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1. Introduction

A loop consists of a nonempty set L with a binary operation * such that, for each a,b € L,
the equations a * z = b and y * a = b have unique solutions for =,y € L, and there exists
an identity element 1 € L satisfying 1 xx =z = x % 1, for any = € L. A (right) Bol loop
is a loop that satisfies the (right) Bol identity

z((y2)y) = ((zy)2)y. (1)
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One of the most interesting subvarieties of Bol loops is the variety Bs of Bol loops of
exponent two. Every loop in By is a Bruck loop, i.e., a Bol loop with the automorphic
inverse property ((zy)~! = 2~ !y~ for every x,y in the loop). Many constructions of
non-associative loops of By can be found in the literature (see [7,8] for example), the
minimal such loop has order 8. Some of the most important problems involving loops
of By are those related to solvability and existence of simple loops (see [1,3,9,10]). In
[10], a class of non-associative simple Bol loops of exponent 2 was constructed. The
smallest loop in this class, which is also the smallest non-associative simple loop in Bo
([3, Theorem 3]), has order 96.

In this paper, we give a construction of free objects in the variety Bo. Let B(X) be
the free Bol loop of exponent two with free set of generators X. We construct a subset
R(X) of B(X) such that every element b € B(X) \ {1} has the canonical form b =
(...(b1b2)b3...)bm ) bm—1)...)b2)b1, where b; € R(X) and b; # b;y1, for all i, and then we
describe the multiplication law of B(X) based on this form. Furthermore, we prove that
the nuclei and the center of B(X) are trivial.

2. Preliminaries

Let L be a loop and x € L. The bijections L, R, : L — L defined by (y)L, = zy
and (y)R, = yzx are called the left and right translations of x in L, respectively. The
right multiplication group of L is the group Mlt,.(L) = (R, |z € L) and the right inner
mapping group of L is Inn,(L) = {¢ € Mlt.(L)|(1)¢ = 1}. The subgroup Inn,(L) of
MIit,.(L) is core-free, i.e., the only subgroup of Inn, (L) that is normal in MIt,.(L) is the
trivial subgroup {I4}, where I; is the identity mapping of L.

The left, middle and right nuclei of L, denoted respectively by Nx(L), N, (L) and N,(L),
are defined by:

Ni(L)={a€ L] a(zy) = (az)y ¥ =,y € L},
Nu(L) ={a € L| z(ay) = (va)y ¥V x,y € L},
Ny(L)={a€ L|z(ya) = (zy)a ¥V x,y € L}.

The nucleus of L is defined by N(L) = Nx(L) N N,(L) N N,(L) and the center of L is
the set Z(L) = {a € N(L)| ax = za ¥V & € L}. The nuclei of L are subgroups of L and
the center of L is an abelian subgroup of L.

Bol loops are loops that satisfy the identity (1). This class of loops contains Moufang
loops and groups. Furthermore, Bol loops are power-associative and right alternative,
and have the right inverse property. Other basic facts from loop theory and Bol loops
can be found in [4,11].

The Baer correspondence ([2]) is an important tool in the study of Bol loops (cf. [1]).
From it, we obtain that Bol loops are related to twisted subgroups, as we can see in the
next proposition. A subset K of a group G is called a twisted subgroup of G if 1 € K and
z Loyr € K, forall z,y € K.
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Proposition 2.1. (/5, Proposition 5.2]) Let (G, H, B) be a Baer triple, i.e., G is a group,
H is a subgroup of G and B is a right transversal of H in G. If B is a twisted subgroup
of G, then B with the operation * defined by

bx b =c, where bl = he, for some h € H, (2)

is a Bol loop. Conversely, if (B,x*) is a Bol loop and H is core-free, then B is a twisted
subgroup of G.

If L is a loop, the triple (G, H, B), where G = MIt,(L), H = Inn,(L) and B ={R, |z €
L}, is a Baer triple. In this condition, L is a Bol loop if and only if B is a twisted
subgroup of G [1, 6.1].

Let B be a Bol loop of exponent n and X be a subset of B. We say that X is a free set
of generators of B if X generates B and every mapping between X and a Bol loop B’
of exponent n can be extended to a homomorphism between B and B’. We say that B
is a free Bol loop of exponent n if it has a free set of generators.

Now consider B as a free Bol loop of exponent two. A subset T' C B is a prebasis of B
if for every b € B there exist by, ...,b, € T such that b = b1bs...b,,b,,_1...b2b1. Here and
in the following, we will write v = vyva....v, if v = (...((v1v2)v3)...)v,. A subset T C B
is an independent if for every ai, ..., Gm, b1, ...,b, € T, such that b; # b; and a, # a4, for
all 7,74,p,q, from ajas...apmapm_1...a2a1 = b1bs...byb,_1...b2b1, we have that n = m and
a; =b;,i=1,....,n. A subset T C B is a basis of B if T is an independent prebasis of B.
A group G is a free 2-group if it is a free product of cyclic groups of order two, i.e., it
has the form G =[] cp* < z|z? =1 >.

3. Construction of a basis of free Bol loops of exponent two

Let X be a finite ordered set of letters and P = P(X) be the set of all non-associative
words on X. We denote the empty word by 1. For v € P, by Sub(v) we denote the set
of all subwords of v. Note that if v = vyvq, then Sub(v) = {v} U Sub(v1) U Sub(vs).

For v € P, the length of v, denoted by |v|, is the number of letters in the word v. Note
that |1| = 0.

