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Abstract

Due to the globalization of supply chains and the resulting increase in the quantity and
diversity of suppliers, the segmentation of suppliers has become fundamental to improv-
ing relationship management and supplier performance. Moreover, given the need to
incorporate sustainability into supply chain management, criteria based on economic,
environmental, and social performance have been adopted for evaluating suppliers. How-
ever, few studies present sustainable supplier segmentation models in the literature, and
none of them make it possible to predict individual supplier performance for each TBL
dimension in a non-compensatory manner. Moreover, none of them permits the use of
historical performance data to adapt the model to the usage environment. Given this, this
study aims to propose a decision-making model for sustainable supplier segmentation
using an adaptive network-based fuzzy inference system (ANFIS). Our approach combines
three ANFIS computational models in a tridimensional quadratic matrix, based on diverse
criteria associated with the triple bottom line (TBL) dimensions. A pilot application of
this model in a sugarcane mill was performed. We implemented 108 candidate topologies
using the Neuro-Fuzzy Designer of the MATLAB® software (R2014a). The cross-validation
method was applied to select the best topologies. The accuracy of the selected topologies
was confirmed using statistical tests. The proposed model can be adopted for supplier seg-
mentation processes in companies that wish to monitor and/or improve the sustainability
performance of their suppliers. This study may also be helpful to researchers in developing
computational solutions for segmenting suppliers, mainly regarding ANFIS modeling and
providing appropriate topological parameters to obtain accurate results.

Keywords: sustainable supplier segmentation; ANFIS; supplier categorization; sustainable
supply chain management

MSC: 68T07

1. Introduction
Over the past few decades, more rigid environmental legislation and stakeholder

pressure for greater profitability have made companies promote improvements in the
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sustainability of their operations [1]. According to [2], the implementation of sustainability
“requires organizations to extend their focus beyond the traditional economic objectives to
embrace a triple-bottom-line (TBL) approach that requires them to simultaneously meet
or make trade-offs between economic, environmental, and social goals”. These authors
also point out that it is difficult to achieve sustainability in a company’s operations without
the support of its suppliers. Within this context, supplier relationship management has
become essential to optimizing the supplier base and making the supply chain performance
more sustainable [3].

With the advent of global supply chains, the quantity and diversity of suppliers
available in the market have increased drastically, which has made managing supplier
relationships more complex [4,5]. Given this, the segmentation of suppliers presents
itself as an effective way to manage the supplier base, because grouping suppliers with
characteristics in common limits the number of relationship strategies necessary to manage
the supplier base and promote more effective management [2]. Supplier segmentation can
help managers allocate specific resources to certain relationships to create development
strategies appropriate for the supplier’s profile [6].

Various studies in the literature propose using quantitative models to support supplier
segmentation [3,6]. In recent years, this subject has received more interest from researchers,
given the capacity of these models to support decision-making in an automated man-
ner [5]. In general, classifying suppliers is based on criteria associated with the dimensions
of the supplier’s performance [1,7]. Even though there are dozens of decision-making
models to support supplier segmentation, most of them classify suppliers only based on
economic aspects [6].

As shown in Table 1, based on the studies in a systematic review of this subject [3,8,9]
and bibliographic research realized for this study, we have found just twelve studies which
propose quantitative models to support sustainable supplier segmentation [6,10–20]. In
other words, just twelve models considered economic, environmental, and social criteria in
the supplier segmentation process.

Table 1. This Study’s Contributions in Comparison to Previous Supplier Segmentation Models.

[6] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] Our Study

Does it offer support for sustainable supplier
segmentation? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Does it have a supervised learning process? No No No No No No No No No No No No Yes
Is segmentation based on economic,
environmental, and social dimensions? No No No Yes Yes No No No Yes No Yes No Yes

Is there compensation among the TBL dimensions
or criteria? Yes Yes Yes No Yes Yes Yes Yes No Yes No Yes No

Does it have the capacity to model nonlinear
relationships between inputs and outputs? No No No No No No No No No No No No Yes

Does the model include decision rules? No No No No No No No No No No No No Yes

Based on the analysis of the studies detailed in Table 1 [6,10–20], the following research
gaps were identified, which this study aims to address:

i. Lack of supervised learning capabilities using historical data: Despite the diversity of
techniques explored for supplier segmentation, none of the existing models incorpo-
rate a supervised learning procedure based on historical supplier performance [3,6].
This limitation hinders the use of data from periodic supplier assessments to refine
cause-and-effect relationships between input and output variables. While current
models rely heavily on Multi-criteria Decision Making (MCDM) methods, they remain
static and cannot be tuned or updated through accumulated historical evidence.
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ii. Inability to capture nonlinear relationships among segmentation criteria: As MCDM
methods typically produce a global ranking for each alternative based on weighted com-
binations of inputs, they are limited to linear aggregation and fail to represent nonlinear
cause-and-effect dynamics. However, in supplier evaluation, many relationships are
inherently nonlinear (e.g., x = y/z and x = z · y2),which makes such methods inadequate
for contexts where complex interactions exist among sustainability indicators [21].

iii. Absence of an inference rule base to support decision-making: Current sustainable
supplier segmentation models also lack a structured rule base to guide the decision
process. Without such a mechanism, decision-making becomes less transparent,
harder to justify, and more dependent on expert judgment, which can introduce
subjectivity and inconsistency.

Adaptive Network-based Fuzzy Inference Systems (ANFISs) are hybrid models that
combine the learning ability of artificial neural networks with the interpretability of
fuzzy inference systems. They were chosen in this study as a means to address the
research gaps identified. Several advantages can justify the choice. First, ANFIS can
adapt to the usage environment through supervised learning, providing flexibility to ac-
commodate diverse decision-making contexts. Second, they are particularly suitable for
decision-making under uncertainty, as the fuzzy component allows the treatment of im-
precise, subjective, or incomplete information that typically characterizes sustainability
assessments. Third, after being trained with supplier performance data, ANFIS mod-
els can predict global performance values across each TBL dimension, supporting more
comprehensive evaluations [21,22].

In this context, this article aims to propose a decision-making model for sustainable
supplier segmentation based on ANFISs. This study advances the supplier segmentation
literature by introducing a model based on supervised learning and nonlinear modeling,
which leverages historical performance data to capture complex interactions among criteria
automatically. In addition, it enhances transparency through interpretable decision rules
and provides practical guidelines for defining appropriate ANFIS topological parameters,
ensuring both accuracy and computational efficiency.

The rest of the article is organized in the following manner. Section 2 presents theoreti-
cal references to sustainable supplier segmentation and ANFISs. Section 3 will detail the
proposed model, while Section 4 will present the results of its application. Section 5 will
discuss the results of the statistical tests used to validate the model. Finally, this study’s
conclusions and limitations are presented in Section 6.

2. Theoretical Framework
2.1. Sustainable Supplier Segmentation

Day et al. [8] conceptualized supplier segmentation as “a process that involves the
division of suppliers into distinct groups, with different needs, characteristics, or behavior,
requiring different types of relationship structures between companies to obtain exchange
value”. The inclusion of environmental and social criteria makes the supplier segmentation
process more effective [3,6], given that the economic, social, and environmental commit-
ment to stakeholders has required the adoption of practices to improve the sustainable
performance of suppliers [1]. Social and environmental performance improvements ben-
efit organizations because they fulfill the needs of the stakeholders and indirectly carry
out economic improvements [11]. Thus, supplier segmentation based on the TBL crite-
ria has become a crucial practice enabling companies to improve their sustainability of
supply chains [6].

A suitable decision-making method must be applied to classify suppliers in terms of
each performance dimension in the supplier segmentation process [23,24]. The literature
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presents several studies that propose supplier segmentation models based on decision-
making methods to categorize suppliers into segmentation matrices. Table 2 lists some
studies that propose decision-making models for supplier segmentation. This table only
presents studies published since 2013 to update the state of the art concerning this subject,
and it includes some models that have not appeared in previous systematic reviews of the
literature [3,8,9]. These studies were collected based on the Science Direct, Springer, Scopus,
Emerald Insight, IEEE Xplore®, Taylor & Francis, and Wiley databases, per the procedures
presented by [9]. Table 2 describes the techniques and performance dimensions considered
in the supplier segmentation matrices. In this table, the symbol “X” denotes the type of
supply chain management strategy considered in each study, which is directly related to
the segmentation dimensions and supplier evaluation criteria.

Table 2. Previous Decision Models to Support Supplier Segmentation.

Proposed by Decision-Making Techniques Segmentation Dimensions
Supply Chain Management Strategy

Traditional Green Agile Resilient Sustainable

[4] Fuzzy c-means and VIKOR Does not adopt segmentation
dimensions X

[16] TOPSIS and Fuzzy DEMATEL Does not adopt segmentation
dimensions X

[25] Fuzzy inference Supplier attractiveness and
strength of the relationship X

[20] DEA and AHP Does not adopt segmentation
dimensions X X

[2] Rough Sets, VIKOR, and fuzzy
c-means

Supplier capabilities and
willingness X

[26] AHP Profit impact and supply risk X

[6] Hesitant Fuzzy Linguistic-TOPSIS Supplier capabilities and
willingness X

[27] PROMETHEE Supplier capabilities and
willingness X

[12] ANP, PROMETHEE, and cluster
analysis

Economic, environmental,
and social

[28] VIKORSORT Does not adopt segmentation
dimensions X

[29] Fuzzy logic Supplier capabilities and
willingness X

[30] Fuzzy-AHP and Fuzzy c-means Supplier capabilities and
willingness X

[31] Fuzzy c-means and Fuzzy formal
concept analysis

Supplier investment
decisions and supplier
collaboration decisions

X

[32] DEA Does not adopt segmentation
dimensions X

[33] K-means Does not adopt segmentation
dimensions X

[17]
Bayesian best-worst method and
Canopy-K-Means clustering
algorithm

Economic, environmental,
and social X

[34] Fuzzy-TOPSIS Cost and delivery
performance X

[35] Fuzzy-AHP Supplier capabilities and
willingness X

[36] K-means Does not adopt segmentation
dimensions X

[13] Fuzzy-AHP and Fuzzy
equivalence relation

Economic, environmental,
social, and risk X

[37] Fuzzy-TOPSIS Profit impact and supply risk X

[18] Stochastic multi-objective
programming

Profit, capability, and
willingness X

[38] BWM and K-means
The model does not rely on
predefined segmentation
dimensions

X

[39] Fuzzy inference Potential for partnership and
delivery performance X
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Table 2. Cont.

