo-
jav &Winkler, 2008; Spikings et al., 2010).

From the above—mentioned evidence, we suggest that de-
formation during the collision of the Caribbean Large Igneous
Province persisted from the latest Cretaceous through Paleo-
cene time and influenced the growth of the early Andean Fore-
land Basin. This early shortening prompted strong exhumation
in the Central Cordillera and localized basement uplifts in the
Middle Magdalena Valley with deformation possibly persisting
into the early Eocene (Mora et al., 2013a).

5. Middle Eocene to Early Oligocene
Evolution of the Northern Andes
(48-28 Ma)

5.1. Middle Eocene to Early Oligocene in
Western and Central Colombia and Ecuador:
Increased Exhumation and Convergence

Spikings et al. (2001) suggested that in Ecuador <1 km/my ex-
humation occurred along the Western and Eastern Cordilleras
from ca. 43 to 30 Ma (Figure 8). Spikings et al. (2001, 2010)
proposed that this exhumation was the product of an abrupt
increase in Farallon—South America convergence rather than
accretion of an Eocene island arc. This increased exhumation
was accompanied by foreland deposition of the coarse—grained
Upper Tiyuyacu Formation (Baby et al., 2013). Similarly, the
Central Cordillera of Colombia experienced moderate exhu-
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Figure 4. Geological maps of the study regions of Villagomez & Spikings (2013) (see Figures 1, 2a) within the Central and Western Cor-
dilleras and the Cauca—-Patia valley of Colombia (after Gomez et al., 2007) showing sample locations and the thermochronological ages
acquired in this study. (a) Northern Colombia; (b) Central Colombia; (c) Southern Colombia. All ages are given in Ma with an uncertainty
of +20, and sample codes are shown in blue (DV#). (OPF) OtG-Pericos Fault; (PF) Palestina Fault; (SJF) San-Jeronimo Fault; (MB) Mande
Batholith; (CAF) Cauca-Almaguer Fault; (SPF) Silvia—Pijao Fault; (HP) Hatillo Pluton; (CPF) Cali-Patia Fault; (IF) Ibagué Fault; (PP) Piedrancha

Pluton; (AzBF) Amazonian Border Fault.

Timming of tectonic events: Cooling of the paleo—continental margin
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Figure 5. Compilation of thermochronological ages (+20) of the Central and Western Cordilleras and of the Cauca-Patia valley in Colombia
(after Villagdmez & Spikings, 2013). Apatite FT and (U-Th)/He ages decrease toward the south of the Central Cordillera.

mation (<0.3 km/my) at 40-30 Ma near major faults such as
the Palestina, Ibagué, and Otti—Pericos Faults (Figure 10; e.g.,
Villagémez & Spikings, 2013). A modest ca. 45 to 40 Ma
episode of exhumation (<0.2 km/my) has also been identified
in the northern Central Cordillera and ascribed to a shift in
Farallon—South America convergence (Restrepo—Moreno et
al., 2009).

5.2. Middle Eocene in Eastern Colombia:
Tectonic Quiescence (48-38 Ma)

Mora et al. (2013a) suggest that the middle Eocene was a time
of tectonic quiescence in the Magdalena Basin and Eastern Cor-
dillera on the basis of: (a) Low accumulation rates in the middle
Eocene Upper Mirador and Lower Esmeraldas Formations of
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Figure 6. Time-temperature solutions for allochthonous rocks of Colombia’s Western Cordillera obtained by (i) the inverse modeling of
apatite FT age and length data, (ii) weighted mean (U-Th)/He dates and grain size data (calculated from the weighted mean of diffusion
lengths). The modeling referred to Reiners et al. (2004) kinetic relationship for the diffusion of He in zircon, Flowers et al. (2009) for
the diffusion of He in apatite and Ketcham et al. (2007) for FT annealing in apatite. A controlled random search procedure was used to
search for best-fit data. Dark gray regions are envelopes of “good fit” and light gray areas denote “acceptable fit." The thick black line
shows the statistically best fitting solution. Measured and predicted data for the best fit model are shown. Solutions are considered
to show good fit when track length histograms and model ages pass Kuiper's statistic test with values of >0.5 and are considered ac-
ceptable for values of >0.05. The models are extrapolated to temperatures for the partial retention of argon when (i) the “Ar/*Ar ages
of ferromagnesian phases overlap with the timing of cooling obtained by inverting the FT and (U-Th)/He data or when (ii) there are
interpretable alkali feldspar “Ar/*Ar ages. Dashed lines show paths manually interpolated from the “Ar/*Ar data. (GOF) Goodness-of-fit.
After Villagomez & Spikings, 2013.

the Eastern Foothills and Middle Magdalena Valley, respectively Elevated exhumation rates in Ecuador during the middle

(Mora et al., 2013a) and (b) U-Pb data suggestive of drainage
divide advance toward the deformation front (Silva et al., 2013).
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Eocene are difficult to reconcile with regional quiescence in
Colombia. We speculate that this could be related to along—
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strike variations in Pacific margin architecture and Farallon—
South America convergence.

