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QUERYING PRICED INFORMATION IN DATABASES: 
THE CONJUNTIVE CASE 

EDUARDO LABER, RENATO CARMO, AND YOSHffiARU KOHAYAKAWA 

ABSTRACT. Query optimization that involves e:,pe11Jive predicate, have received considerable at­
tention in the database community. Typically, the output to a database query is a set of tuples that 
satisfy certain conditions, and, with expensive predicates, these conditions may be computationally 
costly to verify. In the simplest case, when the query looks for the set of tuples that simultaneously 
satisfy le expensive predicates, the problem reduces to ordering the evaluation of the predicates 110 

111 to minimize the time to output the set of tuples comprising the answer to the query. 
Here, we give a simple and fast deterministic .\:-approximation aigorithm for this problem, and 

prove that k is the best possible approximation ratio for a deterministic algorithm, even if expo­
nential time algorithms are allowed. We also propose a randomized, polynomial time algorithm 
with expected approximation ratio 1 + v2/2 "'1.707 for k = 2, and prove that 3/2 is the best pos­
sible expected approximation ratio for randomized algorithms. The approximation ratio achieved 
by our algorithm is not concentrated arouud its mean; however, we show that this limitation is 
inherent to the problem, rather than a weakness of our approach: we show that for any O ~ e ~ 1, 
no randomized algorithm achieves approximation ratio smaller than 1 + e with probability larger 
than (I +e)/2. 

1. INTRODUCTION 

The main goal of query optimization in databases is to determine how a query over a database 
should be processed in order to minimize the user response time. A typical query extracts the tuples 
from a database relation that• satisfy a set of conditions, or predicates, in database terminology. For 
example, consider the set of tuples D = {(a1,bi),(a1,½),(a1,!IJ),(a2,bi.)} (see Figure l(a)) and a 
conjunctive query that seeks to extract the subset of tuples (a;,b;) for which a; satisfies predicate 
P1 and b; satisfies predicate P2, Clearly, these predicates can be viewed together as a 0/1-valued 
function o defined on the set of tuple elements {a1, a2,bi,½, bs}, with the convention that, o(a;) = 1 
if and only if P1 (a;) holds and o(b;) = 1 if and only if Fi(b;) holds. The answer to the query is 
the set of pairs (a;,b;) with .S(a;,b;) = o(a;)o(b;) = I. The query optimization problem that we 
consider is that of determining a strategy for evaluating .S so as to compute this set of tuples by 
evaluating as few values of the function 6 as possible (or, more generally, with the total cost for 
evaluating the function .S minimal). 

It is usually the case that the cost (measured as the computational time) needed to evaluate the 
predicates of a query can be assumed to be bounded by a constant so that the query can be answered 
by just scanning through all the tuples in D while evaluating the corresponding predicates. 

In the case of computationally expensive predicates, however, e.g., when the database holds 
complex data as images and tables, this constant may happen to be so large as to render this 
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strategy impractical. In such cases, the different costs involved in evaluating each predicate must 
also be taken into account in order to keep user response time within reasonable bounds. 

Among several proposals to model and solve this problem, (see, for example, [3, 5, 8]), we focus 
on the improvement of the approach proposed in [11) where, differing from the others, the query 
evaluation problem is reduced to an optimization problem in a hypergraph (see Figure 1). 

1.1. Problem statement. A hypergraph is a pair G = (V(G),E(G)) where V(G), the set of 
11ertice1 of G, is a finite set and each edge e E E(G) is a non-empty subset of V(G). 

The size of the largest edge in G is called the rank of G and is denoted r(G). A hypergraph G 
is said to be uniform if each edge has size r( G), and is said to be k-pa.rtite if there is a partition 
{Vi, ... , Vi:} of V(G) such that no edge contains two vertices in the same partition. 

Given a hypergraph G and a function 6 : V ( G) ➔ { 0, 1} we define an evaluation of ( G, 5) 118 a 
set E ~ V(G) such that, knowing the value of 6(11) for each II E E, one may determine the value of 'II 

d(e) = TI 6(11), 

for each e E E(G). 
Given a hypergraph G and a. function -y : V(G) ➔ R we define the coat of a set X ~ V(G) by 

-y(X) = L 'Y(11). 
vEX 

An instance to the Dynamic Multipartite Ordering problem (DMO} is an r(G)-pa.rtite, uniform 
hypergraph G, together with functions 6 and -y as above. The objective in DMO is to determine 
an evaluation of minimum cost for (G,6,-y}. Observe that the function 6 is 'unknown to us a.t 
first' . More precisely, the value of 6(11) becomes known only when o(v) is actually evalua.ted, and 
this evaluation costs -y(v). The restriction of DMO to instances in which r(G) = 2 deserves special 
attention and will be referred to as the Dynamic Bipartite Ordering problem (DBO). 

