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Abstract. We study the topology of the fibers of real analytic maps Rn →
R

p, n > p, in a neighborhood of a critical point. We first prove that every

real analytic map germ f : Rn → Rp, p ≥ 1, with arbitrary critical set, has a
Milnor-Lê type fibration. Now assume also that f has the Thom af -property,

and its zero-locus has positive dimension. Also consider another real analytic

map germ g : Rn → R
k with an isolated critical point at the origin. We

have Milnor-Lê type fibrations for f and for (f, g) : Rn → R
p+k, and we

prove for these the analogous of the classical Lê-Greuel formula, expressing

the difference of the Euler characteristics of the fibers Ff and Ff,g in terms
of an invariant associated to these maps. This invariant can be expressed

in various ways: as the index of the gradient vector field of a map g̃ on Ff

associated to g; as the number of critical points of g̃ on Ff ; or in terms

of polar multiplicities. When p = 1 and k = 1, this invariant can also be

expressed algebraically, as the signature of a certain bilinear form. When
the germs of f and (f, g) are both isolated complete intersection germs, we

exhibit an even deeper relation between the topology of the fibers Ff and

Ff,g , and construct in this setting, an integer-valued invariant, that we call
the curvatura integra that picks up the Euler characteristic of the fibers. This

invariant, and its name, spring from Gauss’ theorem, and its generalizations

by Hopf and Kervaire, expressing the Euler characteristic of a manifold (with
some conditions) as the degree of a certain map.

Introduction

In this work we study the topology of the fibers of real analytic maps Rn → Rp,
n > p, in a neighborhood of a critical point. This is a fundamental problem that
appears naturally in many areas of mathematics. Our point of view is inspired
by the classical Lê-Greuel formula for the Milnor number of isolated, complex,
complete intersection germs. The idea is that if the map germ is defined by
functions (f1, ..., fk, g), then we can study the topology of its fibers by comparing it
with the topology of the germ we get by dropping down the last defining equation.
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The starting point is Milnor’s fibration theorem which is one of the main foun-
dational results in the theory of complex singularities. Its counter-part for real
singularities Rn → Rp, n > p, also comes from Milnor’s book, and there are sev-
eral interesting articles on the topic published by various people in the 1970s and
1980s, as for instance by E. Looijenga, P. T. Church and K. Lamotke, N. A’Campo,
B. Perron, L. Kauffman, W. Neumann, A. Jacquemard and others. Later, in the
mid 1990s, a new wave of interest on the topic arose, and nowadays the study of
Milnor fibrations for real singularities is an active field of research (see for instance
[44, 5, 38, 9, 39, 35, 36, 6, 1] or the survey article [12]).

Yet, the study of real singularities is in many ways harder than the study of
complex singularities, and all the literature on the subject of Milnor fibrations for
real mappings restricts to the case where the map germ has an isolated critical
value, which is very stringent when p > 1. And even in that case, the study of
the topology of the corresponding Milnor fibrations is still in its childhood, except
for p = 1. The purpose of this work is to study the topology of real analytic
map-germs (Rn, 0) → (Rp, 0), n > p ≥ 2, with zero-locus of positive dimension
and with arbitrary critical locus.

In the case of complex analytic isolated complete intersection germs, in [23]
H. Hamm proved that one also has a Milnor fibration. In the late 1960s, B. Teissier,
Lê Dũng Tráng and others, used ideas of R. Thom to study the topology of singu-
larities in the vein of S. Lefschetz, by considering “slices” (or the pencil) determined
by some general linear form. If instead of a linear form, we slice the singular vari-
ety by the level sets of some complex-valued holomorphic function, then we are in
the setting envisaged in the classical Lê-Greuel formula. This is a celebrated the-
orem about the Milnor number of isolated complex analytic complete intersection
germs, first proved by Lê Dũng Tráng in 1970 (see [32]) and then by Gert Martin
Greuel in [21]. This theorem says that if f1, · · · , fk and g are holomorphic map
germs (Cn+k, 0) → (C, 0) such that f = (f1, · · · , fk) and (f, g) define isolated
complete intersection germs (ICIS for short), then the Milnor number µ(f, g) of
(f, g) can be computed in terms of that of f by the formula:

µ(f, g) + µ(f) = dimC

On+k,0

(f, Jac(f, g))
,

where Jac(f, g) denotes the ideal generated by the determinants of all the (k + 1)
minors of the corresponding Jacobian matrix. Since, by [23], the Milnor fibre of an
ICIS is a bouquet of µ spheres of middle dimension, where µ is the Milnor number,
and the term on the right equals the number of critical points of a Morsification of
the restriction of g to the Milnor fibre of f , the Lê-Greuel formula can be re-stated
as:

χ(Ff ) = χ(Ff,g) + IndPH∇g|Ff ,
where Ff is the corresponding Milnor fibre and the term on the right is the total

Poincaré-Hopf index of the vector field ∇g, conjugate of the gradient vector field
of the restriction of g to the Milnor fibre Ff . That expression for the Lê-Greuel
formula was recently used in [8] for extending this formula to the general setting
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of holomorphic map-germs defined on arbitrary singular varieties, provided the
mappings have the Thom property and g has an isolated critical point.

The techniques used in [8] lend themselves to generalization, and this inspired
us to study real analytic map germs from the viewpoint of the Lê-Greuel formula.

Consider a real analytic map f : (Rn, 0) → (Rp, 0), n > p ≥ 2, with arbitrary
critical locus. Let Bε be the closed ball in Rn centred at 0 of radius ε, Dp

δ be
the open ball in Rp centred at 0 of radius δ and ∆f be the discriminant of f . In
Section 1 we prove that f has an associated locally trivial fibration of the Milnor-Lê
type

f : N̂f (ε, δ) = Bε ∩ f−1(Dp
δ \∆f )→ D

p
δ \∆f .

This is in fact an easy extension of well known results and techniques in singularity
theory. The point here is that we do not impose any conditions on the type of
critical sets that the map may have. Of course that in this general setting the
topology of the Milnor fibre is not always unique: the discriminant of f may split
a neighbourhood of the origin in Rp into several connected components, and one
has a topological (actually differentiable) model for the Milnor fibre on each such
component (compare [33]).

In Section 2 we further require that the map f satisfies the Thom af -property
with respect to some Whitney stratification {Sα} such that its zero-set V (f) has
dimension ≥ 2 and it is union of strata. We also consider another real analytic map
germ g : (Rn, 0) → (Rk, 0) with an isolated critical point in Rn with respect to
the stratification {Sα}. By Section 1 the map-germs f and (f, g) have associated
locally trivial fibrations of the Milnor-Lê type. Then we prove the corresponding
Lê-Greuel formula:

Theorem 1. Let Ff be a Milnor fibre of f (any Milnor fibre, regardless of the
discriminant of f). Then one has:

χ(Ff ) = χ(Ff,g) + IndPH∇g̃|Ff ,

where g̃ : Rn → R is given by g̃(x) = ‖g(x) − t0‖2 with t0 ∈ Rk such that Ff,g =

g|−1
Ff

(t0).