Let C(X) = {uu, (wv)v|u,v € P} and W = W(X) = {v € P|Sub(v) N C(X) = 0}.
Define the mapping 7 : P — W, where, for v € P, w(v) is given by induction on |v| using
the following rules:

(i) n(z) ==x,ifx e X,

(ii) If u,v € W, then

1, ifu=w,
m(uww) =1 a, ifu=av,
wv, if uv € W,

(iii) f w ¢ W or v ¢ W, then w(uv) = w(w(u)m(v)).
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Notice that in the case (iii) we get |7(u)m(v)| < Juv|. Hence this definition is correct.

Lemma 3.1. Let u,v,w,vy,...,v, € P and a € W. Then:
(a) m(uv) = w(mw(u)mw(v)).

(b) m(uwv.v) = 7(u.vv) = 7(u).

(c) m(u) = w(v) if and only if 7(uw) = w(vw).

(d) If w(uvivs...v,) = 7(v), then m(u) = w(vVy,...v9v1).
(e) If m(viva...v) = a, then w(avy,...vav1) = 1.

(f) If m(uv) = w(uw), then w(v) = m(w).

Proof. The item (a) follows from the definition of 7. The item (c) is a consequence of
(a) and (b), and the items (d) and (e) are consequences of (b) and (c). Let us prove (b)
and (f).

(b) By (a), we have w(uv.v) = w(m(w(u)w(v))7(v)) and 7(u.vv) = w(u). If w(u)7w(v) €
W, then w(w(mw(u)w(v))m(v)) = w((w(w)w(v))7(v)) = w(u). If 7(u) = cn(v), then
7 (r () (o)) (0)) = 7(em(v)) = (u).

(f) By (a), we only have to prove the case where u,v,w € W. If either 1 € {u,v} or
u = v, the result is trivial. Suppose that u,v € W\ {1} and u # v. If u = cv, for some
¢ # 1, then 7(uw) = ¢. Since |¢| < |u], we have uw ¢ W. Thus u = dw, for some d # 1,
and we have cv = u = dw. Therefore w = v.

Now suppose that wv € W. Since |uv| > |ul, it follows that uw € W. Hence uw = uv
and we have w =v. O

Lemma 3.2. Let v = v10903...0y,, where v; € W and v; # viqq, fori=1,...,m — 1. If
|m(v)| < |v|, then there are three possibilities:

(a) vive € W and v; = v1v9v3...v,_1, for some i > 2,

(b) There exists vi € W such that vi = v{vjv;_1...v3v2, where 1 < j < m and vivj4, €
W,

(¢) v = ViUV —1...02, for some v} € W.

Proof. If vive € W, then there exists i € {3,...,m} such that vive...v;_1 € W and
V102...0;—1v; & W. Since v; # v;11, we have v; = v1v9v3...v;—1. When vivy ¢ W we have
that v = aug, for some o € W. If v1 # BUyVUm_1...v2, for every 5 € W, then there exist
vi € Wand j € {2,3,...,m—1} such that v; = vjv;vj_1...v302 and v} # yv;;1, for every
v € W. Hence vivj;1 € W. O

Remark. In the Lemma 3.2 it is possible that v] = 1.
The following result is a consequence of Lemma 3.2.

Corollary 3.3. Let v = v1v903...0y,, where v; € W and v; # vy, fori =1,...,m — 1.
There are four possibilities:

(a) 7(v) =1
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(b) w(v) = VU1 .. VU, where T(V1Ve...v1—1) =1 and 1 <1 < m,

(c) m(v) = V]V {1Vj42...Um, where m(V1v2..01—1) = 1,v; = VjVjV;_1..041, V] # 1 and
1<i<ji<m,

(d) m(v) = v}, where m(v1va..v1_1) = 1, U] = V[URUm—1...V141, V] # 1 and 1 <1 < m.

Consider X = {x1,9,...,x,}. We define an order > in W inductively by the following

rules:

(i) & > xj, if i > 7,

(ii) u > v, if Ju| > |v],

(iii) If |u| = |v|, u = urua, v = v1ve, then u > v in the following cases:
(iii.1) ug > vg,

(iii.2) ug = vy and ug > v;.

Definition 3.4. For any y € P there exists unique canonical decomposition y =
Y1Y2.--Ym—1Ys, such that |y;| = 1. We denote y* = y/,ym—1--y1- If Y, = Yk¥Yk—1---Ym

with |yx| = 1, then (v%)! = ¥ = y1y2...Ym-...yx and ¥ = yryp_1...Ym....y1 = y*.

Definition 3.5. In notation above, define the following:

@) [lyll =

(i) y* = {x € Plztt =y, or 2!t = ytt}_

(iii) ) = ynYr—1---Y%(WY1y2--Yi—1),1 = k,
(iv) y(Z = y1Y2--Yi—1(YrYk—1- yz) -1

Example 3.6. Let X = {a,b,c} and y = (a(bc))((ca)b). Then the canonical decompo-
sition of y is y = y1y2y4, where y1 = a, y2 = be, y5 = (ca)b = ysyays, and hence
lyll = 3 and []y*|| = [[y"|| = 5. Furthermore, y* = (((ca)b)(be))a, y** = (((a(be))b)a)e,
Yiz) = y5y4y3(y1y2), Yay = y5y4(91923/3)a Yy = y5(y1ygy3y4), 9(2) = y1<y594y3>y2)a
¥ = (y192)(ysvays), and y™* = (y1y2y3)(ysy4). Note that y = y® and y* =
(vt y™ ey vy i)y P,y y @3

Define the set of symmetric words of P by S(X) = {y1y2---YmYm+1Ym---y1 | y; € P,m >

0}.

Lemma 3.7. In notation above, we have:

(@) 5 = (3" = 4" 0 ey 9 = 2,k — 1} and [{y",yOli = 2,k —1}] =
H{v' y@mli =3, ...k} =k —1.

(b) If y* =y, then y* = {y"*,y D = y—iy2), i =2,....k — 1} and |y*| = k — 1.