Before we proceed, let us observe that DMO models our da.ta.ba.se problem a.s follows: the sets 

in the pa.rtition {V1, ... , V~} of V ( G) correspond to the k different attributes of the relation that is 
being queried and each vertex of G corresponds to a distinct attribute value (tuple element). The 
edges correspond to tuples in the relation, -y(v) is the time required to evaluate o on v and 6(t1} 
corresponds to the result of a predicate evaluated a.t the corresponding tuple element. 

A B 

(a) (b) 

FIGURE 1. The set of tuples {(a1,b1),(a1,~),(a1,b3),(a2,b1)} and an instance for OBO 

Figure l(b) shows an instance of DBO. The value of 6(v) is indicated inside each vertex 11. 
Suppose that -y(a1) = 3 and -y(bi) = -y("2) = 2. In this case, any stra.tegy tha.t starts evalua.ting 
6(01) will return the evaluation {a1,bi, ~} of cost 7. However, the evaluation of minimum cost for 
this instance is {b1,~} of cost 4. This example underlines the point that the crux of the problem is 
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to devise a strategy for dynamically choosing, based on the function 1' and the values of o already 
revealed, the next vertex v whose J-value should be evaluated, so as to minimize the overall cost. 

Let A be an algorithm for OMO and let I= (G,c5,-y) be an instance to OMO. We will denote 
the evaluation computed by A on input I by A(I). Establishing a measure for the performance of 
a given algorithm A for OMO is somewhat delicate: for example, a worst case analysis of ,(A(I)) 
is not suitable since any correct algorithm should output an evaluation comprising all vertices in 
V(G) when c5(v) = 1 for every v E V(G) (if G has no isolated vertices). This remark motivates the 
following definition. 

Given an instance I= (G,c5,1'), let E be an evaluation for I and let ,•(I) denote the cost of 
a minimum cost evaluation for I. We define the deficiency of e11aluation E {with respect to I) as 
the ratio d(E,I) = ,(E)h•(I). Given an algorithm A for OMO, we define the deficiency of A as 
the worst case deficiency of the evaluation A(I), where I ranges over all possible instances of the 
problem, that is, 

d(A) = ma:xd(A(I),I). 
I 

HA is a randomized algorithm, d(A(I),I) is a random variable, and the expected deficiency of A 
is then defined as the maximum over all instances of the mean of this random variable, that is, 

d(A) = maxlE[d(A(I) I)]= max JE[,(A(I))]. 
I ' I ,*(I) 

Clearly, we wish to devise fast algorithms whose (expected) deficiency is as close to 1 as possi­
ble. In this paper, we will be concerned with designing algorithms for OMO, analyzing them and 
establishing bounds for their deficiency. 

1.2. Statement of results. In Section 2, we briefly argue that d(A) 2". r(G) for any deterministic 
algorithm A and d(B) 2". (r(G) + 1)/2 for any randomized algorithm 8. It is worth noting that such 
bounds apply even allowing exponential time algorithms. We then present an optimal determinis­
tic algorithm for OMO with time complexity O(IE( G) Jlog r( G) ), developed with the primal-dual 
approach. As an aside, we remark that this algorithm does not need to know the whole hypergraph 
in advance in order to solve the problem, since it scans the edges (tuples), evaluating each of them 
as soon as they become available. This is a most convenient feature for the database application 
that motivates this work. 

In Section 3, for any given O S E S 1 - ./2/2, we present a randomized, polynomial time 
algorithm 'R., for OBO whose expected deficiency is at most 2 - e. The best expected deficiency 
is achieved when e = 1 - ./2/2. However, the smaller the e, the smaller is the probability that 
a particular execution of 'R., will return a truly poor result: we show that the probability that 
d('R.,(I),I) S 1 + 1/(1 - e) holds is 1. 

The deficiency of 14 is not assured to be highly concentrated around the expectation. In Sec­
tion 3.2, we show that this limitation is inherent to the problem, rather than a weakness of our 
approach: for any O S ES 1, no randomized algorithm can have deficiency smaller than 1 + e with 
probability larger than (l+e)/2. The proof of this fact makes a use of Yao'8 Minimax Principle (13). 

For both, theoretical and applied reasons, property testing and sub-linear time algorithms in 
general have attracted some attention recently (see, e.g., [12)). In Section 4 we consider a problem 
related to OMO in which we wish to estimate in tub-linear time the number of tuples that a given 
query will return. 

