
Journal of Algebra 628 (2023) 545–561
Contents lists available at ScienceDirect

Journal of Algebra

journal homepage: www.elsevier.com/locate/jalgebra

Free Bol loops of exponent two ✩

A. Grishkov a,b,∗, M. Rasskazova c, G. Souza Dos Anjos a

a Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do matão 
1010, São Paulo, SP, 05508-090, Brazil
b Omsk State a.m. F.M.Dostoevsky University, Russia
c Omsk State Technical University, Omsk, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2022
Available online 23 February 2023
Communicated by Alberto Elduque

Keywords:
Bol loop
Free loop

A Bol loop is a loop that satisfies the identity x((yz)y) =
((xy)z)y. In this paper, we give a construction of the free Bol 
loops of exponent two. We define a canonical form of all their 
elements and describe their multiplication law based on this 
form.
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1. Introduction

A loop consists of a nonempty set L with a binary operation ∗ such that, for each a, b ∈ L, 
the equations a ∗ x = b and y ∗ a = b have unique solutions for x, y ∈ L, and there exists 
an identity element 1 ∈ L satisfying 1 ∗ x = x = x ∗ 1, for any x ∈ L. A (right) Bol loop
is a loop that satisfies the (right) Bol identity

x((yz)y) = ((xy)z)y. (1)
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One of the most interesting subvarieties of Bol loops is the variety B2 of Bol loops of 
exponent two. Every loop in B2 is a Bruck loop, i.e., a Bol loop with the automorphic 
inverse property ((xy)−1 = x−1y−1, for every x, y in the loop). Many constructions of 
non-associative loops of B2 can be found in the literature (see [7,8] for example), the 
minimal such loop has order 8. Some of the most important problems involving loops 
of B2 are those related to solvability and existence of simple loops (see [1,3,9,10]). In 
[10], a class of non-associative simple Bol loops of exponent 2 was constructed. The 
smallest loop in this class, which is also the smallest non-associative simple loop in B2
([3, Theorem 3]), has order 96.
In this paper, we give a construction of free objects in the variety B2. Let B(X) be 
the free Bol loop of exponent two with free set of generators X. We construct a subset 
R(X) of B(X) such that every element b ∈ B(X) \ {1} has the canonical form b =
(...(b1b2)b3...)bm)bm−1)...)b2)b1, where bi ∈ R(X) and bi �= bi+1, for all i, and then we 
describe the multiplication law of B(X) based on this form. Furthermore, we prove that 
the nuclei and the center of B(X) are trivial.

2. Preliminaries

Let L be a loop and x ∈ L. The bijections Lx, Rx : L → L defined by (y)Lx = xy

and (y)Rx = yx are called the left and right translations of x in L, respectively. The 
right multiplication group of L is the group Mltr(L) = 〈Rx | x ∈ L〉 and the right inner 
mapping group of L is Innr(L) = {φ ∈ Mltr(L) | (1)φ = 1}. The subgroup Innr(L) of 
Mltr(L) is core-free, i.e., the only subgroup of Innr(L) that is normal in Mltr(L) is the 
trivial subgroup {Id}, where Id is the identity mapping of L.
The left, middle and right nuclei of L, denoted respectively by Nλ(L), Nμ(L) and Nρ(L), 
are defined by:

Nλ(L) = {a ∈ L | a(xy) = (ax)y ∀ x, y ∈ L},
Nμ(L) = {a ∈ L | x(ay) = (xa)y ∀ x, y ∈ L},
Nρ(L) = {a ∈ L | x(ya) = (xy)a ∀ x, y ∈ L}.

The nucleus of L is defined by N(L) = Nλ(L) ∩Nμ(L) ∩Nρ(L) and the center of L is 
the set Z(L) = {a ∈ N(L) | ax = xa ∀ x ∈ L}. The nuclei of L are subgroups of L and 
the center of L is an abelian subgroup of L.
Bol loops are loops that satisfy the identity (1). This class of loops contains Moufang 
loops and groups. Furthermore, Bol loops are power-associative and right alternative, 
and have the right inverse property. Other basic facts from loop theory and Bol loops 
can be found in [4,11].
The Baer correspondence ([2]) is an important tool in the study of Bol loops (cf. [1]). 
From it, we obtain that Bol loops are related to twisted subgroups, as we can see in the 
next proposition. A subset K of a group G is called a twisted subgroup of G if 1 ∈ K and 
x−1, xyx ∈ K, for all x, y ∈ K.
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Proposition 2.1. ([5, Proposition 5.2]) Let (G, H, B) be a Baer triple, i.e., G is a group, 
H is a subgroup of G and B is a right transversal of H in G. If B is a twisted subgroup 
of G, then B with the operation ∗ defined by

b ∗ b′ = c, where bb′ = hc, for some h ∈ H, (2)

is a Bol loop. Conversely, if (B, ∗) is a Bol loop and H is core-free, then B is a twisted 
subgroup of G.

If L is a loop, the triple (G, H, B), where G = Mltr(L), H = Innr(L) and B = {Rx | x ∈
L}, is a Baer triple. In this condition, L is a Bol loop if and only if B is a twisted 
subgroup of G [1, 6.1].
Let B be a Bol loop of exponent n and X be a subset of B. We say that X is a free set 
of generators of B if X generates B and every mapping between X and a Bol loop B′

of exponent n can be extended to a homomorphism between B and B′. We say that B
is a free Bol loop of exponent n if it has a free set of generators.
Now consider B as a free Bol loop of exponent two. A subset T ⊂ B is a prebasis of B
if for every b ∈ B there exist b1, ..., bn ∈ T such that b = b1b2...bnbn−1...b2b1. Here and 
in the following, we will write v = v1v2....vn if v = (...((v1v2)v3)...)vn. A subset T ⊂ B

is an independent if for every a1, ..., am, b1, ..., bn ∈ T , such that bi �= bj and ap �= aq, for 
all i, j, p, q, from a1a2...amam−1...a2a1 = b1b2...bnbn−1...b2b1, we have that n = m and 
ai = bi, i = 1, ..., n. A subset T ⊂ B is a basis of B if T is an independent prebasis of B.
A group G is a free 2-group if it is a free product of cyclic groups of order two, i.e., it 
has the form G =

∏
x∈T � < x|x2 = 1 >.

