





strategy impractical. In such cases, the different costs involved in evaluating each predicate must
also be taken into account in order to keep user response time within reasonable bounds.

Among several proposals to model and solve this problem, (see, for example, [3, 5, 8]), we focus
on the improvement of the approach proposed in [11] where, differing from the others, the query
evaluation problem is reduced to an optimization problem in a hypergraph (see Figure 1).

1.1. Problem statement. A hypergraph is a pair G = (V(G), E(G)) where V(G), the set of
vertices of G, is a finite set and each edge e € E(G) is a non-empty subset of V(G).

The size of the largest edge in G is called the rank of G and is denoted r(G). A hypergraph G
is 8aid to be uniform if each edge has size r(G), and is said to be k-partite if there is a partition
{Vi,...,V&} of V(G) such that no edge contains two vertices in the same partition.

Given a hypergraph G and a function § : V(G) — {0,1} we define an evaluation of (G,d) as a
set E C V(G) such that, knowing the value of é(v) for each v € E, one may determine the value of

5(e) = [T 6,

for each e € E(G).
Given a hypergraph G and a function v : V(G) — R we define the cost of a set X C V(G) by

YX) =Y ().
veX

An instance to the Dynamic Multipartite Ordering problem (DMO) is an r(G)-partite, uniform
hypergraph G, together with functions § and v as above. The objective in DMO is to determine
an evaluation of minimum cost for (G,d,7). Observe that the function § is ‘unknown to us at
first’. More precisely, the value of §(v) becomes known only when d(v) is actually evaluated, and
this evaluation costs y(v). The restriction of DMO to instances in which r(G) = 2 deserves special
attention and will be referred to as the Dynamic Bipartite Ordering problem (DBO).

Before we proceed, let us observe that DMO models our database problem as follows: the sets
in the partition {V3,...,Vi} of V(G) correspond to the k different attributes of the relation that is
being queried and each vertex of G corresponds to a distinct attribute value (tuple element). The
edges correspond to tuples in the relation, y(v) is the time required to evaluate § on v and 4(v)
corresponds to the result of a predicate evaluated at the corresponding tuple element.

A B A B
a by aQ @b
2] b, ) b,
b;
(a) (b)

FIGURE 1. The set of tuples {(ay,8,), (a1, 52), (a1, b3), (a2,41)} and an instance for DBO

Figure 1(b) shows an instance of DBO. The value of 8(v) is indicated inside each vertex v.
Suppose that v(a1) = 3 and y(b;) = y(b2) = 2. In this case, any strategy that starts evaluating
8(a1) will return the evaluation {e1,by,bs} of cost 7. However, the evaluation of minimum cost for
this instance is {1, b2} of cost 4. This example underlines the point that the crux of the problem is
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to devise a strategy for dynamically choosing, based on the function + and the values of 4 already
revealed, the next vertex v whose 4-value should be evaluated, so as to minimize the overall cost.

Let A be an algorithm for DMO and let Z = (G, 4,7) be an instance to DMO. We will denote
the evaluation computed by A on input Z by A(Z). Establishing a measure for the performance of
a given algorithm A for DMO is somewhat delicate: for example, a worst case analysis of y(A(Z))
is not suitable since any correct algorithm should output an evaluation comprising all vertices in
V(@) when (v) = 1 for every v € V(G) (if G has no isolated vertices). This remark motivates the
following definition.

Given an instance Z = (G, 4,7), let E be an evaluation for Z and let y*(Z) denote the cost of
a minimum cost evaluation for I. We define the deficiency of evaluation E (with respect to T) as
the ratio d(E,T) = v(E)/v*(Z). Given an algorithm A for DMO, we define the deficiency of A as
the worst case deficiency of the evaluation LA(Z), where T ranges over all possible instances of the
problem, that is,

d(A) = m}xd(A(I),I).

If A is a randomized algorithm, d(A(Z),T) is a random variable, and the ezpected deficiency of A
is then defined as the maximum over all instances of the mean of this random variable, that is,

E[y(A@D)
d(A) = E[d(A(T),I)] = S
(A4) mi').x [d(AZ),T)] max (@)
Clearly, we wish to devise fast algorithms whose (expected) deficiency is as close to 1 as possi-
ble. In this paper, we will be concerned with designing algorithms for DMO, analyzing them and
establishing bounds for their deficiency.