1.3. Related work. The problem of optimizing queries with expensive predicates has gained some 
attention in the database community [l, 3, 5, 8, 10, 11]. However, most of the proposed approaches 
(3, 5, 8] do not take into account the fact that an attribute value may appear in different tuples in 
order to decide how to execute the query. In this sense, they do not view the input relation as a 
general bypergraph, but as a set of tuples without any relation between them (i.e., as a matching 



hypergraph). The Predicate Migration algorithm proposed in [8), the main reference in this subject, 
may be viewed as an optimal algorithm for a variant of OMO, in which the input graph is always 
a matching, the probability p; of a vertex from V; (ith attribute) evaluating to true (o(v) = 1) is 
known, and the objective is to minimize the expected cost of the computed evaluation (we omit 
the details). 

The idea of processing the hypergraph induced by the input relation appears finit in [ 11], where 
a greedy algorithm is proposed with no theoretical analysis. The distributed case of DBO, in which 
there are two available processors, say P,4. and P8 , responsible for evaluating 6 on the nodes of the 
vertex classes A and B of the input bipartite graphs is studied in [10). The following results a.re 
presented in [10]: a lower bound of 3/2 on the deficiency of any randomized algorithm, a randomized 
polynomial time algorithm of expected deficiency 8/3, and a linea.r time algorithm of deficiency 2 
for the particula.r case of DBO with constant 1 . We do not go into details, hut the approach here 
allows one to improve some of these results. 

In this extended abstract, we restrict our attention to conjuncti11e queries. However, much more 
general queries may happen. For example, 6: E( G) ➔ { 0, 1} could be any formula in the first order 
propositional calculus involving the predicates represented by 6. In [4], Charika:r et al. considered 
the problem of querying priced information. In particular, they consid~ed the problem of evaluating 
a query that can be represented by an "AND/OR tree" over a set of variables, where the cost of 
probing each variable may be different, The framework for querying priced information proposed 
in that paper can be viewed as a restricted version of the problem described in this pa.ragraph, 
where the input graph has one single edge. 

1.4. Preliminaries. Let I= (G,6,-y) be an instance to OMO. The neighbourhood of v E V(G) 
is the set r(v) = {u E V(G) \ {v}: {u,v} s;; e for some e E E(G)}. An isolated vertez in G is 

a vertex contained in no edge of G. For any X t;;; V(G), we let Vo(X) = {v E X: 6(v) = 0}, 
Vi(X) = {v EX: o(v) = l}, and r1(X) = r(Vi(X)}. Note that any evaluation for I must 
contain r1(X). 

A CQ1/er for G is a set C t;;; V(G) such that every edge of G has at leaBt one vertex in C. 
A minimum cover for (G, 1} is a cover C for G such that ,(C) is minimum. Observe that any 
evaluation for I mllllt contain a cover for G as a subset, otherwise the 6-value of at leaBt one edge 
cannot be determined. 

For a cover C for G, we let 

E(C) =CU r1(C) 

be the C-e11aluation for I= (G, 6,-y). It is not difficult to see that a C-evaluation for I is indeed 
an evaluation for I. Moreover, since any evaluation for (G,8) must contain some cover for G 
and r1(V(G)), it is not difficult to conclude that that the deficiency of a. O-evaluation for an 
instance to OBO has deficiency at most 2, whenever C is an minimum cover for (G,-y). This 
obsevation appears in [10] for the distributed version of DBO. 

An optimal cover C for (G, 1 ), and as a consequence E(C), may be computed in polynomial time 
if G is a bipartite graph [7, 9]. Let us use COVER to denote the algorithm wt outputs E(C) for 
some minimum cover C. Since 2 is a l~r hound for the deficiency of any deterministic algorithm 
for OBO (See Section 2), we have that COVER is a polynomial time, optimal deterministic algo­
rithm for DBO. This algorithm plays an important role on the design of the randomized algorithm 
proposed in Section 3. 

2. THE GENERAL CASE AND AN OPTIMAL POLYNOMIAL DETERMINISTIC ALGORITHM 

2.1. Lower bounds. We start with some lower bounds for the deficiency of algorithms for DMO. 
It is worth noting that these bounds apply even to algorithffllf of exponential time/,pace comp/e:z:ity . 
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A matching in a hypergraph G is a set M ~ E( G) with no two edges in M sharing a common 
vertex. A hypergraph G is said to be a matching if E( G) is a matching. It will be UBeful to single 
out the following class of instances. We will call an instance (G, 6,-y) to DMO an extremal instance 
if (i) G is a matching, (ii) each edge e E E(G) has exactly one vertex v E e such that o(v) = O, 
and (iii) -y(v) = 1 for all v E V(G). 

Theorem 1. Let G be a hypergraph of rank r(G) and let A be a detenninistic algorithm for DMO. 
There is an extremal instance I= (G,6,-y) to DMO for which the deficiency of the output of A 
when run Ii., at least r(G). 