3. Construction of a basis of free Bol loops of exponent two

Let X be a finite ordered set of letters and P = P (X) be the set of all non-associative 
words on X. We denote the empty word by 1. For v ∈ P , by Sub(v) we denote the set 
of all subwords of v. Note that if v = v1v2, then Sub(v) = {v} ∪ Sub(v1) ∪ Sub(v2).
For v ∈ P , the length of v, denoted by |v|, is the number of letters in the word v. Note 
that |1| = 0.
Let C(X) = {uu, (uv)v | u, v ∈ P} and W = W (X) = {v ∈ P | Sub(v) ∩ C(X) = ∅}. 
Define the mapping π : P → W , where, for v ∈ P , π(v) is given by induction on |v| using 
the following rules:
(i) π(x) = x, if x ∈ X,
(ii) If u, v ∈ W , then

π(uv) =

⎧⎪⎨
⎪⎩

1, if u = v,

a, if u = av,

uv, if uv ∈ W,

(iii) If u /∈ W or v /∈ W , then π(uv) = π(π(u)π(v)).
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Notice that in the case (iii) we get |π(u)π(v)| < |uv|. Hence this definition is correct.

Lemma 3.1. Let u, v, w, v1, ..., vn ∈ P and a ∈ W . Then:
(a) π(uv) = π(π(u)π(v)).
(b) π(uv.v) = π(u.vv) = π(u).
(c) π(u) = π(v) if and only if π(uw) = π(vw).
(d) If π(uv1v2...vn) = π(v), then π(u) = π(vvn...v2v1).
(e) If π(v1v2...vn) = a, then π(avn...v2v1) = 1.
(f) If π(uv) = π(uw), then π(v) = π(w).

Proof. The item (a) follows from the definition of π. The item (c) is a consequence of 
(a) and (b), and the items (d) and (e) are consequences of (b) and (c). Let us prove (b) 
and (f).
(b) By (a), we have π(uv.v) = π(π(π(u)π(v))π(v)) and π(u.vv) = π(u). If π(u)π(v) ∈
W , then π(π(π(u)π(v))π(v)) = π((π(u)π(v))π(v)) = π(u). If π(u) = cπ(v), then 
π(π(π(u)π(v))π(v)) = π(cπ(v)) = π(u).
(f) By (a), we only have to prove the case where u, v, w ∈ W . If either 1 ∈ {u, v} or 
u = v, the result is trivial. Suppose that u, v ∈ W \ {1} and u �= v. If u = cv, for some 
c �= 1, then π(uw) = c. Since |c| < |u|, we have uw /∈ W . Thus u = dw, for some d �= 1, 
and we have cv = u = dw. Therefore w = v.
Now suppose that uv ∈ W . Since |uv| > |u|, it follows that uw ∈ W . Hence uw = uv

and we have w = v. �
Lemma 3.2. Let v = v1v2v3...vm, where vi ∈ W and vi �= vi+1, for i = 1, ..., m − 1. If 
|π(v)| < |v|, then there are three possibilities:
(a) v1v2 ∈ W and vi = v1v2v3...vi−1, for some i > 2,
(b) There exists v′1 ∈ W such that v1 = v′1vjvj−1...v3v2, where 1 < j < m and v′1vj+1 ∈
W ,
(c) v1 = v′1vmvm−1...v2, for some v′1 ∈ W .

Proof. If v1v2 ∈ W , then there exists i ∈ {3, ..., m} such that v1v2...vi−1 ∈ W and 
v1v2...vi−1vi /∈ W . Since vi �= vi+1, we have vi = v1v2v3...vi−1. When v1v2 /∈ W we have 
that v1 = αv2, for some α ∈ W . If v1 �= βvmvm−1...v2, for every β ∈ W , then there exist 
v′1 ∈ W and j ∈ {2, 3, ..., m −1} such that v1 = v′1vjvj−1...v3v2 and v′1 �= γvj+1, for every 
γ ∈ W . Hence v′1vj+1 ∈ W . �
Remark. In the Lemma 3.2 it is possible that v′1 = 1.

The following result is a consequence of Lemma 3.2.

Corollary 3.3. Let v = v1v2v3...vm, where vi ∈ W and vi �= vi+1, for i = 1, ..., m − 1. 
There are four possibilities:
(a) π(v) = 1,
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(b) π(v) = vlvl+1...vm, where π(v1v2...vl−1) = 1 and 1 ≤ l ≤ m,
(c) π(v) = v′lvj+1vj+2...vm, where π(v1v2...vl−1) = 1, vl = v′lvjvj−1...vl+1, v′l �= 1 and 
1 ≤ l < j < m,
(d) π(v) = v′l, where π(v1v2...vl−1) = 1, vl = v′lvmvm−1...vl+1, v′l �= 1 and 1 ≤ l < m.

Consider X = {x1, x2, ..., xr}. We define an order > in W inductively by the following 
rules:
(i) xi > xj , if i > j,
(ii) u > v, if |u| > |v|,
(iii) If |u| = |v|, u = u1u2, v = v1v2, then u > v in the following cases:
(iii.1) u2 > v2,
(iii.2) u2 = v2 and u1 > v1.

Definition 3.4. For any y ∈ P there exists unique canonical decomposition y =
y1y2...ym−1y

′
m such that |y1| = 1. We denote yt = y′mym−1...y1. If y′m = ykyk−1...ym

with |yk| = 1, then (yt)t = ytt = y1y2...ym....yk and yttt = ykyk−1...ym....y1 = yt.

Definition 3.5. In notation above, define the following:
(i) ||y|| = m,
(ii) y∗ = {x ∈ P |xtt = yt, or xtt = ytt}.
(iii) y(i) = ykyk−1...yi(y1y2...yi−1), i = 3, ..., k,
(iv) y(i) = y1y2...yi−1(ykyk−1...yi), i = 2, ..., k − 1.

Example 3.6. Let X = {a, b, c} and y = (a(bc))((ca)b). Then the canonical decompo-
sition of y is y = y1y2y

′
3, where y1 = a, y2 = bc, y′3 = (ca)b = y5y4y3, and hence 

||y|| = 3 and ||yt|| = ||ytt|| = 5. Furthermore, yt = (((ca)b)(bc))a, ytt = (((a(bc))b)a)c, 
y(3) = y5y4y3(y1y2), y(4) = y5y4(y1y2y3), y(5) = y5(y1y2y3y4), y(2) = y1(y5y4y3y2), 
y(3) = (y1y2)(y5y4y3), and y(4) = (y1y2y3)(y5y4). Note that y = y(3) and y∗ =
{yt, ytt, y(3), y(4), y(5), y(2), y(3), y(4)}.

