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Abstract
We prove that if two complex affine irreducible varieties are birational (that is their coordi-
nate rings have isomorphic fields of fractions) then their rings of differential operators are
birationally equivalent. It allows to address the Noncommutative Noether’s Problem on the
invariants of Weyl fields for linear actions of finite groups. In fact, we show for any field k of
characteristic 0 that rationality of the quotient varietyAn(k)/G implies that the Noncommu-
tativeNoether’s Problem is positively solved forG. In particular, this gives affirmative answer
for all pseudo-reflections groups, for the alternating groups (n = 3, 4, 5) and for any finite
group when n = 3 and k is algebraically closed (covering and generalizing all previously
known cases). Alternative proofs are given for the complex field and for all pseudo-reflections
groups. In the later case an effective algorithm of finding the Weyl generators is described.

1 Introduction

We will assume that all algebras are considered over the field k of characteristic zero.
Let G be a finite group acting linearly on the ring of polynomials k[x1, . . . , xn]. Extend

the linear action of G to the action on the field of rational functions Kn = k(x1, . . . , xn). The
Classical Noether’s Problem (CNP for short), related to the 14-th Hilbert’s problem, asks
whether K G

n is a purely transcendental extension of k or, equivalently, whether An(k)/G is
birational to A

m(k) for some m. In the latter case we say that the quotient variety An(k)/G
is rational (cf. [29]). More generally, for an irreducible affine variety X with an action of the
group G we say that the quotient variety X/G is birational to X if the field of functions on
X is isomorphic to the subfield of G-invariants.

Well known cases with positive solution for the CNP include n = 1 (which is the classic
Luroth theorem for algebraic curves), n = 2 (due to Miyata [24]) or n = 3 and k is alge-
braically closed (due to Burnside [3]) and any n when the representation of G is isomorphic
to a direct sum of one dimensional representations (due to Fischer). It also holds for alter-

B Vyacheslav Futorny
futorny@ime.usp.br

João Schwarz
jfschwarz.0791@gmail.com

1 Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-019-02397-4&domain=pdf


V. Futorny, J. Schwarz

nating groups G = An for n = 3, 4, 5 (due to Maeda [21]). Detailed references including
the counter-examples of Swan, Voskresenskii and Saltman can be found in [6,14].

We remark that the question of rationality of invariants of the rational function field makes
perfect sense for linear algebraic groups. For such generality see [27], II.2. In particular, if
the action is triangular then the invariants of the rational function field define again a rational
function field. This is the case, for instance, when the group is connected solvable and the
field is algebraically closed (by the Lie–Kolchin Theorem).

Passing to a noncommutative case consider the k-algebra of differential operators on the
polynomial ring k[x1, . . . , xn], which is the n-th Weyl algebra An(k), and extend the action
of G to a linear action on An(k). The algebra An(k) is a simple Noetherian Ore domain which
admits the skew field of fractions which we will denote by Fn(k). The action of G extends
naturally to Fn(k). For convenience we set F0(k) := k.

An analog of the Noether’s Problem for the Weyl algebra An was first considered by Alev
and Dumas in [1], where they asked whether Fn(k)G is isomorphic to Fm(L) for some m ≥ 1
and some purely transcendental extension L of k of transcendence degree t ≥ 0.

In fact, if such isomorphism holds, then m = n and L = k [1]. This is the case, for
instance, for n = 1 and n = 2 and an arbitrary finite group G [1], for any n and any G whose
natural representation decomposes into a direct sum of one dimensional representations [1].
In particular, it holds for all n ≥ 1 if G is abelian and k is algebraically closed. It was shown
in [7] that it also holds for any n and any complex reflection group.

The case of infinite groupsG was also considered previously. In this casem+trdegk L ≤ n
and if the action is triangular then one can not guarantee that the invariants form aWeyl field
[1, Remark 1.2.3, 1.3.2]. However, if the action of G decomposes as a direct sum of one
dimensional G-modules, then indeed Fn(k)G � Fm(L), and m + trdegk L = n. Also, all
values 1, . . . , n can appear as trdegk L for actions of subgroups of the torusTn [1], including
the extreme case n = 0, where the skew field of invariants is commutative.

We will only be interested in the case of finite G. Due to the importance of Weyl algebras
and to the fact that they are the simplest noncommutative deformations of polynomial alge-
bras, we call the analog of the Noether’s Problem for An , following [1], the Noncommutative
Noether’s Problem (NNP for short).