Proof. Let I= (G,6,-y) be the extremal instance in which, for each edge e E E(G.A), the vertex 
v Ee having o(v) = 0 is the last vertex evaluated by A in this edge. It is not difficult to see that 
-y(.A(I.4)) = IV(G.4)J, while Vo(V(G.4)) is an evaluation for I.4 with cost IE(G.4)J. Therefore d(A) = 
maxzd(.A(I),I) ~ d(.A(I.4),I.4) = -r(A(I.4))/-y*(I.4) ~ IV(G.A)I/IE(G.4)! = r(G.4). D 

We now state without proof a lower bound on the expected deficiency of any randomized algo­
rithm for DMO. We only mention that the proof of the result below is based on Yao's minimax 
principle (a more interesting application of this principle occurs in Section 3.2). 

Theorem 2. Let G be a hypergraph of rank r(G) and let B be a randomized algorithm for DMO. 
There is an extremal instance I= ( G, 6,-y) to DMO for which the expected deficiency of the output 
of 8 when run I is at least (r(G) + 1)/2. 

2.2. An optimal polynomial deterministic algorithm for DMO. We will now introduce a 
polynomial time, deterministic algorithm for DMO that has deficiency at most r on instances with G 
of rank r(G) at most r. In view of Theorem 1, this algorithm has the best possible deficiency for 
a deterministic algorithm. 

Let (G,o,-y) be a fixed instance to DMO, and let Ei = {e E E(G): S(e) = i} and 

W, = LJ e (i E {0,1}) 

We let G[E;] the hypergraph with vertex set W; and edge set E;. Let 'Yo be the cost of a minimum 
cover for (G[Eo],-y), among all covers for (G[Eo],-y) that contain vertices in Vo= Vo(V(G)) = {v E 
V(G): 6(v) = O} only. Then -y•(G, 6,-y) = 'Yo +-y(W1)-

Let us look at 'Yo as the optimal solution of the following Integer Programming problem, which 
we will denote by L1(G,6,-y): 

min { L -y(v)x,,: L x,, ~ 1 for all e E Eo and z,, E {O, l} for all v E Vo}· 
vEVo veenVo 

Let us denote by L(G,6,-y) the linear relaxation of L1(G,6,-y), where the restrictions x,, E {O, 1} 
are replaced by :z:., ~ 0 for all v E V0 . The dual L(G,6,-y)D of L(G,6,-y) is 

max { L Ye= L y, :S -y(v) for all v E Vo and y, 2: 0 for all e E Ea}· 
•EEo e: vee 

Theorem 3. Let (G,6,-y) be an instance to DMO and let ii : Eo -+ lR be a feasible solution of 
L(G,6,-y)D. Any evaluation E of(G,6) satisfying 

-y(v) :S L iie for all v E E - W1, (1) 
e:vEe 

has deficiency at moat r(G). 



Proof. Duality between L(G,J,1) and L(G,J,1)D gives EeeE, ii• ::S 1'o· Any evaluation for (G,J) 
must include W1, so that 1(E) = 1(E - W1) + 1(E n W1) = 1(E - Wi) + -y(Wi), and 

1(E - W1) = L -y(v) ::S L L ti. ::S r(G) L ii., 
vEE- W1 vEE-W1 •: vEe •EEo 

where the last inequality follows from the fact that each edge contributes with at most r(G) terms 
to the sum. Therefore 

-r*(G,6,-y) S 1(E) $ r(G) L ii•+ 1(W1) S r(G)bo + 1(W1)) = r(G)"Y"(G,6,-y), 
eeEo 

and hence d(E, (G, 6,-y)) = -y(E)/"Y*(G,6,-y) S r(G). D 

The algorithm presented below uses a primal-dual approach to construct a vector y: E -+ R 
and an evaluation E such that both the restriction of II to Eo and E satisfy the the conditions of 
Theorem 3. This algorithm resembles the one presented by Bar-Yehuda [2] for the minimum vertex 
cover problem. The main difference is that L(G,6,-y)D it is not known beforehand, because the 
set Vo is not known. 
• Our algorithm maintains for each e E E(G) a value lie and for every v E V{G) the value 
r., = I:., vee lie• At each step, the algorithm selects an unevaluated edge e and increases the 
corresponding dual variable lie until it "saturates" the next non-evaluated vertex v (r. becomes 
equal to -y(v)). The values of ru {u E e) are updated and the vertex v is then evaluated. If 
6(v) = O, then the edge e is added to Eo along with all other edges that contain v, and the 
algorithm proceeds to the next edge. Otherwise the algorithm increases the value of the dual 
variable lie until it "saturates" another unevaluated vertex in e and executes the same steps until 
either e ill put into Eo or there are no more unevaluated vertices in e, in which case e is put in E1. 