1.2. Statement of results. In Section 2, we briefly argue that d(4) > r(G) for any deterministic
algorithm A and d(B) > (r{G)+1)/2 for any randomized algorithm B. It is worth noting that such
bounds apply even allowing exponential time algorithms. We then present an optimal determinis-
tic algorithm for DMO with time complexity O(|E(G)|log r{G)), developed with the primal-dual
approach. As an aside, we remark that this algorithm does not need to know the whole hypergraph
in advance in order to solve the problem, since it scans the edges (tuples), evaluating each of them
as soon as they become available. This is a most convenient feature for the database application
that motivates this work.

In Section 3, for any given 0 < ¢ < 1 — v/2/2, we present a randomized, polynomial time
algorithm R, for DBO whose expected deficiency is at most 2 — e. The best expected deficiency
is achieved when ¢ = 1 — v/2/2. However, the smaller the &, the smaller is the probability that
a particular execution of R, will return a truly poor result: we show that the probability that
d(Re(Z),T) <1+1/(1 —€) holds is 1.

The deficiency of R, is not assured to be highly concentrated around the expectation. In Sec-
tion 3.2, we show that this limitation is inherent to the problem, rather than a weakness of our
approach: for any 0 < £ < 1, no randomized algorithm can have deficiency smaller than 1 + ¢ with
probability larger than (1+¢)/2. The proof of this fact makes a use of Yao’s Minimaz Principle [13].

For both, theoretical and applied reasons, property testing and sub-linear time algorithms in
general have attracted some attention recently (see, e.g., [12]). In Section 4 we consider a problem
related to DMO in which we wish to estimate in sub-linear time the number of tuples that a given
query will return.

1.3. Related work. The problem of optimizing queries with expensive predicates has gained some

attention in the database community [1, 3, 5, 8, 10, 11]. However, most of the proposed approaches

[3, 5, 8] do not take into account the fact that an attribute value may appear in different tuples in

order to decide how to execute the query. In this sense, they do not view the input relation as a

general hypergraph, but as a set of tuples without any relation between them (1.e., as a matching
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hypergraph). The Predicate Migration algorithm proposed in [8], the main reference in this subject,
may be viewed as an optimal algorithm for a variant of DMO, in which the input graph is always
a matching, the probability p; of a vertex from V; (ith attribute) evaluating to true (d(v) = 1) is
known, and the objective is to minimize the expected cost of the computed evaluation (we omit
the details).

The idea of processing the hypergraph induced by the input relation appears first in {11], where
a greedy algorithm is proposed with no theoretical analysis. The distributed case of DBO, in which
there are two available processors, say P4 and Pg, responsible for evaluating § on the nodes of the
vertex classes A and B of the input bipartite graphs is studied in [10]. The following results are
presented in [10]: a lower bound of 3/2 on the deficiency of any randomized algorithm, a randomized
polynomial time algorithm of expected deficiency 8/3, and a linear time algorithm of deficiency 2
for the particular case of DBO with constant 4. We do not go into details, but the approach here
allows one to improve some of these results.

In this extended abstract, we restrict our attention to conjunctive queries. However, much more
general queries may happen. For example, §: E(G) —+ {0,1} could be any formula in the first order
propositional calculus involving the predicates represented by 4. In [4], Charikar et al. considered
the problem of querying priced information. In particular, they considered the problem of evaluating
a query that can be represented by an “AND/OR tree” over a set of variables, where the cost of
probing each variable may be different. The framework for querying priced information proposed
in that paper can be viewed as a restricted version of the problem described in this paragraph,
where the input graph has one single edge.

1.4. Preliminaries. Let 7 = (G, 4,4) be an instance to DMO. The neighbourhood of v € V(G)
is the set T'(v) = {u € V(G) \ {v}: {u,v} C e for some e € E(G)}. An isolated vertez in G is
a vertex contained in no edge of G. For any X C V(G), we let Vy(X) = {v € X: 6(v) = 0},
Vi{X) = {v € X:4(v) = 1}, and I"(X) = T(13(X)). Note that any evaluation for 7 must
contain I'; (X).