The term on the right, which by definition is the total Poincaré-Hopf index in
Ff of the vector field ∇g̃|Ff , can be expressed also in the following equivalent ways:

(1) As a sum of polar multiplicities relative to g̃ on Ff ;
(2) As the Euler class of the tangent bundle of Ff relative to the vector field
∇g̃|Ff on its boundary.

It should be noted that a Lê-Greuel type formula for real analytic complete
intersection germs with an isolated critical point in the ambient space was recently
obtained in [13]. This is the setting we envisage in Section 2. Now one has
f = (f1, · · · , fk), and (f, g) which are both ICIS-germs, and a Milnor-Lê fibration

(f, g) : N(ε, δ) \ V (f, g) −→ Dδ \ {0} ,
which determines a locally trivial fibre bundle

φ : Sn−1
ε \ V (f, g) −→ S

p .
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As noticed in [39, 11], one has that the projection map φ can always be taken as
(f,g)
‖(f,g)‖ in a neighbourhood of the link L(f,g) := V (f, g) ∩ Sn−1

ε . Following [11] we

say that the map germ (f, g) is d-regular if the projection map φ can be taken

as (f,g)
‖(f,g)‖ everywhere. In this case we notice that there is a relation between the

topology of f and that of (f, g), which is much deeper than the one given by the
Theorem 1. To state this result , it is convenient to write g as fk+1, then we have
the following immediate application of Corollary 5.4 and Corollary 5.5 in [11]:

Theorem 2. Let f = (f1, · · · , fp+1) : (Rn, 0) → (Rp+1, 0) be a complete in-
tersection germ with an isolated critical point at 0 and which is d-regular. Let
V = f−1(0) and for each i = 1, · · · , p + 1 let Vi be the singular variety Vi =

(f1, · · · , f̂i, · · · , fp+1)−1(0), where f̂i means that we are removing this component
and looking at the corresponding map germ into Rp. Then the topology of Vi \ V
is independent of the choice of i and its link, which is a smooth manifold, is dif-
feomorphic to the disjoint union of two copies of the interior of the Milnor fibre
of f .

This motivates the following question: Is the topology of Vi independent of i as
in the complex case? (see [10, Thm. 1 (i)]). In this case the link of Vi would be
diffeomorphic to the double of the Milnor fibre of f .

In Section 3 we focus in this setting and address a different, related problem.
When considering real analytic map-germs, it is important to have invariants that
allow their study. So for instance, when p = 1 and the singularity is algebraically
isolated, one has the local Milnor number at 0, which is an invariant in Z/2Z
introduced by C.T.C. Wall in [46]. As noticed in [2], when n is even this amounts
to considering the usual Euler characteristic χ(K) of the link of f at 0 and reduce
it modulo 2. In particular, in these dimensions χ(K) equals twice the Euler char-
acteristic of the corresponding Milnor fibre, so it is itself an interesting invariant
of f with values in Z. When n is odd the Euler characteristic χ(K) is always
zero and one must do something else to get a topological interpretation of the
Milnor number. This can be done using classical work by M. Kervaire [27] about
the so-called curvatura integra of manifolds, and one finds (see [2]) that Wall’s
Milnor number essentially coincides with the semi-characteristic of the link with
coefficients in Z/2Z. Yet, in these dimensions there is not an obvious lifting of
this invariant to Z.

Here we show that when p > 1, if f has a Milnor open-book fibration and the
dimension of the zero set f−1(0) has dimension grater than 0, then one does have
an invariant of f with values in Z, that we call the curvatura integra of f , in
analogy with [27]. This invariant is defined as the topological degree of a certain
map, and it coincides with the Euler characteristic of the Milnor fibre of f . So
this can be regarded as being a topological counterpart for real singularities, of G.
Kennedy’s integral formula for the Milnor number of complex map-germs [26].

When n− p is odd, so that the link K of f is even-dimensional, this invariant
equals 1

2χ(K), the Euler characteristic of the link, and it coincides with the Euler
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characteristic of the Milnor fibre. When n−p is even this construction only gives an
invariant in Z/2Z, so we modify as follows. Instead of considering f , we consider

the composition f̂ : Rn → Rp−1 of f with the orthogonal projection π of Rp onto
a hyperplane through the origin in Rp. This is a real analytic map-germ with an

isolated critical point at the origin, and by [11] its link K̂ is diffeomorphic to the
double of the Milnor fibre of f , independently of the choice of hyperplane. Then

the curvatura integra of f essentially is one half of the Euler characteristic of K̂,
and it coincides with the Euler characteristic of f .

The invariant we introduce here is inspired by the construction in [43, 41, 40, 11]

of a pencil {V`} canonically associated to every map-germ (Rn, 0)
f→ (Rp, 0), which

has strong relations with the theory of Milnor fibrations, as shown in [10, 11, 42].
We remark that the canonical pencil exists naturally for all map-germs with

p > 1, whether or not the germ has isolated singularities, and therefore similar
considerations can be done in a more general setting.

Finally, in Section 4 we consider complete intersections germs defined by only
two equations, with algebraically isolated singularities. We use the theory of in-
dices of vector fields on singular varieties developed by X. Gómez-Mont and P.
Mardešić in [18, 19], to give an algebraic expression of the Lê-Greuel formula in
terms of the signature of a certain quadratic form associated to (f, g). This al-
gebraic expression arises from the Eisenbud-Levine-Khimshiasvili formula for the
local Poincaré-Hopf index of real analytic vector fields.