The caseswhen theNNPhas a positive solution are of special interest in viewof the rigidity
of the Weyl algebras proven by Alev and Polo [2]: An(k)G is not isomorphic to An(k) when
k is algebraically closed, for any non trivial linear action of G. Hence, positive solutions
of the NNP give examples for the question posed by Kirkman et al. [16], asking for which
rigid algebras the skew field of fractions and its skew subfield of invariants are isomorphic
(two algebras with isomorphic skew field of fractions are called birationally equivalent). The
Noncommutative Noether’s Problem is also connected to the Gelfand–Kirillov Conjecture
on the birational equivalence between the universal enveloping algebras and Weyl algebras.
It can be used to reprove the Gelfand–Kirillov Conjecture for gln and sln [9] and show it for
all finite W -algebras of type A [11].

We will say that the NNP holds for a group G if it has positive solution for G. The first
goal of our paper is to prove the following statement which was first conjectured in a less
general form in [28].

Theorem 1.1 For any field k of zero characteristic and any linear action of a finite group G
if the quotient variety An(k)/G is rational then the NNP holds for G, that is the CNP implies
the NNP.
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With this result we immediately recover all previously known cases with positive solution
for the NNP, and obtain many new examples when NNP holds (Corollary 3.5).

We consider separately the case of the complex field. In this case we generalize Theorem
1.1 for the rings of differential operators on any affine irreducible variety. Let X be a complex
affine irreducible variety,G a finite group of automorphisms on X and let D(X) be the algebra
of differential operators on X . The action of G on X extends naturally to the action of G on
D(X). Our second main result is the following theorem.

Theorem 1.2 If the quotient variety X/G is birational to an irreducible affine variety Y then
D(X)G is birationally equivalent to D(Y ).

From Theorem 1.2 we immediately deduce:

Corollary 1.3 Let X be a complex affine irreducible variety and G a finite group of automor-
phisms on X.

(a) If X/G is birational to X then D(X)G and D(X) are birationally equivalent.
(b) If the quotient variety X/G is rational then

(Frac(D(X)))G � Fn(C).

We give an alternative proof of Theorem 1.1 for all pseudo-reflections groups and an
arbitrary field of characteristic zero (Theorem 5.11) that allows us to find theWeyl generators
by a fairly simple algorithmic procedure (cf. Sect. 5.4).

Finally we apply the obtained results to establish the birational equivalence for the cross
products (Theorem 6.1).

2 Preliminaries

Let R be a commutative k-algebra. The ring of differential operators D(R) on R is defined
inductively as D(R) = ∪∞

n=0D(R)n , where D(R)0 = R and

D(R)n = { d ∈ Endk(R) : d b − b d ∈ D(R)n−1 for all b ∈ R}.
In particular, R ⊂ D(R). In case R is affine and regular, D(R) is the subalgebra of Endk R
generated by the k-linear derivations of R and by the scalar multiplications lr , r ∈ R, that
sends g → rg for any g ∈ R.

The Weyl algebra An(k) is isomorphic to the the ring of differential operators on the
polynomial algebra R in n variables. It can also be described as the unital associative algebra
generated over k by the elements x1, . . . , xn , ∂1, . . . , ∂n subject to the relations ∂i x j −x j∂i =
δi j , xi x j = x j xi , ∂i∂ j = ∂ j∂i for 1 ≤ i, j ≤ n.

Suppose R is equipped with an action of a finite group G. Then this action can be extended
to the ring of differential operators D(R) on R by conjugation: if d ∈ D(R) then (g∗d) · f =
(g ◦ d ◦ g−1) · f for any f ∈ R, g ∈ G. The elements of D(R) invariant under the action of
G are called G-invariant differential operators on R.

The following result is well known but we include a proof for completeness. It guarantees
the existence of the necessary division rings in Theorem 1.2.