5.3. Late Eocene to Early Oligocene in Central
and Eastern Colombia: Renewed Deformation

Saylor et al. (2012b) used lag time analyses of detrital zircon
low—temperature thermochronological data (Figure 11) to pro-
pose late Eocene to early Miocene deformation in the East-
ern Cordillera. These findings were interpreted by Mora et al.
(2013a) and Reyes—Harker et al. (2015) to represent renewed
tectonic activity along the western half of the Eastern Cordille-
ra. In this context, the Sodpaga and Macheta Faults would rep-
resent the active deformation front of the northern Andes during
late Eocene to early Oligocene time with the rapid subsidence
of the developing Llanos Foreland Basin to the east. This facil-
itated a deposition of fine—grained marine units corresponding
to the shaly C8 Member of the Carbonera Formation.

6. Middle to Late Oligocene Evolution
(28 to 23 Ma)

6.1. Western and Central Colombia
and Ecuador

Spikings et al. (2010) linked the fragmentation of the Farallon
Plate and associated changes in convergence at 23 Ma (Lons-
dale, 2005) to cooling and moderate exhumation (<0.5 km/my)
in the Eastern Cordillera of Ecuador. Spikings et al. (2010)
suggested that this Oligocene deformation was limited in the
Western Cordillera and only affected fault blocks with a favor-
able orientation.

No evidence of significant Oligocene exhumation has been
detected in the Western and Central Cordilleras of Colombia
from available, albeit limited, thermochronological data (Vi-
llagémez & Spikings, 2013). This could be a consequence of
strain partitioning through which the preferential reactivation of
the Amazonian Border Fault System and Santa Marta—Bucara-
manga Fault deformed and exhumed the Eastern Cordillera of
Colombia (Mora et al., 2010a; Parra et al., 2012; Saylor et al.,
2012a) and uplifted the Sierra Nevada de Santa Marta (Villa-
gémez et al., 2011b; Piraquive et al., 2018), thus isolating the
Central and Western Cordilleras.

6.2. Eastern Cordillera of Colombia

Different studies suggest that the eastern flank of the Eastern
Cordillera (Figure 2c) was actively exhuming (Figure 12; Parra
et al., 2009b) and shedding sediments (Figure 13; Horton et
al., 2010a, 2010b; Parra et al., 2010) to the Llanos Foreland
Basin by the Oligocene. Mora et al. (2010a, 2013a; Figure 2b)
further employed thermochronological analyses to demonstrate

Increased Subduction
Onsetof  convergence of the
accretion  of SOAM and Carnegie
of CLIP  Farallon Plates Ridge

L l

0 North of 5° N
40
80
120
O 160
s
o i
2 200
o
3 i
g 240
(0] _
'_
280
320
500
540 L T T T T T T T T T T T T T
0 South of 5° N
T |:| Western Cordillera
4 -
0 || [ Central Cordillera
80
O 120
s
o i
S 160
o i
g
g 200
2 b South of
240 Ibagué Fault
280 f —FTT IS e
1, i
320 ! M North of
ik ] Ibagué Fault
! T T T T T T T T T T T T T
140 120 100 80 60 40 20 0
Time (Ma)

Figure 7. Summary of good-fit thermal history solutions for a
representative selection of samples of the Central Cordillera (Late
Cretaceous continental margin; dark gray) and Western Cordille-
ra (Late Cretaceous indentor; light gray) after Villagomez & Spik-
ings, (2013). Figure 6 explains their calculation and constraining
data. The solutions highlight the main periods of exhumation of
the Central and Western Cordilleras. Vertical bands highlight the
timing of rapid cooling and exhumation in Colombia, and labels
denote sample numbers. (CLIP) Caribbean Large Igneous Province.
(SOAM) South America.

that this behavior can be related to the inversion of the entire
Neocomian graben of the Eastern Cordillera. In addition, Mora
et al. (2013b) use fracture patterns, fluid inclusions, and ther-
mochronology to document several locations with Oligocene
low—amplitude folding in the Eastern Cordillera and in coeval
growth strata (Figure 14; Mora et al., 2013a). The study covers
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Late Cretaceous continental margin, northern Andes.
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Figure 8. A compilation of white mica and biotite “°Ar/*Ar and ZFT and AFT ages obtained from traverses across the Cordillera Real of
Ecuador. Shaded horizontal bars denote time periods in which regional scale exhumation was occurring at its highest rate (modified
after Spikings et al., 2000, see Figure 2a for the location). (SAZ) Sub-Andean Zone (Ecuador).

western and eastern sectors of the Eastern Cordillera, in the
Magdalena and Llanos Foothills, respectively.