Proposed by Decision-Making Techniques Segmentation Dimensions
Supply Chain Management Strategy

Traditional Green Agile Resilient Sustainable

[40] Grey DEMATEL and Grey Simple
Additive Weighting technique

Resiliency enhancer and
resiliency reducer X

[19] BWM and Grey Simple Additive
Weighting

Economic, environmental,
and social X

[14] BWM and K-means Profit impact and supply risk X

[41] Fuzzy inference Agility capability and
business excellence X

[42] DEA Diversity, efficiency, and cross
efficiency X

[7] BWM Supplier capabilities and
supplier willingness X

[43] Fuzzy preference relation-based
AHP

Supplier capabilities and
supplier willingness X

[44] AHP Supplier capabilities and
supplier willingness X

[45] ELECTRE TRI-rC Supplier capabilities and
supplier willingness X

[46] BWM Supplier capabilities and
supplier willingness X

[11] Procedure based on the arithmetic
mean Profit impact and supply risk X

[47] AHP and Fuzzy 2-tuple Supplier capabilities and
supplier willingness X

[48] AHP, PROMETHEE, and MAUT Critical performance and
strategic performance X

[15] BWM and PROMETHEE
Critical performance and
strategic performance of
suppliers

X

[10] AHP
Supplier risks, country risks,
and risk management
practice

X

As shown in Table 2, most of the studies have considered a traditional supply chain
management strategy that focuses more on economic performance. We found just twelve
models oriented towards sustainable supplier segmentation [6,10–20]. Except the stud-
ies by [12,19], all sustainable supplier segmentation models in the literature adopted a
compensatory approach. This means that high performance in one dimension partially
offsets low performance in another. However, compensatory approaches do not allow for
the identification of suppliers that exhibit low performance in specific dimensions, thus
hindering the attainment of a balanced performance level across all three dimensions of
the TBL. Additionally, compensatory models cannot identify the need for direct actions to
improve economic, environmental, and/or social aspects.

Another limitation of the previous supplier segmentation models is their difficulty
adapting to the specific usage environment and their challenge in modeling nonlinear rela-
tionships among performance measures. Despite the variety of techniques in Table 2,
none can tune the model’s parameters to the usage environment based on historical
performance data.

Furthermore, the only models based on decision rules are those using fuzzy inference
systems [25,39,41]. However, these approaches are not specifically designed for sustainable
supplier segmentation. Nevertheless, the manual parameterization of dozens or hundreds
of rules required by these inference systems makes the modeling phase exceedingly time-
consuming for DMs. It may lead to inconsistent results due to errors in rule settings. Thus,
since the previous models do not use any supervised learning algorithm, they are not able
to computationally adjust cause and effect relationships between the input and output
variables. Developing ANFIS models to support the supplier segmentation process can
overcome these limitations.
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2.2. Adaptive Neuro-Fuzzy Inference Systems

In the literature, various types of techniques combine fuzzy logic with artificial neural
networks, generally known as neuro-fuzzy systems [21]. The most popular of these was
proposed by Jang [49], and it is called an Adaptive Neuro-Fuzzy Inference System or ANFIS.
As discussed in Section 2.1, applying fuzzy inference systems requires a considerable effort
to define inference rules and membership functions [3]. Neural networks, on the other hand,
when used in an isolated manner, do not promote transparency in their calculations and are
not appropriate for making decisions under conditions of uncertainty. These limitations can
be overcome by combining these two techniques, which generates a model with superior
predictive capacity and greater transparency regarding its results [22,50]. The ANFIS
structure allows the model to adaptively learn nonlinear relationships and interactions
among the input variables, capturing complex patterns that may not be representable with
a simple mathematical formula [21].

Figure 1 presents the topology of the ANFIS model with three input variables and one
output variable. This system possesses five layers; within each one, some nodes perform the
same functions. Circles represent the fixed nodes, while squares indicate the adaptive nodes.
The adaptive nodes are adjusted during system training through modifiable parameters.
The functioning of each layer is described below [21,22]:

(a) Layer 1: In this layer, the input values (x and y) in crisp format are converted into
fuzzy set equivalents. Their function can be given as:

 

Figure 1. Structure of the ANFIS Model with Three Input Variables.

O 1
i = µAi(x) (1)

where x is the input of the node and Ai is the linguistic variable associated with the node
function. The output O 1

i is the degree to which value x belongs to the fuzzy set defined
by the variable Ai. The membership function is defined for an interval [0, 1], in which
1 signifies that x totally belongs to the set and 0 means that x does not belong to the set.
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(b) Layer 2: This layer combines all of the previous layer’s nodes to establish the logical
relationships among the activated membership functions. This layer represents the
antecedent part of the decision-making rules, which realizes operations of “AND” or
“OR”. The equation that represents the realized operation for this combination layer
is given by:

O 2
i = wi = µAi(x)× µBi(x), for i = 1, 2, 3 . . . n (2)

The output of this layer is made up of the relationships among all of the linguistic
input terms, resulting in a membership degree wi, which determines the weight of each
activated rule;

(c) Layer 3: This layer normalizes the weights of the activated rules. Equation (3) de-
scribes the procedure.

O 3
i = wi =

wi
w1 + w2 + w3 + · · ·+ wn

, for i = 1, 2, 3 . . . n (3)

(d) Layer 4: This is the layer of the adaptive nodes that represents the rule consequents.
These consequents generate outputs for each activated rule according to Equation (4).
A linear function or a constant function can produce the consequent value. The output
value of this layer is calculated by the simple product of the consequent of each rule
( fi) and the weight of the rule activated in the third layer.

O 4
i = wi fi, for i = 1, 2, 3 . . . n (4)

(e) Layer 5: This layer is composed of a fixed node that calculates a weighted sum of the
previous layer’s outputs, as represented by Equation (5).

O 5
i = ∑i wi fi =

∑i wi fi

∑i wi
(5)

To conduct the learning process for an ANFIS, one needs to have sample values for
the input and output variables. These samples should be divided into two groups: 60 to
90% of the samples for the training set, and 10 to 40% for the validation set. The first set
should be used to adjust the adaptive parameters. The second set should be applied to
verify the model’s accuracy [22,50].

One of the supervised learning algorithms most often used to train ANFIS models is
the hybrid algorithm proposed by [49]. This algorithm applies the least squares method to
adjust adaptive parameters for the inputs, and the gradient descent method to adjust the
consequents of the rules to minimize the errors between the values produced by the model
and the output value of each training sample. The number of times that the model processes
the training samples is called the epoch number, which serves as a stop criterion [21]. After
the training has been completed, the validation of the model can be performed based on
the MSE (Mean Squared Error) or RMSE (Root Mean Squared Error) obtained using the
validation set.

The type of the membership function, the number of membership functions, and the
types of consequent and logical operators are the parameters that directly affect the accuracy
of ANFIS models. This is why it is necessary to perform various computational tests to
select the best topology for each model. The cross-validation technique can be adopted
to support the choice of the best topologies. This technique is based on the realization of
several tests by varying the model’s topological parameters [21,50,51].

ANFIS continues to attract research interest in the field of intelligent decision-making.
For instance, ref. [52] proposed an advanced neuro-fuzzy framework that handles high-
dimensional datasets with more than 7000 features, integrating feature selection and rule
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extraction in a single architecture. This study demonstrates the ongoing evolution of
neuro-fuzzy systems to overcome traditional scalability limitations.

3. The Proposed Model for Sustainable Supplier Segmentation
Our theoretical model, designed to support sustainable supplier segmentation, is

presented in Figure 2. This model is divided into three steps and was developed based
on [21,53,54]. It involves using three ANFIS computational models, one for each TBL
dimension. Besides permitting the grouping of suppliers based on similar performance
levels, the proposed model offers a base for elaborating action plans that seek to develop
suppliers in economic, environmental, and social terms.

 

Figure 2. Proposed Model for Sustainable Supplier Segmentation.

In Figure 2, A and B are connectors that indicate the flow between the stages of
the model; they do not represent specific activities. Stage 1 begins with assembling
a decision-making team (Step 1.1). This team should comprise professionals from the
sales, quality management, socio-environmental management, and/or supplier develop-
ment areas and other employees linked to supply chain management. The DMs play
a central role in defining the supplier evaluation criteria and interpreting the model re-
sults. In Step 1.2, the team will select the most important criteria to be analyzed for each
TBL dimension, and the selected criteria should be aligned with the company’s perfor-
mance targets. Table A1 (see Appendix A) presents some examples of possible criteria
for each dimension. This list was compiled based on previous studies on sustainable
supplier segmentation [6,10–20].

Step 1.3 involves defining the suppliers that the buying company will evaluate. The
focus of this evaluation is on the qualified suppliers who have already been hired by
the buying company. In Step 1.4, a score is assigned individually for the performance of
each supplier in relation to each criterion chosen in Step 1.2. These scores can be defined
based on historical data from the buying company through performance indicators, ERP
(Enterprise Resource Planning) systems, or BI (Business Intelligence) systems, among other
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management support systems. In the absence of historical data, or when it is insufficient, it
is possible to form a committee of DMs in supply chain-related areas to collect the opinions
of these specialists in judging these suppliers in terms of each criterion.

In Step 1.5, the cross-validation technique must be applied to build and tune the ANFIS
models. Figure 3 presents the steps of applying the proposed cross-validation technique
explicitly designed for ANFISs. This procedure aims to identify the most accurate and
robust model topology by systematically evaluating various parameter configurations
based on their predictive performance. Step i of Figure 3 begins with the organization of
the available dataset, which involves partitioning the complete set of samples into two
subsets: a training set and a validation set. The training set is used to adjust the internal
parameters of the ANFIS models during the learning phase. In contrast, the validation set
serves as an independent means to evaluate the model’s generalization capability.

Figure 3. Cross-Validation Steps for ANFIS.
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Next, in Step ii, a series of candidate topologies is defined. Each topology represents a
unique configuration of internal ANFIS parameters. The range of values to be tested for
each parameter should be established based on prior literature or determined empirically
through preliminary computational experiments. Once the candidate topologies have been
established, a supervised learning process is applied to each model configuration (Step iii).
This study utilized the Neuro-Fuzzy Designer tool from MATLAB® (MathWorks, Natick,
MA, USA) to conduct training and validation phases. The training samples were used to
iteratively tune the internal parameters of each topology using a hybrid learning algorithms
that combine least-squares estimation and backpropagation.

After the training phase, each model’s performance is quantitatively assessed using
the MSE (or RMSE) on the validation dataset. These metrics are computed by comparing
the predicted outputs of the ANFIS model against the actual target values in the validation
set. This evaluation step is critical for determining the generalization capability of each
candidate model. A decision point is reached: if the MSE obtained is considered satisfac-
tory, the process proceeds to Step iv, where the best topology is selected. If none of the
tested topologies meet the desired performance threshold, the process moves to Step v,
where a refinement strategy is implemented. This involves modifying one or more of the
following aspects:

• Changing the number of membership functions, which affects the granularity of the
fuzzy inference process;

• Increasing the number of training samples to enhance the model’s learning capacity.
• Adjusting the number of training epochs will allow the model to have more iterations

to converge.

After these modifications are made, the process loops back to Step ii, where new candi-
date topologies are generated and the cross-validation cycle is repeated until a satisfactory
model is obtained.