(c) If y* # yt, then |y*| = 2(k — 1) and y* N S(X) = 0.

(d) If yt,ytt € W, then y* C W.

(e) min{yt,y"*} = min{z|x € y*}.

Proof. (a) It is immediate that {y*, y'*, Y(it1)s Yy =2 .., k—1} C y* and |{y*, y(i)|i _
k—1} =Ky ywli=3,...k} =k —1.
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Let z € y*. We have that 2" = z129...2,, where 2 = 2120...2], 2] = 2z;2,_1...7; and
|z1] = |2-] = 1. Since |21| = |2,| = 1 and 2" € {y*,y''}, we have k = r. If 2* = y'*  then
z; = vy, for all 4, and so z € {y**,yD|i = 2,....k — 1}. If 2** = y*, then zp41_; = 1, for
all i, and so z € {y', y;|i = 3, ..., k}. Therefore y* = {y*, y'*, y(i11), yV,i = 2,...,k — 1}.
(b) If y* = y*, then y*) = Y(k—it2), for all i € {2,...,k —1}. Thus the claim follows from
(a).

(c) If yuy = y@), for some i and j, then a simple calculation shows that j = k — i + 2
and y; = yg+1-1, for all [, and so y* = y'*. Hence |y*| = 2(k — 1) by (a). By a similar
argument, we can get that y(i),y(i_H) ¢ S(X), for all i.

(d) Let ¥ = y1yo..yi1(Yeyr_1.-.y:) € y*. Since y*,y"* € W, we have y192..;_1,
Ur¥Yk—1--Y € W, yi1 # yi and yi—1 # Yryr—1---¥i- Then y1yo..yi 1 # a(YaYr—1---i),
for all & € P. Hence y¥ € W. By similar arguments, we can conclude that v € W,
for all j. Therefore, y* C W.

(e) It is clear that y®* = min{y'*,y|i = 2,...,k — 1} and y' = min{y’,yu)|i = 3, ..., k}.
Thus the claim follows from (a). O

Remark. We can define an equivalence relation ~ on P(X) by & ~ y if and only if
z* Ny* # (. The equivalence classes of this relation can be of three types: O, Oy and
O3, where:

(i) Or Cc W(X)\ S(X),

(i) O2 € W(X) and y! = y** € S(X), for y € Oy,

(iii) O3 ¢ W(X).

Definition 3.8. For y € W, let yo = min{y’,y"}. Define the set D = D(X) =
{woly: vo, 46 € W,y # vo}-

Example 3.9. If X = {a,b} with b > a and W,, = {y € W | |y| = n}, then
DN Ws = {a,b,ba, ((ba)b)a, (b(ab))a, (b(ba))a, ((ba)(ab))a, ((a(ba))b)a, ((b(ab))a)b,
((b(ba))b)a, (b(a(ab)))a, (b(a(ba)))a, (b(b(ab)))a, (b(b(ba)))a, (b((ab)a))a, (b((ba)b))a}.

Definition 3.10. Define the following sets:
(l) Rl =X = {x17x27 "'axr}7
(ii) Ry, = Rn—1U{y € D(X) | ly| < n,y = uqug...um,u; € Rp_1,i=1,...,m}, forn > 1,

(i) R(X) = | J Rn.

neN

Notice that X € R(X) C W and R(X) N S(X) = 0.

Corollary 3.11. Let b = byby...b,, € W, be such that by € X. If b € R(X), then

b< b b* CW,b, € X and b; € R(X), fori=1,..,n. (3)
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Example 3.12. If X = {a,b} with b > a, then:
Rs = {a, b, ba, ((ba)b)a, (b(ba))a, ((a(ba))b)a, ((b(ba))b)a}.
Note that (b((ba)b))a, (b((ab)a))a € (D NWs) \ Rs, since (ba)b, (ab)a € S(X).

Definition 3.13. B(X) = {1} U{y € W(X)|y = y1¥2...yn, ¥i € R(X)}.

Remark. Let y = y1y2...y» € P be such that y; € R(X), for all i. By Lemma 3.2, y € W
if and only if y1y2...¥i—1 # Yi # Yit1, for i € {1,....,n — 1}.

4. Proof that R(X) is a basis of B(X)

For proof that R(X) is a basis of B(X) we need the detailed information about m(b) if
b=by...bg...b1, b; # bj11 and b; € R(X). We begin with the following simple fact.

Lemma 4.1. Let by, ba,...b € P. Then w(biba...bxbp_1...b1) =1 if and only if n(bx) = 1.

Proof. We have 7(b;...bg...01) = m(mw(by1)...m(bg)...w(b1)). If w(bx) = 1, then it is clear
that 7(by...bg...by) = 1.

Now suppose that m(b;...bg...b1) = 1. Omitting all b;,b;41 such that w(b;) = 7(bj41),
we get that w(mw(by)..m(bg)...7(b1)) = mw(a1az...arar—1...a1), where r < k, a, = mw(bg),
a; # a;y1 and a; € W\ {1}, for all ¢ < r.

We will prove that a,, = 1 by induction on r. Consider r > 1 and define a,; = a,—;, for all
i. Let [ be the minimal such that w(ajas...a;) = 1. If I < 2r — 1, then w(ayay—1...a1) = 1,
where ' = 2r — 1 — [, and so w(ajaz...ay) = 1 by Lemma 3.1. Thus we only have to
consider three cases:

(i) I <r. Then 7(aj41...ap...a;41) = 1, and hence a, = 1 by the induction hypothesis.
(ii) I = r. Then 7(ajas...a,) = w(aias...ar—1) = 1, and we get a, = 1.