1. Milnor-Lê fibration

Let f : (Rn, 0)→ (Rp, 0), n > p ≥ 2, be a real analytic map-germ with a critical
point at 0. Let Bε be a closed ball in Rn centred at 0 of sufficiently small radius
ε > 0. We see Bε as a stratified set where the strata are the interior Bε and
the boundary Sε = ∂Bε of Bε. Consider the restriction f |

Bε
which to simplify

notation we still denote just by f . Denote by Cf (Bε) the set of critical points of
f in Bε and denote by Cf (Sε) the set of critical points in Sε of the the restriction

f |Sε . Let Cf = Cf (Bε)∪Cf (Sε) be the set of critical points of f in Bε and denote
by ∆f = f(Cf ) the discriminant of f . We have the following proposition (see [37,
IV.4]):

Proposition 1.1. The restriction

f : Ef (ε) = Bε ∩ f−1(Rp \∆f )→ R
p \∆f

is a locally trivial fibre bundle

Proof. We have that Cf is a closed set of Bε [37, IV Cor. 4.6] and since f is a
continuous map from a compact space to a Haudorff space, it is proper and closed.
Thus ∆f is a closed subset of Rp. It follows that Rp \∆f is an open submanifold

of Rp and that Ef (ε) = Bε∩f−1(Rp \∆f ) is also a manifold with boundary, with
a stratification given by its interior and its boundary. Therefore the map

f : Ef (ε)→ R
p \∆f
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is a proper map which restricted to each stratum is a submersion and the result
follows by the Thom-Mather First Isotopy Lemma (compare with [37, p. 80]). �

Let Dp
δ be a open ball in Rp centred at 0 of radius 0 < δ � ε. Let N̂f (ε, δ) =

Bε ∩ f−1(Dp
δ \∆f ) and Nf (ε, δ) = Bε ∩ f−1(∂Dp

δ \∆f ) be the restrictions of the
fibre bundle of Proposition 1.1 to Dp

δ \ ∆f and ∂Dp
δ \ ∆f respectively. We call

N̂f (ε, δ) a solid Milnor tube and Nf (ε, δ) a Milnor tube for f . Hence we have,

Corollary 1.2. Let f : (Rn, 0)→ (Rp, 0) be as before. Then the restricitions

f : N̂f (ε, δ)→ D
p
δ \∆f ,

and

f : Nf (ε, δ)→ ∂Dp
δ \∆f ,

are locally trivial fibrations.

We call the fibrations in Corollary 1.2 the Milnor-Lê type fibrations.

Remark 1.3. As we mentioned in the introduction, if the discriminant of f splits a
neighbourhood of the origin inRp into several connected components, the topology
of the Milnor fibre is not unique, and one has a topological (actually differentiable)
model for the Milnor fibre on each such component.

2. Real Lê-Greuel type formula

As in the previous section, consider a real analytic map-germ f : (Rn, 0) →
(Rp, 0), n > p ≥ 2 with a critical point at 0 and V (f) = f−1(0) has dimension
greater than 2. Let {Sα}α∈A be a Whitney stratification of Rn with V (f) union
of strata, and let {Rγ}γ∈G be a Whitney stratification of Rp such that both
stratifications give a stratification of f , i. e., for every α ∈ A there exists γ ∈ G
such that f induces a submersion from Sα to Rγ . We further assume that f
satisfies the Thom af -property with respect to such stratification of f : let Sα and
Sβ be strata such that Sα ⊂ S̄β , let x ∈ Sα and let {xi} be a sequence of points in

Sβ converging to x. Set fαx = f |−1
Sα

(f(x)), the fibre of f |Sα which contains x and

fβxi = f |−1
Sβ

(f(xi)) the fibre of f |Sβ which contains xi. Let T be the limit of the

sequence of tangent spaces Txif
β
xi . Then Txf

α
x ⊂ T .

The following is a technical lemma wich says that the rank of a map g : (Rn, 0)→
(Rk, 0) restricted to the fibres fαx is lower semi-continuous.

Lemma 2.1. Let f : (Rn, 0)→ (Rp, 0) be a real analytic map-germ which satisfies
the Thom af -property with respect to a stratification of f and let g : (Rn, 0) →
(Rk, 0) be another real analytic map-germ. Let Sα and Sβ two strata of Rn such
that Sα ⊂ S̄β. Let x ∈ Sα and denote by fαx the fibre of f |Sα which contains x.
Suppose that rankDx(g|fαx ) = r, then there exists an open neighbourhood Ux of x
in Rn so that rankDx′(g|fβ

x′
) ≥ r for all x′ ∈ Sβ ∩ Ux.
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Proof. Let W be an open neighbourhood of x in Rn such that W ∩ Sβ is a chart.
Consider the tangent bundle TSβ |W∩Sβ of Sβ restricted to W ∩Sβ which is trivial.
Now consider the subbundle TF of TSβ |W∩Sβ where the fibre of x′ ∈ W ∩ Sβ is

Tx′fβx′ the tanget space at x′ of the fibre of f |Sβ which contains x′. Suppose

dim fβx′ = l, since TF is trivial we can choose a local frame {s1, . . . , sl}, that is

{s1(x′), . . . , sl(x
′)} is a basis for Tx′fβx′ for every x′ ∈ W ∩ Sβ . By continuity we

can extend this frame to the closure of W ∩ Sβ , in particular to the points in
W ∩ Sα.

Let {xi} be a sequence of points in W ∩ Sβ converging to x. Consider the
sequence of tangent spaces Txif

β
xi , taking a subsequence if it is necessary, suppose

that limi→∞ Txif
β
xi = T . Since f has the Thom af -property we have that Txf

α
x ⊂

T . By hypothesis Dx(g|fαx ) = (Dxg)|Txfαx : Txf
α
x → Tg(x)R

k has rank r, and
since Txf

α
x ⊂ T it follows that rank(Dxg)|T ≥ r. Using the frame {s1, . . . , sl}

we obtain a matrix expresion for (Dxg)|T , and since rank(Dxg)|T ≥ r it has an
r× r-submatrix Ax (which without loss of generality we can suppose it is given by
the first r rows and columns) whose determinant is nonzero. Hence the continuous
map given by

W ∩ Sβ // Rk·l // Rr·r // R

x′
� // (Dx′g)|Tx′fβx′

� // Ax′
� // detAx′

does not vanish at x nor in an open neighbourhood Ux of x. Thus rankDx′(g|fβ
x′

) ≥
r for all x′ ∈ Sβ ∩ Ux. �

Now we further assume that the real analytic map-germ g : (Rn, 0) → (Rk, 0)
has an isolated critical point at 0 in Rn with respect to the stratification {Sα},
that is, the restriction of g to any stratum is a submersion, except at 0. This
implies that g has 0 as an isolated critical point as a map from Rn to Rk.

Let Bε be a closed ball in Rn centred at 0 of sufficiently small radius ε > 0,
such that every stratum of {Sα} which contains 0 in its closure meets transversally
every sphere in Bε centred at 0.

Proposition 2.2. Let f : (Rn, 0)→ (Rp, 0) and g : (Rn, 0)→ (Rk, 0) be as before.
Let 0 < δ � ε and consider the Milnor-Lê type fibration given by Corollary 1.2

f : N̂f (ε, δ)→ D
p
δ \∆f .