A cover for G is a set C C V(G) such that every edge of G has at least one vertex in C.
A minimum cover for (G,v) is a cover C for G such that 4(C) is minimum. QObserve that any
evaluation for Z must contain a cover for G as a subset, otherwise the §-value of at least one edge
cannot be determined.

For a cover C for G, we let

E(C) = CUT(C)

be the C-evaluation for T = (G,4,v). It is not difficult to see that a C-evaluation for Z is indeed
an evaluation for Z. Moreover, since any evaluation for (G,6) must contain some cover for G
and T'1(V(G)), it is not difficult to conclude that that the deficiency of a C-evaluation for an
instance to DBO has deficiency at most 2, whenever C is an minimum cover for (G,v). This
obsevation appears in [10] for the distributed version of DBO.

An optimal cover C for (G, ), and as a consequence E(C), may be computed in polynomial time
if G is a bipartite graph [7, 9]. Let us use COVER to denote the algorithm that outputs E(C) for
some minimum cover C. Since 2 is a lower bound for the deficiency of any deterministic algorithm
for DBO (See Section 2), we have that COVER is a polynomial time, optimal deterministic algo-
rithm for DBO. This algorithm plays an important role on the design of the randomized algorithm
proposed in Section 3.

2. THE GENERAL CASE AND AN OPTIMAL POLYNOMIAL DETERMINISTIC ALGORITHM

2.1. Lower bounds. We start with some lower bounds for the deficiency of algorithms for DMO.
It is worth noting that these bounds apply even to slgorithms of ezponential time/space complexity.
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A matching in a hypergraph G is a set M C E(G) with no two edges in M sharing a common
vertex. A hypergraph G is said to be a matching if E(G) is a matching. It will be useful to single
out the following class of instances. We will call an instance (G, 4,7) to DMO an eztremal instance
if () G is a matching, (i) each edge e € E(G) has exactly one vertex v € e such that §(v) = 0,
and (i) y(v) =1 for all v € V(G).

Theorem 1. Let G be o hypergraph of rank r(G) and let A be a deterministic algorithm for DMO,
There is an eztremal instance T = (G, 4,7v) to DMO for which the deficiency of the output of A
when run T is at least r{G).

Proof. Let T = (G, 4,7) be the extremal instance in which, for each edge e € E(G4), the vertex
v € e having d(v) = 0 is the last vertex evaluated by A in this edge. It is not difficult to see that
¥(A(ZA)) = |V(G4)|, while Vo(V (G 4)) is an evaluation for T 4 with cost |E(G 4)|. Therefore d(A) =
maxz d(A(Z),Z) 2 d(A(Za),Ta) = 7(A(Z4))/7*(Z4) 2 V(GA)l/|E(Ga) = r(Ga)- a

We now state without proof a lower bound on the expected deficiency of any randomized algo-
rithm for DMO. We only mention that the proof of the result below is based on Yao’s minimax
principle (a more interesting application of this principle occurs in Section 3.2).

Theorem 2. Let G be a hypergraph of rank r(G) and let B be a randomized algorithm for DMO.
There is an eztremal instance T = (G,4,7) to DMO for which the expected deficiency of the output
of B when run T is at least (r(G) + 1)/2.

2.2. An optimal polynomial deterministic algorithm for DMO. We will now introduce a
polynomial time, deterministic algorithm for DMO that has deficiency at most r on instances with G
of rank r(G) at most r. In view of Theorem 1, this algorithm has the best possible deficiency for
a deterministic algorithm. -

Let (G, 4,7) be a fixed instance to DMO, and let E; = {e € E(G): é(e) =i} and

Wi=|Je (ie{0,1})
ecE;

We let G[E;] the hypergraph with vertex set W; and edge set E;. Let 5 be the cost of a minimum
cover for (G[Eg),~), among all covers for (G[Ey},~) that contain vertices in Vy = Vo(V(G)) = {v €
V(G): 6(v) = 0} only. Then v*(G, 4,7) = v§ + v(W1).

