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UM ESTUDO SOBRE A REDUCAO DE RUIDOS EM SINAIS CAOTICOS

Ernane José Xavier Costa
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Escola politécnica da Universidade de s&o Paulo
Departamento de Engenharia Eletronica
Laboratério de Comunicagdes e Sinais
CAIXA POSTAL: 61548
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TEMA: sinais caéticos / redugéo de ruido

PALAVRAS CHAVE: Processamento digital de sinais cadticos / caos / ruido

SUMARIO
A metodologia de processamento digital de sinais cadticos vém sendo
muito utilizada na area de fisica de plasma experimental, mas so recentemente
tém-se aplicado esta metologia em problemas de engenharia.
O presente trabalho apresenta um estudo introdutério sobre a redugéo de
ruidos em sinais cadticos experimentais, usando a metodologia desenvolvida nos
trabalhos de Kosterlich & York (1988 e 1990).
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1. INTRODUGAO

A analise de dados experimentais cadticos em sistemas fisicos tem se
tornado muito importante (Abarbanel & col., 1993) em todas as areas da ciéncia
inclusive na engenharia biomédica, haja vista que inumeros desses sistemas
fisicos apresentam sinais cadticos.

Este trabalho tem como objetivo apresentar de maneira sucinta como deve
ser feito o tratamento de ruidos em sinais caoticos, do ponto de vista da
engenharia, analisando o método utilizado nos trabalhos de Kosterlich & York
(1988,1990) os quais desenvolveram algoritmos para a redugdo de ruido de

sinais cadticos.



2. Uma visao da reducao de ruido de sinais caoticos

Se um determinado sinal obtido (sinais de eletroencefalogramas por
exemplo), estiver contaminado por ruido, como €& possivel filtrar o sinal de
interesse de tal forma que possamos fazer uma anélise dos coeficientes de
Lyapunov, dimens&o, etc? Numa analise linear (analise de Fourier por exemplo),
0 problema se resumiria em extrair o sinal que é bem definido do “ruido” de
banda larga. De fato, os sinais necessitam ser separados uns dos outro no
dominio temporal (como veremos no préximo paragrafo). Sucede-se que na
separacdo de sinal, necessitamos caracterizar um ou todos os sinais superpostos
de algum modo que nos permita diferencia-los.

Se um sinal observado s(n) € uma soma de sinais, e dela queremos obter
alguma informacao do sinal s1(n), que seja distinta dos outros sinais da soma

s(n) = s4(n) + sp(n) +...+3(N) (1)
entdo precisamos distinguir alguma caracteristica de s1(n) tal que cada s;(n) (i>1)
individual n&o possua, ou tal que talvez a soma s(n), n&o possua.

A maneira mais natural de distinguir esta caracteristica € atentando para o
fato de que s4(n) ou a sua versdo do espacgo de fase reconstruido Y(n) (aqui
espaco de fase é o espaco 2n-dimensional onde cada ponto neste espacgo

corresponde a uma configuracédo das partes do sistema).

Y(n) =[s4(n),s1(n+T),...,5¢(n+T(d-1))] (2)

satisfaz a regra dinamica Y.(k+1)=Fi(Y1(k)), que ¢é diferente de qualquer outra
regra dinamica associada com sy(n), ss(n),.... Para isso, utilizamos a chamada
analise ndo linear. Entretanto, a distingdo na pratica, nem sempre ¢ perfeita, e
precisamos de métodos que melhorem esta distingdo do sinal si(n) que nos

interessa.

Segundo Abarbanel & col. (1993), podemos identificar trés classes de

sinais aos quais diferentes métodos de reducdo de ruido podem ser aplicados:



1® classe: quando conhecemos a dinamica do sistema (Y = F(Y4))

2% classe: quando temos o sinal limpo ou com pouco ruido do sistema, mas nao

conhecemos a dinamica. Neste caso fazemos uso da estatistica do sinal cadtico

limpo para distinguir do sinal ruidoso.