(iii) I = 2r — 1. By Lemma 3.2, if a, # 1, then either a; = aqas...a,a,—1...a2 Or a3 =
VasGs—1...a2, for some v # 1 and s > 0 such that 2(s — 1) = 2r — 3, but both cases are
impossible. Hence a, = 1. O

Lemma 4.2. Let n > 1 and ¢, wy,wa, ..., w, € W \ {1} be such that cw; € W, w; €
Sub(c) U Sub(wy) and w;—1 # w;, for all i. Then cwyws...w, € W.

Proof. For 1 <m < n, suppose that cwjws...w,, € W. Since wy,+1 € Sub(c) U Sub(w,),
we have that wp,41 # cwiws...w,,. Since w,, # Wm+1, there is no B such that
CWLW2... W, = PWpy41. Hence cunws... wpwmyr € W. O

Lemma 4.3. Let k > 1 and w = wiwy.. wgwg—1.. w1 € S be such that w; € W\ {1},
wiwge € W and w; # wiy1 for alli. There are two possibilities:

(a) m(w) = w or

(b) There exists | such that 3 <1 <k and w; = wiwy...w;_1.
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Proof. If k = 2, then wywowy € W since wyws # aw, for all & € W. Hence m(w) = w.
Suppose that k£ > 3 and w(w) # w, and define wy4; = wi_;, for all i. By Lemma 3.2 (a),
there exists [ such that 2 <[ < 2k — 1 and w; = wyws...w;_1. Since w; is not a proper
subword of itself, we must have [ < k. O

Proposition 4.4. Let b = byba...bpbr—1..b1 € S be such that by € W\ {1}, b; € R and
bi—1 # b; for alli > 1. Then w(b) = A\by, where A =1 implies that k =1 or by ¢ R.
Moreover, if by € R, then w(b) € R if and only if k = 1.

Proof. If k € {1,2} it is easy to see that the claim holds. Suppose that the claim holds
for all ¥ < k, where k > 3. First we will prove the following lemmas.

Lemma 4.5. Suppose that by, = biba..by_1, where 3 < m < k. Then w(b) =
Ebmfl...bgbl ¢ R.

Proof. We have three cases:

(i) m = k. Thus by = b1bs...bg—1, and hence 7(b) = 7(bx—1...bab1). Since by_1...b2b; €
by, it follows that 7(b) = br_1...bab1. Since by € R and RN S = (), we have m(b) =
bi—1...bab; ¢ R.

(ii) m = k — 1. Thus by_1 = bibs...by_o and 7(b) = m(bybg_1...b1). Since |br_1| > 1
and by € R, we have byby_1 € W by (3). By Lemma 4.2, bibg_1...b1 € W, and then
m(b) = brbg—1...b1. Since by by...bp_1 ¢ W, it follows that bybs...by € w(b)*\ W, and hence
m(b) € R by (3).

(iii) m < k—1. Thus 7(b) = 7(bm+1..-bkbk—1..-bi+1...b2b1). By the induction hypothesis,
T (bmt1---0pbk—1.-.bmy1) = Abpy1, where X # 1 because m + 1 < k and b,,,41 € R. Then
m(b) = w(bma1---bkbk—1.--bg1..-bab1) = T(Abpyp1...b2b1). If by, = Abpyyq, then w(b) =
7 (bm—1...b2b1). Since by, —1...baby € b, it follows that 7(b) = by,—1...b2b;. Furthermore,
since by, € R and by, —1...boby # by, we have w(b) = by,—1...b2b1 ¢ R.

When Aby,41bm € W we have that Aby,41bm,...b2b1 € W by Lemma 4.2. Then 7(b) =
Abpg1---baby. Since biba...b,, ¢ W, we have b1 by...by, 1A € w(b)*\ W, and hence w(b) ¢ R
by (3).

Therefore, we proved Lemma 4.5. 0O

Define bk+i = bk—i7 for all 7. Note that b = b2k_1b2k_2...b1 = blbg...bgk_l.

Lemma 4.6. Suppose that for n € {2,3,...,k}, by € R and we have one of the following
sttuations:

(al) b, = bl,biba...by—1, where b, # 1, or

(a2) by, = ba...by—1.

Then ’/T(bgkflbgkfg...anrl) 75 1.

Proof. Suppose by contradiction that m(bar—1bog—2...bp+1) = 1. We have two cases:



A. Grishkov et al. / Journal of Algebra 628 (2023) 545-561 553

(i) n < k. Let v = bibs...b,. Then w(vbypy1...bg...bpr1) = 1, and so w(v) =
T (bps1...bk...bpt1) by Lemma 3.1. By the induction hypothesis, we get that w(v) = Abpy1,
where A = 1 if and only if n + 1 = k. Applying Corollary 3.3 to the word v = b1bs...b,,,
we have two cases 7(v) = ab, (in the cases (b) and (c)) or m(v) = b}, w(b1...by—1) = 1,
by = bjbpbp—1...by41 (case (d)). We note that the case (a) is impossible since 7(v) # 1.
Let w(v) = ab,. If a = 1, then Ab,41 € R. Since by € R, we get that n + 1 = k by the
induction hypothesis, and hence b, = 7(v) = by,41, which is a contradiction. Suppose
that o # 1. Since b, # byy1, it follows that A = 1, and then |b,| = 1 by (3), which
contradicts (al) and (a2).

Let w(v) = b) and | = 1. Then by = Ab4+1b,bp—1...b2. In (al) this does not occur since
by € Sub(by,). Now consider the case (a2). Since 7 (bebs...b,) = 1 in this case, we get that
bt € b¥ \ W, and then b; ¢ R by (3), a contradiction.

If 7(v) =bjand 1 <l < n, n(bibs...by—1) = 1 and b; = bjbyby—1...b 1. Then we have a
contradiction since b; € Sub(by,,) in both cases (al) and (a2).