Define the set of symmetric words of P by S(X) = {y1y2...ymym+1ym...y1 | yi ∈ P, m >
0}.

Lemma 3.7. In notation above, we have:
(a) y∗ = {ytt = ytttt, yt, y(i+1), y(i), i = 2, ..., k − 1} and |{ytt, y(i)|i = 2, ..., k − 1}| =
|{yt, y(i)|i = 3, ..., k}| = k − 1.
(b) If yt = ytt, then y∗ = {ytt, y(i) = y(k−i+2), i = 2, ..., k − 1} and |y∗| = k − 1.
(c) If yt �= ytt, then |y∗| = 2(k − 1) and y∗ ∩ S(X) = ∅.
(d) If yt, ytt ∈ W , then y∗ ⊂ W .
(e) min{yt, ytt} = min{x|x ∈ y∗}.

Proof. (a) It is immediate that {yt, ytt, y(i+1), y(i), i = 2, ..., k−1} ⊂ y∗ and |{ytt, y(i)|i =
2, ..., k − 1}| = |{yt, y(i)|i = 3, ..., k}| = k − 1.
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Let z ∈ y∗. We have that ztt = z1z2...zr, where z = z1z2...z
′
l, z′l = zrzr−1...zl and 

|z1| = |zr| = 1. Since |z1| = |zr| = 1 and ztt ∈ {yt, ytt}, we have k = r. If ztt = ytt, then 
zi = yi, for all i, and so z ∈ {ytt, y(i)|i = 2, ..., k − 1}. If ztt = yt, then zk+1−i = yi, for 
all i, and so z ∈ {yt, y(i)|i = 3, ..., k}. Therefore y∗ = {yt, ytt, y(i+1), y(i), i = 2, ..., k− 1}.
(b) If yt = ytt, then y(i) = y(k−i+2), for all i ∈ {2, ..., k− 1}. Thus the claim follows from 
(a).
(c) If y(i) = y(j), for some i and j, then a simple calculation shows that j = k − i + 2
and yl = yk+1−l, for all l, and so yt = ytt. Hence |y∗| = 2(k − 1) by (a). By a similar 
argument, we can get that y(i), y(i+1) /∈ S(X), for all i.
(d) Let y(i) = y1y2...yi−1(ykyk−1...yi) ∈ y∗. Since yt, ytt ∈ W , we have y1y2...yi−1,

ykyk−1...yi ∈ W , yi−1 �= yi and yi−1 �= ykyk−1...yi. Then y1y2...yi−1 �= α(ykyk−1...yi), 
for all α ∈ P . Hence y(i) ∈ W . By similar arguments, we can conclude that y(j) ∈ W , 
for all j. Therefore, y∗ ⊂ W .
(e) It is clear that ytt = min{ytt, y(i)|i = 2, ..., k − 1} and yt = min{yt, y(i)|i = 3, ..., k}. 
Thus the claim follows from (a). �
Remark. We can define an equivalence relation ∼ on P (X) by x ∼ y if and only if 
x∗ ∩ y∗ �= ∅. The equivalence classes of this relation can be of three types: O1, O2 and 
O3, where:
(i) O1 ⊂ W (X) \ S(X),
(ii) O2 ⊂ W (X) and yt = ytt ∈ S(X), for y ∈ O2,
(iii) O3 �⊂ W (X).

Definition 3.8. For y ∈ W , let y0 = min{yt, ytt}. Define the set D = D(X) =
{y0|y, y0, yt0 ∈ W, yt0 �= y0}.

Example 3.9. If X = {a, b} with b > a and Wn = {y ∈ W | |y| = n}, then
D ∩W5 = {a, b, ba, ((ba)b)a, (b(ab))a, (b(ba))a, ((ba)(ab))a, ((a(ba))b)a, ((b(ab))a)b,
((b(ba))b)a, (b(a(ab)))a, (b(a(ba)))a, (b(b(ab)))a, (b(b(ba)))a, (b((ab)a))a, (b((ba)b))a}.

Definition 3.10. Define the following sets:
(i) R1 = X = {x1, x2, ..., xr},
(ii) Rn = Rn−1 ∪{y ∈ D(X) | |y| ≤ n, y = u1u2...um, ui ∈ Rn−1, i = 1, ..., m}, for n > 1,
(iii) R(X) =

⋃
n∈N

Rn.

Notice that X ⊂ R(X) ⊂ W and R(X) ∩ S(X) = ∅.

Corollary 3.11. Let b = b1b2...bn ∈ W , be such that b1 ∈ X. If b ∈ R(X), then

b < bt, b∗ ⊂ W, bn ∈ X and bi ∈ R(X), for i = 1, ..., n. (3)
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Example 3.12. If X = {a, b} with b > a, then:
R5 = {a, b, ba, ((ba)b)a, (b(ba))a, ((a(ba))b)a, ((b(ba))b)a}.
Note that (b((ba)b))a, (b((ab)a))a ∈ (D ∩W5) \R5, since (ba)b, (ab)a ∈ S(X).

Definition 3.13. B(X) = {1} ∪ {y ∈ W (X)|y = y1y2...yn, yi ∈ R(X)}.

Remark. Let y = y1y2...yn ∈ P be such that yi ∈ R(X), for all i. By Lemma 3.2, y ∈ W

if and only if y1y2...yi−1 �= yi �= yi+1, for i ∈ {1, ..., n − 1}.

4. Proof that R(X) is a basis of B(X)

For proof that R(X) is a basis of B(X) we need the detailed information about π(b) if 
b = b1...bk...b1, bi �= bi+1 and bi ∈ R(X). We begin with the following simple fact.

Lemma 4.1. Let b1, b2, ...bk ∈ P . Then π(b1b2...bkbk−1...b1) = 1 if and only if π(bk) = 1.