Proposition 2.1 Let R be an affine domain and also a k-algebra. Then D(R) is an Ore
domain.
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Proof Call K := Frac R. We can realize D(R) as a subset of D(K ) in the following way
[22, 15.5.5(iii)]:

D(R) = {d ∈ D(K )|d(R) ⊂ R}.
Now, since K is finite field extension of k, D(K ) is a non-commutative domain with finite
Gelfand–Kirillov dimension. Since D(R) is a subring of D(K ), the same properties hold for
it. Hence, D(R) does not contain a subalgebra isomorphic to the free associative algebra in
two variables. It follows, then, by a result of Jategaonkar [18, Proposition 4.13], that D(R)

is an Ore domain. �


It was shown by Faith [8] that if R is an Ore domain (both left and right) then any invariant
subring RG corresponding to a finite group G is also an Ore domain. In this case, R admits
the skew field of fractions which we denote by F(R). Then the action of G on R extends
uniquely to an action on F(R) and (F(R))G � F(RG). Hence, F : R �→ F(R) defines a
functor from the category of Ore domains with injective homomorphisms to the category of
skew fields. If φ : R1 → R2 is a morphism of domains such that F(φ) is an isomorphism of
skew fields then we say that R1 and R2 are birationally equivalent.

Since An(k) is a Noetherian Ore domain, it admits the skew field of fractions Fn(k) :=
F(An(k)), called the Weyl field.

3 CNP implies NNP

In this section we prove our main result: the CNP implies the NNP for an arbitrary field of
characteristic zero and arbitrary linear action of a finite group.

Consider an arbitrary finite group G acting linearly on an n-dimensional k-vector space
V and its naturally extended action on O(V ∗) = k[x1, . . . , xn]. This action extends to the
Weyl algebra An(k) � D(O(V ∗)). Recall that a positive solution for the Classical Noether’s
Problem for this action means that Frac(O(V ∗)G) ∼= k(x1, . . . , xn).

Denote B the subalgebra of An(k)G generated by O(V ∗)G = k[x1, . . . , xn]G and
O(V )G = k[∂1, . . . , ∂n]G . Then B = An(k)G by [19], Theorem 5. We will closely fol-
low the argument in the proof of this fact.

Set S = O(V ∗)G\{0}. Since S is ad-nilpotent on An(k), and hence on B = An(k)G , it is
an Ore set in both algebras [18, Theorem 4.9].

Denote F := Frac(O(V ∗)G).
Recall the following lemma from [19]:

Lemma 3.1 [19, Lemma 8] Let L be a finite field extension of k, with trdegk L = l, and
consider the ring of differential operators on L, D(L). Let A be a subalgebra of D(L)

containing L, with a filtration induced from that of D(L) (by order of differential operator).
If the associated graded algebra of A contains as a subalgebra a finitely generated graded
L-algebra B such that K dim B = l, then A = D(L).

Lemma 3.2 Frac(An(k)G) ∼= Frac(D(F)).

Proof We have B ⊂ An(k)G by definition. On the other hand, An(k)G ⊂ D(O(V ∗)G) by
restriction of domain. We have

D(O(V ∗)G)S = D(O(V ∗)G
S ) = D(F)
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by [26], Proposition 1.8. After localization by S we obtain:

BS ⊂ An(k)G
S ⊂ D(O(V ∗)G)S = D(F).

Consider the filtration onBS induced from D(F). SinceO(V ∗)G ⊂ B, we have that gr BS

contains F ⊗ O(V ∗)G as a graded F-subalgebra. Since O(V ∗) is finite over O(V ∗)G then
it has the Krull dimension n [22]. Applying Lemma 3.1 we have BS = D(F). We conclude
that Frac(D(F)) ⊂ Frac(An(k)G) ⊂ Frac(D(F)) which implies the desired equality. �

Remark 3.3 Note that in fact in the above proof we do not need the equality B = An(k)G but
only the embedding B ⊂ An(k)G by [19, Lemma 9].

As a consequence of Lemma 3.2 we immediately obtain our main result.

Theorem 3.4 The CNP implies the NNP for any linear representation of a finite group over
any field of characteristic zero.

Proof Under the condition of the theorem we have that F ∼= k(x1, . . . , xn). Then D(F) is
isomorphic to the localization of An by k[x1, . . . , xn]\{0} and the statement follows. �


We immediately have the following application of the main result

Corollary 3.5 The Noncommutative Noether’s Problem holds in the following cases for any
field of characteristic zero:

• for all linear representations of all pseudo-reflection groups;
• for alternating groups An with usual permutation action for n = 3, 4, 5;
• for any group when n = 3 and k is algebraically closed.