7. Latest Oligocene to Early Miocene in
Northern Colombia (25-16 Ma)

In studying the northernmost Central Cordillera (Figure 1), Re-
strepo—Moreno et al. (2009) used apatite (U-Th)/He data to
constrain modest exhumation in discrete fault blocks during the
latest Oligocene — early Miocene (ca. 25-20 Ma). Exhumation
rates reached roughly ca. 0.2 km/my and are attributed to in-
creased Nazca—South America convergence (Restrepo—Moreno
etal., 2009). Farris et al. (2011) suggest that the early Miocene
involved the most interactions of the Panamd—Chocé Terrane
with northern Colombia. This exhumation might have been a
response to initial Panama accretion, which ultimately led to the
closure of the Central American Seaway (Duque—Caro, 1990;
Montes et al., 2015).
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For the Eastern Cordillera, Parra et al. (2009a, 2009b; Figure
2¢) document continued tectonic activity and exhumation. How-
ever, there is no direct evidence of elevations of above 1 km; in
fact, pollen records (Figure 15; Hooghiemstra et al., 2006) show
that areas of above 2 km elevation today are inferred to be at tem-
peratures equivalent to those of low elevation tropical areas. New
paleoelevation records based on geochemistry (lipid biomarkers)
support this interpretation (Anderson et al., 2015).

8. Middle Miocene to the Present
(16 to 0 Ma)

8.1. Western and Central Colombia
and Ecuador

In Ecuador, Spikings et al. (2001) identified a northward—
younging, along—strike progression of exhumation during the
middle to late Miocene. Spikings et al. (2001, 2010) suggested
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Figure 9. (a) Plot showing apatite fission-track (AFT) ages (red), vitrinite reflectance (Ro) values (blue), and stratigraphic ages (gray).
Zero represents the base of the Cenozoic section. (PAZ) Partial annealing zone. (b) Thermal modeling results depicting time-tempera-
ture histories of two reset Cretaceous sandstones. Black boxes define time-temperature constraints for provenance, deposition, and
burial-exhumation. Purple and green fields represent good and acceptable model fits, respectively. Figure after Parra et al. (2012). See

Figure 2c for the location.

that the Eastern Cordillera of northern Ecuador (Central Cordil-
lera of Colombia) was positioned at depths of roughly 3.5 km
at ca. 15 Ma while southern latitudes were positioned at depths
<1.3 km. This variation is attributed to rock uplift and exhuma-
tion driven by the collision of the Carnegie Ridge with South
America. Villagémez & Spikings (2013) similarly constrained
amplified exhumation rates at which rocks were exhumed from
depths of =3 km since ca. 15 Ma in the southern Central Cor-
dillera of Colombia (Figure 5).

On the other hand, the northernmost continuation of the
northwestern Andes and of southern Central America experi-
enced increased tectonic deformation and uplift in the Miocene
potentially related to the main collision of the Panama—Choc6
Terrane (Duque—Caro, 1990; Farris et al., 2011; Montes et al.,
2015). After the middle Miocene accretion of the Panama—
Chocé Terrane, renewed coupling and the increased conver-
gence of the Nazca Plate beneath South America led to intense
magmatism in Colombia and Ecuador south of ca. 5.5° N. Far-
ther north, arc volcanism started to vanish from 9 to 4 Ma due
to slab flattening. In around 4 Ma, slab rollback and renewed
magmatism occurred as a result of slab failure along the Caldas
Tear (Wagner et al.,2017), possibly renewing sedimentation in
the Cauca and Magdalena intermontane basins.

8.2. Eastern Cordillera of Colombia

In the Eastern Cordillera of Colombia (Figure 2b), a recent ac-
celeration of exhumation is recorded in the Quetame Massif and
Cocuy Range (Figure 16; Mora et al., 2008, 2015a). In these
areas, young AFT ages (<3 Ma) indicate accelerated cooling,
and cross—cutting relationships show that most shortening oc-
curred from the late Miocene onward (e.g., Mora et al., 2013a).
Finally, paleoelevation data from palynology (Wijninga, 1996)
and lipid biomarkers (Anderson et al., 2015) support an inter-
pretation of topographic growth starting by the middle Miocene
and finalized by 3 Ma.