Let us look at 4§ as the optimal solution of the following Integer Programming problem, which
we will denote by Li(G,4,v):

mm{ E y(v)Zy: E z, > 1foralle € Ey and z, € {0,1} forallv € Vo}.
veVy vEenVp

Let us denote by L(G, 6,7) the linear relaxation of L;(G,3,%), where the restrictions z, € {0,1}
are replaced by z, > 0 for all v € V5. The dual L(G, §,7)? of L(G,5,7) is

max{ Dover Y ve <) foranue%andy,zt)foraneeEu}.
ecEg e: vEe

Theorem 3. Let (G,4,7) be an instance to DMO and let § : Eg — R be a feasible solution of
L(G,5,7)P. Any evaluation E of (G,8) satisfying
Yv)< ) e forallvEE-W, ey
e: uce

has deficiency at most r(G).



Proof. Duality between L(G,§,7) and L(G,§,7)P gives 3 g, Fe < 7§- Any evaluation for (G, )
must include Wy, so that y(E) = ¥(E — W;) +v(E N W1) = 4{E - Wy) + v(W1), and

¥(E~ W) = Z 7(v) < Z Z ge < v(G) 2 Fes
veE-W, vEE-W) e: vEe e€Ey
where the last inequality follows from the fact that each edge contributes with at most r(G) terms
to the sum. Therefore

1*(G,8,7) < 7(E) £ 7(G) Y Fe +7(W1) < r(G)(5 +¥(W1)) = r(C)7"(G,6,7)s
ecEp
and hence d(E, (G, 4,7)) = 7(E)/7*(G,5,7) < r(G)- o

The algorithm presented below uses a primal-dual approach to construct a vector y: B & R
and an evaluation E such that both the restriction of y to Ey and E satisfy the the conditions of
Theorem 3. This algorithm resembles the one presented by Bar-Yehuda [2] for the minimum vertex
cover problem. The main difference is that L(G,§,7)? it is not known beforehand, because the
set Vg is not known.

Our algorithm maintains for each e € E(G) a value y, and for every v € V(G) the value
To = 3 ,.uceVe- At each step, the algorithm selects an unevaluated edge e and increases the
corresponding dual variable y, until it “saturates” the next non-evaluated vertex v (r, becomes
equal to ¥(v)). The values of r, {u € e) are updated and the vertex v is then evaluated. If
§(v) = 0, then the edge e is added to Fy along with all other edges that contain v, and the
algorithm proceeds to the next edge. Otherwise the algorithm increases the value of the dual
variable y, until it “saturates” another unevaluated vertex in e and executes the same steps uatil
either ¢ is put into Ep or there are no more unevaluated vertices in e, in which case e is put in E.

Algorithm PD(G,6,7)
(1) Start with Ey, Ey and E as empty sets, r, = 0 for all v € V(G) and y, = 0 for all e € E(G)
(2) While E(G) # E U Ey
(a) Select an edge e € E(G) — (Ey U Ey)
(b) Whilee ZE and e ¢ Ep
(i) select a vertex v € e — E such that y(v) — r, is minimum
(ii) add v(v) — r, to y, and to each r, such that u € e
(iii) insert v in E
(iv) If §(v) = 0, insert in Ey every edge €' € E(G) such that v € ¢’
(c) If e & Ey, insert e in E;
(3) Return E

Lemma 4. Let (G,4,7) be an instance to DMO. At the end of the execution of PD(G,6,7), the
restriction of y to B is a feasible solution to L(G,8,v)P and E is an evaluation of (G,8) satisfy-
ing (1). Algorithm PD(G,8,7) runs in time O(|E(G)|log r(G)).

Proof. The restriction of y to Eg is a feasible solution to L(G[Ey],8,7)? at the beginning of the
algorithm, at which point we also have that r, < y(v) for every v € V(G).