We note that Theorem 3.4 allows to recover all results for finite groups from [1] and all
results from [7]. Also it allows us to give a shorter proof of the following fact shown in [1].

Theorem 3.6 [1] If Fn(k)G is isomorphic to Fm(L) for some m and some purely transcen-
dental extension L of k of transcendence degree t, then m = n and t = 0.

Proof We have that Fm(L) � Frac(D(F)). Now use [6, Lemma 3.2.2]. The center of
Fm(L) has the transcendence degree t over k. By the primitive element theorem, F =
k(y1, . . . , yn)( f ), for certain algebraically independent y1, . . . , yn , and by [22, 15.2.4], the
second skew-field has center of transcendence degree 0. So t = 0 and m = n. �


4 Proof of Theorem 1.2

Let X be an affine variety over k with the coordinate ring O(X). The ring of differential
operators D(X) on X is defined as D(O(X)). If X is irreducible then D(X) is an Ore domain
by Proposition 2.1. If G is a finite group action of the variety X , then this action extends to
an action on the ring of differential operators. Throughout this section, the field k will be the
field of complex numbers.

The following result was established by Cannings and Holland [5]:

Theorem 4.1 Let X be an affine irreducible algebraic variety overCwith an action of a finite
group G on it.
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(1) There exits a maximal open dense G-invariant subset V ⊂ X, on which the induced
action of G is free. Let π : X → X/G be the canonical projection and V ′ = π(V ). Then
V ′ is open dense in X/G and, since V is a complete pre-image, V = π−1(V ′), the map
π restricts to the quotient map:

π |V : V → V ′.

(2) If G acts freely, we have the following isomorphism D(X)G � D(X/G).

Lemma 4.2 Let X be a complex irreducible affine variety. Suppose that a finite group G is
acting by automorphisms on X and that the action is free. If X/G is birationally equivalent
to an affine irreducible variety Y then Frac(D(X)G) ∼= Frac(D(Y )).

Proof Let S be the set of regular elements inO(X)G . Since X/G is birational to Y we have

Frac(O(X)G) = Frac(O(X)G
S ) ∼= Frac(O(Y )).

Since Frac(D(X)G) ∼= Frac(D(X/G)) by Theorem 4.1, then applying [26, Proposition 1.8],
we have

Frac(D(X)G) ∼= Frac(D(X/G)S) ∼= Frac(D(O(X)G
S )) ∼= FracD(Frac(O(Y ))),

and hence Frac(D(X)G) ∼= Frac(D(Y )). Note that unlike in a similar statement in [22] we
do not assume the variety X to be smooth. �


We proceed to the proof of Theorem 1.2.
Suppose X is a complex irreducible affine variety. Fix a finite group G acting on X and

satisfying the hyphoteses of the theorem. By Theorem 4.1, (1), there exists an open dense
subset V on which the action of G is free and such that the quotient map π : X → X/G
restricts to the quotientπ : V → V ′, where V ′ is open dense in X/G. By theHilbert–Noether
theorem, the map π is finite, hence affine [12, Exercise 5.17]. Let W ′ be a principal open
subset of V ′. Since π is affine, then W = π−1(W ′) is affine. Since W is a union of orbits,
G restricts to a free action on it. We now have a quotient map π : W → W ′ with W affine
and smooth (hence normal). Also, since W ′ ⊂ X/G, then W ′ is birational to Y . Applying
Lemma 4.2 we obtain

Lemma 4.3 Frac(D(W )G) ∼= Frac(D(Y )).

For f ∈ O(X) denote Spec O(X) f the principal open subset. These sets constitute a basis
of the Zariski topology, and hence there exists a principal open subset Spec O(X)h ⊂ W for
h ∈ O(X). Set f = ∏

g∈G g.h. Then f is G-invariant. Thus we have

Lemma 4.4 There exists a principal open set Spec O(X) f ⊂ W with G-invariant f .

Now we generalize the argument given in the proof for unitary reflection groups in [7].
By Lemma 4.4 there exists a principal open set Spec O(X) f ⊂ W with G-invariant f . Then
we have the following inclusions of varieties: SpecO(X) f ⊂ W ⊂ X . Let D(.) be the sheaf
of differential operators functor which associates the ring of differential operators to a given
variety. Functor D(.) is contravariant and we have chain of inclusions

D(O(X)) ⊂ D(W ) ⊂ D(O(X) f ) = D(O(X)) f

(cf. [20, Proposition 2.4.18]). Taking the field of fractions, and then the G-invariants, we
have the following chain:
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FracD(O(X))G ⊂ Frac(D(W ))G ⊂ Frac(D(O(X)) f )
G

= Frac(D(O(X))G
f ) = Frac(D(O(X))G).