Proof. We have π(b1...bk...b1) = π(π(b1)...π(bk)...π(b1)). If π(bk) = 1, then it is clear 
that π(b1...bk...b1) = 1.
Now suppose that π(b1...bk...b1) = 1. Omitting all bj , bj+1 such that π(bj) = π(bj+1), 
we get that π(π(b1)...π(bk)...π(b1)) = π(a1a2...arar−1...a1), where r ≤ k, ar = π(bk), 
ai �= ai+1 and ai ∈ W \ {1}, for all i < r.
We will prove that ar = 1 by induction on r. Consider r > 1 and define ar+i = ar−i, for all 
i. Let l be the minimal such that π(a1a2...al) = 1. If l < 2r−1, then π(al′al′−1...a1) = 1, 
where l′ = 2r − 1 − l, and so π(a1a2...al′) = 1 by Lemma 3.1. Thus we only have to 
consider three cases:
(i) l < r. Then π(al+1...ar...al+1) = 1, and hence ar = 1 by the induction hypothesis.
(ii) l = r. Then π(a1a2...ar) = π(a1a2...ar−1) = 1, and we get ar = 1.
(iii) l = 2r − 1. By Lemma 3.2, if ar �= 1, then either a1 = a1a2...arar−1...a2 or a1 =
vasas−1...a2, for some v �= 1 and s > 0 such that 2(s − 1) = 2r − 3, but both cases are 
impossible. Hence ar = 1. �
Lemma 4.2. Let n > 1 and c, w1, w2, ..., wn ∈ W \ {1} be such that cw1 ∈ W , wi ∈
Sub(c) ∪ Sub(w1) and wi−1 �= wi, for all i. Then cw1w2...wn ∈ W .

Proof. For 1 ≤ m < n, suppose that cw1w2...wm ∈ W . Since wm+1 ∈ Sub(c) ∪ Sub(w1), 
we have that wm+1 �= cw1w2...wm. Since wm �= wm+1, there is no β such that 
cw1w2...wm = βwm+1. Hence cw1w2...wmwm+1 ∈ W . �
Lemma 4.3. Let k > 1 and w = w1w2...wkwk−1...w1 ∈ S be such that wi ∈ W \ {1}, 
w1w2 ∈ W and wi �= wi+1 for all i. There are two possibilities:
(a) π(w) = w or
(b) There exists l such that 3 ≤ l ≤ k and wl = w1w2...wl−1.
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Proof. If k = 2, then w1w2w1 ∈ W since w1w2 �= αw1, for all α ∈ W . Hence π(w) = w.
Suppose that k ≥ 3 and π(w) �= w, and define wk+i = wk−i, for all i. By Lemma 3.2 (a), 
there exists l such that 2 < l ≤ 2k − 1 and wl = w1w2...wl−1. Since wl is not a proper 
subword of itself, we must have l ≤ k. �
Proposition 4.4. Let b = b1b2...bkbk−1...b1 ∈ S be such that b1 ∈ W \ {1}, bi ∈ R and 
bi−1 �= bi for all i > 1. Then π(b) = λb1, where λ = 1 implies that k = 1 or b1 /∈ R.
Moreover, if b1 ∈ R, then π(b) ∈ R if and only if k = 1.

Proof. If k ∈ {1, 2} it is easy to see that the claim holds. Suppose that the claim holds 
for all k′ < k, where k ≥ 3. First we will prove the following lemmas.

Lemma 4.5. Suppose that bm = b1b2...bm−1, where 3 ≤ m ≤ k. Then π(b) =
εbm−1...b2b1 /∈ R.

Proof. We have three cases:
(i) m = k. Thus bk = b1b2...bk−1, and hence π(b) = π(bk−1...b2b1). Since bk−1...b2b1 ∈
b∗k, it follows that π(b) = bk−1...b2b1. Since bk ∈ R and R ∩ S = ∅, we have π(b) =
bk−1...b2b1 /∈ R.
(ii) m = k − 1. Thus bk−1 = b1b2...bk−2 and π(b) = π(bkbk−1...b1). Since |bk−1| > 1
and bk ∈ R, we have bkbk−1 ∈ W by (3). By Lemma 4.2, bkbk−1...b1 ∈ W , and then 
π(b) = bkbk−1...b1. Since b1b2...bk−1 /∈ W , it follows that b1b2...bk ∈ π(b)∗ \W , and hence 
π(b) /∈ R by (3).
(iii) m < k−1. Thus π(b) = π(bm+1...bkbk−1...bm+1...b2b1). By the induction hypothesis, 
π(bm+1...bkbk−1...bm+1) = λbm+1, where λ �= 1 because m + 1 < k and bm+1 ∈ R. Then 
π(b) = π(bm+1...bkbk−1...bm+1...b2b1) = π(λbm+1...b2b1). If bm = λbm+1, then π(b) =
π(bm−1...b2b1). Since bm−1...b2b1 ∈ b∗m, it follows that π(b) = bm−1...b2b1. Furthermore, 
since bm ∈ R and bm−1...b2b1 �= bm, we have π(b) = bm−1...b2b1 /∈ R.
When λbm+1bm ∈ W we have that λbm+1bm...b2b1 ∈ W by Lemma 4.2. Then π(b) =
λbm+1...b2b1. Since b1b2...bm /∈ W , we have b1b2...bm+1λ ∈ π(b)∗\W , and hence π(b) /∈ R

by (3).
Therefore, we proved Lemma 4.5. �
Define bk+i = bk−i, for all i. Note that b = b2k−1b2k−2...b1 = b1b2...b2k−1.

Lemma 4.6. Suppose that for n ∈ {2, 3, ..., k}, b1 ∈ R and we have one of the following 
situations:
(a1) bn = b′nb1b2...bn−1, where b′n �= 1, or
(a2) bn = b2...bn−1.
Then π(b2k−1b2k−2...bn+1) �= 1.

Proof. Suppose by contradiction that π(b2k−1b2k−2...bn+1) = 1. We have two cases:
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(i) n < k. Let v = b1b2...bn. Then π(vbn+1...bk...bn+1) = 1, and so π(v) =
π(bn+1...bk...bn+1) by Lemma 3.1. By the induction hypothesis, we get that π(v) = λbn+1, 
where λ = 1 if and only if n + 1 = k. Applying Corollary 3.3 to the word v = b1b2...bn, 
we have two cases π(v) = αbn (in the cases (b) and (c)) or π(v) = b′l, π(b1...bl−1) = 1, 
bl = b′lbnbn−1...bl+1 (case (d)). We note that the case (a) is impossible since π(v) �= 1.
Let π(v) = αbn. If α = 1, then λbn+1 ∈ R. Since b1 ∈ R, we get that n + 1 = k by the 
induction hypothesis, and hence bn = π(v) = bn+1, which is a contradiction. Suppose 
that α �= 1. Since bn �= bn+1, it follows that λ = 1, and then |bn| = 1 by (3), which 
contradicts (a1) and (a2).
Let π(v) = b′l and l = 1. Then b1 = λbn+1bnbn−1...b2. In (a1) this does not occur since 
b1 ∈ Sub(bn). Now consider the case (a2). Since π(b2b3...bn) = 1 in this case, we get that 
bt1 ∈ b∗1 \W , and then b1 /∈ R by (3), a contradiction.
If π(v) = b′l and 1 < l < n, π(b1b2...bl−1) = 1 and bl = b′lbnbn−1...bl+1. Then we have a 
contradiction since bl ∈ Sub(bn) in both cases (a1) and (a2).