Let 0 < ε′ < ε small enough and consider the closed ball Bε′ in Rn centred at 0 of
radius ε′ > 0. Then there exists y0 ∈ Dp

δ \∆f ⊂ Rp with ‖y0‖ sufficiently small
such that the restriction of g to the fibre f−1(y0)∩Bε of y0 only has critical points
in the interior of Bε′ .
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Proof. Let x ∈ Sα ⊂ V (f) \ {0}. Since V (f) is union of strata we have that
fαx = Sα. Since g has 0 ∈ Rn as an isolated critical point with respecto to the
stratification {Sα}α∈A of Rn, by Lemma 2.1 there exist a neighbourhood Ux such
that for any stratum Sβ such that Sα ⊂ Sβ we have

rankDx′(g|fβ
x′

)

{
= k if x 6= 0,

≥ rankD0(g|Sα) if x = 0,

for any x′ ∈ Ux ∩ Sβ . Let 0 < ε′ < ε be small enough so that the open ball Bε′

centred at 0 is contained in the neighbourhood U0. The neighbourhoods Ux with
x ∈ V (f) \ {0} and Bε′ give an open cover of Bε ∩ V (f), and since it is compact,
there exist a finite subcover {U1, . . . , Um}. Notice that one of the elements of such
cover must be the ball Bε′ since for every x ∈ V (f) \ {0} the neighbourhood Ux
contains only points such that rank(Dx′g)|Tx′fβx′ = k, so 0 cannot belong to any of

them. Consider the intersection f(U1)∩ · · · ∩ f(Um)∩ (Dp
δ \∆f ) and take a point

y0 6= 0 in such intersection. The fibre f−1(y0) ∩Bε of y0 only has critical points
in the interior of Bε′ by the definition of the cover {U1, . . . , Um}. �

To simplify notation denote by Ff the fibre given in Proposition 2.2. We have
that Ff is a compact manifold with boundary Ff ∩ Sε.

Consider the real analytic map-germ

h = (f, g) : (Rn, 0)→ (Rp ×Rk, 0)

h(x) = (f(x), g(x)).

Notice that the discriminant of h is given by ∆h = ∆f ×Rk. Consider the Milnor-
Lê type fibration given by Corollary 1.2

h : N̂h(ε, δ)→ D
p+k
δ \∆h.

Let δ′ < δ be such that for all t ∈ Dk
δ′ we have that (y0, t) ∈ Dp+k

δ . Choose

t0 ∈ Dk
δ′ such that the fibre Fh = h−1(y0, t0) ∩ Bε does not intersect the ball

Bε′ (see Figure 1). Notice that (y0, t0) /∈ ∆h and therefore Fh ⊂ N̂h(ε, δ). Let
δ′′ > 0 suficiently small with respect to δ′ such that the open ball Dk

δ′′(t0) centred
at t0 of radius δ′′ is contained in the open ball Dk

δ′ centred at 0 of radius δ′ and
h−1(y0, t) = Ff∩g−1(Dk

δ′′(t0)) does not intersect the ballBε′ for every t ∈ Dk
δ′′(t0).

Consider the map

g̃ : Rn → R

g̃(x) = ‖g(x)− t0‖2.

Lemma 2.3. Let g̃|Ff be the restriction of g̃ to Ff . The gradient vector field
∇g̃|Ff on Ff \ Int(Bε′) is the lifting, up to homotopy, of a non-zero vector field on
R via dg̃.

Proof. Let x ∈ Ff \ Int(Bε′) and consider local coordinates of Ff around x. Con-
sider the map n : Rk → R given by n(t) = ‖t‖2 and the map m : Rk → Rk given
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(
)

|

Bε

Bε′

Ff

V (f)

f

Dpδ
∆f

y0

g

t0

Dkδ′
Fh

Figure 1. The fibre Ff of Proposition 2.2 and the fibre Fh.

by m(t) = t− t0. The map g̃|Ff can be seen as the composition g̃|Ff = n◦m◦g|Ff ,
thus, by the chain rule we have that the differential of g̃|Ff is given by

d(g̃|Ff )x = dnm(g(x)) ◦ dmg(x) ◦ d(g|Ff )x

and as a product of matrices we have

d(g̃|Ff )x = (g(x)− t0) · Ik×k · d(g|Ff )x = (g(x)− t0) · d(g|Ff )x.

Hence the gradient of g̃|Ff is given by ∇g̃|Ff = (g(x)−t0)·d(g|Ff )x. Since d(g|Ff )x
has rank k its column vectors form a basis for Rk, therefore there exist at least one
column vector of d(g|Ff )x such that its inner product with (g(x)− t0) is no zero,
otherwise the linear subspace generated by the column vectors of d(g|Ff )x would be
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contained in the orthogonal subspace of the vector (g(x)− t0), which contradicts
the fact that d(g|Ff )x has rank k. Hence ∇g̃|Ff is non zero in Ff \ Int(Bε′).
Moreover, at the points in Ff \ Int(Bε′) the gradient ∇g̃|Ff satisfies

d(g̃|Ff )x(∇g̃|Ff (x)) =
∥∥∇g̃|Ff (x)

∥∥2 ∈ R+, for x ∈ Ff \ Int(Bε′).

Hence ∇g̃|Ff is the lifting, up to scaling, of a non-zero vector field on R via
d(g̃|Ff ). �

(
)

|
(

)
)

(

t0

Dkδ′′(t0)

Dkδ′′′

Dkδ′

g

Bε

Bε′′

Bε′

Ff

∇d

∇d

Fh

Figure 2. The vector field r of Lemma 2.4.

Let 0 < δ′′′ < δ′ be such that the open ball Dk
δ′′(t0) is contained in the open

ball Dk
δ′′′ . In the following lemma we construct a vector field r which is ilustrated

in Figure 2.

Lemma 2.4. There exists a vector field r on Ff with the following properties:

(1) The restriction of r to Ff ∩g−1(Dk
δ′′′) is tangent to all the fibres h−1(y0, t)

with t ∈ Dk
δ′′′ .

(2) The restriction of r to the fibre Fh has only isolated singularities (zeros).
(3) r is transverse to Sε, pointing outwards.
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Proof. Since Fh is a compact manifold with boundary we can construct r in Fh
satisfying (2): take the unit normal vector field on Fh ∩Sε pointing outwards and
extend it to the interior of Fh with isolated zeros. Since the restiction of g to Ff ∩
g−1(Dk

δ′′(t0)) does not have critical points and the fibres of g in Ff ∩g−1(Dk
δ′′(t0))

are transverse to Sε we have that g : Ff ∩ g−1(Dk
δ′′(t0)) → Dk

δ′′(t0) determines a
trivial fibration (since Dk

δ′′(t0) is contractible). Hence the vector field r in Fh can
be extended, as a product, to all the other fibres of g in Ff ∩ g−1(Dk

δ′′(t0)). Let us
choose ε′′ with ε′ � ε′′ < ε such that Ff and the fibres of g in Ff are transverse to
Sε′′ . Then the restriction of g to (Ff ∩g−1(Dk