Then applying Lemma 4.3 we have

Frac(D(X)G) � Frac(D(W )G) ∼= Frac(D(Y )),

which implies the statement of Theorem 1.2. We obtain Corollary 1.3 when Y = X or
Y = A

n(C), n = dim X , respectively.

Example 4.5 The following gives an example of the situation in Corollary 1.3(a). Namely,
consider an elliptic curve E and define the map τ : E → E which sends P �→ P + P
(multiplicationby2). Themap τ is an isogeny, andhence it is surjectivewithfinite kernel, E[2]
([23] I.7). Since E is an abelian variety, we can view E[2] as a finite group of automorphisms
of E with the action given by translations: Q ∈ E[2] maps P ∈ E to Q + P . With this we
have E/E[2] � E . Removing a finite number of points from E and from the corresponding
inverse image, we obtain desired birational affine varieties.

5 NNP for pseudo-reflection groups

By the Chevalley–Shephard–Todd theorem the CNP holds for all pseudo-reflection groups
over any field of zero characteristic. In this section we give an alternative proof that the
Noncommutative Noether’s Problem has a positive solution for all pseudo-reflection groups
over any field of zero characteristic (for complex reflection groups this was shown in [7,
Theorem2]). Such approach allows us to exhibit explicitly theWeyl generators of the invariant
skew subfield of Fn(k) using a simple algorithm.

5.1 Localizations and invariants

As before � denote the polynomial algebra over k with n variables. Let W be an arbitrary
pseudo-reflection group acting by linear automorphisms on�. Recall the following statement
independent on the field k [7, Proposition 1]:

Proposition 5.1 Let � be a W -invariant element of �, S a multiplicatively closed set in �.
Then

(1) (��)W = (�W )�;
(2) D(�S) = D(�)S;
(3) (D(�)�)W ∼= (D(�)W )�.

Consider a W -invariant element � ∈ �, localization �� with the induced action of W
and the W -invariants �W

� in ��. We have an embedding �W
� → ��. By the restriction of

domain we have an induced map

φ� : D(��)W → D(�W
� ).

Proposition 5.2 Let � be a W -invariant element in �. Then the map φ� is injective.

Proof Note that D(��) is a simple ring and W acts by outer automorphisms. Then D(��)W

is a simple ring, by [25, Corollary 2.6]. Since φ� is not trivial, it is injective. �


123



V. Futorny, J. Schwarz

Our goal now is to find an adequate � such that the φ� is surjective. The case W = Sn

was considered in [10].

5.2 Proof of the NNP for irreducible pseudo-reflection groups

We proceed by considering first irreducible pseudo-reflection groups. Recall that a pseudo-
reflection group W is called irreducible if its natural representation is irreducible.

We will make use of the following notion of the field of definition of G - the smallest
subfield where a representation of the group G is defined. More precisely,

Definition 5.3 Let ρ : G → GLn(k) be a linear representation of a finite group G. Let k′ ⊂ k
be a subfield. Suppose there exists a homomorphism ρ′ : G → GLn(k′) such that ρ can be
obtained from ρ′ by the extension of scalars. We say that ρ has k′ as the field of definition if
k′ is the smallest subfield with this property.

Given a linear representation ρ : G → GLn(k) denote by χ the corresponding character
function. Let Q(χ) be the field extension of Q by I m χ .

By [15, Appendix B], we have

Proposition 5.4 Let W be an irreducible pseudo-reflection group and ρ : W → GLn(k) a
representation of W . Then ρ has Q(χ) as the field of definition.

We shall also need the following fact from the invariant theory of pseudo-reflection groups.
Let M be the n × n matrix whose i j’s entry is ∂x j ei , where �W = k[x1, . . . , xn]W =
k[e1, . . . , en]. Let J ′ be the determinant of M .