3% classe: quando ndo sabemos nada a respeito de um sinal limpo (como no

segundo caso) e nada sobre a dindmica que a gera. Este € o chamado caso

“cego’ ( ou “blind”). Os sinais experimentais, em sua grande maioria, caem neste

caso.

Neste trabalho sera tratado o caso de sinais da terceira classe.

Para a redugdo de ruido dos sinais da terceira classe existem varios
métodos descritos na literatura (Cawley, R e col (1992), Hammel S,M (1990)). O
grande problema destes métodos é que necessitamos langar mao de um
determinado nimero de suposigdes explicitas ou implicitas, por isso, néo & de se
esperar que qualquer um dos métodos seja geral, naturalmente, mas que em
algumas gamas de problemas pode-se esperar éxito com alguns deles na
separacao de ruidos de sinais experimentais.

Os métodos de reducdo de ruidos que tém sido mais utilizados na analise
de sinais experimentais, tem sempre duas estratégias:

1- Faz mapas locais usando a informac&o dos vizinhos mais préximos no espago
de fase. Os trabalhos de Kosterlich & York (1988,1990) utilizam este método
(Denominamos mapa um sistema dinémico que evolui no tempo de uma forma
discreta Xis1 = F(Xi) onde x € um vetor n-dimensional e F(x) uma
funcéo nao -linear)

2- Faz uso de filtros lineares localmente ou globalmente e entdo declaram os
dados filtrados como sendo uma orbita “limpa” melhor. Somente “moving
average” ou filtros de resposta de impulso finito s&o utilizados, pois ha a
possibilidade de alterar a estrutura do espago de fase da dinamica, e até a
propria dinamica. O trabalho de Cawley & Hsu(1992) utiliza este método.

Existem outros métodos menos conhecidos, como por exemplo, o trabaiho
recentemente publicado de Bloomhead & col (1996) que utiliza uma técnica de

“feedback” para reduzir ruido de sinais digitais.



3. O algoritmo de redugéo de ruido

Nesta parte descreveremos o método utilizado por Kosterlich & York
(1988,1991), que desenvolveram um algoritmo para atratores cacticos
bidimensionais.

A andlise do espectro de poténcia € insuficiente para caracterizar a
dinamica quando os dados observados sdo cadticos. A simples supresséo de
certas frequéncias pode alterar a dindmica do sinal em estudo.

O objetivo do método & utilizar a dinamica para gerar e corrigir erros na
trajetoria do atrator que resultam em ruido. Isto é realizado em duas etapas.

Na primeira etapa, consideramos 0 movimento de um conjunto de pontos
em uma pequena vizinhanga de cada ponto do atrator para computar uma
aproximacgdo linear da dinamica nesta regido, a chamada linearizagdo de
Eckmamm-Ruelle (Eckmamm & col. 1986). Numa segunda etapa, utilizamos estas

aproximacdes para ajustar uma trajetéria individual que a melhor obedece.



3.1 - A linearizagdo de Eckmann-Ruelle

A natureza discreta do sinal original significa que os pontos no atrator
reconstruido podem ser tratados como iterados de um mapa n&o linear f cuja
forma exata ndo & conhecida. Assumimos entdo que f € quase linear em uma
pequena vizinhanga de cada ponto do atrator x e escrito como

fix) ~ Ax + b = L(x) (3)

Onde A é uma matriz mxm e o vetor b € m-dimensional. A matriz A é a
Jacobiana de fem x.

Esta aproximacdo em x pode ser computada utilizando o método de
minimos quadrados. Dado um ponto de referéncia X.r, temos {x}-1 que € uma
colecdo de n pontos que s&o mais proximos de X.r. Para cada ponto x; guardamos
o préximo ponto no tempo (a imagem de x;), que denominamos y;. O indice i
indica somente que os pontos do atrator estéo contidos a uma pequena distancia
¢ de x. Deve ficar bem claro que x; e y; sdo consecutivos no tempo. Assim, a k-
ésima linha da matriz A representada pelo vetor a, € a k-ésima componente de by
do vetor b sdo dados pela solugdo de minimos quadrados da equagao

Yi=hy + ax (4)

onde i é a k-ésima componente de y. a figura 1 ilustra a idéia desta linearizagéo.