Stage 2 focuses on applying the ANFIS models to the supplier segmentation process.
Step 2.1 consists of defining the suppliers to be segmented based on the TBL dimensions,
while Step 2.2 focuses on obtaining the scores of these suppliers for each criterion. Since
collecting data from all suppliers can be difficult and time-consuming, it is recommended
only to include suppliers that are important to the company, such as the suppliers of
strategic, leverage, or bottleneck items. In Step 2.3, the supplier scores for each criterion
should be input into the ANFISs, which has been trained in the previous stage. Then, each
ANFIS model will estimate the global performance of each supplier in a specific dimension.
While the ANFIS 1 model will calculate the overall performance values regarding the
environmental dimension, the ANFIS 2 and 3 models will estimate the overall performance
regarding the social and economic dimensions, respectively.

In Stage 3 of the proposed model, each supplier should be classified in one of eight pos-
sible groups defined in Figure 4. This classification helps buyers define appropriate actions
to manage their supplier base and improve the performance of the suppliers. Each dimen-
sion of the segmentation matrix represents a TBL dimension. Each group is represented as
Gi(f (Y1), f (Y2), f (Y3)), with (i = 0, 1, . . ., 8). The values of f (Ym) (m = 1, . . ., 3) indicate the
supplier classification results for each dimension. If f (Ym) ≥ tm, then f (Ym) = “High (H)”.
Otherwise, f (Ym) = “Low (L)”. The values of tm should be defined by the team of DMs.
A universal mathematical formula cannot determine these thresholds, as it is inherently
a subjective choice. For example, a given level of environmental performance may be
considered high by one organization but low by another, depending on internal standards,
strategic objectives, and external pressures. In our approach, an initial symmetric parti-
tioning is adopted, with a threshold set at 0.5, which provides a neutral starting point
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for classification. This threshold can be gradually adjusted over time based on practical
experience, organizational priorities, and evolving sustainability goals.

Figure 4. The Proposed Sustainable Supplier Segmentation Matrix.

In the matrix shown in Figure 4, suppliers with similar performance for the three TBL
dimensions must be classified in the same group. The features of the suppliers classified in
each one of the groups shown in Figure 4 are described as follows [53]:

(a) G1 (L, L, L)—This group consists of the suppliers with the worst performance eval-
uations, or those with poor economic, environmental, and social performance. The
suppliers in this group should be substituted if possible [53]. Otherwise, supplier
development programs should be implemented to achieve improved supplier perfor-
mance in the three dimensions of the TBL.

(b) G2 (H, L, L)—This group consists of suppliers that have achieved good environmen-
tal performance and poor economic and social performance. The suppliers in this
segment generally focus on efficient use of natural resources and controlling and
preventing pollution.

(c) G3 (L, L, H)—This group consists of suppliers with good economic performance and
poor social and environmental performance. They operate their supply chains with a
focus on profits and are not concerned with environmental and social issues.

(d) G4 (H, L, H)—This group comprises suppliers with satisfactory economic and envi-
ronmental performance, but poor social performance. They generally reduce costs
through their efficient use of energy and natural resources.

(e) G5 (L, H, L)—This group consists of suppliers with good social performance and poor
economic and environmental performance. They are focused on social justice. They
emphasize diversity in their labor, human rights, a reduction in inequality, and the
quality of life of their employees.

(f) G6 (H, H, L)—This group consists of suppliers with poor economic performance and
good social and environmental performance. They emphasize using just a portion of
natural resources in domestic and international spheres.
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(g) G7 (L, H, H)—This group comprises suppliers with good social and economic perfor-
mance and poor environmental performance. These suppliers seek to reduce costs,
considering the social needs of society. They have ethical standards and ensure just
business practices that protect the human rights of their employees.

(h) G8 (H, G, G)—This group consists of sustainable suppliers with good social, eco-
nomic, and environmental performance. They focus on improving their products and
the quality of life of people, prioritizing environmental activities, and maximizing
renewable natural resources at the least possible cost.

The results of supplier segmentation using the proposed approach make it possible for
managers to formulate action plans to move their suppliers toward Group 8 (sustainable
suppliers). These plans can be based on specific strategies for each supplier group to im-
prove supplier management effectiveness and fill the identified performance gaps. Table 3
presents some suggested supplier development strategies, separated by TBL dimension.

Table 3. Supplier Development Strategies.

Performance
Dimension Supplier Development Strategies Supplier Groups

Environmental

- Build top management commitment/support in the supplier
organization for green supply practices [54].

- Consult suppliers about green production [55].
- Give rewards to suppliers for their environmental performance [46].
- Help suppliers obtain ISO1400 certifications [55].
- Train supplier employees on environmental issues [54].
- Transfer employees with environmental expertise to suppliers [1].

G1, G3, G5, and G7

Social

- Adopt ethical standards with employees, customers, suppliers, and
investors [1].

- Build mutual trust [46].
- Eliminate poor health conditions, gender discrimination, and unfair

work practices [54].
- Evaluate suppliers with formally established procedures and standards

[46].
- Promote social responsibility in the supply chain [54].

G1, G2, G3, and G4

Economic

- Financial, operational, and technological support [1].
- Formal supplier evaluations and feedback [1].
- Joint development and integration programs to develop new materials

and products [5].
- Joint ventures [5].
- Longterm contracts [46].
- Site visits [55].

G1, G2, G5, and G6

4. Application Case Study
4.1. Presentation of the Company

The pilot application of the proposed model was performed in a sugarcane mill. This
mill is one of a group of companies located in various states in Brazil. The company in ques-
tion seeks to continually improve its operations’ sustainability through actions involving
stakeholders such as suppliers, commercial partners, and the local community. The com-
pany has an integrated management system that encompasses quality and environmental
management and worker safety. This system contributes to improving internal operations,
facilitates supplier integration, and obtains information for DMs.

The company has more than 1400 registered suppliers, most of which are small
sugarcane producers located near the mills. It also has international suppliers, which
mainly supply fertilizers. The company seeks to work with suppliers aligned with its
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values of environmental preservation, continual improvement, and social responsibility. It
also seeks to strengthen its relationships with its suppliers and develop partnerships with
them. The group of mills coordinates various supplier development programs, ranging
from training and periodic meetings to exchanging knowledge to implementing continual
improvement programs, cost reductions, and improved worker safety.

The firm has an environmental risk prevention program that seeks to make the work
environment safer while contributing to preserving the safety of its employees and its
suppliers. This program includes training on preventing and controlling the risk of fires
in sugarcane fields. The social programs include gathering and distributing clothes and
blankets to needy people. Some programs promote education and culture in the sugarcane
mills’ communities.

To improve the sustainability of its operations and meet the requirements of the
international market, the company has obtained a certification from the Environmental Pro-
tection Agency. Also, it has a RenovaBio seal, whose objective is to expand the sustainable
production of biofuels in Brazil and reduce greenhouse gas emissions. All of the energy
produced by this company comes from sugarcane biomass, which is a source of clean and
renewable energy. The company produces all the energy consumed by its operations, and
the excess energy is commercialized. There are solid waste management programs that
ensure the reincorporation of some production wastes (mainly sugarcane bagasse) or their
appropriate disposal.

4.2. Application of the Proposed Model
4.2.1. Stage 1: Definition, Training, and Validation of the ANFIS Models

A group of DMs was defined as four company employees who directly participate in
supply management: one from the supply department, another from the quality depart-
ment, an environmental manager, and a work safety engineer. The experience of these DMs
ranged from 4 to 9 years in the company. Three meetings were held with the DMs. The first
presented the model and defined the criteria. The second defined the suppliers and the
collection of their supplier evaluations. The third meeting analyzed the results provided by
the model.

Based on this discussion, the DMs opted to: select the criteria that were already used
by the company in the supplier evaluation process, which facilitated the obtaining of data
to train the model; and adopt three or four criteria for each TBL dimension in order to
prioritize the selection of crucial criteria for each dimension.

Initially, one of the authors of this study explained each step of the proposed
model to the DMs and clarified their roles in the process. Following this introduc-
tion, the DMs engaged in a collaborative discussion to define the supplier segmenta-
tion criteria for this pilot application. This discussion was guided by the criteria pre-
sented in Table A1 (see Appendix A) and the company’s internal supplier evaluation forms.
Throughout the deliberation, the DMs carefully considered each potential criterion, evalu-
ating its relevance to supplier performance, alignment with the company’s sustainability
strategy and broader business objectives, and measurability based on available data. In
addition, they sought to ensure a balanced representation of the three TBL dimensions so
that no dimension was underrepresented. The DMs debated the relative importance of
each criterion, considering the strategic impact on the company. Based on this process,
the DMs decided to: (i) select criteria already used in the company’s supplier evaluation
process, facilitating access to historical data for model training; and (ii) adopt three to four
criteria per TBL dimension, prioritizing those most critical for evaluating supplier perfor-
mance while maintaining a comprehensive and balanced approach. This discussion-based
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selection process ensured that the chosen criteria were both strategically meaningful and
practically applicable.

In total, the DMs selected 12 criteria to evaluate supplier performance. For the environ-
mental dimension (ANFIS 1), they chose the criteria pollution control (C1), environmental
management system (C2), resource consumption (C3), and recycling program (C4). For the
social dimension (ANFIS 2), they selected employment practices (C5), health and safety
(C6), and local community influence (C7). Finally, for the economic dimension (ANFIS 3),
the criteria cost (C8), quality (C9), delivery time (C10), flexibility (C11), and technology
capability (C12) have been chosen. The DMs have assigned all of these criteria equal weight
within each dimension. It should be emphasized that these criteria have been selected
just for this application, and future applications can use other criteria that align with each
particular company’s reality.

For this study, we collected samples containing 200 supplier evaluations. These values
were obtained from the performance history of the suppliers. They were extracted by using
the supplier evaluation tool within the company’s ERP system. The DMs chose to include
suppliers essential for achieving the company’s sustainable performance. The sample size
of 200 supplier evaluations was chosen because it represents a sufficiently broad dataset to
demonstrate the segmentation process effectively. This number ensures the inclusion of
suppliers across the different groups, which would not be feasible with a tiny sample, as it
could compromise the model’s ability to classify diverse cases. At the same time, it avoids
the impracticality and excessive effort of evaluating the entire supplier base, making the
analysis both representative and operationally viable.

The scales utilized varied with the criteria, so each criterion has a specifically defined
domain. The values of the criteria C1, C3, C4, and C9 varied between 0 and 100, using a
percentage score. For the criteria C2, C5, C6, C7, C8, C10, C11 and C12, the scores ranged
from 0 to 10. The output variables (the global performance of the supplier for each TBL
dimension) were calculated using the TOPSIS technique based on the collected input data.
Table 4 illustrates the obtained supplier score samples for the supervised learning processes
for the ANFIS 1 model. The ellipses in the table represent omitted rows of the dataset,
showing only a sample of the supplier scores for illustrative purposes.

Table 4. Sample Supplier Scores for the Computational Model 1.