=1
by Lemma 3.1. First, consider the case (al). Since by, = bj.b1b2...by—1 and mw(bg_1...b2b1) =
1, it follows that b € b \ W, and then by, ¢ R by (3), a contradiction.

Now consider the case (a2). Since by = ba...by_1, then |by_1| = 1 by (3), and so
bi_1bk—o € W. Since m(bg_1...boby) = 1, it follows that there exists [ such that
bl = bkflbkfg...bprl by Lemma 3.2. If | > 1, then W(bkflbkfg...bprlbl) = 1, and so
bt € by \ W, which is a contradiction. If [ = 1, then by = bf, which is a contradiction
since by, b € R.

Therefore, Lemma 4.6 is proved. O

(ii) n = k. By assumption, we have that m(b1by...b;—1) = 1, and then w(bg_1...bab1)

Now we can finish the proof of Proposition 4.4. First, let us prove that m(b) = Aby, for
some A € W, where A # 1 if b; € R. By Lemma 4.1, we have that 7(b) # 1, and then
there are three possibilities according to Corollary 3.3:

(i) w(b) = b, by...by, where b, = b, by y1bmio..bn_1, 1 <m <n<2k—1and b, #1if
m = 1. Thus we have the desired result.

(ii) w(b) = b, where b, = bbiba..bp_1, 1 < n < 2k —1, b, # 1 and
m(bog—1bog—2...bp+1) = 1. Since b, can not be a proper subword of itself, we get n < k.
Furthermore, we get that by € R by (3). Then we have a contradiction with Lemma 4.6.
(iii) TI'(b) = bnbn_l...bl, where F(bzk_lbzk_g...bm+1) = 1, bm = bn+1bn+2...bm_1 and
1<n<m<2k—1.1n>1orn=1and b ¢ R, then we have the desired result.
Suppose that 7(b) = b; € R. We have two cases:

(iii.1) |b2] > 1. By (3), b1 can not be of the form b} bs, and then bybs € W. By Lemmas 4.3
and 4.5, we get that 7(b) ¢ R, which is a contradiction.

(iii.2) |b2| = 1. Note that b,, = babs...by,—1. Since by, can not be a proper subword of
itself and bobs...bg...ba ¢ R, it follows that m < k. Then 7(bog—_1bok—2...0m+1) # 1 by
Lemma 4.6, which is a contradiction.
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Now we only have to prove that m(b) ¢ R when b; € R. Consider that b; € R and
7w(b) = Aby, where A # 1. If |by]| > 1, then 7(b) ¢ R by (3). If |b1]| = 1, then biby € W,
and as in (iii.1) we get that m(b) ¢ R. O

Corollary 4.7. Let b = b1by...bgbg—1...00 € S and g = g192...9ngn—1-.-g1 € S be such that
bi,g; € R, bj_1 # b; and gj_1 # gj, for all i and j. If m(b) = w(g), then by = g1.

As a consequence of Proposition 4.4 and Lemma 4.5 we have the following result:

Corollary 4.8. Let b = vbyby...bpbg_1...b1v € S be such that v € W\{1}, vby € W, b; € R
and b;_1 # b; for alli > 1. There are two possibilities:
(a) w(b) =1,

(b) There exists m such that 2 < m < k and w(b) = €by,—1...byv, where e € W.

Lemma 4.9. Let b = vbiv € S and g = vg1g2...gngn—1...10 € S be such that v € W\ {1},
v# b, v# g1, bi,g; € R, and gj—1 # gj, for all j. If m(b) = 7(g), then b= g.

Proof. If n = 1, then 7(vby) = w(vg1). By Lemma 3.1 (f), by = g1, and hence b = g.
Now suppose that n > 1 and the claim holds for every n’ < n. We will prove this result
in two steps:

(i) First we will prove that there exists @« € W \ {1} such that abja € W,
m(ab19192---gngn—1.--g1b1a) = abia and either ab; # g1 or o = v. We have two cases:
(i.1) v = aby, with « # 1. Then 7(vb1v) = w(aw) = w(vg192...9nGn-1---91v), and hence
by Lemma 3.1 (c):

m(a) = 7(vg192--GnGn—1---91)- (4)

Using Lemma 3.1 (c¢) and v = aby in (4), we get m(abia) = w(abigy...gn...g1b10).
(i.2) vbyv € W. By m(vg192---gngn—1..-g1v) = w(vb1v) = vbyv and Lemma 3.1 (e), we get
m(vb1g192---gngn—1...g1v) = 1. Thus

w(vb1g1...9n...g1010) = T(Vb1g1..-gn-..g10Vb1V) = T(T(VD1G1 .. Gn-..g10) T (VD1V)) = VbW

and we put a = v.
(ii) Now consider o € W\ {1} as in (i). If by = g1, then

m(abi1g192...gn-.-g1b10) = T(Qags...gp...g20)) = abia.

If o # go, then by induction by = g3...g,...g2. Since b € R and RN S = (), then n = 2
and b; = g9, which is a contradiction with by = g1 # go. In the case o = g5 and n > 2, we
get m(g3...gn---g3) = abiar = gab1gs. By Corollary 4.7, we have g3 = go, a contradiction.
Finally, if « = g2 and n = 2, we have 7(g2) = g2b192. Since g2 € R, hence b; = go, which
is a contradiction with b; = g;.
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Suppose by # g1. By the choice of a, either abig; € W or g1 = ab;. We have two cases:
(ii.1) g1 = aby. Then abja = w(ab1g1...9ngn-1..-g101) = 7(g2...9ngn—1...g1b1c). Hence
by Lemma 3.1 (c) we get m(g2...9ngn—1...91) = & and ag; = abja € W. Using the same
lemma again, we get 7(ga...gngn—1...92) = agi. If n = 2, then g = ag; € R, and hence
g1 € X, which is a contradiction with g; = ab;. Then n > 2. By Proposition 4.4, there
exists A # 1 such that ag; = Ago, and then g; = go, a contradiction.