Consider any v € V(G). The value of each r, is increased along the execution of the algorithm
every time an edge e containing v is evaluated. This value only reaches y(v) at the point in the
computation where an edge e containing v is to be evaluated. If §(v) = 0 then e is included in Ey
along with any other edge containing v. From then on, neither the dual variables relative to these
edges nor r, is modified.
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The asserted time complexity may be achieved by using a suitable priority queue for each edge
in E(G). a

Corollary 5. Algorithm PD is a polynomial time, optimal deterministic algorithm for DMO. O

3. THE BIPARTITE CASE AND A POLYNOMIAL RANDOMIZED ALGORITHM

Let 0<e<1— \/5/2. In this section, we present R., a polynomial time randomized algorithm
for DBO with the following properties: for every instance Z,

E[dR(D)) <2~¢ 2
and
P (d(m(z)) <1+ Ii—s) =1 ®)

Thus, R, provides a trade-off between expected deficiency and worst case deficiency. At one
extreme, when £ = 1 — /2/2, we have expected deficiency 1.707 and worst case deficiency up to
2.41 for some particular execution. At the other extreme (¢ = 0}, we have a deterministic algorithm
with deficiency 2.

The key idea in R,’s design is trying to understand under which conditions the COVER algorithm
explained in Section 1.4 does not perform well. More exactly, given an instance 7 to DBO, a
minimum cover C for (G, §), and £ > 0, we turn our attention to the instances Z having d(E(C),Z) >
2—¢.

One family of such instances can be constructed as follows. Consider an instance (G,4d,v) to
DBO where G is a matching of n edges, the vertex classes of G are A and B, and é(v) = 1 for
every v € A and §(v) = 0 for every v € B. Clearly, B is an optimum evaluation for Z, with cost n.
On the other hand, note that the deficiency of the evaluation E(C) which is output by COVER
depends on which of the 2" distinct minimum covers of G is picked. In the particular case in which
C = A, we have d(E(C),T) = 2n/n = 2.

This example suggests the following idea. If C is a minimum cover for (G,v) and nonetheless
E(C) is not a “good evaluation” for I = (G, 4,), then there must be another cover C’ of G whose
intersection with C is “small” and still C’ is not “far from being” a minimum cover for G. The
following lemmas formalize this idea.

Lemma 6. IfT = (G, 4,v) is an instance to DBO, T C T'1(V(G)), and Cr is o minimum cover of
G - T, then 7(Cr) ++(T) < 7v*(T).

Proof. Let E* be a minimum cost evaluation for T. Since T C I'i(V(G)) it follows that T C E*.
Furthermore, E* —~ T is a cover for G — T, for otherwise d(uv) cannot be determined for some
uv € G—T. Since Cr is 8 minimum cover for G — T, it follows that 7(Cr) < y(E* —T). Therefore,
HCr) +AT) < 4(E* - T) ++(T) =+(E*) = v*(Z). =
Lemma 7. Let T = (G,d,7) be an instance of DBO, let C be o minimum cover for (G,48) and
let 0 < e < 1. Ifd(E(C)) > 2 — ¢, then there is a verter cover C, for G such that v(C.) <
(r(C - C:))/(1-e).
Proof. Let T =T4(C) - C. Since d(E(C),I) > 2 —e¢, it follows that 2—¢ < (y(C) +v(T))/(v*(T)).

Now, let Cr be a minimum cover for G — T'. Since T C I';(V(G)), it follows from lemma 6 that
+(Cr) +7(T) < 7°(T). Simple calculations give 1(T) < (1(C) - (2~ e}(Cr))/(1 —e).

Take C, = Cr UT and note that C; is a cover for G with (C, N C) C Cr.

C) —~(C C)-y(C.nC C-C,
'7(6‘5) S'Y(CT)+'Y(T) < 7( )1 _75.( T) < '7( ) 1'1(55 ) — 7(1—56)-
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Let T = (G,4,7), C and ¢ be as in the statement of Lemma 7, consider the cost function ¢,
given by
(Q-enfv), fvgl;
res(v) = {(2 —¢)y(v), otherwise,
and let C' be a minimum cover for (G, Yc.)-

We can formulate the problem of finding a cover C, satisfying v(C.) < 7{(C -~ C.)/(1 —¢) as a
linear program in order to conclude that such & cover, actually, exists if and only if v¢,. (C") £4(0).
Furthermore, if 7¢,(C") < 7(C) then v(C") < 4(C - C')/(1 —¢).

This last remark, together with Lemma 7, provides an efficient way to verify whether or not a
particular minimum cover C is going to give a good evaluation for (G, 6,7).

As the cover (', as above, can be calculated in polynomial time in those cases where G is
bipartite, we can devise the following randomized algorithm for DBO, which proceeds in two steps.