(ii) n = k. By assumption, we have that π(b1b2...bk−1) = 1, and then π(bk−1...b2b1) = 1
by Lemma 3.1. First, consider the case (a1). Since bk = b′kb1b2...bk−1 and π(bk−1...b2b1) =
1, it follows that btk ∈ b∗k \W , and then bk /∈ R by (3), a contradiction.
Now consider the case (a2). Since bk = b2...bk−1, then |bk−1| = 1 by (3), and so 
bk−1bk−2 ∈ W . Since π(bk−1...b2b1) = 1, it follows that there exists l such that 
bl = bk−1bk−2...bl+1 by Lemma 3.2. If l > 1, then π(bk−1bk−2...bl+1bl) = 1, and so 
btk ∈ b∗k \ W , which is a contradiction. If l = 1, then b1 = btk, which is a contradiction 
since b1, bk ∈ R.
Therefore, Lemma 4.6 is proved. �
Now we can finish the proof of Proposition 4.4. First, let us prove that π(b) = λb1, for 
some λ ∈ W , where λ �= 1 if b1 ∈ R. By Lemma 4.1, we have that π(b) �= 1, and then 
there are three possibilities according to Corollary 3.3:

(i) π(b) = b′nbm...b1, where bn = b′nbm+1bm+2...bn−1, 1 ≤ m < n ≤ 2k − 1 and b′n �= 1 if 
m = 1. Thus we have the desired result.

(ii) π(b) = b′n, where bn = b′nb1b2...bn−1, 1 < n < 2k − 1, b′n �= 1 and 
π(b2k−1b2k−2...bn+1) = 1. Since bn can not be a proper subword of itself, we get n ≤ k. 
Furthermore, we get that b1 ∈ R by (3). Then we have a contradiction with Lemma 4.6.

(iii) π(b) = bnbn−1...b1, where π(b2k−1b2k−2...bm+1) = 1, bm = bn+1bn+2...bm−1 and 
1 ≤ n < m ≤ 2k − 1. If n > 1 or n = 1 and b1 /∈ R, then we have the desired result. 
Suppose that π(b) = b1 ∈ R. We have two cases:

(iii.1) |b2| > 1. By (3), b1 can not be of the form b′1b2, and then b1b2 ∈ W . By Lemmas 4.3
and 4.5, we get that π(b) /∈ R, which is a contradiction.

(iii.2) |b2| = 1. Note that bm = b2b3...bm−1. Since bm can not be a proper subword of 
itself and b2b3...bk...b2 /∈ R, it follows that m ≤ k. Then π(b2k−1b2k−2...bm+1) �= 1 by 
Lemma 4.6, which is a contradiction.
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Now we only have to prove that π(b) /∈ R when b1 ∈ R. Consider that b1 ∈ R and 
π(b) = λb1, where λ �= 1. If |b1| > 1, then π(b) /∈ R by (3). If |b1| = 1, then b1b2 ∈ W , 
and as in (iii.1) we get that π(b) /∈ R. �
Corollary 4.7. Let b = b1b2...bkbk−1...b1 ∈ S and g = g1g2...gngn−1...g1 ∈ S be such that 
bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If π(b) = π(g), then b1 = g1.

As a consequence of Proposition 4.4 and Lemma 4.5 we have the following result:

Corollary 4.8. Let b = vb1b2...bkbk−1...b1v ∈ S be such that v ∈ W \{1}, vb1 ∈ W , bi ∈ R

and bi−1 �= bi for all i > 1. There are two possibilities:
(a) π(b) = b,
(b) There exists m such that 2 ≤ m ≤ k and π(b) = εbm−1...b1v, where ε ∈ W .

Lemma 4.9. Let b = vb1v ∈ S and g = vg1g2...gngn−1...g1v ∈ S be such that v ∈ W \{1}, 
v �= b1, v �= g1, b1, gj ∈ R, and gj−1 �= gj, for all j. If π(b) = π(g), then b = g.

Proof. If n = 1, then π(vb1) = π(vg1). By Lemma 3.1 (f), b1 = g1, and hence b = g. 
Now suppose that n > 1 and the claim holds for every n′ < n. We will prove this result 
in two steps:
(i) First we will prove that there exists α ∈ W \ {1} such that αb1α ∈ W , 
π(αb1g1g2...gngn−1...g1b1α) = αb1α and either αb1 �= g1 or α = v. We have two cases:
(i.1) v = αb1, with α �= 1. Then π(vb1v) = π(αv) = π(vg1g2...gngn−1...g1v), and hence 
by Lemma 3.1 (c):

π(α) = π(vg1g2...gngn−1...g1). (4)

Using Lemma 3.1 (c) and v = αb1 in (4), we get π(αb1α) = π(αb1g1...gn...g1b1α).
(i.2) vb1v ∈ W . By π(vg1g2...gngn−1...g1v) = π(vb1v) = vb1v and Lemma 3.1 (e), we get 
π(vb1g1g2...gngn−1...g1v) = 1. Thus

π(vb1g1...gn...g1b1v) = π(vb1g1...gn...g1vvb1v) = π(π(vb1g1...gn...g1v)π(vb1v)) = vb1v

and we put α = v.
(ii) Now consider α ∈ W \ {1} as in (i). If b1 = g1, then

π(αb1g1g2...gn...g1b1α) = π(αg2...gn...g2α) = αb1α.