δ′)\ Int(Bε′′) is a submersion and its
fibres are transverse to Sε and to Sε′′ and therefore it is a trivial fibration. Hence
the vector field r restricted to (Ff ∩ g−1(Dk

δ′′(t0)) \ Int(Bε′′) can be extended to
(Ff ∩ g−1(Dk

δ′) \ Int(Bε′′) being tangent to the fibres of g and transverse to Sε
pointing outwards. Consider the map d : Rn → R given by d(x) = ‖x‖2. We
have that Ff is transverse to the spheres Sε′′′ for all ε′′ < ε′′′ < ε, therefore the

restriction of the gradient ∇d to (Ff \ Int(Bε′′)) \ g−1(Dk
δ′′′), where Dk

δ′′′ is the
closed ball, is a non-zero vector field transverse to Sε pointing outwards. Using
a partition of unity we glue this vector field to the vector field constructed on
(Ff ∩g−1(Dk

δ′)\Int(Bε′′) getting a vector field on Ff \Int(Bε′′) which is transverse
to Sε pointing outwards. Using a partition of unity, we can extend r to Ff as zero
in the complement of a neighbourhood of (Ff∩\Int(Bε′′))∪(Ff∩g−1(Dk

δ′′(t0)). �

Lemma 2.5. There exists a vector field u defined on Ff \ Int(Bε′) satisfying the
following:

(i) u is tangent to Sε.
(ii) Its zero set is Fh, and u is transversally radial to Fh.

(iii) u is transverse to Ff ∩ g−1(∂Dk
δ′′(t0)).

Proof. The restriction of g to (Ff ∩ g−1(Dk
δ′) \ Int(Bε′) is a submersion and its

fibres are transverse to the sphere Sε. Thus, we can lift any vector field on Dk
δ′ to

a vector field on (Ff ∩ g−1(Dk
δ′) \ Int(Bε′) which is orthogonal to the fibres and

tangent to Sε. Let ū be the vector field on Dk
δ′ radial from t0 which is given by

ū(t) = t − t0. Let u be a lifting of ū by g to (Ff ∩ g−1(Dk
δ′) \ Int(Bε′). Then u

satisfies the properties stated in the lemma in (Ff ∩ g−1(Dk
δ′) \ Int(Bε′). Using

a partition of unity we extend u to Ff \ Int(Bε′) as zero in the complement of a
neighbourhood of (Ff ∩ g−1(Dk

δ′) \ Int(Bε′). �

The vector field u of Lemma 2.5 is ilustrated in Figure 3.

Lemma 2.6. There exists a vector field w on Ff \ Int(Bε′) with the following
properties:

(1) It is tangent to Fh.
(2) w has only a finite number of zeros, and they are all contained in Fh.
(3) At each zero w is transversally radial, that is, it is transverse to the bound-

ary of a tubular neighborhood of Fh in Ff .
(4) w is transverse to Sε, pointing outwards.
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(
)

| t0

Dkδ′

g

Bε

Bε′

Ff

Fh

Figure 3. Vector field u of Lemma 2.4.

(5) w coincides with ∇g̃|Ff on Ff ∩ Sε′ .

Proof. We use a partition of unity to define w on Ff \ Int(Bε′) as the sum of
the vector fields r and u constructed in Lemma 2.4 and Lemma 2.5. We get a
vector field which satisfies properties (1), (2), (3) and (4). Property (5) follows
from Lemma 2.3 and the fact that the restriction of w to Ff ∩ Sε′ coincides with
the vector field u of Lemma 2.5 which is the lifting of the vector field ū which is
non-zero on Rk \ Dk

δ′′(t0). Let n : Rk → Rk be the map given by n(t) = ‖t‖2
and m : Rk → Rk the map given by m(t) = t − t0 as in the proof of Lemma 2.3.
It remains to see that the image of the vector field ū on Rk \Dk

δ′′(t0) under the
differential of the map n◦m is non zero. Therefore the vector field w on Ff\Int(Bε′)
is the lift of a non zero vector field on R. To see this, given t ∈ Rk \Dk

δ′′(t0) we
have that

d(n ◦m)t(u(t)) = (t− t0) · (t− t0) = ‖t− t0‖2 6= 0.

�
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Proof of Theorem 1. We can extend the vector field w given in Lemma 2.6 to Ff ∩
Int(Bε′) with a finite number of isolated zeros. By the Poincaré-Hopf Theorem,
the sum of the indices of the zeros of w give the Euler-Poincaré characteristic
χ(Ff ). By construction, w only has zeros inside Bε′ and in Fh. The sum of the
indices of the zeros in Fh give the Euler-Poincaré characteristic χ(Fh) of Fh and
the sum of the indices of the zeros in Bε′ give the total Poincaré-Hopf index of
the vector field ∇g̃|Ff . Hence we have

χ(Ff ) = χ(Fh) + IndPH∇g̃|Ff .

�

Remark 2.7. For the case k = 1, that is when g : Rn → R, instead of g̃ one can
take g itself. So in this case we get the formula

χ(Ff ) = χ(Fh) + IndPH∇g|Ff .

3. Curvatura integra and d-regularity

Let f : (Rn, 0) → (Rp, 0) be a real analytic map-germ. We say that f satisfies
the Milnor condition if it has an isolated critical point at zero. In this case by [34]
we have a locally trivial fibration

f : f−1(∂Dδ) ∩Bε → ∂Dδ
∼= S

p−1,

where Bε is a sufficiently small ball around 0 in Rn and Dδ is a ball around 0 in
Rp of radius δ > 0, sufficiently small with respect to ε. Milnor also points out
that the tube f−1(∂Dδ)∩Bε can always be inflated to the sphere Sε and one gets
a locally trivial fibration

φ : Sε \Kε −→ S
p−1 ,

for sufficiently small spheres, where Kε = Sε ∩ f−1(0) is the link. Furthermore,

the projection φ can always be taken as φ = f
‖f‖ in a neighborhood of the set Kε

(which can be empty).
The following concept was introduced in [41] for p = 2; the extension for p > 2

is straightforward.

Definition 3.1. Let f : (Rn, 0) → (Rp, 0), p ≥ 2, be a real analytic map-germ
with an isolated critical point at 0. We say that f has the strong Milnor property
if for every sufficiently small sphere Sε the map:

φ =
f

‖f‖
: Sε \ (Sε ∩ f−1(0)) −→ S

p−1 ,

is a locally trivial fibration.

In this case we also say that f defines a Milnor open-book fibration. For in-
stance, every holomorphic map-germ (Cn, 0)→ (C, 0) has the strong Milnor prop-
erty, by [34], and by [43, 41] so does every twisted Pham-Brieskorn polynomial:

h(z1, · · · , zn) = za11 zσ(1) + · · ·+ zann zσ(n) ,
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where all ai > 0 and σ is a permutation of {1, . . . , n} (see also [44]), and more
generally, every polar-weighted homogeneous singularity (see [9]).