Other geomorphic features in Colombia such as deep can-
yons in the northern Cauca River valley between the Western
and Central Cordilleras may suggest youthful rock uplift and
river incision. Another outstanding feature is the Sierra Nevada
de Santa Marta (Figure 1), whose prominent relief adjacent to
the Caribbean Sea suggests renewed tectonic activity consis-
tent with thermochronometric data (Villagémez et al., 2011b).
These geomorphic features appear to suggest that recent topo-
graphic growth is a ubiquitous phenomenon in the northern
Andes. Such rock uplift has been instrumental in renewing
coarse—grained sedimentation and basin compartmentalization
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Figure 10. Time-temperature solutions for autochthonous rocks of Colombia’s northern (ca. 6° N) Central Cordillera obtained by the
inverse modeling of AFT age and length data, and weighted mean (U-Th)/He dates and grain size data (calculated using the weighted
mean of the diffusion lengths) obtained from Reiners et al. (2004) kinetic relationship for the diffusion of He in zircon, Flowers et al.
(2009) for the diffusion of He in apatite and Ketcham et al. (2007) for FT annealing in apatite. A controlled random search procedure
was used to search for best-fit data. Dark gray regions denote envelopes of “good fit” and light gray denote “acceptable fit.” The thick
black line denotes the statistically best fitting solution. Measured and predicted data for the best fit model are shown. Solutions were
considered to show good fit when track length histograms and model ages passed Kuiper's statistic test with values of >0.5 and were
considered to be acceptable with values of >0.05. The models are extrapolated to temperatures for the partial retention of argon when
(i) the “Ar/>Ar ages of ferromagnesian phases overlap with the timing of cooling obtained by inverting the FT and (U-Th)/He data or

when (ii) there are interpretable alkali feldspar “Ar/*Ar ages. Dashed lines denote paths manually interpolated from the “Ar/*Ar data.
(GOF) Goodness-of-fit. (After Villagomez & Spikings, 2013).
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Figure 11. Double-dated ZHe ages plotted by stratigraphic age and lag time (dashed diagonal lines). Zircons are identified as of volcanic
origin when their ZHe and Zircon U-Pb ages overlap within their 20 uncertainty. Volcanic zircons (red) are excluded from the lag time
analysis. The three stages are interpreted as episodes of rapid exhumation (Stages 1 and 2) and of the introduction of new supra—partial

retention zone sedimentary sources (Stage 3). Lag time values (L) are given in my. Note that the Socha Group includes data from both
the Upper Socha and Lower Socha Formations. After Saylor et al. (2012b).

within the Amazonas Foreland and Upper Magdalena Basin. Recent thermochronometric and kinematic analyses (Carril-
For example, continued fault activity in southern Colombia lo et al., 2016; Mora et al., 2015b) summarize different defor-
accommodated the uplift and exhumation of the Garzén Massif = mational styles in a single geometric reconstruction. Carrillo et
(Anderson et al., 2016) between the Late Miocene and Plio-  al. (2016) suggested that the Eastern Cordillera reconstructions
cene. This uplift is of paramount importance to large river  require late Miocene to Plio—Pleistocene topographic growth
systems draining northern South America, topographically  unrelated to fault—related folding with subsequent Pleistocene
isolating the Magdalena, Orinoco, and Amazon watersheds  to Holocene horizontal shortening in the Eastern Foothills. It is
(Anderson et al., 2016; Mora et al., 2010b). intriguing that vertical topographic growth and horizontal short-

In contrast, neotectonic studies have dated Late Pleistocene  ening in the foothills appear to be non—synchronous phenomena.
to Holocene deformation in the Eastern Foothills (Ketcham et

al., 2018; Mora et al., 2010c; Veloza et al., 2015). Relative to 9. Discussion
late Miocene to Pliocene topographic growth, where vertical

uplift appears to dominate, the neotectonic deformation of the ~ 9.1. Discussion of Paleogeographic Implications
Eastern Foothills suggests the occurrence of mostly horizontal

shortening perpendicular to frontal ranges (Mora et al., 2006,
2009, 2010c, 2014; Veloza et al., 2012)