Let S be the set of all pseudo-reflections in W . Each s ∈ S fixes a hyperplane Hs . Let Ls

be a linear form whose kernel is Hs for each s ∈ S. Set J = ∏
s∈S Ls . It has the following

properties:

Proposition 5.5 [15, 20-2, Proposition A and B, 21-1, Proposition A and B] J �= 0 and
w.J = det(w)J for every w ∈ W . Moreover, J is a multiple of J ′.

As in the case of complex reflection groups set � = J |W | [7, Section 3].
Let Ei , i = 1, . . . , n be the column vector, where we have 1 in the i th position and 0 in

all others. Let

Fi =
⎛

⎜
⎝

fi1
...

fin

⎞

⎟
⎠

be a solution of the linear system

(∗) M Fi = Ei .

By the Kramer’s rule, fi j ∈ �J , 1 ≤ i, j ≤ n, where �J is the localization of � by J .
For each i = 1, . . . , n set di = ∑n

k=1 fik∂k . Then di ∈ D(��) = D(�)� and we have
di (e j ) = δi j , i, j = 1, . . . , n.

We will show that all differential operators di , i = 1, . . . , n are W -invariant. By Theorem
5.4 we can assume that ei ’s, and hence di ’s, have coefficients inQ(χ). Observe the following:
let k′ ⊂ k be a subfield fixed by W and d a differential operator with coefficients in k′, then
the question of W -invariance of d is the same, weather we consider the base field k or k′.
As Q(χ) is fixed by W , to show that the di ’s are invariant differential operators on �W

� , we
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can replace k by Q(χ). Now our field of definition is a subfield of C. Repeating the above
argument we can assume that k = C.

Recall the following result of Knop:

Theorem 5.6 [17, Theorem 3.1]. Let X be a complex affine irreducible normal variety. Then
D(X)W = {d ∈ D(X)|d(O(X)W ) ⊆ O(X)W }.

Denote by �′ the result of expressing � in a polynomial on the ei , i = 1, . . . , n. By
the Chevalley-Shephard-Todd theorem, �W

� � k[e1, . . . , en]�′ . Taking into account the
action of operators di ’s and Theorem 5.6 we obtain the desired invariance of di ’s under the
action of W . Indeed, for each i = 1, . . . , n the operator di sends every e j to an element of
k[e1, . . . , en]�′ and the same holds for�′. Since these elements generate k[e1, . . . , en]�′ the
statement follows.

Proposition 5.7 The map φ� : D(��)W → D(�W
� ) is surjective.

Proof It is sufficient to show that the images of di , ei , i = 1, . . . , n under φ� are the Weyl
generators of D(�W

� ). Let A := �W
� . The A-module of Kähler differentials �k(A) is freely

generated over A with basis de1 , . . . , den . Then, by [22, 15.1.12], the A-module of derivations
Derk(A) is freely generated by the unique extensions of ∂ei , i = 1, . . . , n from k[e1, . . . , en]
to A. Clearly, φ�(di ) = ∂ei , i = 1, . . . , n. �


Combining Proposition 5.2 and Proposition 5.7 we conclude

D(��)W � D(�W
� ).

Applying Proposition 5.1 we finally have

Corollary 5.8 Let k be an arbitrary field of zero characteristic and W an irreducible pseudo-
reflection group. Then the NNP holds for W .

5.3 Proof of the NNP for general pseudo-reflection groups

In this subsection we consider general pseudo-reflection groups.
Let V be a finite dimensional vector space. If g is a linear automorphism of V then we

set Fix g = {v ∈ V |gv = v} = Ker (I d − g), and [V , g] = I m(I d − g).
If g is a pseudo-reflection, g �= id then Fix g is a hyperplane and [V , g] is one dimen-

sional. If a ∈ V generates [V , g] then for every v ∈ V there exists ψ(v) ∈ k such that
v − gv = ψ(v)a. Then ψ is a linear functional on V and Kerψ = Fix g.

In the following we collect basic properties of pseudo-reflections.

Lemma 5.9 (1) Let g be a pseudo-reflection of order m > 1, H = Fix g, L H any linear
functional such that H = Ker L H . Let a be a generator of [V , g]. Then there exists an
m-th primitive root of unity μ such that gv = v − (1 − μ)

L H (v)
L H (a)

a, for all v ∈ V .
(2) Let r , s �= id be pseudo-reflections, H = Fix r , J = Fix s, x a generator of [V , r ],

and y a generator of [V , s]. If x ∈ J and y ∈ H then rs = sr .
(3) A subspace V ′ ⊂ V is invariant by a pseudo-reflection g �= id if and only if V ′ ⊆ Fix g

or [V , g] ⊆ V ′.