Suppliers
Supplier Scores on Each Criterion (Inputs)

Output (Y1)
C1 C2 C3 C4

S1 100 6 48 62 0.5845
S2 93 9 8 51 0.5453
S3 69 2 69 62 0.5024
S4 90 9 59 70 0.6215
S5 76 5 11 94 0.3797
: : : : : :

S200 68 6 35 59 0.4987

To perform the supervised learning process for each of the ANFIS models through
cross-validation, the samples were separated into two sets. The first set, corresponding to
70% of the samples, was used in the training process. The second set, with 30% of the samples,
was reserved for validation. Based on [56], the number of training epochs was 500.

We chose to use only the ANFIS training algorithm because it is an optimized ap-
proach capable of simultaneously adjusting the consequents of the rules and the fuzzy sets
associated with the input variables. Given that our model required training 108 instances,
employing an alternative algorithm would have effectively doubled the number of train-
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ing (216), substantially increasing computational time and potentially hindering both the
implementation of the model and its reproducibility.

The tested topologies for the ANFIS models are presented in Table 5. The topological
parameters were defined based on several previous studies that have applied ANFIS to
supply chain management problems. To partition the input variables, we tested triangular,
trapezoidal, and Gaussian functions [13,22]. We tested linear functions and constant
values for the consequent type of the inference rules [21,49]. Regarding the number of
input partitions, we tested 3, 4, and 5 [51,56]. Finally, in terms of fuzzy operators for
the connectives of the inference rules, we tested the minimum and algebraic product
operators [21,49]. We arrived at 108 topologies tested with these procedures, representing
36 for each ANFIS model.

Table 5. Tested Parameters Using Cross-Validation.

Description of the Parameters Tested Functions and Values

Membership function type: determines the quantitative
representation and behavior of input variables. Triangular, trapezoidal, and Gaussian functions [22,51].

Consequent type: determines the type of the output for
each activated rule. Linear functions and constant values [21,49,50].

Number of fuzzy membership functions: determines the
partition granularity of the fuzzy input variables. 3, 4, and 5 functions [51,56].

Fuzzy operator: responsible for aggregation operations
among the degrees of activated membership functions. Minimum and algebraic product operators [21,50].

Tables 6–8 present the results achieved during the computation implementation of
the candidate topologies for models ANFIS 1, 2, and 3, respectively. During the training
and validation of the candidate topologies, we calculated the MSE values. Based on [21,57],
the maximum MSE deemed acceptable for a topology was defined as 3= 5 × 10−3. The
candidate topologies that achieved the most accuracy for each ANFIS model have been
highlighted in bold.

The results of the computational implementation of the ANFIS models show that
the Gaussian functions performed the best for the three ANFIS models. Topologies of
three input partitions produced the best result for two ANFIS models, and using four
input partitions produced the best results for the other models. Topologies based on the
crisp consequents and the product operator were the ones that achieved the lowest MSEs.
Furthermore, the results demonstrate that the lower the number of input variables is, the
greater the model’s accuracy.

According to Table 6, the topology that achieved the lowest MSE for the ANFIS 1
model was number 36, with an error value during the validation step of 2.380 × 10−4. For
model ANFIS 2, according to Table 7, the best topology was number 64, which achieved an
MSE value of 9.769 × 10−6. Table 8 shows that the best topology for the ANFIS 3 model
was number 103, with an error value during the validation step of 2.958 × 10−3. Most of
the topologies that presented the best performance were the candidate topologies for the
ANFIS 2 model. This may be explained by the lower number of input variables used in
these models. The ANFIS 3 model used five input variables, and its best topology obtained
MSE values of magnitude 10−3, while the ANFIS 2 model with just three input variables
obtained MSE values of magnitude 10−6. Therefore, since the topologies 36, 64, and 103
presented the best results and attained a satisfactory accuracy (MSE ≤ 3), they were selected
for application in Stage 2.
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Table 6. Results Achieved by the Candidate Topologies for the ANFIS 1 Models.

Candidate
Topology

Number of
Inference Rules

Membership
Function Type Consequent Type

Number of Fuzzy
Membership

Functions
Fuzzy Operator Training MSE Training RMSE Validation MSE Validation RMSE

1 81 Triangular Crisp 3 Minimum 2.738 × 10−4 1.654 × 10−2 3.518 × 10−3 5.933 × 10−2

2 81 Triangular Crisp 3 Product 4.277 × 10−6 2.068 × 10−3 3.820 × 10−4 1.955 × 10−2

3 256 Triangular Crisp 4 Minimum 2.719 × 10−11 5.215 × 10−6 2.885 × 10−3 5.371 × 10−2

4 256 Triangular Crisp 4 Product 5.659 × 10−12 2.379 × 10−6 1.056 × 10−2 1.028 × 10−1

5 625 Triangular Crisp 5 Minimum 8.425 × 10−12 2.902 × 10−6 2.641 × 10−2 1.624 × 10−1

6 625 Triangular Crisp 5 Product 3.557 × 10−12 1.886 × 10−6 6.540 × 10−2 2.557 × 10−1

7 81 Triangular Linear 3 Minimum 2.597 × 10−15 5.096 × 10−8 1.073 × 10−2 1.036 × 10−1

8 81 Triangular Linear 3 Product 5.239 × 10−15 7.238 × 10−8 2.269 × 10−3 4.764 × 10−2

9 256 Triangular Linear 4 Minimum 2.606 × 10−15 5.105 × 10−8 4.776 × 10−3 6.911 × 10−2

10 256 Triangular Linear 4 Product 6.729 × 10−15 8.205 × 10−8 1.058 × 10−2 1.029 × 10−1

11 625 Triangular Linear 5 Minimum 5.544 × 10−15 7.444 × 10−8 2.667 × 10−2 1.633 × 10−1

12 625 Triangular Linear 5 Product 8.285 × 10−15 9.099 × 10−8 4.669 × 10−2 2.161 × 10−1

13 81 Trapezoidal Crisp 3 Minimum 6.117 × 10−4 2.473 × 10−2 4.336 × 10−2 2.082 × 10−1

14 81 Trapezoidal Crisp 3 Product 5.414 × 10−4 2.326 × 10−2 1.340 × 10−1 3.660 × 10−1

15 256 Trapezoidal Crisp 4 Minimum 8.607 × 10−6 2.933 × 10−3 8.072 × 10−2 2.840 × 10−1

16 256 Trapezoidal Crisp 4 Product 1.028 × 10−9 3.206 × 10−5 1.270 × 10−1 3.564 × 10−1

17 625 Trapezoidal Crisp 5 Minimum 1.285 × 10−11 3.584 × 10−6 9.416 × 10−2 3.069 × 10−1

18 625 Trapezoidal Crisp 5 Product 6.073 × 10−12 2.464 × 10−6 1.321 × 10−1 3.634 × 10−1

19 81 Trapezoidal Linear 3 Minimum 9.499 × 10−15 9.746 × 10−8 2.353 × 10−2 1.534 × 10−1

20 81 Trapezoidal Linear 3 Product 1.224 × 10−14 1.106 × 10−7 2.769 × 10−2 1.664 × 10−1

21 256 Trapezoidal Linear 4 Minimum 7.910 × 10−14 2.811 × 10−7 4.623 × 10−2 2.150 × 10−1

22 256 Trapezoidal Linear 4 Product 6.299 × 10−14 2.509 × 10−7 5.915 × 10−2 2.432 × 10−1

23 625 Trapezoidal Linear 5 Minimum 4.237 × 10−14 2.058 × 10−7 9.806 × 10−2 3.131 × 10−1

24 625 Trapezoidal Linear 5 Product 4.415 × 10−14 2.101 × 10−7 1.183 × 10−1 3.439 × 10−1

25 81 Gaussian Crisp 3 Minimum 8.543 × 10−5 9.241 × 10−3 1.428 × 10−3 3.778 × 10−2

26 81 Gaussian Crisp 3 Product 2.381 × 10−5 4.879 × 10−3 2.380 × 10−4 1.543 × 10−2

27 256 Gaussian Crisp 4 Minimum 1.626 × 10−11 4.032 × 10−6 1.565 × 10−3 3.956 × 10−2

28 256 Gaussian Crisp 4 Product 1.594 × 10−11 3.991 × 10−6 1.032 × 10−2 1.016 × 10−1

29 625 Gaussian Crisp 5 Minimum 8.993 × 10−12 2.999 × 10−6 1.198 × 10−2 1.094 × 10−1

30 625 Gaussian Crisp 5 Product 2.690 × 10−12 1.640 × 10−6 7.195 × 10−2 2.682 × 10−1

31 81 Gaussian Linear 3 Minimum 1.535 × 10−15 3.918 × 10−8 4.037 × 10−3 6.354 × 10−2

32 81 Gaussian Linear 3 Product 1.376 × 10−14 1.173 × 10−7 7.782 × 10−3 8.822 × 10−2

33 256 Gaussian Linear 4 Minimum 1.833 × 10−15 4.281 × 10−8 3.658 × 10−3 6.048 × 10−2

34 256 Gaussian Linear 4 Product 1.235 × 10−14 1.111 × 10−7 1.351 × 10−2 1.162 × 10−1

35 625 Gaussian Linear 5 Minimum 3.656 × 10−15 6.045 × 10−8 1.296 × 10−2 1.138 × 10−1

36 625 Gaussian Linear 5 Product 2.567 × 10−14 1.602 × 10−7 4.822 × 10−2 2.196 × 10−1
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Table 7. Results Achieved by the Candidate Topologies for the ANFIS 2 Models.