Algorithm 'P'D(G, 6,-y) 
{l) Start with Eo, E1 and E as empty sets, rv = 0 for all v E V(G) and !le= 0 for all e E E(G) 
(2) While E(G) f E1 U Eo 

(a) Select an edge e E E(G) - (E1 U Eo) 
(b) While e g; E and e ¢ Eo 

(i) select a vertex v Ee - E such that -y(v) - rv is minimum 
(ii) add -y(v) - r., to II• and to each ru such that u Ee 

(iii) insert V in E 
(iv) If 6(v) = 0, insert in Eo every edge e' E E(G) such that v Ed 

(c) If e ¢ Eo, insert e in E1 
(3) Return E 

Lemma 4. Let (G,6,-y) be an instance to OMO. At the end of the execution of 'P'D(G,6,-y), the 
restriction ofy to Eo ia a feasible aolution to L(G,6,-y)D and Eu an evaluation of (G,5) aatufy­
ing (1). Algorithm 'P'D(G,5,-y) nma in time O(IE(G)llogr(G)). 

Proof. The restriction of II to Eo is a feasible solution to L(G[Eo], 5,-y)D at the beginning of the 
algorithm, at which point we also have that rv :,S -y(v) for every v E V(G). 

Consider any v E V(G). The value of each rv is increased along the execution of the algorithm 
every time an edge e containing II is evaluated. This value only reaches -y( v) at the point in the 
computation where an edge e containing vis to be evaluated. If 5(v) = 0 then e is included in Eo 
along with any other edge containing 11. From then on, neither the dual variables relative to these 
edges nor r., is modified. 
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The asserted time complexity may be achieved by using a suitable priority queue for each edge 
inE(G). D 

Corollary 5. Algorithm 'P'D i8 a polynomial time, optimal deterministic algorithm for OMO. D 

3. THE BIPARTITE CASE AND A POLYNOMIAL RANDOMIZED ALGORITHM 

Let OS e S 1 - ../2/2. In this section, we present n., a polynomial time randomized algorithm 
for DBO with the following properties: for every instance I, 

lE[d('R.,(I))] S 2 - e (2) 

and 

II" (d('R.,(I)) S 1 + -
1
-) = 1. (3) 

1-,;; 

Thus, 'R., provides a trade-off between expected deficiency and worst case deficiency. At one 
extreme, when E = 1 - ../2/2, we have expected deficiency 1. 707 and worst case deficiency up to 
2.41 for some particular execution. At the other extreme (e = 0), we have a deterministic algorithm 
with deficiency 2. 

The key idea in 'R., 's design is trying to understand under which conditions the COVER algorithm 
explained in Section 1.4 does not perform well. More exactly, given an instance I to DBO, a 
minimum cover C for (G,.S), and e > 0, we turn our attention to the instances I having d(E(C),I) ~ 
2-.:. 

One family of such instances can be constructed as follows. Consider an instance (G,o,-y) to 
DBO where G is a matching of n edges, the vertex classes of G are A and B, and .S(v) = 1 for 
every v EA and o(v) = 0 for every v EB. Clearly, Bis an optimum evaluation for I, with cost n. 
On the other hand, note that the deficiency of the evaluation E(C) which is output by COVER 
depends on which of the 2" distinct minimum covers of G is picked. In the particular case in which 
C = A, we have d(E(C),I) = 2n/n = 2. 

This example suggests the following idea. If C is a minimum cover for (G,-y) and nonetheless 
E(C) is not a "good evaluation" for I= (G,6,-y), then there must be another cover C' of G whose 
intersection with C is "small" and still C' is not "far from being" a minimum cover for G. The 
following lemmas formalize this idea. 

Lemma 6. !JI= (G,o,-y) i8 an instance to DBO, Tc; r1(V(G)), and CT is a minimum cover of 
G -T, then -y(CT) +-y(T) S -y•(I). 

Proof. Let P be a minimum cost evaluation for I. Since T c; r1 (V(G)) it follows that T C P. 
Furthermore, E* - T is a cover for G - T, for otherwise S(uv) cannot be determined for some 
uv E G -T. Since Or is a minimum cover for G -T, it follows that -y( CT) S -y(E• -T). Therefore, 
-y(CT) +-y(T) S -y(P -T) +-y(T) = -y(E") = -y"(I). D 

Lemma 7. Let I = (G,6,-y) be an instance of DBO, let C be a minimum cover for (G,o) and 
let O < e < 1. If d(E(C)) ~ 2 - e, then there is a vertex cover c. for G such that -y(C,) S 
('Y(C - C,))/(1 - e). 

Proof. LetT = r1(C)-C. Sinced(E(C),I) ~ 2-e, it follows that 2-e S ('Y(C)+-y(T))/(-y"(I)). 
Now, let Or be a minimum cover for G -T. Since Tc; r 1(V(G)), it follows from lemma 6 that 

-y(O,,) +-y(T) S -y"(I). Simple calculations give -y(T) S ('Y(C) - (2 - e)-y(CT))/(1- e). 
Take C, = Or UT and note that C, is a cover for G with ( C, n C) C CT. 