Figura 1 - Diagrama esquematico do 1° estagio da
redugdo de ruido. Uma colegdo de pontos em uma
esfera de raio ¢ sobre o ponto de referéncia Xt €
utilizado para encontrar uma aproximaca@o linear da
dinamica nesta regido (Kosterlich & col. (1990)).

Nesta primeira etapa existem inumeras dificuldades para uma melhor

determinagdo do ajuste linear. Entre as dificuldades estdo o mal



condicionamento do ajuste por minimos quadrados; a dificuldade para
implementar um algoritmo rapido para achar os vizinhos proximos em particular
em nosso caso, utilizamos a sugestdo dada por Kosterlich & York (1990)
analogos aos métodos de otimizacdo de modelos simulac&o de rede: a utilizagéo
de um vetor unidimensonal para armazenar os enderegos dos pontos das janelas
do espaco de fases e, o erro nas variaveis utilizadas, pois, 0 método dos minimos
quadrados tradicional assume que se temos 2 varidveis a ajustar, uma delas e
tomada como exata e, a outra tem um erro estatistico. Existem métodos que

consideram erros em ambas as variaveis.

3.2 Ajuste da trajetéria pela minimizacdo auto-consistente

Os mapas L resultantes da linearizagdo Eckamm-Ruelle computadas
conforme item anterior, para uma sequéncia de pontos, sdo guardados e
utilizados para obter uma nova sequéncia de pontos que, em tese, € mais
consistente com a dinamica. O objetivo € escolher uma nova seqiéncia de
pontos que minimiza a soma de quadrados

>wlx; - x,

I PO (N Y AN M ()

onde L(x)= Ax; + b; e w é o fator de peso. A soma é feita sobre todos os pontos
ao longo da trajetoria. No algoritmo desenvolvido neste trabalho o peso utilizado
foi 1. A equacédo (5) foi resolvida utilizando novamente o método dos minimos
quadrados. Heuristicamente, a equag&o (5) mede a auto-consisténcia dos dados,
assumindo que as aproximacgodes lineares da dinamica s&o precisas.

A trajetéria ajustada pode ser iterada. Isto €, uma vez encontrada a nova
trajetdéria x; , podemos trocar por cada x; na equagéo (5) por X, € computar a nova
seqliéncia {x}.

Colocamos um limite superior na distancia que um ponto pode se mover no
espaco de fase o que facilita o ajuste das trajetorias. Pontos que requerem
grandes ajustamentos ndo sdo movidos. Isto pode ser necessario se a serie
temporal contém buracos (“glitches”) ou se as ndo linearidade s&o significativas

sobre pequenas distancias em certas regides do atrator.



Para demostrar o método descrito neste trabalho escrevemos um
programa em FORTRAN 77 (Apéndice) que utiliza os seguintes passos:

1- divide o atrator em uma grade de pequenas janelas;

2- contabiliza quantos pontos contém cada janela;, a grade ajuda a diminuir o
tempo de pesquisa dos vizinhos mais préximos, pois os vizinhos mais proximos
s6 serdo pesquisados nas janelas vizinhas & escolhida. Deve-se tomar
cuidado, entéo, na escolha da grade e do raio ;

3- contabiliza quantos pontos tém dentro de uma esfera de raio € para um ponto
de referéncia x.« dentro de cada janela da grade néo vazia;

4- calcula os mapas L de um ponto de referéncia Xer,

5- faz a minimizagéo auto-consistente.