Candidate
Topology

Number of
Inference Rules

Membership
Function Type Consequent Type

Number of Fuzzy
Membership

Functions

Fuzzy
Operator Training MSE Training RMSE Validation MSE Validation RMSE

37 81 Triangular Crisp 3 Minimum 3.075 × 10−4 1.754 × 10−2 5.539 × 10−4 2.354 × 10−2

38 81 Triangular Crisp 3 Product 7.921 × 10−6 2.814 × 10−3 1.349 × 10−5 3.673 × 10−3

39 256 Triangular Crisp 4 Minimum 1.063 × 10−4 1.031 × 10−2 3.618 × 10−4 1.902 × 10−2

40 256 Triangular Crisp 4 Product 1.697 × 10−6 1.303 × 10−3 2.178 × 10−5 4.667 × 10−3

41 625 Triangular Crisp 5 Minimum 8.705 × 10−6 2.950 × 10−3 2.077 × 10−2 1.441 × 10−1

42 625 Triangular Crisp 5 Product 2.850 × 10−10 1.688 × 10−5 8.717 × 10−3 9.336 × 10−2

43 81 Triangular Linear 3 Minimum 8.052 × 10−7 8.973 × 10−4 1.389 × 10−4 1.179 × 10−2

44 81 Triangular Linear 3 Product 9.466 × 10−8 3.077 × 10−4 5.206 × 10−5 7.215 × 10−3

45 256 Triangular Linear 4 Minimum 3.210 × 10−14 1.792 × 10−7 1.606 × 10−4 1.267 × 10−2

46 256 Triangular Linear 4 Product 4.448 × 10−15 6.669 × 10−8 9.201 × 10−5 9.592 × 10−3

47 625 Triangular Linear 5 Minimum 6.219 × 10−16 2.494 × 10−8 7.544 × 10−3 8.686 × 10−2

48 625 Triangular Linear 5 Product 1.308 × 10−15 3.617 × 10−8 1.153 × 10−2 1.074 × 10−1

49 81 Trapezoidal Crisp 3 Minimum 7.520 × 10−5 8.672 × 10−3 1.167 × 10−4 1.080 × 10−2

50 81 Trapezoidal Crisp 3 Product 7.542 × 10−5 8.684 × 10−3 1.171 × 10−4 1.082 × 10−2

51 256 Trapezoidal Crisp 4 Minimum 2.845 × 10−4 1.687 × 10−2 5.836 × 10−2 2.416 × 10−1

52 256 Trapezoidal Crisp 4 Product 1.105 × 10−4 1.051 × 10−2 4.418 × 10−4 2.102 × 10−2

53 625 Trapezoidal Crisp 5 Minimum 1.218 × 10−4 1.104 × 10−2 2.826 × 10−1 5.316 × 10−1

54 625 Trapezoidal Crisp 5 Product 1.076 × 10−4 1.037 × 10−2 6.911 × 10−2 2.629 × 10−1

55 81 Trapezoidal Linear 3 Minimum 9.025 × 10−7 9.500 × 10−4 1.946 × 10−3 4.411 × 10−2

56 81 Trapezoidal Linear 3 Product 1.542 × 10−7 3.927 × 10−4 5.054 × 10−4 2.248 × 10−2

57 256 Trapezoidal Linear 4 Minimum 1.836 × 10−13 4.285 × 10−7 1.012 × 10−3 3.181 × 10−2

58 256 Trapezoidal Linear 4 Product 7.792 × 10−14 2.791 × 10−7 1.052 × 10−3 3.243 × 10−2

59 625 Trapezoidal Linear 5 Minimum 8.016 × 10−8 2.831 × 10−4 4.529 × 10−2 2.128 × 10−1

60 625 Trapezoidal Linear 5 Product 8.016 × 10−8 2.831 × 10−4 4.978 × 10−2 2.231 × 10−1

61 81 Gaussian Crisp 3 Minimum 7.841 × 10−5 8.855 × 10−3 1.242 × 10−4 1.114 × 10−2

62 81 Gaussian Crisp 3 Product 6.943 × 10−6 2.635 × 10−3 1.125 × 10−5 3.354 × 10−3

63 256 Gaussian Crisp 4 Minimum 2.093 × 10−5 4.575 × 10−3 5.461 × 10−5 7.390 × 10−3

64 256 Gaussian Crisp 4 Product 7.844 × 10−7 8.857 × 10−4 9.769 × 10−6 3.126 × 10−3

65 625 Gaussian Crisp 5 Minimum 5.196 × 10−7 7.208 × 10−4 1.142 × 10−1 3.379 × 10−1

66 625 Gaussian Crisp 5 Product 1.194 × 10−9 3.455 × 10−5 3.517 × 10−3 5.930 × 10−2

67 81 Gaussian Linear 3 Minimum 7.606 × 10−7 8.721 × 10−4 2.097 × 10−4 1.448 × 10−2

68 81 Gaussian Linear 3 Product 1.781 × 10−8 1.335 × 10−4 1.088 × 10−4 1.043 × 10−2

69 256 Gaussian Linear 4 Minimum 3.571 × 10−14 1.890 × 10−7 5.159 × 10−5 7.183 × 10−3

70 256 Gaussian Linear 4 Product 2.344 × 10−14 1.531 × 10−7 8.415 × 10−5 9.173 × 10−3

71 625 Gaussian Linear 5 Minimum 1.448 × 10−15 3.805 × 10−8 1.921 × 10−3 4.383 × 10−2

72 625 Gaussian Linear 5 Product 4.698 × 10−15 6.854 × 10−8 1.287 × 10−2 1.134 × 10−1
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Table 8. Results Achieved by the Candidate Topologies in the ANFIS 3 Models.

Candidate
Topology

Number of
Inference Rules

Membership
Function Type Consequent Type

Number of Fuzzy
Membership

Functions

Fuzzy
Operator Training MSE Training RMSE Validation MSE Validation RMSE

73 81 Triangular Crisp 3 Minimum 1.385 × 10−9 3.720 × 10−5 9.198 × 10−3 9.593 × 10−2

74 81 Triangular Crisp 3 Product 1.065 × 10−11 3.264 × 10−6 8.355 × 10−3 9.142 × 10−2

75 256 Triangular Crisp 4 Minimum 1.542 × 10−11 3.927 × 10−6 3.852 × 10−2 1.962 × 10−1

76 256 Triangular Crisp 4 Product 2.761 × 10−12 1.661 × 10−6 1.358 × 10−1 3.685 × 10−1

77 625 Triangular Crisp 5 Minimum 3.018 × 10−11 5.495 × 10−6 1.183 × 10−1 3.439 × 10−1

78 625 Triangular Crisp 5 Product 3.212 × 10−12 1.791 × 10−6 2.199 × 10−1 4.690 × 10−1

79 81 Triangular Linear 3 Minimum 6.159 × 10−16 7.846 × 10−8 1.215 × 10−2 1.102 × 10−1

80 81 Triangular Linear 3 Product 5.302 × 10−16 7.282 × 10−8 1.175 × 10−2 1.084 × 10−1

81 256 Triangular Linear 4 Minimum 9.885 × 10−16 9.943 × 10−8 4.131 × 10−2 2.031 × 10−1

82 256 Triangular Linear 4 Product 6.336 × 10−15 7.958 × 10−8 6.981 × 10−2 2.641 × 10−1

83 625 Triangular Linear 5 Minimum 2.984 × 10−15 5.462 × 10−8 1.165 × 10−1 3.414 × 10−1

84 625 Triangular Linear 5 Product 2.704 × 10−15 5.200 × 10−8 1.551 × 10−1 3.938 × 10−1

85 81 Trapezoidal Crisp 3 Minimum 2.777 × 10−05 5.267 × 10−3 8.711 × 10−2 2.950 × 10−1

86 81 Trapezoidal Crisp 3 Product 1.101 × 10−05 3.318 × 10−3 6.174 × 10−2 2.484 × 10−1

87 256 Trapezoidal Crisp 4 Minimum 4.329 × 10−12 2.080 × 10−6 1.829 × 10−1 4.277 × 10−1

88 256 Trapezoidal Crisp 4 Product 1.545 × 10−12 1.243 × 10−6 2.093 × 10−1 4.576 × 10−1

89 625 Trapezoidal Crisp 5 Minimum 2.511 × 10−7 5.011 × 10−4 2.033 × 10−1 4.509 × 10−1

90 625 Trapezoidal Crisp 5 Product 2.510 × 10−7 5.010 × 10−4 2.398 × 10−1 4.897 × 10−1

91 81 Trapezoidal Linear 3 Minimum 9.025 × 10−15 9.497 × 10−8 5.713 × 10−2 2.390 × 10−1

92 81 Trapezoidal Linear 3 Product 8.604 × 10−15 9.272 × 10−8 6.371 × 10−2 2.523 × 10−1

93 256 Trapezoidal Linear 4 Minimum 1.327 × 10−14 1.152 × 10−7 1.783 × 10−1 4.221 × 10−1

94 256 Trapezoidal Linear 4 Product 2.253 × 10−14 1.500 × 10−7 1.936 × 10−1 4.398 × 10−1

95 625 Trapezoidal Linear 5 Minimum 1.427 × 10−14 1.194 × 10−7 2.023 × 10−1 4.497 × 10−1

96 625 Trapezoidal Linear 5 Product 8.294 × 10−15 9.102 × 10−8 2.257 × 10−1 4.751 × 10−1

97 81 Gaussian Crisp 3 Minimum 5.132 × 10−10 2.266 × 10−5 4.202 × 10−3 6.484 × 10−2

98 81 Gaussian Crisp 3 Product 1.453 × 10−11 3.811 × 10−6 1.680 × 10−2 1.296 × 10−1

99 256 Gaussian Crisp 4 Minimum 2.169 × 10−11 4.657 × 10−6 1.340 × 10−2 1.157 × 10−1

100 256 Gaussian Crisp 4 Product 1.657 × 10−12 1.287 × 10−6 1.482 × 10−1 3.850 × 10−1

101 625 Gaussian Crisp 5 Minimum 3.195 × 10−11 5.650 × 10−6 6.921 × 10−2 2.630 × 10−1

102 625 Gaussian Crisp 5 Product 1.295 × 10−12 1.138 × 10−6 2.443 × 10−1 4.943 × 10−1

103 81 Gaussian Linear 3 Minimum 2.978 × 10−16 1.726 × 10−8 2.958 × 10−3 5.436 × 10−2

104 81 Gaussian Linear 3 Product 1.556 × 10−14 1.247 × 10−7 1.383 × 10−2 1.176 × 10−1

105 256 Gaussian Linear 4 Minimum 9.274 × 10−16 9.629 × 10−8 1.391 × 10−2 1.179 × 10−1

106 256 Gaussian Linear 4 Product 1.584 × 10−14 1.258 × 10−7 6.808 × 10−2 2.608 × 10−1

107 625 Gaussian Linear 5 Minimum 2.448 × 10−15 4.948 × 10−8 4.646 × 10−2 2.155 × 10−1

108 625 Gaussian Linear 5 Product 1.723 × 10−14 1.312 × 10−7 1.536 × 10−1 3.920 × 10−1
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4.2.2. Stage 2: Application of the ANFIS Models

Stage 2 began with defining which suppliers would be segmented using the tuned
ANFIS models. It was decided that the same suppliers would be included in the validation
set. The DMs made this choice for the following reasons: all of these suppliers provide
relevant goods and/or services to the company in question; since the scores of these
suppliers have already been obtained in Step 1.4, the use of these supplier score samples
contributed to giving the pilot application more agility. Therefore, 60 suppliers were
considered in Stage 2. The scores of these suppliers in each criterion were input into the
trained ANFIS models to obtain the predicted values for supplier performance for each
TBL dimension. Figure 5a–c illustrate the values predicted by the ANFIS models and the
expected values for each supplier. In general, the predicted values for most of the samples
were very close. Since the predicted and expected values were practically identical in some
cases, there was an overlap of points that prevented the visualization of the marker that
indicates the expected values. This occurred mainly in Figure 5b, because the ANFIS 2
model was the one that presented the highest accuracy among all of the computational
models developed for this study. In order to illustrate the effect of the training and the
inference process for the ANFIS models, Figure 6 presents part of the 81 decision-making
rules for Topology 26 (ANFIS 1 model) before the training processes. In contrast, Figure 7
presents the same rules after the training.