Regional geological reconstructions are important for several
disciplines and help address recent appreciation of the interac-
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tions between genetics and geology (e.g., Baker et al., 2014).  geological processes from thermochronological records. In this
This diversification of scientific interest has been particularly  section, we emphasize key interpretations while recognizing
impressive in studies of the northern Andes. In the preceding that geological reconstructions of past configurations are lim-
synthesis, we summarize evidence for the timing of different ited and must be used with caution to review major processes
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Figure 12. Fission track data and vitrinite reflectance (Ro) values for samples from the (a) central and (b) southern transects of the
Colombian Eastern Cordillera at roughly 4.5° N. The data are plotted against the stratigraphic position of the base of Cretaceous rift-re-
lated units (see Figure 1 for the location). Stratigraphic thicknesses and ages are compiled from Ulloa & Rodriguez (1979) and Mora et al.
(2008). Vertical green bars represent the range of Ro values corresponding to the temperature delimiting the base of the AFT (central
transect) and ZFT (southern transect) partial annealing zones (blue and pink shaded areas, respectively). Stacked pseudovertical profiles
are obtained for the (c) central and (d) southern transects. AFT data are plotted at their original stratigraphic positions as in Figure 9a
and 9b, but ZFT data are offset upward by an amount proportional to the depth difference between the ZFT and AFT isotherms estimated
at 5.7 km. The first break in slope denoted by the vertical light gray band at ca. 40 - 25 Ma (central profile) and 20 Ma (southern profile)
marks the onset of thrust-induced cooling through the AFT and ZFT total annealing isotherms, respectively.
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Figure 13. Compositional trends in Eocene to upper Miocene conglomerates of the Medina Basin. Black circles denote the stratigraphic
positions of conglomeratic samples. Clasts of Upper Cretaceous glauconitic sandstone, phosphatic sandstone, and siliceous siltstone
occur in Miocene strata of the Carbonera Formation and Guayabo Formation, documenting the progressive unroofing of the Eastern
Cordillera (right panel). Figure after Parra et al. (2010).
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Two way traveltime (s)
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Figure 14. Oligocene growth strata in the Provincia Oil Field of the Middle Magdalena Basin.

and paleogeographic conditions of the Cenozoic evolution of
the northern Andes.

Thin— and thick—skinned fold—thrust deformation has pre-
vailed in Colombia throughout the Cenozoic. By the early
Cenozoic, the basement of the present—day Western Cordillera
was already juxtaposed to the continental margin. The accre-
tion of a buoyant oceanic plateau coincided with the growth
of a proto Western and Central Cordillera and the delivery of
west—derived sediment to the proto—Magdalena Basin. How-
ever, the early Cenozoic accretion of the Western Cordillera
did not require complete land emergence or ubiquitous moun-
tain building.

The northern Central Cordillera and Cordillera Real of
Ecuador record renewed exhumation during the Eocene based
on very limited thermochronological data. A paucity of data on
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western Colombia has hampered paleogeographic reconstruc-
tions and hindered the identification of Eocene tectonic events.
Systematic sampling for thermochronology, paleoelevation, and
provenance investigation is required. Fortunately, sedimentary
records of the Eastern Cordillera and Magdalena Basin provide
valuable information for Eocene and younger reconstructions.

9.1.1. Eocene Proto-Magdalena River Draining
to the Maracaibo Basin

Evidence for Eocene mountain building in the Central Cordil-
lera and western Eastern Cordillera allowed Caballero et al.
(2013a,2013b) and Silva et al. (2013) to interpret a proto—Mag-
dalena River draining toward the Maracaibo Basin rather than
its present outlet in the Caribbean (Figure 2). Using detrital
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Figure 15. Inferred paleoelevation from reconstructed altitudinal vegetation belts based on characteristic pollen and paleobotanical
associations found in sections Salto del Tequendama | and Il, Rio Frio 17, Subachoque 39, Facatativa 13, and Guasca 103 and in sedimen-
tite core Funza-2. Sections are located in the outer parts of the Bogota Basin. Uncertainties in age control and inferred paleoaltitude
are shown as arrows. Biozones | to VIl refer to stages of the uplift history and paleobiogeography of main (arboreal) taxa of the Eastern

Cordillera (after van der Hammen et al., 1973; Wijninga, 1996).

zircon U-Pb age signatures, Horton et al. (2015) suggest that
local small drainages were not fully integrated into a continuous
proto—Magdalena River. Therefore, the main question is not
whether Eocene rivers drained toward the Maracaibo region
(e.g., Reyes—Harker et al., 2015) but whether a proto-Magda-
lena River existed. Although there was likely positive relief ad-
jacent to the modern Magdalena valley, current ideas regarding
the associated paleodrainage remain speculative.

9.1.2. Late Eocene to Middle Miocene Closed
Middle Magdalena Valley

A significant element of Paleogene paleogeography concerns
the hypothesis of Caballero et al. (2013a, 2013b) that the Mid-
dle Magdalena Valley (Figure 2) was an internally drained basin

with no outlet toward the modern delta or Maracaibo Basin, an
idea supported by others (e.g., Horton et al., 2015; Mora et al.,
2018; Reyes—Harker et al., 2015). It seems clear that the Central
and Eastern Cordilleras were topographically positive areas in
the Paleogene. Because thermochronological data cannot ad-
dress past drainage geometries, we await clear provenance data
to provide support for this closed—drainage hypothesis or for
possible alternative hypotheses.