Let us describe now the canonical pencil of a map f as above. This appeared
first in [43, 41, 40] for p = 2 and later in [11] for p ≥ 2. An equivalent pencil
appears also in [42].

Definition 3.2. Given a map-germ f : (Rn, 0) → (Rp, 0), n > p, its canonical
pencil is the family {V`}, parametrized by the real projective space Rp−1, so that
for each line ` through 0 in Rp this set is

V` = {x ∈ Rn | f(x) ∈ `}.

Notice that the union of all V` is the whole ambient space and their intersection
is f−1(0). Moreover, if f is real analytic and it has an isolated singularity, then
each V` is non-singular away from 0.

The following definition is taken from [10, 11].

Definition 3.3. We say that the map-germ f is d-regular at zero if there exists
ε such that every sphere Sε, centered at zero, of radius ≤ ε, meets transversally
every element of the pecil.

Theorem 3.4 ([10, 11]). Let f : (Rn, 0) → (Rp, 0), n > p > 1, be a real analytic
map-germ with an isolated critical point at 0 and such that dim f−1(0) > 0. Then
f has the strong Milnor property if and only if it is d-regular, and in that case the
two fibrations:

φ =
f

‖f‖
: Sε \ (Sε ∩ f−1(0)) −→ S

p−1 ,

and

N(ε, δ)
f−→ ∂∆δ

∼= S
p−1 ,

are equivalent. Furthermore, let V` := {x ∈ Rn | f(x) ∈ ` } be an element in the
pencil of f . Then the fibers of φ over the two points in `∩Sp−1 are naturally glued
together along the link K = f−1(0) ∩ Sε forming the link of V`.

Notice that we can always take the line ` to be the first coordinate axis in Rp.
In that case, if p = 2 and we identify R2 ∼= C, then the variety V` is the set of
zeroes of the real part of f . We remark also that the statement in this theorem
saying that f has the strong Milnor property if and only if it is d-regular is proved
independently in [42], and so does the equivalence of the two fibrations in the case
when f is weighted homogeneous.

Remark 3.5. Notice that the fibers of φ are open manifolds, while the fibers of
f in the tube N(ε, δ) are compact manifolds. Thus we must be careful when we
say that these two fibrations are equivalent: the actual equivalence comes when
we consider the open tube N(ε, δ) \ (Sε ∩N(ε, δ)).

Let us recall now the concept of the curvatura integra. IfM is an oriented (n−1)-
dimensional closed submanifold of Euclidean space Rn, then its normal bundle is
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necessarily trivial. If ν is a section of the normal bundle “pointing outwards”
everywhere, then ν determines a map from M into the (n− 1)-dimensional sphere
Sn−1, the Gauss map, whose degree is the curvatura integra of M .

In [24] H. Hopf generalized the classical theorem of C. F. Gauss by proving that
if (n − 1) is even then its curvatura integra is half the Euler characteristic of M ,
independently of the embedding. This theorem was generalized by M. Kervaire
in [27] to submanifolds of Euclidean spaces with arbitrary codimensions, provided
these are embedded with a trivial normal bundle. This is as follows.

LetM be anm-dimensional closed manifold embedded inRn with trivial normal
bundle ν(M). Set k = n − m and let us denote by V (k, n) the Stiefel manifold
of orthonormal k-frames in Rn. This manifold is (m − 1)-connected and its first
homology group is in dimension m, where its homology is Z if either m is even or
k = 1, or Z/2Z when m is odd and k > 1. A trivialization of ν(M) defines, up to
homotopy, a smooth map

M → V (k,m+ k) ,

and one has an induced homomorphism

ϕ∗ : Hm(M ;Z)→ Hm(V (k + 1,m+ k;Z)).

If m is even, the map φ has a degree, an integer, and this is by definition the
curvatura integra of M. Kervaire and H. Hopf, denoted by ϕ(M). When m = 2
and k = 1 this is the usual Gauss map.

Theorem 3.6 ([27]). Let M be a manifold of even dimension embedded in some
Euclidean space Rn with trivial normal bundle. Then its curvatura integra is
independent of the embedding and it equals one half of its Euler characteristic:

ϕ(M) =
1

2
χ(M).

Remark 3.7. When the dimension of M is odd, its curvatura integra is an in-
variant in Z/2Z and in this case Kervaire’s theorem (completed in [2], Prop. 3.4)
says that if M bounds a parallelizable manifold, then this invariant equals the
semi-characteristic of M .

Consider now a real analytic map-germ f : (Rn, 0) → (Rp, 0), p > 1, with
an isolated critical point at 0. We set V := f−1(0), so this is a real analytic
variety with an isolated singularity at 0. If we assume that the germ of V at
0 has dimension greater than 0, then in a neighbourhood of 0, every point in
V ∗ := V \ {0} is a regular point of f . Hence V ∗ is a smooth submanifold of
Rn of dimension n − p, embedded with trivial normal bundle. Furthermore, this
manifold meets transversally every sufficiently small sphere Se around 0 (by [34]
or by Verdier’s Bertini-Sard theorem in general). Hence its link K := V ∩ Se is a
smooth submanifold of Rn of dimension n− p− 1, embedded with trivial normal
bundle.

Definition 3.8 (Curvatura integra). Let f : (Rn, 0)→ (Rp, 0), p > 1, be real an-
alytic, with dimV > 0 and having the strong Milnor property. Then its curvatura
integra Ψ(f) ∈ Z is defined as follows:
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(1) If n−p is odd, so the linkK is even-dimensional, then we set Ψ(f) := ϕ(K).
(2) If n− p is even, let V` be an element in the canonical pencil of f . Denote

by K` the link of V`, so this is a closed, even-dimesnional manifold with
trivial normal bundle. Then we set: Ψ(f) := ϕ(K`).

The fact that this invariant is well defined, i.e., that for n− p even it does not
depend on the choice of element in the pencil, is a consequence of Theorem 3.9
below.

Let us now relate the invariant Ψ(f) with the Euler characteristic of the Milnor
fiber of f :

Theorem 3.9. Let f : (Rn, 0)→ (Rp, 0), with p > 1 be a real analytic map-germ
with the strong Milnor property. Suppose also that dim f−1(0) > 0. Then we have:

Ψ(f) = χ(F ),

where F denotes the Milnor fiber of f .