In Figures 6 and 7, the first four columns represent the input variables and the last
column represents the output variable. The vertical lines in red represent input values,
and the parts in yellow represent activated rules. The contribution of each activated rule is
represented by the navy blue color in the last column. To illustrate the inference process,
we used the input values C1 = 50, C2 = 5, C3 = 50, and C4 = 50 in this model. Since the
consequents of the inference rules in Figure 6 have not been adjusted yet, the output value
for each rule was 0. Before training, 8 rules were activated, namely rules 14, 32, 38, 41, 42,
44, 50, and 68, generating an output value of 0. After training, with the adjustment in the
decision-making rules, 14 rules were activated, namely rules 5, 14, 29, 31, 32, 33, 38, 40, 41,
4, 44, 50, 59, and 68, which achieved an output value of 0.503.

In Figure 7, in addition to the changes in the values of the consequents for each rule,
we can also observe the effect of changes in the format of some pertinent functions after
training. These changes are more evident in the first two functions of C2 (“environmen-
tal management system”). Thus, when suppliers have an environmental management
system with “low” or “medium” performance, this will influence the Y1 results more
strongly than if they were in other environmental criteria with “low” or “medium” per-
formances. This demonstrates the great relevance of this criterion in terms of supplier
environmental performance.

In order to show the relationships between some of the input variables and the output
variable for each ANFIS model, Figure 8a–c show the response surface graphs produced
after training the ANFIS models. In Figure 8b, it is possible to visualize that Criteria C5
(employment practices) and C7 (local community influence) have a linear relationship with
the output variable Y2 if the value of one of these criteria is null. In these cases, an increase
in the values of these criteria produces a proportional increase in the value of Y1. On the
other hand, in Figure 8c it is possible to verify a nonlinear relationship between C9 (quality)
and Y3. If a supplier achieves “high” performance in quality, the value of Y2 will increase
substantially. This indicates that the criterion is very relevant to economic performance.
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Figure 5. Comparison of the Predicted Values with the Expected Values for the (a) ANFIS 1,
(b) ANFIS 2, (c) ANFIS 3 Models.
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Figure 6. Decision-Making Rules for Candidate Topology #26 before Training.
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Figure 7. Decision-Making Rules for Candidate Topology #26 after Training.
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Figure 8. Response Surface Plots of the (a) ANFIS 1, ANFIS 2 (b), and ANFIS 3 (c) Models.
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4.2.3. Stage 3: Supplier Categorization

The last step in applying the proposed model is segmenting the suppliers based on the
performance values obtained for each ANFIS model in Step 2.3. Threshold values for all of
the dimensions were set at 0.5 by the DMs. Figure 9 presents the results of classifying the
60 suppliers evaluated in the previous stage. To improve the visualization of the suppliers
in each quadrant, the matrix has been separated into two parts.

Figure 9. Final Supplier Classification.

The results presented in Figure 9 indicate that eight suppliers were classified in Group
1 because of their poor performance in all of the matrix’s dimensions. If it is not possible
to substitute the suppliers in this group, some strategies can be applied to improve their
economic, environmental, and social development. Six suppliers were classified in Group
2, and the classification results suggest applying strategies to improve their economic and
social development. Twelve suppliers classified in Group 3 need strategies to improve their
social and environmental development. For Group 4, there were four suppliers whose
social performance needs to be improved. For Group 5 there were five suppliers, and
they need strategies to improve their economic and environmental development. For
Group 6, there were ten suppliers in need of economic development strategies, and for
Group 7, there were seven suppliers in need of environmental development strategies.
Finally, there are eight suppliers classified in Group 8. These suppliers are the best in the
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supplier database because they meet the buying company’s environmental, social, and
economic requirements.

The results of the supplier classification in the segmentation matrix were endorsed and
enriched by the DMs, who not only validated the outcomes but also provided interpretive
feedback and suggested practical development strategies for each group. For example,
supplier S5 was classified in Group 7 as having poor performance in the environmental
dimension, mainly in the environmental management system (C2) and resource consump-
tion (C3) criteria. In this case, the DMs recommended assisting the supplier in obtaining
Environmental Management System certification. Similarly, supplier S30 was classified in
Group 4 due to low performance in all social criteria. This led the DMs to suggest actions
such as eliminating poor health conditions and adopting ethics standards with employees,
customers, suppliers, and investors. This interaction ensured that the classification results
were consistent with the model and aligned with the company’s strategic objectives.

Finally, with the suppliers separated into the proposed segmentation matrix, DMs
proposed specific strategies for each group to increase their sustainability performance.
Based on the result analysis and discussions with the DMs, some possible development
programs were indicated for each group. Table 3 served as the basis for defining these
programs. For example, supplier S5 was classified in the G7 group and presented poor
performance in the environmental dimension. This supplier performed poorly on the envi-
ronmental management system (C2) and resource consumption (C3) criteria. In this case,
the DMs have recommended a strategy in which they “help suppliers to obtain ISO1400
certification”. The supplier S30 was classified in the G4 group, with poor performance
in the social dimension. Since this supplier achieved low scores in all social criteria, the
DMs have suggested applying strategies such as “eliminate poor health conditions” and
“adopt ethics standards with employees, customers, suppliers, and investors”. Therefore,
when choosing one or more strategies, consider the group in which the supplier has been
classified, and consider the criteria where they are underperforming.

4.3. Contributions and Implications

The proposed model has some advantages in relation to previous supplier segmenta-
tion models. Unlike most of the models displayed in Table 2, the proposed model allows the
classification of suppliers according to each TBL dimension to support improving supplier
sustainability. In comparison with the models for sustainable supplier segmentation pro-
posed by [6,10,11,13–15], the proposed approach has the advantage of not performing any
compensation between the performance dimensions. In this way, when the performance of
a supplier in one dimension is low, even if this same supplier has high performance in two
of the TBL dimensions, the final result will point to a performance gap. Thus, the model
contributes to identifying suppliers with performance gaps while also aiding in achieving
a balance among environmental, social, and economic performance.

Like the supplier segmentation models based on AHP [10,26,44,47]; ANP [12],
BWM [46], fuzzy logic [13,24,29,31,37,39], and rough sets [2], the proposed model is ap-
propriate for dealing with decision-making processes under uncertainty. However, unlike
techniques based on paired comparisons, such as AHP, ANP, and Fuzzy AHP, the proposed
model does not limit the number of suppliers that can be evaluated simultaneously.

Another benefit is that using ANFIS models makes it possible to predict supplier
performance values accurately for each TBL dimension. The accuracy values achieved by
the best topologies were in keeping with the findings of other studies that apply ANFIS
models for supply chain management. For example, ref. [50] had higher MSE values with a
magnitude of 10−2, while [21] achieved lower error values with an MSE value close to a
magnitude of 10−4.
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Regarding computational complexity, the complexity of the ANFIS models developed
for supplier segmentation is primarily determined by the number of input variables and
fuzzy partitions assigned to each input. Each combination of input partitions corresponds
to a unique decision rule, directly affecting the number of computations during the training.
Despite this exponential growth in rules with respect to inputs and partitions, the models
developed in this study have relatively low computational complexity due to the deliberate
limitation of 3 to 5 input criteria per model. Model 1 includes 81 fuzzy if-then rules; Model
2 has 64 rules; and Model 3 has 243. Significantly, the number of suppliers does not affect
the number of rules, meaning that the models can handle large supplier datasets without a
considerable increase in computational processing time.

For scaling to larger or more complex problems, the methodology can be extended
by creating additional ANFIS models, each handling a subset of criteria, thereby prevent-
ing a combinatorial explosion of rules and preserving convergence during training. By
maintaining a controlled number of inputs per model, ANFIS balances interpretability,
predictive power, and computational efficiency, making it suitable for large-scale supplier
segmentation tasks and enabling its application to hundreds or even thousands of problems
with large supplier datasets.

Finally, it is important to highlight that in our study, all ANFIS topologies converged
successfully within 500 training epochs. Several factors contributed to this convergence,
including the limited number of input criteria per model, the resulting number of decision
rules, and the sufficiently large set of training samples used. However, convergence cannot
be universally guaranteed. Suppose a model includes a vast number of input variables
or an excessive number of fuzzy partitions. In that case, the resulting explosion in the
number of decision rules can make convergence more difficult, increase training time, and
potentially prevent the algorithm from reaching an optimal solution. Therefore, carefully
selecting input criteria and partition granularity is critical to maintain convergence and
computational feasibility.

5. Statistical Test Results
Linear regression tests were performed to analyze the relationship between the ex-

pected output variables and the values predicted by the best topologies. The R2 coefficient
was calculated to verify the dependent relationship of the y variable (predicted values) with
the independent x variable (expected values). R2 represents the square of the correlation
coefficient. The closer it is to 1, the better the model is adjusted to represent the dependent
relationship between the input and output variables [58].

Figure 10a–c show the expressions that indicate the relationships between the x and y
variables, the values of R2, and the results of the regression tests performed in Microsoft
Excel. The values obtained for R2 were 0.9905, 0.9996, and 0.8872 for the ANFIS 1, 2, and
3 models, respectively. The predicted values for the ANFIS models are very close to the
expected values (validation set). However, the ANFIS 3 model presented the poorest
performance among the three analyzed models. This is because it has the most significant
number of input variables and, therefore, a larger number of inference rules, which implies
a more significant number of parameters to be adjusted during the training, directly
interfering with the model’s accuracy.
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Figure 10. Results of the Linear Regressions Using the ANFIS 1 (a), 2 (b), and 3 (c) Model Results.

To verify whether there is a significant difference between the expected and predicted
values using the ANFIS models, we performed three paired t-tests. According to [58],
this type of test is appropriate when the population data is collected in pairs. Table 9
demonstrates the acceptance and rejection criteria for the null hypothesis with a significance
level of α.
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Table 9. Statistical Acceptance and Rejection Criteria for the Null Hypothesis.

Null hypothesis: H0: µD = ∆0
Alternative hypothesis: H1: µD ̸= ∆0

Test statistic: T0 = D−∆0
SD/

√
n

Rejection region (for two-tailed test): t0 < −tα/2,n−1 or t0 > tα/2,n−1
Reject H0 if the p-value is <α

To perform the t-tests, the samples must fulfill the requirements of a normal dis-
tribution and homogeneity of the variances among the groups [58]. The normality and
homogeneity tests of the variances were performed using the SPSS Statistics software
(V22.0) with groups of 60 samples for each validation step of the three ANFIS models. The
significance level of α = 0.01 was defined for rejecting the null hypothesis, considering the
null hypothesis to be that the sample comes from a normal distribution and the alternative
hypothesis to be that the sample does not come from a normal distribution. Table 10
presents the results of the normality tests for the six groups of samples, with two for each
ANFIS model.

Table 10. Normality Test Results.

Model Sample Set
Shapiro–Wilk

Statistic p-Value

ANFIS 1
Expected values 0.984 0.629
Predicted values 0.975 0.252

ANFIS 2
Expected values 0.965 0.087
Predicted values 0.965 0.087

ANFIS 3
Expected values 0.993 0.982
Predicted values 0.993 0.976

As displayed in Table 10, the data’s normality was calculated based on the
Shapiro–Wilk (S-W) Test. This test is recommended for samples where 4 < n < 2000 [58].
The analysis of the test results was performed based on their p-values. Taking into account a
level of significance of α = 0.01 and considering that all of the cases presented p-values > α,
the null hypotheses of the six sample groups were accepted, or in other words, all of the
sample groups in Table 10 come from a normal distribution.