9.1.3. Oligocene Proto-Sabana de Bogota
Mora et al. (2013a) suggested that the axial Eastern Cordillera
(Figure 2; i.e., the proto—Sabana de Bogotd) may have been an

internally drained basin analogous to closed basins in the Bo-
livian Altiplano (Strecker et al., 2007, 2009). This idea is based
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Figure 16. Digital elevation model of the Eastern Cordillera including the deeply dissected Eastern flank, the central flat-lying Sabana

de Bogota Basin, and the topographically lower western flank.

on evidence showing active exhumation on both flanks of the
Eastern Cordillera (Figures 1, 2) while Oligocene deposition
occurred in the axial zone. An alternative interpretation is that
a proto—Sabana de Bogotd was externally drained to the Mara-
caibo region. More data are required, and therefore, it remains
prudent to consider multiple hypotheses.

9.1.4. Middle Miocene Onset of the
Magdalena River

Neogene provenance data suggest ongoing contributions from
two different sources: The Central Cordillera to the west and
the Santander Massif to the east (Caballero et al., 2013a; Hor-
ton et al., 2015; Reyes—Harker et al., 2015). The data suggest
that the Magdalena Valley Basin (Figure 2) was no longer an
internally drained basin based on seismic evidence for middle
Miocene sedimentation above former barriers, although the
seismic coverage is not robust enough to fully understand the
3D scenario.

Horton et al. (2015) suggest that the appearance of 100-0
Ma zircon grains and a regional switch to broad, multimod-
al age distributions reflect the late Miocene integration of
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the longitudinal proto-Magdalena River, linking the Middle
Magdalena Valley Basin to southern headwaters of the Upper
Magdalena Valley. The presence of fully integrated Magdalena
River draining toward its delta should be detected in contem-
poraneous deposits. Mora et al. (2018) suggest that delta plain
sandstones, mudstones, and coals indicate the presence of a pro-
to—Magdalena delta in the Lower Magdalena Valley by middle
Miocene time. However, no data yet link these deposits to po-
tential source areas of the Magdalena valley. Near the modern
delta, sedimentary units of the proto-Magdalena River delta
and Magdalena submarine fan yield a late Miocene to Pliocene
age (Cadena & Slatt, 2013). It could be that a middle Miocene
delta feeding the Lower Magdalena Valley was replaced with a
larger late Miocene delta in its present location, which was fed
by an expanded drainage network comparable to the modern
Magdalena watershed.

In summary, present data cannot determine whether the on-
set of the Magdalena River delta occurred by middle or late
Miocene times. Fortunately, Miocene sedimentary records for
the Magdalena headwaters to the modern delta have been pre-
served, providing opportunities for further investigations to
distinguish among the competing hypotheses.
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9.2. Panama Accretion and the Central
America Seaway

The accretion of the Panama—Chocé Terrane (Figure 1) to con-
tinental Colombia probably commenced in the early Miocene
(Farris et al., 2011) with the complete accretion and closure of
the Central American Seaway occurring by the middle to late
Miocene (Duque—Caro, 1990; Montes et al., 2015) and later
(e.g.,O’Deacet al., 2016).

Recent studies show that the emergence of Panam4 involved
a long and complex process starting in the Oligocene (Farris
et al., 2011; Sepulchre et al., 2014). Montes et al. (2015) pro-
posed that the Miocene appearance of significant populations
of Eocene age zircons (ca. 59 to ca. 42 Ma) near the San Jorge
River (e.g., Figure 2a) suggests derivation from Panama. These
studies make a key argument for a middle Miocene closure of
the seaway. However, Montes et al. (2015) proposal involves
an irregular drainage geometry with sediment coming from a
slightly emergent Panam4 in the northwest and making a U-turn
toward the Lower Magdalena Valley in contrast to the roughly
rectilinear fluvial drainage network in the south (Chocd) with
the same Panamanian signature. On the basis of such difficul-
ties and of additional geological challenges (e.g., Babault et
al., 2013; Silva et al., 2013), paleogeographic reconstructions
of emerged land masses do not yet provide an unambiguous
answer regarding the timing of the closure of the Central Amer-
ican Seaway. Therefore, it is important to consider alternative
hypotheses and to acquire new data regarding the emergence of
land masses and the closure of the Central American Seaway.

9.2.1. Cauca and San Jorge Rivers

Geologic data for the region near the Cauca and San Jorge
Rivers (Figure 2) provide evidence of Miocene deformation
and suggest that positive topography in the westernmost Andes
served as source areas for these rivers (Montes et al., 2015;
Villagémez & Spikings, 2013). However, it is virtually impos-
sible to know the elevation and continuity of these emergent
areas and whether precursors to the modern Cauca and San
Jorge Rivers were already in place at the time. Regarding this
point, Mora et al (2018) propose a connection of the Lower
Magdalena Valley to the Cauca valley as supported by middle
Miocene provenance signatures and delta—plan facies for the
Upper Member of the Amaga Formation (Montes et al., 2015;
Piedrahita et al., 2017). The interpretation of ancestral rivers
reaching the proto—Caribbean is speculative, but Mora et al.
(2018) also suggest the presence of a Lower Amagd—Ciénaga
de Oro delta by the late Oligocene — early Miocene based on
provenance data (Montes et al., 2015), detrital zircon fission
track thermochronology, and borehole facies analyses.