Proof. Notice that the Milnor fiber has dimension (n− p) and its boundary is iso-
topic to the link K. We split this proof in two parts, the first being when (n−p) is
odd, so the link is even-dimensional and it has trivial normal bundle. By definition
Ψ(f) := ϕ(K), so it follows from Theorem 3.6 that ϕ(K) = 1

2χ(K). The result
now follows from a general theorem in differential topology: if a closed oriented
manifold M bounds a compact, oriented manifold X and M is even-dimensional,
then χ(M) = 1

2χ(X). To prove this, consider the double of X and denote it DX.
This is a closed oriented manifold of odd dimension. Hence χ(DX) = 0. But one
also has that χ(DX) = 2χ(X)− χ(M), so χ(M) = 2χ(X). We conclude that

Ψ(f) = ϕ(K) =
1

2
χ(K) =

1

2
(2χ(F )) = χ(F ).

Now consider the case when (n−p) is even. By definition we have Ψ(f) = ϕ(K`),
where K` is the link of an element V` of the canonical pencil of f . In this case K`

is even dimensional and it has trivial normal bundle, so it is orientable, while the
link K is odd-dimensional and also orientable. Theorem 3.4 says that K` is the
union of two Milnor fibers of φ = f/‖f‖ glued along the link K:

K` = φ−1(y`) ∪K ∪ φ−1(−y`).

Theorem 3.4 also says that the fibration φ is equivalent with the fibration on a
Milnor tube (see Remark 3.5). Thence, using as above well known properties of
the Euler characteristic, we have:

χ(K`) = χ(φ−1(y`))− χ(K) + χ(φ−1(−y`)) = 2χ(F ),

where F denotes de Milnor fiber of f .
By Theorem 3.6 we have ϕ(K`) = 1

2χ(K`), which implies Ψ(f) = ϕ(K`) =
1
2χ(K`), so Ψ(f) = χ(F ). Thus we conclude that Ψ(f) = χ(F ) in all cases. �
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4. An algebraic viewpoint

In this section we consider the case of f : (Rn, 0) → (R, 0) and g : (Rn, 0) →
(R, 0), both with an algebraically isolated critical point at 0 (se below for the
definition), which define a complete intersection in Rn. We give an algebraic
expresion of the Lê-Greuel formula in terms of the signature of a certain quadratic
form asociated to (f, g).

It is well known result that the Poincaré-Hopf index of a holomorphic vector
field v with isolated singularity at 0 can be computed as the dimension of the
algebra obtained from the ring of germs of holomorphic functions at 0, dividing
it by the ideal generated by the coordinate functions of v. This fact, together
with a certain “law of conservation of the number” under appropriate types of flat
deformations, is what leads to the expression on the right hand side of the classical
Lê-Greuel in the holomorphic setting:

µ(f, g) + µ(f) = dimC

On+k,0

(f, Jac(f, g))
.

It is thus natural to ask what happens in the real case. This is a subject that has
been explored in the work of X. Gómez-Mont and P. Mardešić [18, 19], and also
by W. Ebeling and S. Gusein-Zade, for instance in [15].

The starting point is the celebrated formula of Eisenbud-Levine-Khimshiashvili
[16, 28]. To explain this, let us denote by ARn,0 the local ring of germs of real an-
alytic real-valued functions, and consider a germ of a vector field v = (a1, · · · , an)
at 0 ∈ Rn, where the components are elements in ARn,0. We let Bv be the local
algebra of v:

Bv = ARn,0/(a1, · · · , an),

where (a1, · · · , an) denotes the ideal generated by components of v. The dimension
of Bv as an algebra over R is the multiplicity λ(v) of v at 0. If λ(v) <∞, then v
necessarily has an isolated zero at 0, but the converse is not always true: λ(v) <∞
is equivalent to saying that the complexification vC of v has an isolated singularity
at 0. In this case we say that the singularity of v at 0 ∈ Rn is algebraically isolated.
The signature formula of [16] and [28] deals with such vector fields (in fact the
theorem in [16] is proved for C∞ vector fields with an isolated singularity of finite
multiplicity).

For this, given an analytic vector field v with finite multiplicity, let Jv be the
Jacobian of v, i.e., the (local) function whose value at each point is the determinant
of the Jacobian matrix: 

∂a1
∂x1

· · · ∂a1
∂xn

...
. . .

...
∂an
∂x1

· · · ∂an
∂xn


For simplicity we also denote by Jv the residue class of the Jacobian in the local

ring Bv. Since Bv is an algebra, given a linear functional φ : Bv → R one can



18 JOSÉ LUIS CISNEROS-MOLINA, JOSÉ SEADE, AND NIVALDO G. GRULHA JR.

define a map 〈 , 〉φ : Bv ×Bv → R by:

〈f, g〉φ = φ(fg).

This is the composition of the product in the algebra Bv followed by φ. We let
Sgn(v) denote its signature, i.e., the number of positive eigenvalues minus the
number of negative eigenvalues. Then one has the index formula of Eisenbud-
Levine-Khimshiashvili [16, 28] says:

Theorem 4.1. One can always choose the linear form φ so that φ(Jv) > 0, and
in this case one has:

IndPH(v, 0) = Sgn(v),

independently of the choice of φ.

The next question now is to consider analytic vector fields defined on real an-
alytic singular varieties, and this is what the authors study in [18, 19, 15]. We
recall now some of the main ideas in [18, 19].

Recall that given an analytic map-germ (Rn+1, 0)
f→ (R, 0) with an isolated

critical point at 0, in general there is not “a” Milnor fibre, but there are fibres to
left and right of 0 ∈ R, with possibly different topology. Therefore one can not
define in general an index in the spirit of the GSV-index [20], i.e., a well-defined
integer associated to each vector field on the hypersurface V = f−1(0) with an
isolated singularity, which measures the number of zeroes of an extension of the
vector field to a Milnor fibre. In this case the number that we get may depend on
the choice of Milnor fiber (right fibers or left fibers).

If the hypersurface has odd dimension, things became simpler from topological
point of view, as we already know from the previous section. In this case the Euler-
Poincaré characteristic of the Milnor fiber is well defined, and therefore so is the
corresponding GSV-index of vector fields (see [2]). However for even dimensions,
in general this is only well defined modulo 2.

Even though, the formulae by Arnold in [3] show that for gradient vector fields,
the algebra behind the function determines the Euler characteristic of the fibers in
all cases. This motivated the search for an algebraic formula for the index of vector
fields on real analytic hypersurface singularities, and the work of Gómez-Mont and
Mardešić [18, 19] is very close to the Eisenbud-Levine-Khimshiashvili formula.