To verify the homogeneity of the variances among the groups, we performed Levene’s
Test utilizing the SPSS Statistics software. Compared to other tests of homogeneity, such
as Hartley’s Test or the Cochran Test, Levene’s Test is more sensitive to deviations from
normality and is considered the most robust of these tests [58]. Table 11 presents the results
achieved by the samples for the ANFIS models for the homogeneity of variance test. With
observed p-values of 0.728, 0.990, and 0.423, values which are greater than α = 0.01, the test
results indicate that the null hypothesis cannot be rejected. Thus, we can conclude that
with a confidence level of 99%, the variances are homogeneous.

Table 11. Results of the Homogeneity of Variance Test.

Model Levene Statistic p-Values

ANFIS 1 0.122 0.728
ANFIS 2 0.000 0.990
ANFIS 3 0.568 0.453

Given that the normality and homogeneity of the variance requirements have been
achieved, we can apply the t-test. Table 12 presents the results of the t tests performed
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using the SPSS Statistics software. In addition to the significance levels, Table 12 shows
the mean differences between the pairs of each sample group, the standard deviation, the
mean standard error, the confidence level of the difference, and the calculated t value.
Considering a significance level of α = 0.01, with the p-values being 0.012, 0.216, and
0.404 for the ANFIS 1, 2, and 3 models, respectively, we cannot reject the null hypotheses.
Therefore, we conclude that there are no statistically significant differences between the
expected and predicted values. This reinforces the accuracy of the proposed models and
the appropriateness of utilizing ANFIS in sustainable supplier segmentation.

Table 12. Results of the Paired-Sample Tests.

Model Mean Standard Deviation Mean Standard Error T p-Value

ANFIS 1 −0.00493 0.01473 0.0019 −2.593 0.012
ANFIS 2 0.00051 0.00313 0.0004 1.251 0.216
ANFIS 3 0.00592 0.05455 0.00704 0.841 0.404

6. Conclusions
This study proposed and applied an ANFIS-based model for sustainable supplier

segmentation. The implementation and evaluation of 108 ANFIS topologies have made
it possible to identify the most suitable values for the internal parameters of the models.
The models achieved satisfactory accuracy, with the best topologies identified for each
case: topology 36 for ANFIS 1 with MSE = 2.380 × 10−4, topology 64 for ANFIS 2 with
MSE = 9.769 × 10−6, and topology 103 for ANFIS 3 with MSE = 2.958 × 10−3. The values
obtained for R2 were 0.9905, 0.9996, and 0.8872 for the ANFIS 1, 2, and 3 models, respectively.
The t-tests confirmed no statistically significant differences between the expected and
predicted values (p-values = 0.012, 0.216, and 0.404 for ANFIS 1, 2, and 3, respectively,
considering α = 0.01).

In addition to the benefits discussed in Section 4.3, this proposal presents the following
contributions to the supplier segmentation literature:

i. Model based on supervised learning and nonlinear modeling: Using a supervised
learning method, this is the first supplier segmentation model that uses historical
performance data to automatically adjust the relationships between the input variables,
capturing nonlinear interactions among criteria.

ii. Transparency and interpretability through decision rules: The supervised learning
process allows the incorporation of available knowledge about supplier performance
into the inference rules. This makes the outputs produced by the ANFIS mod-
els easily interpretable and allows identification of which decision rules produced
specific results.

iii. Identification of appropriate ANFIS topological parameters: This study also con-
tributes by determining appropriate topological parameters to achieve accurate re-
sults. These guidelines provide practical support for researchers and practitioners
developing computational solutions based on ANFIS for supplier evaluation, ensuring
computational efficiency.

Nevertheless, the study has limitations that should be acknowledged. The classifi-
cation threshold between high and low performance groups remains a subjective choice
that depends on each buying company’s priorities and strategic positioning. Moreover,
the computational complexity of ANFIS increases exponentially with the number of input
variables and partitions, which restricts the number of criteria that can be simultaneously
considered in a single model. Although the current design with 3 to 5 criteria per model
maintains relatively low complexity and reliable convergence, scaling to problems with
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more than approximately 15 criteria would require the development of additional ANFIS
models to avoid rule explosion and convergence issues.

Another limitation is that only one training algorithm was tested in the cross-validation
process. This choice was made because the selected algorithm is the most frequently ap-
plied in ANFIS training and has achieved satisfactory accuracy in prior studies. Given
that our model required training 108 instances, employing an alternative algorithm would
have effectively doubled the number of training processes, substantially increasing com-
putational time and potentially hindering both the implementation of the model and its
reproducibility in future studies. Future studies could investigate alternative training
algorithms to evaluate their impact on model performance and efficiency. It could also
conduct comparative analyses of different segmentation models and apply the proposed
approach in companies across diverse economic sectors within the TBL context.
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DM Decision Maker
ELECTREE ÉLimination Et Choix Traduisant la REalité (em francês)
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MCDM Multi-criteria Decision Making
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Appendix A

Table A1. List of criteria suggested for sustainable supplier segmentation.

Economic Criteria Environmental Criteria Social Criteria

- Price
- Cost reduction activities
- Compliance with pricing

behavior
- Conformance quality
- Delivery consistency
- Quality philosophy
- Quick response
- Time
- Delivery speed
- Product development time
- Partnership formation time
- Flexibility
- Changes in product volume
- Short setup time
- Conflict resolution
- Innovation
- Launch of new products
- Use of new technologies
- Culture
- Appropriate strategies
- Sense of trust
- Technological compatibility
- Technical capability
- Manufacturing facilities
- Supplier design capability
- Longterm relationship
- Open communication
- Reputation for integrity
- Relationship closeness

- Pollution control
- Remediation
- Endofpipe controls
- Pollution prevention
- Product adaptation
- Process adaptation
- Environmental system

management
- Establishment of environmental

commitment and policy
- Identification of environmental

aspects
- Planning of environmental

objectives
- Assignment of environmental

responsibility
- Verification and evaluation of

environmental activities
- Resource consumption
- Water consumption
- Raw material consumption
- Energy consumption
- Pollution production
- Emission of pollutants
- Production of toxic products
- Waste generation

- Human resources practices
- Disciplinary and safety practices
- Employment contracts
- Equality in labor sourcing
- Diversity
- Discrimination
- Employment opportunities
- Flexible work arrangements
- Employment compensation
- Research and development
- Career development
- Child labor
- Health and safety
- Health and safety incidents
- Health and safety practices
- Working conditions
- Influence on the local

community
- Health
- Education
- Housing
- Service infrastructure
- Mobility infrastructure
- Public and regulatory services
- Support for educational

institutions
- Security
- Growth of economic wellbeing
- Social cohesion
- Support for community projects
- Stakeholder influence
- Consumer education
- Stakeholder engagement
- Potential for decisionmaking

influence
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12. Coşkun, S.S.; Kumru, M.; Kan, N.M. An Integrated Framework for Sustainable Supplier Development Through Supplier
Evaluation Based on Sustainability Indicators. J. Clean. Prod. 2022, 335, 130287. [CrossRef]

13. Mavi, R.K.; Zarbakhshnia, N.; Mavi, N.K.; Kazemi, S. Clustering Sustainable Suppliers in the Plastics Industry: A Fuzzy
Equivalence Relation Approach. J. Environ. Manag. 2023, 345, 118811. [CrossRef]

14. Rahiminia, M.; Razmi, J.; Shahrabi Farahani, S.; Sabbaghnia, A. Cluster-Based Supplier Segmentation: A Sustainable Data-Driven
Approach. Mod. Supply Chain Res. Appl. 2023, 5, 209–228. [CrossRef]

15. Taghipour, A.; Fooladvand, A.; Khazaei, M.; Ramezani, M. Criteria Clustering and Supplier Segmentation Based on Sustainable
Shared Value Using BWM and PROMETHEE. Sustainability 2023, 15, 8670. [CrossRef]

16. Ahamed, N.; Dey, G.; Ahmed, T.; Rahman, R.; Taqi, H.M.M.; Ahmed, S. Embracing Sustainability in Green Supplier Evaluation:
A Novel Integrated Multi-Criteria Decision-Making Framework. Contemp. Math. 2024, 5, 1891–1917. [CrossRef]

17. Li, Y.; Tsang, Y.; Lee, C.; Wu, C. Multi-Criteria Group Decision Analytics for Sustainable Supplier Relationship Management in a
Focal Manufacturing Company. J. Clean. Prod. 2024, 476, 143690. [CrossRef]

18. Messaoudi, L.; Mahdhi, M. Integrating Hierarchical Clustering and Stochastic Multi-Objective Decision-Making for Optimized
Decision Processes. In Proceedings of the International Conference on Decision Aid Sciences and Applications, Manama, Bahrain,
11–12 December 2024; pp. 1–5.

19. Paybarjay, H.; Lajimi, H.F.; Zolfani, S.H. An Investigation of Supplier Development Through Segmentation in Sustainability
Dimensions. Environ. Dev. Sustain. 2024, 26, 14369–14403. [CrossRef]

20. Azadi, M.; Moghaddas, Z.; Farzipoor, R. Assessing Resilience and Sustainability of Suppliers: An Extension and Application of
Data Envelopment Analytical Hierarchy Process. Ann. Oper. Res. 2025, 346, 705–750. [CrossRef]

21. Lima, F.R., Jr.; Carpinetti, L.C.R. An Adaptive Network-Based Fuzzy Inference System to Supply Chain Performance Evaluation
Based on SCOR® Metrics. Comput. Ind. Eng. 2020, 139, 106191. [CrossRef]

22. Bamakan, S.M.H.; Faregh, N.; ZareRavasan, A. Di-ANFIS: An Integrated Blockchain–IoT–Big Data-Enabled Framework for
Evaluating Service Supply Chain Performance. J. Comput. Des. Eng. 2021, 8, 676–690. [CrossRef]

23. Nzamba, Y.; Lima, F.R.; Nascimento, M.C.; Batista, Á.A.S.; Tonon, L. Um Panorama dos Modelos de Tomada de Decisão para
Segmentação de Fornecedores. Cad. Pedagógico 2024, 21, e11451. [CrossRef]

24. Akman, G. Evaluating Suppliers to Include Green Supplier Development Programs via Fuzzy C-Means and VIKOR Methods.
Comput. Ind. Eng. 2015, 86, 69–82. [CrossRef]

25. Aloini, D.; Dulmin, R.; Mininno, V.; Zerbino, P. Leveraging Procurement Related Knowledge Through a Fuzzy-Based DSS:
A Refinement of Purchasing Portfolio Models. J. Knowl. Manag. 2019, 23, 1077–1104. [CrossRef]