Em cada janela é sempre utilizado vérios e diferentes pontos de referéncia

Xref para realizar o ajuste dos dados

Para testar o programa pode-se usar o mapa de Hennon com 5000 pontos
com 1% de ruido. O ruido no mapa de Hennon € gerado da seguinte forma:
Xnr1=1-2 (Xn)2 + D'yn + C'ny
Yne1=Xn
onde n; € um numero aleatorio entre O e 1; C € o fator de ruido, no caso de 1%
C=0.001; e foi utilizadoa=1.4e b=0.3

O resultado pode ser visto na figura 2
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figura 2 - Aplicagio do algoritmo de reducdo de ruido ao mapa de
Hennon sem ruido (A) , com 1% de ruido (B) e fiitrado (C).
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5. Apéndice

C**************************************************************

program filtro
Programa de reducao de ruidos em sinais caoticos 2D
ERNANE JOSE XAVIER COSTA

c
c
c
¢ PROGRAMA EM FORTRAM 77 COMPATIVEL EM MAQUINAS
c SUN Sparc, HP e PC no MS fortram 1.0

c

c

¢ Referencia basicas

c E.J. Kostelich & J.A Yorke (1990)
c

c

C*****************************************************************

c param.f
parameter(mxpts=40000)
c
real*8 x(maxpts), y(mxpts)
real*8 xe(mxpts),ye(mxpts)
real*8 epsion, distfit
real*16 Efit, Eruido
Integer is(mxpts), ipos(mxpts), ipontos, Nerr
integer vb(2000), npball, nler

common /dados/x,y,epslon,distfit,xe,ye
common /dinteger/is,ipos,ipontos,Nerr,nler
common /dreal16/Efit, Eruido

common /dlinear/vb,npball

include 'param.f'
character in*25,out*25
common /arg/in,out

O

c Inicializa algumas variaveis gerais

Efit=0.0
Eruido=0.0

13



o]

(@]

(@]

O00000000O0

Nerr=0
Le parametros

write(*,*)'De ipontos,L,epsion,distfit(dist max de fit)
read(* *)ipontos,L,epsion,distfit

write(*,*)

write(* *)ipontos,L,epsion,distfit

read(*,5)in

read(*,5)out

format(1A25)

L2=L*L

Lp1=L+1

L2mLm1=L2-L-1

Le serie temporal e faz a grade

nler=0
call grade(L)
nler=1

Encontra a grade com maior no. de pontos

npmax=0
do i=Lp1,L2mLm1
npmax1=ipos(i)-ipos(i-1)
npmax=max(npmax,npmax1)
end do

Linealiza os pontos dentro da esfera de raio epsion
nptesfera e'o numero minimo dentro da esfera
nptesfera=5

ix €' a o vetor x(i) de referencia (centro da esfera de raio epsion)

npball e'determinado na subrotina ball(), €'o no. de pontos
dentro da esfera de raio epslon

nptesfera=5
npballtot=0
itot=0

do iter=0,npmax,10
do i=Lp1,L.2mLm1
i0O=ipos(i-1)
i1=ipos(i)
i01=i0+1
np=i1-i0

14



if(np.GE. 1) then
c ix=int(np/2)+i01
ix=i01+iter
if(ix.LE.i1) then
call ball(ix,i,L)
npballtot=npballtot+npball
itot=itot+1
if(npball. GE.nptesfera) then
call linear
end if
end if
end if
end do
write(*,*)'iteracao',iter
call grade(L)
end do
write(*,*)
write(*,*)'Estatistica das esferas de raio epsion'
write(*,*)'No. de esferas contabilizadas',itot
write(*,*)'No. de pontos tot das esfera-epsion’,npballtot
write(*,*)'No. medio pts dentro da esfera’, 1.0*npbalitot/itot
Imprime estatistica de erros
Efit=0.
¢ Eruido=0.
Nptt=0
do i=2,ipontos-1
Efit=Efit+(x(i)-xe(i))*2+(y(i)-ye(i))**2
c Eruido=Eruido+er(i)
Nptt=Nptt+1
enddo
Efit=sqrt(Efit/Nptt)
c Eruido=sqrt(Eruido/Nptt)
¢ R=1.0-(Efit/Eruido)
write(*,*)'No. de pontos ajustados',Nerr
write(*,*)'Erro do fit ' Efit
write(*,*)'Nao ha Erro do ruido'
write(*,*)'Reducao de ruido R nao e possivel calcular '

(@)