(C) < (Or)+ (T) < -y(C) - -y(CT) < -y(C) --y(C, n C) = -y(C - C,). 
'Y • _-y 'Y - 1-.: - 1-e 1-.: 
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Let I= (G,6, 1), C and Ebe as in the statement of Lemma 7, coruiider the cost fUDction 1e,, 
given by 

{ 
(1 - e)'Y(t1), if t1 ¢ C; 

'Ye ti = ,t( ) {2 - e)'Y(t1), otherwise, 

and let C' be a minimum cover for ( G, ,c., ). 
We can formulate the problem of finding a cover C, satisfying -y(C,) ~ -y(C - C,)/(1 - t) as a 

linear program in order to conclude that such a cover, actually, exists if and only if-re,,(C') ::; -y(C). 

Furthermore, if rc,e(C') $ ,(C) then ,(C') $ -,(C - C')/(1 - t). 
· This last remark, together with Lemma 7, provides an efficient way to verify whether or not a 

particular minimum cover C is going to give a good evaluation for ( G, 8, 1). 
As the cover C', as above, can be calculated in polynomial time in those cases where G is 

bip&rtite, we can devise the following randomized algorithm for 080, which proceeds in two steps. 
At the first step, the a.lgorithm determines a minimum cover C for ( G, 1} and a minimum cover 

C' for (G,"fe,e), If-yc,,(C') > -y(C), then E(C) will be a good evaluation for (G,6,-y) and the 

algorithm returns E(C). Otherwise, the algorithm enters the second step, where it returns E(C} 
with probability p = p(E) (see the pseudo-code below) or E(C'} with probability 1-p as the 110lution. 

Algorithm 'R.,(G,6, 1) 
(l) C .-- a minimum cover for (G,-,) 
(2) C' .-- a minimum cover for (G,10,.) 
(3) ff -rcAC') > -y(C), then return E(C) 
(4) Let p = (1- 3£ + t 2)/(l - E) 
(5) Let z be a rea.l number randomly selected from interval (0,1) 

Hz< p, then return E(C), 

otherwise return E(C'). 

Since -y(C) $ ;(C') it is reasonable to select C with probability higher than 1/2, that is p ~ 0.5. 

This condition together with the definition of p in terms of E force 0 ~ E ~ 1 - ../2/2. 

3.1. Algorithm analysis. The correctness of a.lgorithm 'R.. follows from the fact that J4 always 
outputs a cover evaluation (recall Section 1.4 ). Hence, what remains to be shown is the properties 
of the evaluation calculated by 'Tl., which are claimed at the beginning of this section. 

Let I= (G,6,;), C, C' and Ebe as in the statement of a.lgorithm 'R.. It will be convenient to 
define 

so that 

H = r1(CnC')-(CUC'), 

He r1(C') n (C- C'), 

He• r1(C) n (C' - C), 

HU HO' = r1(C) - C = r1(C) - (C n r1(C)), 

HU He= r1(C') - C' = r1(C1
) - (C' n r1(C1

)), 
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and then, as H, He, He• i:;: f1(V(G)) are disjoint sets: 

,(E(C)) = 1(C) + 1(He) + 1(H), 

,(E(C')) = ,(C') +,(He,)+ ,(H), · 

1"(I) ~ ,(H) +,(He) +1(Hc•). 

Figure 2 shows a schematic representation of V( G). 

0 
G 

FIGURE 2. A representation for graph G 

The following simple result will be useful in our analysis. 

Lemma 8. If C and C' are two covers for G, then r(V(G) - (CUC'))<:::; C n C'. 

(4) 

(5) 

(6) 

Proof. Let v E V(G) - (CUC') and u E f(v). We must have u EC, otherwise C would not cover 
uv. The same argument allows to conclude u EC' and hence the result. D 

In the context of Figure 2, this le=a tells us that any edge having an endpoint in U must have 
its other endpoint in R, since R = C n C'. 

Theorem 9. Let OS ES 1- v'2/2. For any instance I= (G,o,,) we have IE[d(R,(I))) S 2 - E 

and JP(d('R,(I)) S (2 - c)/(1 - c)} = 1. 

Proof. If ,c,,(C') > -y(C) at step 4, it follows from Le=a. 7 that d(R) ~ 2 - E. Hence, we assume 
that ,c,,(C') ~ ,(C). First, we argue about the expectation of d('R.,(I). We have that 

E(d(R )) = max E[-y('R,(I))]. 
• z ,•(I) 

On the one hand, from equations (4) and (5) we have 

E(,('R.(I))] ~ n(E(C))+(l-p),(E(C')) = n(C)+(l-p),(C')+(l-p),(Hc)+n(Hc,)+-y(H) 
(7) 

Now, let Cn be a minimum cover for (G - H,1). Applying Lemma 8 to V(H) we have that 
CHU ( C n C') is a cover for G, since every edge in G - H is covered by Cn and every edge incident 
to H is covered by a vertex in C n C'. 