If α �= g2, then by induction b1 = g2...gn...g2. Since b1 ∈ R and R ∩ S = ∅, then n = 2
and b1 = g2, which is a contradiction with b1 = g1 �= g2. In the case α = g2 and n > 2, we 
get π(g3...gn...g3) = αb1α = g2b1g2. By Corollary 4.7, we have g3 = g2, a contradiction. 
Finally, if α = g2 and n = 2, we have π(g2) = g2b1g2. Since g2 ∈ R, hence b1 = g2, which 
is a contradiction with b1 = g1.
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Suppose b1 �= g1. By the choice of α, either αb1g1 ∈ W or g1 = αb1. We have two cases:
(ii.1) g1 = αb1. Then αb1α = π(αb1g1...gngn−1...g1b1α) = π(g2...gngn−1...g1b1α). Hence 
by Lemma 3.1 (c) we get π(g2...gngn−1...g1) = α and αg1 = αb1α ∈ W . Using the same 
lemma again, we get π(g2...gngn−1...g2) = αg1. If n = 2, then g2 = αg1 ∈ R, and hence 
g1 ∈ X, which is a contradiction with g1 = αb1. Then n > 2. By Proposition 4.4, there 
exists λ �= 1 such that αg1 = λg2, and then g1 = g2, a contradiction.
(ii.2) αb1g1 ∈ W . Note that αb1α �= αb1g1...gn...g1b1α. Then there exists m such that 
1 < m ≤ n and gm = αb1g1...gm−1 by Lemma 4.3. We have three more cases:
(ii.2.1) m = n. Then αb1α = π(gn−1...g1b1α). Since gn−1...g1b1α ∈ g∗n and gn ∈ R, it 
follows that αb1α = gn−1...g1b1α, which is a contradiction because g∗n ∩ S(X) �= ∅.
(ii.2.2) m = n − 1. Then αb1α = π(αb1g1...gn...g1b1α) = π(gngn−1...g1b1α). Since 
|gn−1| > 1 and gn ∈ R, we have gngn−1 ∈ W . By Lemma 4.2, gngn−1...g1b1α ∈ W . 
Thus αb1α = gngn−1...g1b1α, and hence α = gngn−1...g1, which is a contradiction be-
cause α ∈ Sub(gn−1).
(ii.2.3) m < n − 1. Then αb1α = π(gm+1...gn...g1b1α). By Proposition 4.4, there exists 
λ �= 1 such that αb1α = π(λgm+1gm...g1b1α) and λgm+1 ∈ W . If gm = λgm+1, simi-
larly to (ii.2.1) we get a contradiction. If λgm+1gm ∈ W , similarly to (ii.2.2) we get a 
contradiction. �
Lemma 4.10. Let b = vb1b2...bkbk−1...b1v ∈ S and g = vg1g2...gngn−1...g1v ∈ S be such 
that v ∈ W \ {1}, v �= b1, v �= g1, bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If 
π(b) = π(g), then b = g.

Proof. We will prove this result by induction on k. We can consider n ≥ k > 1. First we 
will prove the Affirmation 1:

Affirmation 1. If b1 = g1, then b = g.

Proof of Affirmation 1. We have that π(vb1b2...bkbk−1...b2) = π(vb1g2...gngn−1...g2). 
Then π(π(vb1)b2...bkbk−1...b2π(vb1)) = π(π(vb1)g2...gngn−1...g2π(vb1)). If b2 �= π(vb1), 
then g2 �= π(vb1) by Proposition 4.4 and Corollary 4.7, and hence the result follows by 
the induction hypothesis.
Suppose that b2 = π(vb1). If k = 2, then π(b2g2...gngn−1...g2b2) = b2. By Proposi-
tion 4.4, we must have b2 = g2 and n = 2, and then b = g. Using a similar argument, 
we get that k = 3 implies b = g. Now consider k > 3. Then π(b3...bkbk−1...b3) =
π(b2g2g3...gngn−1...g3g2b2). By b2 �= b3 and Corollary 4.7, we must have b2 = g2 and 
b3 = g3, and hence the desired result follows by the induction hypothesis.
Therefore, Affirmation 1 is proved.

By Proposition 4.4, there exist α, β ∈ W such that π(vb1...bk...b1v) = αv and 
π(vg1...gn...g1v) = βv. We have ten cases depending on α and β:
(i) α = 1 (or β = 1).
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(ii) αb1, βg1 ∈ W and α, β �= 1.
(iii) α = α1b1 and β = β1g1, where α1 �= 1 �= β1.
(iv) α = b1 and β = g1.
(v) α = b1, β �= 1 and βg1 ∈ W .
(vi) α = α1b1 and β = g1, where α1 �= 1.
(vii) α �= 1, αb1 ∈ W and β = g1.
(viii) α = b1 and β = β1g1, where β1 �= 1.
(ix) α = α1b1 and βg1 ∈ W , where α1 �= 1 �= β.
(x) αb1 ∈ W and β = β1g1, where α �= 1 �= β1.

We note that if vb1 ∈ W , then π(vb1...bk...b1v) = εb1v by Corollary 4.8. Analogously, 
if vg1 ∈ W , then π(vg1...gn...g1v) = ηg1v. Hence in the cases (i) and (ii) we have 
vb1, vg1 /∈ W . Since v ∈ W , then v = v′b1 = v′′g1, for some v′, v′′ ∈ W , and so b1 = g1. 
The same equality b1 = g1 we have in the cases (iii) and (iv). Then in those cases the 
claim follows by Affirmation 1.

Case (v): Since βg1 ∈ W , then vg1 /∈ W by Corollary 4.8. Hence v = β′g1, for 
some β′ �= 1. We have that π(vb1...bk...b1v) = b1v, hence by Lemma 3.1 (c) we get 
π(vb1b2...bk...b2) = 1 and π(b2...bkbk−1...b2b1v) = 1. Using the same lemma again, we 
get π(b2...bkbk−1...b2) = π(vb1). If vb1 /∈ W , then v = γb1 = β′g1, for some γ �= 1, 
and so b1 = g1. By Affirmation 1, Lemma 4.10 is proved. Let vb1 ∈ W . By Propo-
sition 4.4, we get π(b2...bk...b2) = λb2 = vb1. If k > 2, then λ �= 1, and hence 
b1 = b2, a contradiction. Then k = 2 and b2 = vb1. From π(vg1...gn...g1v) = b1v, 
we have π(vg1...gn...g1) = b1 and π(vg1...gn...g1b1) = 1 by Lemma 3.1 (c). Hence 
π(b1g1...gn...g1v) = 1 and π(b1g1...gn...g1) = v. Then π(b1g1...gn...g1b1) = vb1 = b2. 
If b1 �= g1, then b2 /∈ R by Proposition 4.4, which is a contradiction. In the case b1 = g1
we have Lemma 4.10 by Affirmation 1.