O o0

Imprime atrator filtrado

open(unit=2 file=out, status="new')
do i=2,ipontos-1
write(2,25)x(i),y(i)

end do

25 format(F15.10,2X,F15.10)
close(2)

c

C
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end

Fkkdokkdedekddohkkdhddikdirkhridiikikikhhkidhkdkhkhhhihthhkkihkkikhilr

c
c Final do programa principal
C************************************************************
c
c
C************************************************************
C************************************************************
C .

subroutine grade(L)
c

include '‘param.f

character in*25,out*25

common /arg/in,out
c

¢ Le arquivo de dados (so' le arquivo na 1a. vez)

if(nler.NE.1) then
open(unit=1 file=in,status='old")
read(1,*)x(1),y(1)
xe(1)=x(1)
ye(1)=y(1)
xmaxt=x(1)
xmint=x(1)
ymaxt=y(1)
ymint=y(1)
c write(*,*)xmint,xmaxt,ymint,ymaxt
do i=2,ipontos
read(1,*)x(i),y(i)
xe(i)=x(i)
ye(i)=y(i)
xmaxt=max(xmaxt,x(i))
xmint=min(xmint,x(i))
ymaxt=max(ymanxt,y(i}))
ymint=min(ymint,y(i))
end do
close(1)
end if
write(*,*)xmint,xmaxt,ymint,ymaxt

Faz grade com espacamento delta

O o000

=0

k=0

tmin=min(xmint,ymint)
tmax=max(xmaxt,ymaxt)
delta=(abs(tmin)+abs(tmax))/(L-2)
tmin=tmin-delta
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write(*, *)'tmin='tmin,' tmax='"tmax," delta='".delta
c write(*,*)xmint,xmaxt,ymint,ymaxt
do 20 zy=tmin,tmax,delta
do 20 zx=tmin,tmax,delta
c icont=0
Xmin=zx
ymin=zy
xmax=zx+delta
ymax=zy+delta
do 30 i=2,ipontos-1
if(x(i).GT.xmin) then
if(x(i).LE.xmax) then
if(y(i).GT.ymin) then
if(y(i).LE.ymax) then
j=j+1
is(j)=i
c icont=icont+1
endif
endif
endif
endif
30 continue
k=k+1
ipos(k)=j
20 continue

ipm1=0
=0
doi=2,k
ipm=ipos(i)-ipos(i-1)
if(ipm.GT.0) then
ipm1=ipm1+ipm
=i+
end if
end do
write(*,*)'No. de seccoes nao vazias',j
write(*,*)'No. de pontos na grelha',ipm1
write(*,*)'No. medio de pts por seccao ¢/ pts',1.0*ipm1/j
write(*,™)

*
)

(¢}

end

RhhhkkhhhkhkhkhhkRhkhhhkhhhkhhkhhhhkhhkhkkhhkhkhkhhkhkhkhikihhhhhkhkhhhrdhhhk

kkdkhktiikhhhhkihkkkkhhkhhkihhhhkkhiihihkkihhiihkhdkhkhkihkhihhrhhkhk

O0O00O0
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¢ Subrotina ball (acha os pontos dentro da esfera de raio epslon)
c call ball(ix,i,L)

ix: ponto de referencia

ngrade: no. da seccao da grade a linealizar
L:gradeLxL

O 0000

subroutine ball(ix,ngrade,L)

O

include 'param.f

integer npos(0:8)

(@]

define as seccoes vizinhas

O

npball=0
npos(0)=ngrade
npos(1)=ngrade-L
npos(2)=ngrade+L
npos(3)=ngrade-1
npos(4)=ngrade+1
npos(5)=npos(1)-1
npos(6)=npos(1)+1
npos(7)=npos(2)-1
npos(8)=npos(2)+1

x1=x(is(ix))
y1=y(is(ix))
do i=0,8
jO=ipos(npos(i)-1)
j1=ipos(npos(i))
npts=j1-0
if(npts.GT.0) then
jO1=j0+1
do j=j01,j1
distx=x1-x(is()))
disty=y1-y(is(j))
dist=distx*distx+disty*disty
dist=sqrt(dist)
if(dist.LE.epslon) then
npball=npball+1
vb(npball)=j
end if
end do
end if
end do