Proof Given a pseudo-reflection g consider a linear functional ψ such that gv = v − ψ(v)a
and H = Kerψ , as above. Hence gx = μx for a primitive m-th root of unity μ, and hence
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ψ(a) = 1 − μ. We have ψ = λL H , where 0 �= λ ∈ k. This gives λ = (1 − μ)/L H (a) and
implies statement (1). Applying (1), we have μ, ν ∈ k such that ∀ v ∈ V

rs(v) = v − (1 − μ)
L H (v)

L H (a)
x − (1 − ν)

L J (v)

L J (y)
y + (1 − μ)(1 − ν)

L H (y)L J (v)

(L H (x)L J (y))
x .

If y ∈ H then L H (y) = 0 and the last term is 0. Analogously, the last term in the expression
of sr(v) is 0 and other terms in both expressions are equal. Therefore rs = sr .

Finally, ifV ′ ⊆ Fix g or [V , g] ⊆ V ′, thenV ′ is invariant by the statement (1).Conversely,
if V ′ is g-invariant and is not contained in Fix g, then [V ′, g] �= 0, and hence [V , g] =
[V ′, g] ⊆ V ′. �


The following is probably well known but we include the proof for the sake of complete-
ness.

Proposition 5.10 Let W be a finite group of pseudo-reflections on V . Consider a decompo-
sition V1 ⊕ · · · ⊕ Vm of the kW -module V into irreducible submodules and set Wi to be the
restriction of W to Vi , i = 1, . . . , m. Then Wi is either a pseudo-reflection group or trivial,
and W � W1 × · · · × Wm.

Proof By Lemma 5.9, (3), if g is a non-identity pseudo-reflection then [V , g] ⊆ Vi for some
i . Let Wi be the subgroup of W generated by the pseudo-reflections g such that [V , g] ⊂ Vi

(if there is no such pseudo-reflections then Wi = I d). The subgroup Wi acts trivially on
all Vj , j �= i , and by By Lemma 5.9, (2), Wi and W j commute. Therefore, W is the direct
product of the subgroups Wi ’s, and each Wi is irreducible pseudo-reflection group on Vi , or
trivial. �


Consider now the Weyl algebra An(k) with a linear action of a pseudo-reflection group
W extended from a linear action on n-dimensional vector space V . By Proposition 5.10
we have W � W1 × · · · × Wm . Suppose that n = n1 + · · · + nm + k and An(k) =
An1(k) ⊗ · · · ⊗ Anm (k) ⊗ Ak(k). Then for each i = 1, . . . , m, Wi acts on Ani (k) and fixes
all An j (k) with j �= i . The whole group W fixes Ak(k). Then we have

An(k)W � An1(k)
W1 ⊗ · · · ⊗ Anm (k)Wm ⊗ Ak(k).

Applying Corollary 5.8 we immediately obtain

Theorem 5.11 The NNP holds for all pseudo-reflection groups over fields of zero character-
istic.

5.4 Algorithmic aspects

We now present an algorithmic procedure how to exhibit explicitly the Weyl generators in
Fn(k)W which realize its isomorphism with Fn(k) for an irreducible pseudo-reflection group
W .

Given an irreducible pseudo-reflection group W acting on k[x1, . . . , xn], the Weyl gen-
erators in Fn(k)W are, as we saw, the algebraically independent generators e1, . . . , en of
k[x1, . . . , xn]W , and the operators di , i = 1, . . . , n introduced immediately after the linear
equation (*) (cf. Proposition 5.7). So the procedure of finding the Weyl generators reduces
to essentially 3 steps. The first step is the classical problem of finding generators of the
ring of invariant polynomials under a finite group action. In our case, we are looking for a
minimal generating set and suitable algorithms are known (see, [4]). We also note that for
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finite Coxeter groups explicit invariant bases are well known ([13] and references for 3.12).
The second step is to obtain the matrix M in (*), which is done by n2 operations of formal
partial derivations. Finally, the third step is the solution of the system (*). We illustrate this
algorithm with the following examples.