(ii.2) abigr € W. Note that abja # abigy...gn...g1b1a. Then there exists m such that
1<m< nand g =abigr...gm—1 by Lemma 4.3. We have three more cases:

(ii.2.1) m = n. Then abja = 7(gp—1...g1b10). Since gp—1...q1b1a € ¢ and g, € R, it
follows that abja = gp—1...g1b1cv, which is a contradiction because g N S(X) # 0.
(ii.2.2) m = n — 1. Then abja = 7w(abigi...gn-..g1b1¢) = 7(gngn-1...g1b1c). Since
|gn—1] > 1 and g, € R, we have g,g,—1 € W. By Lemma 4.2, g,gn_1...9101cc € W.
Thus abja = ¢ngn_1...g1b1, and hence o = ¢,,¢gn_1...91, which is a contradiction be-
cause o € Sub(gn—_1).

(ii.2.3) m < n — 1. Then abja = 7(gm41---Gn...q1b1¢). By Proposition 4.4, there exists
A # 1 such that abia = T(Agm4+19m-..g1b1) and Ag11 € W. If g1y = Agm41, simi-
larly to (ii.2.1) we get a contradiction. If Ag,,4+1gm € W, similarly to (ii.2.2) we get a
contradiction. 0O

Lemma 4.10. Let b = vb1by...bpbi_1..b1v € S and g = vg192...9nGn_1...g1v € S be such
that v € W\ {1}, v # b1, v # ¢1, bi,g9; € R, bi—1 # b; and gj_1 # g, for all i and j. If
m(b) =7(g), thenb=g.

Proof. We will prove this result by induction on k. We can consider n > k > 1. First we
will prove the Affirmation 1:

Affirmation 1. If b; = g1, then b = g.

Proof of Affirmation 1. We have that m(vbiba...bgbg_1...02) = w(vb1ga...9nGn-1..-92)-
Then m(w(vby)by...bpbg—1...bam(vby)) = w(w(vb1)ga...gngn—1...gam(vby)). If ba # w(vby),
then go # 7(vby) by Proposition 4.4 and Corollary 4.7, and hence the result follows by
the induction hypothesis.

Suppose that by = w(vby). If k& = 2, then w(baga...gngn-1..-g2b2) = ba. By Proposi-
tion 4.4, we must have by = go and n = 2, and then b = g. Using a similar argument,
we get that k& = 3 implies b = g. Now consider k& > 3. Then 7(bs...bpbk—1...b3) =
m(b2g293.--Gngn—1---g3g2b2). By ba # b3 and Corollary 4.7, we must have by = go and
bz = g3, and hence the desired result follows by the induction hypothesis.

Therefore, Affirmation 1 is proved.

By Proposition 4.4, there exist o, € W such that w(vby...bg...byv) = av and
m(vg1...gn...g1v) = fv. We have ten cases depending on « and 3:

(i) a=1(or g =1).
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(ii) abq, Bg1 € W and «, 8 # 1.

(iii) @ = a1by and B = B1g1, where a; # 1 # f.
(iv) a = by and 8 = ¢;.

(v) a =01, 8 #1and Bg; € W.

(vi) @« = a1by and S = g1, where oy # 1.

(vii) a # 1, aby € W and 8 = ¢1.

(viii) @ = by and 8 = B1g1, where 31 # 1.

(ix) @« = a1by and Bg; € W, where oy # 1 # .
(x) aby € W and 8 = 5191, where a # 1 # f3.

We note that if vb; € W, then 7(vby...bg...byv) = ebyv by Corollary 4.8. Analogously,
if vg1 € W, then 7(vg;y...gn...g1v) = ngrv. Hence in the cases (i) and (ii) we have
vby,vg1 ¢ W. Since v € W, then v = v'b; = v” gy, for some v',v"” € W, and so b = g;.
The same equality by = g1 we have in the cases (iii) and (iv). Then in those cases the
claim follows by Affirmation 1.

Case (v): Since 8g1 € W, then vg; ¢ W by Corollary 4.8. Hence v = f'g;, for
some 3’ # 1. We have that m(vb;...bg...byv) = byv, hence by Lemma 3.1 (c) we get
m(vbyby...b...by) = 1 and m(ba...brbg_1...b0b1v) = 1. Using the same lemma again, we
get m(bg...bgbg_1...b2) = w(vby). If vby ¢ W, then v = vby = gy, for some v # 1,
and so by = ¢1. By Affirmation 1, Lemma 4.10 is proved. Let vby € W. By Propo-
sition 4.4, we get m(ba...bg...0a) = Abo = wb;. If k > 2, then A # 1, and hence
by = ba, a contradiction. Then k& = 2 and by = wb;. From 7(vgy...gn...g10) = b1v,
we have w(vg...gn...g1) = b1 and w(vgy...gn...g1b1) = 1 by Lemma 3.1 (c). Hence
w(b1g1..-gn--.g1v) = 1 and 7(b1g1..-gn...g1) = v. Then 7(b1g1...gn-..g101) = vby = bo.
If by # g1, then b ¢ R by Proposition 4.4, which is a contradiction. In the case by = ¢1
we have Lemma 4.10 by Affirmation 1.