18



c
c
end
c
c
C************************************************************
C************************************************************
¢ Linealiza pontos dados por minimos quadrados
c
subroutine linear
c
include 'param.f'
c
real*8 sumx1,sumx2,sumx1x2,sumx12,sumx22, sumy1,sumy2,
# sumx1y1,sumx2y1,sumx1y2,sumx2y2,sum2x1,sum2x2,sum2x1x2,
# at1,a12,a21,a22,b1,b2,a11m1,a12m1,a21m1,a22m1,b1m1,b2m1,
# det_a,det_a2 a,bc d aux1,aux2 aux3
real*8 x1,x2,y1,y2,x1j,x2j,x1m,x2m, x1p,x2p,dist,druido
c
data sumx1,sumx2,sumx1x2,sumx12,sumx22 sumy1,sumy2, sumx1 y1,
# sumx2y1,sumx1y2,sumx2y2,sum2x1,sum2x2, sum2x1x2/0.,0.,
#0.,0,0.,0.0.,0.,0.0.,
#0.,0.,0.,0./
c
c Faz as somatorias de y=Ax+b para L(i) (A:matriz e; y,x,b:vetores)
c
do i=1,npball
ivb=vDb(i)
x1=x(is(ivb))
x2=y(is(ivb))
y1=x(is(ivb)+1)
y2=y(is(ivb)+1)
c write(*,*)'x1,x2,y1,y2'

c write(*,*)x1,x2,y1,y2
sumx1=sumx1+x1
sSumx2=sumx2+x2
sumx1x2=sumx1x2+x1*x2
sumx12=sumx12+x1*x1
sSuUMx22=sumx22+x2*x2
sumy1=sumy1+y1
sumy2=sumy2+y2
sumx1y1=sumx1y1+x1*y1
sumx2y1=sumx2y1+x2*y1
sumx1y2=sumx1y2+x1*y2
sSuUmMx2y2=sumx2y2+x2*y2

end do

19



O

OO0 00000

sum2x1=sumx1*sumx1
sum2x2=sumx2*sumx2
sum2x1x2=sumx1x2*sumx1x2

Calculo do determinante det_a para inverter matriz de L(i)
det_a=2*sumx1*sumx2*sumx1x2-sumx12*sum2x2-sum2x1*sumx22
det_a=det_a+npball*(sumx12*sumx22-sum2x1x2)

Calcula os coeficientes a11,a12,a21,a22,b1 e b2 de L(i)
aux1=sumx12*sumx22-sum2x1x2
aux2=sumx2*sumx1x2-sumx1*sumx22
aux3=sumx1*sumx1x2-sumx2*sumx12
b1=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
b2=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a
aux1=sumx1x2*sumx2-sumx1*sumx22
aux2=npball*sumx22-sum2x2
aux3=sumx2*sumx1-npball*sumx1x2
al1=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
a21=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a
aux1=sumx1*sumx1x2-sumx12*sumx2
aux2=sumx1*sumx2-npball*sumx1x2
aux3=npbali*sumx12-sum2x1
a12=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
a22=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a

Faz as somatorias de y=Ax+b para L(i-1) (A:matriz e; ,x,b:vetores)
Zera as somatorias p/ calcular L(i-1)

sumx1=0.
sumx2=0.
sumx1x2=0.
sumx12=0.
sumx22=0.
sumy1=0.
sumy2=0.
sumx1y1=0.
sumx2y1=0.
sumx1y2=0.
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sumx2y2=0.
sum2x1=0.
sum2x2=0.
sum2x1x2=0.