Since C is a minimum cover for G, we have that 

1(C) S 1(Cn U (C n C')) ~ ,(Cn) + ,(Cn C'), 

or, equivalently, 
-y(Cn) ~ -y(C) - -y(C n C') ~ -y(C - C'). 

Since H <:;; r1(V(G)), it follows from Lemma 6 tha.t 

-y"(I) ~ -y(H) + 1(C - C'), 
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80 that, &om equation (6) and the above we have, 

-y•(I) 2'. max {-r(C),-y(H) + 1(Hc) + 1(Hc, ),-y(H) + 1(C - C')} 

Since p ~ 0.5, it follows &om (7) and (8) that 

E[d(R,)) :S 2p + (1 - p)(-y(C') + 1(H))/(-y(H) + 1(C - C')). 

Replacing p by its definition in terms of t and using the fact that 

-y(C') :S ('Y(C) - -y(C n C'))/(1 - t), 

we get that 
E[d(74)) :S 2 - t. 

(8) 

H the cover C is selected by 'R.., then d(R,(I)) :S 2, since C iB a minimum cost cover. On the 
other hand, if C' is selected, then 

d(R (I))< -y(C') +-y(Hc) +1(H) 
• - maxh(C),-y(Hc) +1(H)} 

Since -y(C') :S (-y(G) - -y(G n G'))/(1 - t}, we haev d('R.,(I)) :S (2 - e)/(1 - e). Therefore (3) holds 
and we are done. D 

The above analysis for the expected case is tight when e = 1 - v'2/2. Indeed, consider the 
instance I= (G,6,1), where G is a complete bipartite graph with bipartition {A,B} where IBI = 
v'21AI Rj 1.41IAI, J(a) = 0 for erery a E A, 6(b) = 1 for every b E B, and 7(t1) = 1 for every 
t1 E V(G). Clearly, A is an evaluation of cost !Al since it only checks the vertices in A. The set B, 
however, is a minimum cover for (G, 'Ye,,) and 'YC,,(B) :S -y(A). Hence, 'R.(I) returns E(A) with 
probability 1/2 and E(B) with probability 1/2, 80 that the expected deficiency is close to l + ./2/2. 

3.2. Lower bound for randomized algorithms. We have proved so far that algorithm R,, for 
t = l - y'2/2, has expected deficiency 1.707. However, R, does not achieve this small deficiency 
with high probability. For the instance which shows that its analysis is tight, it attains deficiency 
2.41 with probability 1/2 and deficiency 1 with probability 1/2. One can speculate if a more 
dynamic algorithm would not have smaller (closer to 1.5) deficiency with high probability. In this 
section, we prove that this is not possible, that is, no randomized algorithm for DBO can have 
deficiency smaller than /J for any given 1 5 µ S 2 with probability close to 1 (see Theorem 11). 
We ,hall prove thia considering imtanee, I= (G,6,7) with Ga balanced, complete bipartite graph 
on n t1ertiee1 and with 1 = 1 only. All instances in this section are assumed to be of this form. 

Let A be a randomized algorithm for DBO and let 1/2 :SA :S 1. Given an instance I.,, (G,6,7) 
where JV(G)I = n, let P(A,Z,An) = P('Y(A(Z)) ~ An) and let 

P(.A.,An) = maxP(.A,Z,An). 
I 

Given a deterministic algorithm B and an instance I for D80, we define the payoff of B with re,pect 
to I 1111 

g(B,Z) = {l, if-y(B(~);?: An; 
O, otherwuie. 

One may deduce &om Yao's minimax principle [13) that, for any randomized algorithm A, we 
have 

I11fXE(g(.A.,Z));?: m:,xE[g(opt,Z,,)), (9) 

where opt is an optimal deterministic algorithm, in the average case sense, for the probability 
distribution p over the set of possible instances for OBO. (In (9), the expectation is taken with 
respect to the coin flips of A on the left-hand side and with respect top on the right-hand side; we 
write Ip for an instance generated according top.) 
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Since a randomized algorithm can be viewed as a distribution probability over the set of deter­
ministic algorithms, we have E[g(A,I)) = P(A,I,>.n) and hence 

m;xE[g(A,I)] = P(A,>.n). 

Moreover, lE[g(opt,1j,}] is the probability that the cost of the evaluation computed by the optimal 
algorithm for the distribution p is at least >.n. Thus, if we are able to define a probability distribution 
p over the set of possible instances and analyze the optimal algorithm for such a distribution, we 
obtain a lower bound for P(A,>.n). 