26. Bianchini, A.; Benci, A.; Pellegrini, M.; Rossi, J. Supply Chain Redesign for Lead-Time Reduction Through Kraljic Purchasing
Portfolio and AHP Integration. Benchmarking Int. J. 2019, 26, 1194–1209. [CrossRef]

27. Boujelben, M.A. A Unicriterion Analysis Based on the PROMETHEE Principles for Multicriteria Ordered Clustering. Omega 2017,
69, 126–140. [CrossRef]

28. Demir, L.; Akpinar, M.E.; Araz, C.; Ilgin, M.A. A Green Supplier Evaluation System Based on a New Multi-Criteria Sorting
Method: VIKORSORT. Expert Syst. Appl. 2018, 114, 479–487. [CrossRef]

29. Duc, D.A.; Van, L.H.; Yu, V.F.; Chou, S.Y.; Hien, N.V.; Chi, N.T.; Toan, D.V.; Dat, L.Q. A Dynamic Generalized Fuzzy Multi-Criteria
Group Decision Making Approach for Green Supplier Segmentation. PLoS ONE 2021, 16, e0245187. [CrossRef]

30. Haghighi, P.S.; Moradi, M.; Salahi, M. Supplier Segmentation Using Fuzzy Linguistic Preference Relations and Fuzzy Clustering.
Int. J. Intell. Syst. Appl. 2014, 6, 76–82. [CrossRef]

31. Jharkharia, S.; Das, C. Low Carbon Supplier Development: A Fuzzy C-Means and Fuzzy Formal Concept Analysis Based
Analytical Model. Benchmarking Int. J. 2019, 26, 73–96. [CrossRef]

32. Kaur, H.; Singh, S.P. Multi-Stage Hybrid Model for Supplier Selection and Order Allocation Considering Disruption Risks and
Disruptive Technologies. Int. J. Prod. Econ. 2021, 231, 107830. [CrossRef]

33. Keskin, F.D.; Kaymaz, Y. Machine Learning in Supply Chain Management: A Risk-Based Supplier Segmentation Application. In
Business Studies and New Approaches; Unvan, Y.A., Ed.; Livre de Lyon: Lyon, France, 2021; pp. 139–161.

34. Lima, F.R., Jr.; Carpinetti, L.C.R. Combining SCOR® Model and Fuzzy TOPSIS for Supplier Evaluation and Management. Int. J.
Prod. Econ. 2016, 174, 128–141. [CrossRef]

https://doi.org/10.1016/j.indmarman.2009.06.001
https://doi.org/10.1016/j.jclepro.2017.10.304
https://doi.org/10.3390/su12114556
https://doi.org/10.1016/j.jclepro.2021.130287
https://doi.org/10.1016/j.jenvman.2023.118811
https://doi.org/10.1108/MSCRA-05-2023-0017
https://doi.org/10.3390/su15118670
https://doi.org/10.37256/cm.5220242779
https://doi.org/10.1016/j.jclepro.2024.143690
https://doi.org/10.1007/s10668-023-03198-w
https://doi.org/10.1007/s10479-022-04790-5
https://doi.org/10.1016/j.cie.2019.106191
https://doi.org/10.1093/jcde/qwab007
https://doi.org/10.54033/cadpedv21n13-044
https://doi.org/10.1016/j.cie.2014.10.013
https://doi.org/10.1108/JKM-10-2018-0614
https://doi.org/10.1108/BIJ-07-2018-0222
https://doi.org/10.1016/j.omega.2016.08.007
https://doi.org/10.1016/j.eswa.2018.07.071
https://doi.org/10.1371/journal.pone.0251940
https://doi.org/10.5815/ijisa.2014.05.08
https://doi.org/10.1108/BIJ-03-2018-0074
https://doi.org/10.1016/j.ijpe.2020.107830
https://doi.org/10.1016/j.ijpe.2016.01.023


Mathematics 2025, 13, 3058 33 of 33

35. Lo, S.C.; Sudjatmika, F.V. Solving Multi-Criteria Supplier Segmentation Based on the Modified FAHP for Supply Chain Manage-
ment: A Case Study. Soft Comput. 2016, 20, 4981–4990. [CrossRef]

36. Matshabaphala, N.M.; Grobler, J. Supplier Segmentation: A Case Study of Mozambican Cassava Farmers. S. Afr. J. Ind. Eng. 2021,
32, 196–209.

37. Medeiros, M.; Ferreira, L. Development of a Purchasing Portfolio Model: An Empirical Study in a Brazilian Hospital. J. Prod. Plan.
Control 2018, 29, 571–585. [CrossRef]

38. Nasiri, G.R.; Miandoabchi, E.; Javadi, M. Developing a Two-Stage Decision-Making Method for Selecting and Clustering Suppliers
Based on the Resilience Criteria. Group Decis. Negot. 2025, 34, 7–34. [CrossRef]

39. Osiro, L.; Lima, F.R., Jr.; Carpinetti, L.C.R. A Fuzzy Logic Approach to Supplier Evaluation for Development. Int. J. Prod. Econ.
2014, 153, 95–112. [CrossRef]

40. Parkouhi, S.V.; Ghadikolaei, A.S.; Lajimi, H.F. Resilient Supplier Selection and Segmentation in Grey Environment. J. Clean. Prod.
2019, 207, 1123–1137. [CrossRef]

41. Rajesh, G.; Raju, R. A Fuzzy Inference Approach to Supplier Segmentation for Strategic Development. S. Afr. J. Ind. Eng. 2021, 32,
44–55.

42. Restrepo, R.; Villegas, J.G. Supplier Evaluation and Classification in a Colombian Motorcycle Assembly Company Using Data
Envelopment Analysis. Acad. Rev. Lat. Adm. 2019, 32, 159–180.

43. Rezaei, J.; Ortt, R. Multi-Criteria Supplier Segmentation Using a Fuzzy Preference Relation Based AHP. Eur. J. Oper. Res. 2013,
225, 75–84. [CrossRef]

44. Rezaei, J.; Ortt, R. Supplier Segmentation Using Fuzzy Logic. Ind. Mark. Manag. 2013, 42, 507–517. [CrossRef]
45. Rezaei, J.; Kadzinski, M.; Vana, C.; Tavasszy, L. Embedding Carbon Impact Assessment in Multi-Criteria Supplier Segmentation

Using ELECTRE TRI-rC. Ann. Oper. Res. 2017, 312, 1445–1467. [CrossRef]
46. Rezaei, J.; Wang, J.; Tavasszy, L. Linking Supplier Development to Supplier Segmentation Using Best Worst Method. Expert Syst.

Appl. 2015, 42, 9152–9164. [CrossRef]
47. Santos, L.F.O.M.; Osiro, L.; Lima, R.H.P. A Model Based on 2-Tuple Fuzzy Linguistic Representation and Analytic Hierarchy

Process for Supplier Segmentation Using Qualitative and Quantitative Criteria. Expert Syst. Appl. 2017, 79, 53–64. [CrossRef]
48. Segura, M.; Maroto, C. A Multiple Criteria Supplier Segmentation Using Outranking and Value Function Methods. Expert Syst.

Appl. 2017, 69, 87–100. [CrossRef]
49. Jang, J.-S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685.

[CrossRef]
50. Özkana, G.; Inal, M. Comparison of Neural Network Application for Fuzzy and ANFIS Approaches for Multi-Criteria Decision-

Making Problems. Appl. Soft Comput. 2014, 24, 232–238. [CrossRef]
51. Mavi, R.K.; Mavi, N.K.; Goh, M. Modeling Corporate Entrepreneurship Success with ANFIS. Oper. Res. 2017, 17, 213–238.
52. Xue, G.; Chang, Q.; Wang, J.; Zhang, K.; Pal, N.R. An Adaptive Neuro-Fuzzy System with Integrated Feature Selection and Rule

Extraction for High-Dimensional Classification Problems. IEEE Trans. Fuzzy Syst. 2023, 31, 2167–2181. [CrossRef]
53. Lajimi, H.F. Sustainable Supplier Segmentation: A Practical Procedure. In Strategic Decision Making for Sustainable Management of

Industrial Networks; Rezaei, J., Ed.; Springer: Cham, Switzerland, 2021; pp. 119–137.
54. Pedroso, C.B.; Tate, W.L.; Silva, A.L.; Carpinetti, L.C.R. Supplier Development Adoption: A Conceptual Model for Triple Bottom

Line (TBL) Outcomes. J. Clean. Prod. 2021, 314, 127886. [CrossRef]
55. Bai, C.; Rezaei, J.; Sarkis, J. Multicriteria Green Supplier Segmentation. IEEE Trans. Autom. Sci. Eng. 2017, 64, 515–528. [CrossRef]
56. Akkoç, S. An Empirical Comparison of Conventional Techniques, Neural Networks and the Three Stages Hybrid Adaptive Neuro

Fuzzy Inference System (ANFIS) Model for Credit Scoring Analysis: The Case of Turkish Credit Card Data. Eur. J. Oper. Res. 2012,
222, 168–178. [CrossRef]

57. Fan, X.; Zhang, S.; Wang, L.; Yang, Y.; Hapashi, K. An Evaluation Model of Supply Chain Performances Using 5DBSC and LMBP
Neural Network Algorithm. J. Bionic Eng. 2013, 10, 383–395. [CrossRef]

58. Montgomery, D.; Runger, G. Applied Statistics and Probability for Engineers; Hoboken: Wiley, NJ, USA, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00500-015-1787-1
https://doi.org/10.1080/09537287.2018.1434912
https://doi.org/10.1007/s10726-024-09903-y
https://doi.org/10.1016/j.ijpe.2014.02.009
https://doi.org/10.1016/j.jclepro.2018.10.007
https://doi.org/10.1016/j.ejor.2012.09.037
https://doi.org/10.1016/j.indmarman.2013.03.003
https://doi.org/10.1007/s10479-017-2454-y
https://doi.org/10.1016/j.eswa.2015.07.073
https://doi.org/10.1016/j.eswa.2017.02.032
https://doi.org/10.1016/j.eswa.2016.10.031
https://doi.org/10.1109/21.256541
https://doi.org/10.1016/j.asoc.2014.06.032
https://doi.org/10.1109/TFUZZ.2022.3220950
https://doi.org/10.1016/j.jclepro.2021.127886
https://doi.org/10.1109/TEM.2017.2723639
https://doi.org/10.1016/j.ejor.2012.04.009
https://doi.org/10.1016/S1672-6529(13)60234-6

	Introduction 
	Theoretical Framework 
	Sustainable Supplier Segmentation 
	Adaptive Neuro-Fuzzy Inference Systems 

	The Proposed Model for Sustainable Supplier Segmentation 
	Application Case Study 
	Presentation of the Company 
	Application of the Proposed Model 
	Stage 1: Definition, Training, and Validation of the ANFIS Models 
	Stage 2: Application of the ANFIS Models 
	Stage 3: Supplier Categorization 

	Contributions and Implications 

	Statistical Test Results 
	Conclusions 
	Appendix A
	References