Mora et al. (2018) suggest that the first clear appearance of
fluvial sedimentites in the Lower Magdalena Valley, Urab4, and

southern Sind Basins was delayed until the Pliocene deposition
of the Corpa Formation. The presence of uplifted regions to
the south near the modern Cauca and San Jorge River valleys
(Villagémez & Spikings, 2013; Piedrahita et al., 2017) may
suggest an advancing pair of prograding river deltas by late
Oligocene to middle Miocene time in the Lower Magdalena
Valley with the appearance of proximal fluvial sedimentites by
the Pliocene. This hypothesis provides an alternative expla-
nation according to which Late Paleogene to Neogene rivers
originated in the south rather than from an emergent Isthmus
of Panama. More evidence is needed to discriminate between a
proto—Cauca and proto—San Jorge Rivers provenance from the
south and U-shaped river drainage from Panama.

9.3. Key Neogene Tectonic Events

The Neogene subduction of the Carnegie Ridge (Figure 1) in
northern Ecuador and southern Colombia had important con-
sequences for the geometry of the subducting slab and the
post—middle Miocene uplift and exhumation of the northern
Andes. Miocene tectonic events are largely responsible for the
present—day topography of Colombia (described in section 7).

9.3.1. Late Cenozoic Surface Uplift
in the Eastern Cordillera

The Eastern Cordillera of Colombia (Figure 2) is one of the few
areas of the northern Andes with paleoelevation constraints. In
one of the oldest studies on this topic, van der Hammen et al.
(1973) argued, as later reinforced by others (e.g., Andriessen et
al., 1993; Helmens & van der Hammen, 1994; Hooghiemstra,
1984; Hooghiemstra & van der Hammen, 1998; Hooghiemstra
et al., 2006; Kroonenberg et al., 1990; Wijninga, 1996; Wijninga
& Kuhry, 1990), that late Miocene vegetation records collected
at high elevations in the Eastern Cordillera resemble modern
tropical lowland regions adjacent to the Eastern Cordillera.

Based on ZFT age control for sedimentary host units (An-
driessen et al., 1993), it has been suggested that topographic
growth from elevations <1000 m to present >2500 m eleva-
tions took place between 6 and 3 Ma (Mora et al., 2008). A
refined magnetostratigraphic chronology suggests roughly 1
km of elevation increase between 7.6 and 3 Ma (Anderson
et al., 2016). Mora—Pdez et al. (2016) further suggested that
confining topographic growth to 6-3 Ma is too rapid when
compared to extrapolated Global Position System (GPS) rates
of shortening. Ultimately, the original proposal made by van
der Hammen et al. (1973) of late Miocene topographic growth
has been generally confirmed by subsequent studies (Anderson
et al. (2016; Mora et al., 2008).

Despite these paleoelevation estimates, many studies sug-
gest that deformation has been active and that thrust—induced
denudation was in place in all areas of the current Eastern
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Cordillera since roughly 25 Ma (Horton et al., 2010a, 2010b;
Mora et al., 2010d, 2013a, 2013b; Nie et al., 2010, 2012; Parra
et al., 2009b; Saylor et al., 2011, 2012a, 2012b). This means
that there was positive topography in the Eastern Cordille-
ra, but the height of the mountains remains unclear. In oth-
er words, paleoelevation studies indicate that late Miocene
topographic growth was finalized by 3 Ma (e.g., Wijninga,
1996; Anderson et al., 2016), but given the Paleogene on-
set of shortening, we do not yet know when topographic
growth commenced.

For the cases mentioned above, it is important to realize
that the geological record is incomplete. For example, a lack of
early to middle Miocene sedimentary records for the Eastern
Cordillera (e.g., Ochoa et al., 2012) precludes an assessment
of paleoelevations for that time. Once again, such incomplete
records suggest the need to consider multiple hypotheses.