Let n be an even positive integer and let G be a complete bipartite graph with V(G) = {1, ... , n}. 
Let the vertex classes of G be {1, ... ,n/2} and {n/2 + 1, ... ,n}. Let -y(t1) = 1 for all t1 E V(G). 
For 1 :S: i :S: n, define the function 6;: V( G) ➔ {O, 1} putting 

6,(11) = {1, if i = tli 
O, otherwise. 

Consider the probability distribution p where the only instances with positive probability are 'Ii = 
(G,5,,-y) (1 :S: i :S: n) and all these instances are equiprobable, with probability 1/n each. A key 
property of these instances is that the cost of the optimum evaluation for all of them is n/2, since 
all the vertices of the vertex class of the graph that does not contain the vertex with 6-value 1 must 
be evaluated in order to determine the value of all edges. We have the following lemma. 

Lemma 10. Let opt be an optimal algorithm for the distribution probability p. Then 

JE[g(opt,1j,)] ~ 1 - >.. 

Proof. First of all we observe that if opt finds a node II with 6( v) = 1 during its execution, then it 
must evaluate all nodes from the opposite side of t1 before it finishes (G is complete bipartite). 

Let ; be the integer such that opt evaluates the node ; at the moment it completes the evaluation 
of all nodes from one vertex class of the graph, say X, having obtained 5( z) = 0 Jor all vertices z E 
X before node;. (To determine; simply run opt and reply 6(11) = 0 for all vertices until it is about 
to evaluate all vertices from one vertex class.) 

Let 111, v:i, ... , lln/2 = ; be the nodes of X in the order that they were evaluated by opt. Let 
t = >. - 1/2. Consider the instances Z.r.,.1 ,Z.r,-1+i• ... ,I,,./2" In all these instances, opt evaluates 
at least rtnl nodes from X and all nodes from the other side. Thus, for at least n/2 - rtnl + 1 
instances opt costs at least n/2 + rtn l = r.>.n,. Hence, 

E[g(opt,1j,)) ~ n/2 - rtnl + 1 ~ l _ >., 
n 

and we are done. D 

Since 1'•(I;) = n/2 for 1 :S:; :S: n, we have the following result. 

Theorem 11. Let A be a randomized algorithm for DBO and let 1 :S: µ :S: 2 a real number. Then 
there is an instance I for which P('.D(A(I),I) ~ µ) ~ 1- µ/2. 

4. FAST ESTIMATION OF QUALIFYING TUPLES 

In this brief section, we consider the 'numeric version' of DMO, as discussed at the end of 
Section 1.2. Suppose we have a k-attributed database in which we would like to estimate very 
quickly how many tuples are likely to satisfy a certain conjunctive query. We think of a ecenario 
where the database is a fixed set of k-tuples over which many different queries are posed for us to 
answer. 

More precisely, we consider the following formalization of the problem. Suppose we have a k­
uniform hypergraph G. An instance for our problem is the same as an instance for OMO, and we 
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wish to determine or estimate very quickly the value of m(G,6) = 16-1 (1)1. In fact, we suppose 
that we shall have a large family O>i (A EA) of queries and we wish to estimate m(G,6>.) for each 
AE A. 

Our computation model is as follows. We may preprocess G as long as we spend time polynomial 
in IV(G)I, and we suppose that we may sample elements from V(G) uniformly at random. We 
further suppose that, given. a k-tuple g C V(G), we may check whether or not g E E(G). Finally, 
we suppose that the operatioilll of sampling a random vertex II from V(G), computing 6(11), and 
checking whether g E G all have UD.it cost. We may prove the following result. 

Theorem 12. There exiat a randomized algorithm A and a deterministic, polynomial time algo­
rithm 'R. as follows. For any E > O, there is a constant C = C(e) for which the following holds. 
Let a k-uniform hypergraph G be given. We may preproces, G wing algorithm 'R. to obtain a 
structure 'R.(G) that may be given to A ca an auxiliary input 10 that, given any 6: V(G) ➔ {O, 1}, 
algorithm A returns an integer m 10 that P (Im - m(G,6)1 :<; elV(G)lk) ~ 1 - E. 

Moreover, A sample, at most C vertice, from V(G). In fact, if we let S C V(G) be the set of 
vertices sampled by A, then A only et1aluates o on S and only examines those edges e E E( G) where 
e ~ S. In particular, A( G, 6) returns m in constant time ( that ia, independent on the size of G or 
the particular 6). 

In view of Theorem 12, we may process a family O>i (A E A) of queries in time linear in IAI, 
because the cost of processing each 6>. is constant. The overhead in our procedure is the cost 
of preprocessing G, which is polynomial in IV(G)I, We do not go into the details of the proof 
of Theorem 12. We only observe that we may use for 'R. the algorithm for constructing regular 
partitions for hypergraphs given in (6]. 
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