Case (vi): We have that g1 =«a1b; and m(vg192..-gngn—1..-g2) =1. Then 7(ga...gngn—1...92)
= m(vgy). We have two cases:

(vil) n = 2. Then ¢go = mw(vgy). Since giv = m(vb;y...bg...b1v), we have that
m(g1b1...bg...b1v) = 1, and then 7(g1by...bg...b191) = 7m(vg1) = g2, which is a contra-
diction with Proposition 4.4.

(vi.2) n > 2. By Proposition 4.4, there exists A # 1 such that Agas = 7(vg1). Since
g1 # go, it follows that vg; ¢ W. Then there exists v # 1 such that v = 7g;. Since
m(vbyba...bbg—1..b1v) = giv, we have that w(g1b1ba...bpbg—1...b1g1) = 7. By Propo-
sition 4.4, there exists A’ # 1 such that XNg; = v, which is a contradiction because
v=2vyg1 € W.

The cases (vii) and (viii) are analogous to the cases (v) and (vi), respectively.

Case (IX) We have that ﬂ(vblbg...bkbk_l...bgal) = 1. Then ﬂ(albg...bkbk_l...bgbl) = .
Since 7(vg192.--gnGn—1---91v) = a1b1v, it follows that m(@1b19192...9ngn—1-.-91) = v, and
then W(O&lbg...bkbk_l...bQO(l) = W(alblglgg...gngn_l...glblal).
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If by = g1, then the claim follows by Affirmation 1. Suppose that b; # ¢1. By Propo-
sition 4.4 and Corollary 4.7, we have that a; # by, and hence the claim follows by the
induction hypothesis.

Case (x): By Corollary 4.8, we have vby ¢ W. Then there exists a # 1 such
that v = aby. Since m(vb1ba...bpbr—1...b1v) = w(vg1g2...9ngn—1...91v), it follows that
W(abg...bkbkfl...bl) = W(ablglgg...gngn,l...gl). Thus W(abg...bkbk,1...b2a) =
m(ab1g192---gngn—1..-g1b1a), and the rest of the proof is analogous to (ix). O

As a consequence of Proposition 4.4, Corollary 4.7 and Lemma 4.10, we have the following
result.

Corollary 4.11. Let b = b1bs...bpbg_1...01 € S and g = g192...9ngn—1...g1 € S be such that
bi,g; € R, bj_1 # b; and g;_1 # g, for all i and j. If 7(b) = w(g), then b=g.

Theorem 4.12. For every g € B(X) \ {1} there exist unique g1, ..., gm € R(X) such that
9 =7(9192--gmIm-1---g91) and g; # giy1, fori=1,...m—1.

Proof. Let g = ajas...as € B, where as = b1bs...by, |a1| = |b1] = 1, and a;,b; € R, for all i
and j. First we will prove by induction on |g| that there exists s(¢) = g192---9mGm—1---91
such that 7(s(g)) = ¢g and g; # gi11, for i = 1,..m — 1. If |g| = 1 or ¢ € R, then
s(g) = g. Now suppose that |g| > 1 and g ¢ R. We have four cases:
(i) g*, g € W and g* # g'*. Then
s(g) = { QsUs_1...0a19%a1...a5_1a5, if g* € R,
asbibs...bygth;...bra,, if gt € R.

(ii) gt € W N S. Then there exist c1,...,c, € R such that ¢ = c¢ica...cr¢p1...c1. Thus
g =7(AsG5-1...0201C1C2...CrCr_1...C101 ...a5 105 ), and it is clear that we can get s(g) from
this equation.

(iii) ¢* ¢ W. Since 7(g) # 1, we have that 7(g") # 1 by Lemma 3.1. Then 1 < |7(¢")| <
lg|. Tt is not difficult to see that w(g*) € B. By the induction hypothesis, there exist
€1, ..., ¢y € R such that 7(g') = w(c1c2...cr¢—1...c1), and by using similar arguments as
in (i) we get s(g).

(iv) g" ¢ W. This case is analogous to (iii).

Now we need to prove that s(g) is unique. But this is a consequence of Corollary 4.11. O

5. Main theorem

Definition 5.1. In notation of Theorem 4.12 we put for any g € B\ {1}:

5(9) = 9192---9mGm—1---91-
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Now, define a multiplication o on the set B(X) by:

(i)zol=1loz ==z,

(ii) x oy = m(zY1Y2- YmYm—1---Y1), Where s(y) = y1¥Y2---YmYm—1---Y1-

Notice that the identities x oz = 1 and (x o y) o y = x can be easily obtained from the
definition above.

Theorem 5.2. The set B = B(X) with multiplication o defined above is a free Bol loop
of exponent 2 with free set of generators X.

Proof. It is clear that X generates B and if B is a Bol loop, then the construction of
R(X) and Theorem 4.12 give us a natural way to extend a mapping between X and
another Bol loop L of exponent two to a homomorphism from B into L. So we only have
to prove that B is a Bol loop. It is possible to prove this directly, but in this case we have
to consider many particular cases. We choose the other way based on the connection of
Bol loops with twisted subgroups described in the Preliminaries.

Let G = HyeR(X)* < Ry|R§ = Iy > be a free 2-group. The group G acts on B:
bR, = boy and bl; = b. Then the set H = {g € G|19 = 1} is a subgroup of G, where 1
is the empty word of B(X).

Now, let B’ = {I,} U{R, |y € R(X)}“. Note that R,R.R, € B’, for all y,z € R(X),
and then B’ is a twisted subgroup of G.

Lemma 5.3. G = HB'.

Proof of Lemma 5.3. Let ¢ = [["; Ry, € G and y = ¢192...gm. Then 19 = 7(y). If
m(y) =1, then g € H.

Suppose that 7(y) # 1 and consider s(7(y)) = y1y2---YxYk—1---y1, where y; € R(X). Note
that S(g) = Ry, Ry,...Ry, Ry,_,--R,, € B'. We have that 159 = n(s(r(y))) = n(y),
and so 7(y)°W = 1. Hence gS(g) € H and g = (9S(g))S(g) € HB'.