Example 5.12 Assume n = 3 and W = Sn . Set J = (x1 − x2)(x2 − x3)(x3 − x2). The
following elements are the Weyl generators of F3(k)S3 , where S3 acts by permutations:

x1 + x2 + x3 → X1, x1x2 + x2x3 + x1x3 → X2, x1x2x3 → X3;
x21 (x2 − x3)

J
∂1 + x22 (x3 − x1)

J
∂2 + x23 (x1 − x2)

J
∂3 → Y1;

x1(x3 − x2)

J
∂1 + x2(x1 − x3)

J
∂2 + x3(x2 − x1)

J
∂3 → Y2;

(x2 − x3)

J
∂1 + (x3 − x1)

J
∂2 + (x1 − x2)

J
∂3 → Y3.

Here, Yi X j − X j Yi = δi j for i, j = 1, 2, 3.

Example 5.13 Assume n = 2 and W = B2. Setting J = 8x1x2(x22 − x21 ), we have the
following Weyl generators of F2(k)B2 :

x21 + x22 → X1, x41 + x42 → X2;
4x32∂1 − 4x31∂2

J
→ Y1;

− 2x2∂1 + 2x1∂2
J

→ Y2.

Example 5.14 Assume n = 2 and W = I2(8), the dihedral group of order 16. Setting J =
x71 x2 − 7x51 x32 + 7x31 x52 − x1x72 , we have the following Weyl generators of F2(k)I2(8):

x21 + x22 → X1, (1/4)x61 x22 − (1/2)x41 x42 + (1/4)x21 x62 → X2;
((1/2)x61 x2 − 2x41 x32 + (3/2)x21 x52 )∂1 − ((1/2)x1x62 − 2x31 x42 + (3/2)x51 x22 )∂2

J
→ Y1;

−2x2∂1 + 2x1∂2
J

→ Y2.

6 Invariant cross products

In this section we apply the result above to the subalgebras of invariants of cross products.
Let G be a finite group of automorphisms of field L ,M a monoid of automorphisms of L

on which G acts by conjugations. Denote by L ∗ M the cross product, where (lm)(l ′m′) =
(lm(l ′))(mm′) for l, l ′ ∈ L and m, m′ ∈ M. We have a well defined action of G on the cross
product L ∗ M: g(lm) = g(l)g(m), g ∈ G, l ∈ L , m ∈ M. Consider the ring of invariants
(L ∗ M)G by the action of G.

Suppose L ∗ M is an Ore domain. Then (L ∗ M)G is an Ore domain and the skew field
of fractions F((L ∗ M)G) is isomorphic to (F(L ∗ M))G with induced actions of G on the
skew field of fractions.

Assume L � k(t1, . . . , tn) to be the field of fractions of the symmetric algebra S(V )

for some n-dimensional k-vector space V . If G < GLn is a finite group then it acts lin-
early on L . If G normalizes M then (L ∗ M)G is a linear Galois order [7]. Suppose
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L = k(t1, . . . , tn; z1, . . . zm), for some integers n, m, M � Z
n is generated by ε1, . . . ε1,

where εi (t j ) = t j + δi j , εi (zk) = zk i, j = 1, . . . , n, k = 1, . . . , m (in this case we say that
M acts bu shifts on L). It was shown in [7, Theorem6], that for such cross products and for any
complex reflection group G, (L ∗M)G is birationally equivalent to An(C)⊗C[z1, . . . , zm].
Applying Theorem 3.4 we can extend this result to other groups.

Theorem 6.1 Let k has characteristic zero, L = k(t1, . . . , tn; z1, . . . zm), for some integers
n, m, and M � Z

n acting by shifts on L. Then

(1) (L ∗M)G is birationally equivalent to An(k) ⊗ k[z1, . . . , zm] for any pseudo-reflection
group G;

(2) If LG � L for a given group G then (L ∗ M)G is birationally equivalent to An(k) ⊗
k[z1, . . . , zm].

Proof Indeed,we have an embedding of the Weyl algebra An(k) to k[t1, . . . , tn] ∗ Z
n and

their skew fields of fractions are isomorphic [9]. Hence, item (1) follows from Theorem 5.11.
If LG � L then the CNP holds and (2) follows from Theorem 3.4. �


We finish with the following problem:
Problem: Find an example of a linear action of a finite group such that the CNP does not
hold but the NNP holds.
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