9.4. Eastward Advance of the Orinoco River

Based on a detrital (U-Pb) zircon analysis, Escalona & Mann
(2011) suggest an eastward advance of a proto—Orinoco River
during the Cenozoic evolution of the northern Andes (Figure
2). This assessment was further refined by Reyes—Harker et
al. (2015) and Mora et al. (2019) by correlating abundant new
provenance data with exhumation in the Eastern Cordillera of
Colombia. The main basis for this hypothesis is the presence
of U-Pb ages inferred to originate from the orogen on the west-
ern side of the Llanos—Barinas Foreland Basin rather than from
cratonic provenance. Although a provenance divide has been
proposed by Reyes—Harker et al. (2015) and Mora et al. (2019)
as the trace of a proto—Orinoco channel belt, further data are
needed to reach a definitive conclusion.

9.5. Tectonic and Climatic Interactions

Mora et al. (2008) reported one of the youngest apatite fission
track data sets of the Andes so far (Figures 2, 16). This set of
Plio—Pleistocene ages postdates most topographic growth in the
Eastern Cordillera of Colombia (e.g., Hooghiemstra et al., 2006
Anderson et al., 2016), yet coincides with faster deformation rates.

Mora et al. (2008) suggested that faster denudation rates
may have promoted faster shortening rates during the latest
Cenozoic. However, other studies have later demonstrated that
rapid shortening occurred in zones of focused transpressional
deformation, possibly independent of enhanced denudation
(e.g., Bermidez et al., 2013; Graham et al., 2018; Mora et al.,
2015a; Ramirez—Arias et al., 2012). Although focused denu-
dation helps, it is unlikely to be the single main factor in en-
hancing shortening rates. From this discussion, it appears that
climate, precipitation, and associated denudation are important
but not the principal factors that induce rapid motion along ma-
jor faults, at least in the northern Andes.
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10. Conclusions

In conclusion, although biologists and other scientists under-
standably desire high resolution data and finalized debates
regarding various aspects of the paleogeography, none of the
cases we have discussed in the northern Andes and Panama
be considered “solved,” and the current data are consistent
with multiple hypotheses. In our view, the geological record
has two main problems: (i) In many areas, erosion and general
preservation factors render the record incomplete and spatially
fragmented, and (ii) in those areas where it is complete, we do
not have enough information.

Ideal new information would be 3D seismic data in marine
areas, where the quality of the seismic images is high. In con-
trast, seismic exploration in the northern Andes has its own
problems: (i) its quality is poor due to the problems caused
by the presence of mountains and deformation interfering with
acquisition of proper images; and (ii) seismic coverage is far
from being dense. One of the few areas where geological data
provide a very good picture of complete geological evolution
with the resolution sought by biologists and other scientists is
the North Sea in northern Europe (e.g., IHS, 2018).

While some data sets like thermochronology can provide
precise information on the places being exhumed and eroded,
provenance tools (U/Pb or to an even greater extent petrogra-
phy) always allow for multiple interpretations regarding drain-
age directions and timing for fluvial networks. The Orinoco,
Magdalena, and Cauca Rivers histories and the Panam4 Isthmus
history serve as clear examples of this ambiguity. Other studies
linked to the Amazon are even more difficult.

Definitive statements regarding the growth of topography
are made even more complex by the fact that topography is
always destroyed, and thus far we have not considered or been
able to detect paleo—elevations of the northern Andes for times
preceding the Oligocene (ca. 33 Ma). While undocumented
pre—Oligocene high mountains of the northern Andes are possi-
ble, it is also possible that Neogene relief features have been de-
stroyed and rebuilt such that river trajectories and connections
that we have never imagined may have existed. For example,
we assume that the Garzén Massif was already a positive topo-
graphic area by the middle Miocene, separating the Orinoco and
Amazonas Basins from the Magdalena River Basin. However,
Perez—Consuegra et al. (2018) have found paleontological sig-
nals of Orinoco and Amazonas Rivers connections by the late
Miocene in the San Jacinto belt.

In general, we can conclude that thermochronological tech-
niques are the most precise of the three tools discussed here in
achieving location—specific rates while provenance techniques
are very ambiguous when geologists try to suggest the location
of ancestral drainages. In the meantime, paleo—elevation stud-
ies of the northern Andes are still very experimental. With the
data available, we can identify general patterns of the Eastern
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Cordillera, but data on rates and ages can still be improved. To
create robust reconstructions, it is necessary to combine bed
rock exhumation data with provenance and paleo—elevation
studies. Few studies have combined both or all three since the
pioneering studies by Mora et al. (2008) and Parra et al (2009a).

In sum, while a number of aspects of Colombia’s Cenozoic
tectonic evolution remain unclear, our lack of paleogeographic
knowledge is more severe. Furthermore, our understanding of
Central and Western Cordilleras responses to different regional
events is even more limited. Therefore, more detailed and sys-
tematic thermochronological data and provenance and paleo—
elevation studies will be instrumental to geologists providing
more precise answers and support for other disciplines. In the
meantime, working with multiple hypotheses and never with
rigid assumptions is the most convenient and robust approach.
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