Case (vi): We have that g1 =α1b1 and π(vg1g2...gngn−1...g2) =1. Then π(g2...gngn−1...g2)
= π(vg1). We have two cases:
(vi.1) n = 2. Then g2 = π(vg1). Since g1v = π(vb1...bk...b1v), we have that 
π(g1b1...bk...b1v) = 1, and then π(g1b1...bk...b1g1) = π(vg1) = g2, which is a contra-
diction with Proposition 4.4.
(vi.2) n > 2. By Proposition 4.4, there exists λ �= 1 such that λg2 = π(vg1). Since 
g1 �= g2, it follows that vg1 /∈ W . Then there exists γ �= 1 such that v = γg1. Since 
π(vb1b2...bkbk−1...b1v) = g1v, we have that π(g1b1b2...bkbk−1...b1g1) = γ. By Propo-
sition 4.4, there exists λ′ �= 1 such that λ′g1 = γ, which is a contradiction because 
v = γg1 ∈ W .

The cases (vii) and (viii) are analogous to the cases (v) and (vi), respectively.

Case (ix): We have that π(vb1b2...bkbk−1...b2α1) = 1. Then π(α1b2...bkbk−1...b2b1) = v. 
Since π(vg1g2...gngn−1...g1v) = α1b1v, it follows that π(α1b1g1g2...gngn−1...g1) = v, and 
then π(α1b2...bkbk−1...b2α1) = π(α1b1g1g2...gngn−1...g1b1α1).



A. Grishkov et al. / Journal of Algebra 628 (2023) 545–561 557
If b1 = g1, then the claim follows by Affirmation 1. Suppose that b1 �= g1. By Propo-
sition 4.4 and Corollary 4.7, we have that α1 �= b2, and hence the claim follows by the 
induction hypothesis.

Case (x): By Corollary 4.8, we have vb1 /∈ W . Then there exists a �= 1 such 
that v = ab1. Since π(vb1b2...bkbk−1...b1v) = π(vg1g2...gngn−1...g1v), it follows that 
π(ab2...bkbk−1...b1) = π(ab1g1g2...gngn−1...g1). Thus π(ab2...bkbk−1...b2a) =
π(ab1g1g2...gngn−1...g1b1a), and the rest of the proof is analogous to (ix). �
As a consequence of Proposition 4.4, Corollary 4.7 and Lemma 4.10, we have the following 
result.

Corollary 4.11. Let b = b1b2...bkbk−1...b1 ∈ S and g = g1g2...gngn−1...g1 ∈ S be such that 
bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If π(b) = π(g), then b = g.

Theorem 4.12. For every g ∈ B(X) \ {1} there exist unique g1, ..., gm ∈ R(X) such that 
g = π(g1g2...gmgm−1...g1) and gi �= gi+1, for i = 1, ..., m − 1.

Proof. Let g = a1a2...as ∈ B, where as = b1b2...bl, |a1| = |b1| = 1, and ai, bj ∈ R, for all i
and j. First we will prove by induction on |g| that there exists s(g) = g1g2...gmgm−1...g1
such that π(s(g)) = g and gi �= gi+1, for i = 1, ..., m − 1. If |g| = 1 or g ∈ R, then 
s(g) = g. Now suppose that |g| > 1 and g /∈ R. We have four cases:
(i) gt, gtt ∈ W and gt �= gtt. Then

s(g) =
{

asas−1...a2a1g
ta1...as−1as, if gt ∈ R,

asb1b2...blg
ttbl...b1as, if gtt ∈ R.

(ii) gt ∈ W ∩ S. Then there exist c1, ..., cr ∈ R such that gt = c1c2...crcr−1...c1. Thus 
g = π(asas−1...a2a1c1c2...crcr−1...c1a1...as−1as), and it is clear that we can get s(g) from 
this equation.
(iii) gt /∈ W . Since π(g) �= 1, we have that π(gt) �= 1 by Lemma 3.1. Then 1 ≤ |π(gt)| <
|g|. It is not difficult to see that π(gt) ∈ B. By the induction hypothesis, there exist 
c1, ..., cr ∈ R such that π(gt) = π(c1c2...crcr−1...c1), and by using similar arguments as 
in (ii) we get s(g).
(iv) gtt /∈ W . This case is analogous to (iii).
Now we need to prove that s(g) is unique. But this is a consequence of Corollary 4.11. �
5. Main theorem

Definition 5.1. In notation of Theorem 4.12 we put for any g ∈ B \ {1}:

s(g) = g1g2...gmgm−1...g1.
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Now, define a multiplication ◦ on the set B(X) by:
(i) x ◦ 1 = 1 ◦ x = x,
(ii) x ◦ y = π(xy1y2...ymym−1...y1), where s(y) = y1y2...ymym−1...y1.
Notice that the identities x ◦ x = 1 and (x ◦ y) ◦ y = x can be easily obtained from the 
definition above.

Theorem 5.2. The set B = B(X) with multiplication ◦ defined above is a free Bol loop 
of exponent 2 with free set of generators X.

Proof. It is clear that X generates B and if B is a Bol loop, then the construction of 
R(X) and Theorem 4.12 give us a natural way to extend a mapping between X and 
another Bol loop L of exponent two to a homomorphism from B into L. So we only have 
to prove that B is a Bol loop. It is possible to prove this directly, but in this case we have 
to consider many particular cases. We choose the other way based on the connection of 
Bol loops with twisted subgroups described in the Preliminaries.
Let G =

∏
y∈R(X) � < Ry|R2

y = Id > be a free 2-group. The group G acts on B: 
bRy = b ◦ y and bId = b. Then the set H = {g ∈ G|1g = 1} is a subgroup of G, where 1
is the empty word of B(X).
Now, let B′ = {Id} ∪ {Ry | y ∈ R(X)}G. Note that RyRzRy ∈ B′, for all y, z ∈ R(X), 
and then B′ is a twisted subgroup of G.

Lemma 5.3. G = HB′.

Proof of Lemma 5.3. Let g =
∏m

i=1 Rgi ∈ G and y = g1g2...gm. Then 1g = π(y). If 
π(y) = 1, then g ∈ H.
Suppose that π(y) �= 1 and consider s(π(y)) = y1y2...ykyk−1...y1, where yi ∈ R(X). Note 
that S(g) = Ry1Ry2 ...Ryk

Ryk−1 ...Ry1 ∈ B′. We have that 1S(g) = π(s(π(y))) = π(y), 
and so π(y)S(g) = 1. Hence gS(g) ∈ H and g = (gS(g))S(g) ∈ HB′.
Lemma 5.3 is proved.