do i=1,npball
ivb=vb(i)
x1=x(is(ivb)-1)
x2=y(is(ivb)-1)
y1=x(is(ivb))
y2=y(is(ivb))
write(*,*)'x1,x2,y1,y2'

c write(*,")x1,x2,y1,y2
sumx1=sumx1+x1
sumx2=sumx2+x2
sumx1x2=sumx1x2+x1*x2
sumx12=sumx12+x1*x1
sSumx22=sumx22+x2*x2
sumy1=sumy1+y1
sumy2=sumy2+y2
sumx1y1=sumx1y1+x1*y1
sumx2y1=sumx2y1+x2*y1
sumx1y2=sumx1y2+x1*y2
sSuUmMx2y2=sumx2y2+x2*y2

end do
sum2x1=sumx1*sumx1
sum2x2=sumx2*sumx2
sum2x1x2=sumx1x2*sumx1x2

(@)

Calculo do determinante det_a para inverter matriz

Calcula os coeficientes a11m1,a12m1,a21m1,a22m1,b1m1 e b2m1 de
(i-1)

OO oo0o0o0

det_a=2*sumx1*sumx2*sumx1x2-sumx12*sum2x2-sum2x1*sumx22
det_a=det_a+npball*(sumx12*sumx22-sum2x1x2)
write(*,*)'det_a L i-1',det_a

Calcula os coeficientes a11,a12,a21,a22,b1 e b2 de L(i)

O 000

aux1=sumx12*sumx22-sum2x1x2
aux2=sumx2*sumx1x2-sumx1*sumx22
aux3=sumx1*sumx1x2-sumx2*sumx12

b1m1=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
b2m1=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a
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aux1=sumx1x2*sumx2-sumx1*sumx22
aux2=npball*sumx22-sum2x2
aux3=sumx2*sumx1-npball*sumx1x2

al1m1=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
a21m1i=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a

aux1=sumx1*sumx1x2-sumx12*sumx2
aux2=sumx1*sumx2-npbali*sumx1x2
aux3=npball*sumx12-sum2x1

a12m1=(aux1*sumy1 + aux2*sumx1y1 + aux3*sumx2y1)/det_a
a22m1=(aux1*sumy2 + aux2*sumx1y2 + aux3*sumx2y2)/det_a

kkhkhikkihhhkikik

Ajuste auto-consistente da trajetoria - minimizando somatoria das
distancia

a=2+at1*a11+a21*a21

bc=a11*a12+a21*a22

d=2+a12*a12+a22*a22

det_a2=a*d-bc*bc

Oo0000.0

do i=1,npball
ivb=vb(i)
x1=x(is(ivb))
x2=y(is(ivb))
x1m=x(is(ivb)-1)
x2m=y(is(ivb)-1)
x1p=x(is(ivb)+1)
x2p=y(is(ivb)+1)
c1=x1+(@t1mi1*x1m+ai2m1*x2m+bim1t)+al1*x1p+a21*x2p-at1*b1-
a21*b2
c2=x2+(a21m1*x1m+a22m1*x2m+b2m1)+a12*x1p+a22*x2p-a12*b1-
a22*b2

c
c Novo ponto obtido pelo ajuste auto-consistente
o}
x1j=(d*c1-bc*c2)/det_a2
x2j=(a*c2-bc*c1)/det_a2
c
¢ Verifica se a distancia entre o ponto obtido no ajuste
c e o antigo e menor que epsion, se for menor aceita
c e se nao for nao aceita
c

x1=xe(is(ivb))
x2=ye(is(ivb))

22



x1m=xe(is(ivb)-1)
x2m=ye(is(ivb)-1)
x1p=xe(is(ivb)+1)
x2p=ye(is(ivb)+1)
dist=(x1-x1j)*2+(x2-x2j)**2
dist=sqrt(dist)
if(dist.LE.disffit) then
x(is(ivb))=x1j
y(is(ivb))=x2
Nerr=Nerr+1

end if
end do
o]
c
(o]

end
c

C dededededodododdedodededododdod dededededede dedededodo e dokkododdedodedododo kool dedededededededodedeodeodokokek ke

C REARAIRRKIRKKIRkkdRkkkhihkkikikihkkhkhkhkikhkhkhhhhkhkhkhkhkihhkhhkhkhhkkkkihik
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