Lemma 5.3 is proved.

Lemma 5.4. H N (B'B’) = {1}.

Proof of Lemma 5.4. Let b = Ry, Rp,...Rp,, Rp, _,...Rp, € B’ and ¢ € B’ be such that
bc € H. By Lemma 4.1, it follows that 7(by...by,...b1) # 1, and then ¢ # I;. Consider
c=R¢ Re,..Re, Re, ,..R.,. Hence

(...(brobz)...)0bp) 0by—_1)...0b1) 0¢1)...) 0¢c)...) ocp = 1. (5)

Since (zoy)oy = x, we get (...(b10b3)...)0by ) 0bym—1)...0b1) = (...(c10¢2)...) 0¢k)...) 0 7.
Then w(b1ba...byby—1...b1) = w(c1ca...ck...c1). By Corollary 4.11, we get that m = k and
c; = by, for all 7.

Lemma 5.4 is proved.
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As a consequence of the Lemmas above and Proposition 2.1, we have the following result.

Proposition 5.5. (G, H, B’) is a Baer triple. Furthermore, B' with the operation * defined
by bx b = ¢, where bb' = he, for some h € H, is a Bol loop of exponent two.

~

Now, let us conclude the proof of Theorem 5.2. We just need to prove that (B,o) &
(B’,*). Define ¢ : B" — B by

©(Ry, Ry,...Ry, Ry, ,..Ry) =m(y1¥2..YmYm—1...y1) and ¢(Ig) = 1.

By Lemma 4.1 and Theorem 4.12, we get that ¢ is a bijection.
Let b= Ry, Ry,.. Ry, Ry, ,..R,, € Bandc=R, R.,.R. R., ,..R. € B’ Consider
Y = Y1Y2--YmYm—1---Y1, 2 = 2122...2n2n—1...21 and u = yzi...z,...z1. Note that ¢(b) o

plc) =m(y) om(z) = m(w).
If 7(u) = 1, then 7(y) = m(z). By Corollary 4.11, we have y = z. Thus b = ¢ and

p(bxc) = p(la) = 1 = p(b) o p(c).

If w(u) # 1, consider s(m(w)) = ugug...upttp—1...u1 and g = Ry, Ry,...Ry, Ry, _,...Ru,. By
the proof of Lemma 5.3, we have that bxc = g. Hence ¢(bxc) = ¢(g) = w(u) = ¢(b)oy(c).
Therefore ¢ is an isomorphism and we have that (B, o) is a Bol loop of exponent two. O

Proposition 5.6. H is a core-free subgroup of G.

Proof. Let N < H be such that N is normal in G. Suppose that N # {I;}. Then there
exists ¢ = Ry, Ry,...R,, € N, with n > 1, y; € R(X) and y; # yi41, for all .
Since 1¢ = 1, it follows that 7(y1y2...yn) = 1. Then

T(Yn---Y2Y1Y2) = Y. (6)

Since N <« G and N < H, we have R,,¢R,, € H, and then 1R,,¢R,, = 1. Thus
1R,,¢ = 1R,,, and hence y2¢ = y2. By (6), we get m(yn...Y2y1y2)¢ = y2, and then
Y2 = T (Yn..-Y2Y1Y2Y1Y2...Yn ), which is a contradiction with Proposition 4.4. O

Now we will determine the nuclei and the center of B(X). Firstly, we need the following
lemma.

Lemma 5.7. Let z,z € B(X)\ {1}. Then z =x o (z 0 z) if and only if x = 2.

Proof. Suppose that  # z and z = z o (z 0 z). Consider s(z) = z129...2p2n—1...21 and
s(x o z) = urug...UpmUm—1...u1. Then

T(UpeeUpp.ty) = T 0 2 = W(T21...20n...21), (7)

T(2U .U ty) =20 (T 02) =2 =7(21...2n...21) (8)
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By (7) and (8), we get m(uq...upm-..tt1) = T(21.. 2. 21U e Uy UL 21 .- 221 ). Then m =
n and u; = z;, for all i, by Corollary 4.11. Therefore x = 1, a contradiction. O

As a consequence of Lemma 5.7, we have that (zo (zoz))oz# 1 =20 ((xoz)oz),
for every x,z € B(X) \ {1} such that « # z. It follows that Nx(B), N,(B) and N,(B)
contain only the identity element 1. Therefore we established the following result.

Corollary 5.8. The nuclei and the center of B(X) are trivial.
6. Open problems

We finish this paper with two conjectures.

If | X| > 1, it is easy to construct proper subloops of B(X) that are free Bol loops of
exponent 2. In the case of free loops (infinite exponent), it is well known that all subloops
of these loops are free [4, Corollary 1, pg. 16].

Conjecture 6.1. Every subloop of a free Bol loop of exponent two is free.

Let Y = {y1,y2,...,yn} be a free set of generators of B(X). For i € {1,2,...,n} and
v e (Y \{y:}), define e(; ), fiv) : B(X) = B(X) by

i) (Ui) = Yiv, [l (W) = vy and ey (v5) = fa0)(Y5) = Y5,

for every j € {1,2,...,n}\{i}. The mappings e(; . and f; ,) are automorphisms of B(X)
and they are called elementary automorphisms of B(X). An automorphism of B(X) is
called tame if it belongs to the group generated by all elementary automorphisms of
B(X). A question concerning free objects in varieties of loops is whether all of their
automorphisms are tame. For free Steiner loops the answer to this question is positive
[6, Theorem 7].

Conjecture 6.2. Every automorphism of a free Bol loop of exponent two is tame.
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