To explain this case, let U be an open neighborhood around 0 ∈ Rn+1, and let
f : (U, 0)→ (R, 0) be real analytic and set V = f−1(0). Let A be the local ring of
f at 0:

A =
ARn+1,0(

∂f
∂x1

, · · · , ∂f
∂xn+1

) ,
where ( ∂f∂x1

, · · · , ∂f
∂xn+1

) = Jf is the jacobian ideal of f . We say that V has an

algebraically isolated singularity at 0 if the algebra A is finite dimensional and it
is equivalet to saying that the complexification V (f)C of V (f) has an isolated
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singularity. The algebra A has a distinguished element: The class of the Hessian,

Hess(f) := det(
∂2f

∂xi∂xj
) ∈ A.

This class generates an ideal in A which is minimal in the sense that it is contained
in every nonzero ideal of A; This is called the socle of the corresponding algebra
[19].

Now consider a real analytic vector field v on V ∩ U , tangent to V and with
an algebraically isolated singularity at 0. Thus v is the restriction to V of a real
analytic vector field v̂ on a ball B ⊂ Rn+1, such that df(v)(x) = 0 for each x ∈ V .
Since the ideal of functions vanishing on V is generated by f , one has that df(v)
is a multiple of f , so the assumption of v being tangent to V is actually equivalent
to saying that there exist hv ∈ ARn+1,0 so that df(v) = fhv.

Following [16, 28], we consider the local algebra of v = (a1, · · · , an):

Bv = ARn,0/(a1, · · · , an).

This algebra has also finite dimension because v has an algebraically isolated
singularity, and it also has a distinguished element: The class of the Jacobian
of v:

Jv := det(
∂ai
∂xj

) ∈ Bv.

We know that in the Eisenbud-Levine-Khimshiashvili formula for the index, when
the space is smooth, the Jacobian Jv and the signature of certain quadratic form,
determine the index. In the singular case we must consider the relative Jacobian
Jf (v) and the relative Hessian Hessrel(f), that we now introduce. The relative
Jacobian Jf (v) is the element,

Jf (v) :=
Jv
hv
∈ Bv/AnnBv (hv),

where AnnBv (hv) is the annihilator, hv being as above. This element is a well-
defined, and we know from [18] that there is a linear map l : Bv/Ann(h)→ R such
that l(Jf (v)) > 0. The product in Bv/Ann(h) together with l defines a bilinear
form on Bv/Ann(h). Let SgnV,0 denote the signature of this bilinear form.

It is proved in [18] that the function SgnV,0 behaves like an index in the sense
that for n even it satisfies the law of conservation of number:

SgnV,0(v) = SgnV,0(vt) +
∑

x∈V \{0}/vt(x)=0

IndPH(vt, x, V \ {0})

for x close to 0 and vt tangent to V and close to 0 and vt tangent to V and close
to v. The same formula holds for n odd under certain additional hypotheses.

Similarly, the relative Hessian is defined in [19] by:

Hessrel(f) :=
Hess(f)

hv
∈ A/AnnA(hv).
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It is shown in [19] that one can also construct a linear functional l on A/AnnA(hv)
such that:

l(Hessrel(f)) > 0;

the construction of this functional follows the ideas developed in [4, 16, 28]. As
before, we may use this functional to define a bilinear form. Let SgnA(hv) denote
the signature of this bilinear form.

Now, if V has odd dimension n ≥ 1, the Euler-Poincaré characteristic of the
fibers Vt = f−1(t) ∩ Dε, t 6= 0 is independent of the choice of t. Recall that
IndGSV(v) the GSV-index of v by definition equals the total Poincaré-Hopf index
of an extension of the vector field to a local Milnor fiber. One has:

Theorem 4.2. Let n > 1 be an even integer, let V = f−1(0) ⊂ Rn be a real
analytic hypersurface with an algebraically isolated singularity at 0, and let v be a
real analytic vector field on V with an algebraically isolated singularity at 0. Then:

IndGSV(v) = Sgn(V,0)(v)− SgnA(hv),

where hv = df(v)/f ∈ A.

Notice that if V is regular at 0, then this formula reduces to the on in [16, 28].
There is in [18] the analogous formula for the GSV-index when n is even. In that
case, just as in Arnold’s work [3], the formula depends on whether one considers
a right Milnor fiber or a left one. Yet, in all cases what the formulae of [18, 19]
prove is:

Theorem 4.3 (Gómez-Mont, Mardešić). Let f : (Rn, 0) → (R, 0) be a real ana-
lytic map-germ such that V = f−1(0) has an algebraically isolated singularity at 0,
let v be a real analytic vector field on V with an algebraically isolated singularity
at 0, and let Ft := f−1(t)∩Bε be a local Milnor fiber of f (for ε and t sufficiently
small). Then the total Poincaré-Hopf index of an extension of v to Ft is fully de-
termined by the local algebra of f and v at 0. In fact, if n > 1 is an even integer,
this index is given by the theorem above (otherwise it is given by the corresponding
formula in [18]).

We now return to the Lê-Greuel formula for real analytic maps and use all the
previous information to obtain:

Theorem 4.4. Let f, g be real analytic map-germs (Rn, 0) → (R, 0) such that
V (f) = f−1(0) and V (g) = g−1(0) have respectively an algebraically isolated sin-
gularity at 0, which define a complete intersection germ in Rn. Suppose (for
simplicity) that n > 1 is even. Let ĝ be the restriction of g to V (f) and sup-
pose that it also has an algebraically isolated singularity at 0. Let v := ∇ĝ be the
gradient vector field of ĝ. Then one has:

χ(Ff ) = χ(Ff,g) + Sgn(V (f),0)(v)− SgnA(hv),

where Ff and Ff,g are as in Theorem 1 and the term Sgn(V (f),0)(v)− SgnA(hv) is
determined as above by the local algebra of f and g.
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Proof. Since V (f) has an algebraically isolated singularity its complexification
V (f)C has an isolated singularity. That ĝ has an algebraically isolated singularity
at 0 is equivalent to the fact that the complexification ĝC of g has an isolated
critical point at 0 in V (f)C. Thus, the gradient vector field vC = ∇ĝC has an
isolated singularity at 0. Hence the vector field v = ∇ĝ has an algebraically
isolated singularity at 0 and we can apply Theorem 4.3. �

So the term [Sgn(V (f),0)(v)−SgnA(hv)] in this formula replaces the correspond-

ing term dimC

On+k,0

(f,Jac(f,g)) , in the classical Lê-Greuel formula in the holomorphic

setting. Of course it would be interesting to generalize Theorem 4.4 to the case
when f is a complete intersection map-germ into Rp for p ≥ 1. This means extend-
ing the results of [18, 19] from the case of hypersurfaces to complete intersections,
and that is in itself a very interesting problem which is being studied by various
people.
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[20] X. Gómes-Mont, J. Seade and A. Verjovsky, The index of a holomorphic flow with an isolated

singularity, Math. Ann. 291, (71), (1991), 737-751.

[21] G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen
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