Lemma 5.4. H ∩ (B′B′) = {Id}.

Proof of Lemma 5.4. Let b = Rb1Rb2 ...RbmRbm−1 ...Rb1 ∈ B′ and c ∈ B′ be such that 
bc ∈ H. By Lemma 4.1, it follows that π(b1...bm...b1) �= 1, and then c �= Id. Consider 
c = Rc1Rc2 ...RckRck−1 ...Rc1 . Hence

(...(b1 ◦ b2)...) ◦ bm) ◦ bm−1)... ◦ b1) ◦ c1)...) ◦ ck)...) ◦ c1 = 1. (5)

Since (x ◦y) ◦y = x, we get (...(b1 ◦b2)...) ◦bm) ◦bm−1)... ◦b1) = (...(c1 ◦c2)...) ◦ck)...) ◦c1. 
Then π(b1b2...bmbm−1...b1) = π(c1c2...ck...c1). By Corollary 4.11, we get that m = k and 
ci = bi, for all i.
Lemma 5.4 is proved.
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As a consequence of the Lemmas above and Proposition 2.1, we have the following result.

Proposition 5.5. (G, H, B′) is a Baer triple. Furthermore, B′ with the operation ∗ defined 
by b ∗ b′ = c, where bb′ = hc, for some h ∈ H, is a Bol loop of exponent two.

Now, let us conclude the proof of Theorem 5.2. We just need to prove that (B, ◦) ∼=
(B′, ∗). Define ϕ : B′ → B by

ϕ(Ry1Ry2 ...Rym
Rym−1 ...Ry1) = π(y1y2...ymym−1...y1) and ϕ(Id) = 1.

By Lemma 4.1 and Theorem 4.12, we get that ϕ is a bijection.
Let b = Ry1Ry2 ...Rym

Rym−1 ...Ry1 ∈ B′ and c = Rz1Rz2 ...RznRzn−1 ...Rz1 ∈ B′. Consider 
y = y1y2...ymym−1...y1, z = z1z2...znzn−1...z1 and u = yz1...zn...z1. Note that ϕ(b) ◦
ϕ(c) = π(y) ◦ π(z) = π(u).
If π(u) = 1, then π(y) = π(z). By Corollary 4.11, we have y = z. Thus b = c and 
ϕ(b ∗ c) = ϕ(Id) = 1 = ϕ(b) ◦ ϕ(c).
If π(u) �= 1, consider s(π(u)) = u1u2...urur−1...u1 and g = Ru1Ru2 ...Rur

Rur−1 ...Ru1 . By 
the proof of Lemma 5.3, we have that b ∗c = g. Hence ϕ(b ∗c) = ϕ(g) = π(u) = ϕ(b) ◦ϕ(c).
Therefore ϕ is an isomorphism and we have that (B, ◦) is a Bol loop of exponent two. �
Proposition 5.6. H is a core-free subgroup of G.

Proof. Let N ≤ H be such that N is normal in G. Suppose that N �= {Id}. Then there 
exists φ = Ry1Ry2 ...Ryn

∈ N , with n > 1, yi ∈ R(X) and yi �= yi+1, for all i.
Since 1φ = 1, it follows that π(y1y2...yn) = 1. Then

π(yn...y2y1y2) = y2. (6)

Since N � G and N ≤ H, we have Ry2φRy2 ∈ H, and then 1Ry2φRy2 = 1. Thus 
1Ry2φ = 1Ry2 , and hence y2φ = y2. By (6), we get π(yn...y2y1y2)φ = y2, and then 
y2 = π(yn...y2y1y2y1y2...yn), which is a contradiction with Proposition 4.4. �
Now we will determine the nuclei and the center of B(X). Firstly, we need the following 
lemma.

Lemma 5.7. Let x, z ∈ B(X) \ {1}. Then z = x ◦ (x ◦ z) if and only if x = z.

Proof. Suppose that x �= z and z = x ◦ (x ◦ z). Consider s(z) = z1z2...znzn−1...z1 and 
s(x ◦ z) = u1u2...umum−1...u1. Then

π(u1...um...u1) = x ◦ z = π(xz1...zn...z1), (7)

π(xu1...um...u1) = x ◦ (x ◦ z) = z = π(z1...zn...z1) (8)
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By (7) and (8), we get π(u1...um...u1) = π(z1...zn...z1u1...um...u1z1...zn...z1). Then m =
n and ui = zi, for all i, by Corollary 4.11. Therefore x = 1, a contradiction. �
As a consequence of Lemma 5.7, we have that (x ◦ (x ◦ z)) ◦ z �= 1 = x ◦ ((x ◦ z) ◦ z), 
for every x, z ∈ B(X) \ {1} such that x �= z. It follows that Nλ(B), Nμ(B) and Nρ(B)
contain only the identity element 1. Therefore we established the following result.

Corollary 5.8. The nuclei and the center of B(X) are trivial.

6. Open problems

We finish this paper with two conjectures.
If |X| > 1, it is easy to construct proper subloops of B(X) that are free Bol loops of 
exponent 2. In the case of free loops (infinite exponent), it is well known that all subloops 
of these loops are free [4, Corollary 1, pg. 16].

Conjecture 6.1. Every subloop of a free Bol loop of exponent two is free.

Let Y = {y1, y2, ..., yn} be a free set of generators of B(X). For i ∈ {1, 2, ..., n} and 
v ∈ 〈Y \ {yi}〉, define e(i,v), f(i,v) : B(X) → B(X) by

e(i,v)(yi) = yiv, f(i,v)(yi) = vyi and e(i,v)(yj) = f(i,v)(yj) = yj ,

for every j ∈ {1, 2, ..., n} \{i}. The mappings e(i,v) and f(i,v) are automorphisms of B(X)
and they are called elementary automorphisms of B(X). An automorphism of B(X) is 
called tame if it belongs to the group generated by all elementary automorphisms of 
B(X). A question concerning free objects in varieties of loops is whether all of their 
automorphisms are tame. For free Steiner loops the answer to this question is positive 
[6, Theorem 7].

Conjecture 6.2. Every automorphism of a free Bol loop of exponent two is tame.
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