At the first step, the algorithm determines a minimum cover C for (G,7) and a minimum cover
O for (Gy70,). If v0,(C') > ¥(C), then E(C) will be a good evaluation for (G,4,7) and the
algorithm returns E(C). Otherwise, the algorithm enters the second step, where it returns E(C)
with probability p = p(e) (see the pseudo-code below) or E(C') with probability 1—p as the solution.

Algorithm R(G,4,7)
(1) C « a minimum cover for (G,¥)
(2) €' « a minimum cover for (G,7c,)
(3) If yc.(C') > ¥(C), then return E(C)
(4) Let p= (1 - 3e+¢%)/(1 —¢)
(5) Let z be a real number randomly selected from interval [0,1]
If ¢ < p, then return E(C),

otherwise return E(C").

Since 7(C) < 7(C'") it is reasonable to select C with probability higher than 1/2, that is p > 0.5.
This condition together with the definition of p in terms of £ force 0 < £ < 1 — v/2/2.

3.1. Algorithm analysis. The correctness of algorithm R, follows from the fact that R, always
outputs a cover evaluation (recall Section 1.4 ). Hence, what remains to be shown is the properties
of the evaluation calculated by R, which are claimed at the beginning of this section.

Let T = (G, 4,7), C, C' and ¢ be as in the statement of algorithm R. It will be convenient to
define

H = ICnc)-(Ccuch,
Hy = I‘I(C’) n(C- CI),
He = TO)n(C'-0),

80 that

HUHg =T,(C) - C=I1(C) - {CnI1(C)),
HUHc =T1(C") - C' =T1(C") - (C'NT1(C")),
8



and then, as H, H¢,Her C T'1(V(G)) are disjoint sets:

Y(E(C)) =(C) + v(Hc) +v(H), 4
YE(C")) = v(C") + v(He) + v(H), - (8)
YMI) 2 v(H) +v(Hc) + v(Her). (6)

Figure 2 shows a schematic representation of V(G).

FIGURE 2. A representation for graph G

The following simple result will be useful in our analysis.
Lemma 8. If C and C' are two covers for G, then T(V(G) - (CUC)) CCNC".

Proof. Let v € V(G) — (CUC') and u € I'(v). We must have u € C, otherwise C would not cover
uv. The same argument allows to conclude u € C' and hence the result. ]

In the context of Figure 2, this lemma tells us that any edge having an endpoint in U must have
its other endpoint in R, since R=CNC’.

Theorem 9. Let 0 < £ < 1 — v2/2. For any instance T = (G,4,7) we have E[d(R.(Z))] < 2—¢
and P(d(R(I)) < (2-¢)/(1-¢)) =L

Proof. If vc,.(C') > ¥(C) at step 4, it follows from Lemma 7 that d(R) < 2 — ¢. Hence, we assume
that yc,e(C') € ¥(C). First, we argue about the expectation of d(R.(Z). We have that

™ _ E['Y(RE(I))]
E[d(R.)] = mgxw
On the one hand, from equations (4) and (5) we have

E[v(R(T))] < py(E(C)) +(1-p(E(C")) = p¥(C)+(1-p)¥(C') + (1-p)v(Hc) +pY(He) +7(g g

Now, let Cy be a minimum cover for (G — H,%). Applying Lemma 8 to V(H) we have that
CrU(CNC') is a cover for G, since every edge in G — H is covered by Cy and every edge incident
to H is covered by a vertex in C N C".

Since C is a minimum cover for G, we have that

YC) £/(CrU(CNC)) < ¥(Cr) +1(CNCY),
or, equivalently,
7(Cr) 2 4(C) - ¥(CNC") 2 v(C - C').
Since H C I'1(V(G)), it follows from Lemma 6 that

74(T) 2 1 H) ++(C - C),
9



so that, from equation (6) and the above we have,
¥*(Z) 2 max {(C),7(H) + v(Hc) + v(Ho),v(H) +71(C - C)} (8)
Since p > 0.5, it follows from (7) and (8) that
E[d(R,)] < 2p+ (1 - p)(+(C") + v(H))/(x(H) +7(C - C")).
Replacing p by its definition in terms of ¢ and using the fact that
C") < (4(O) - vCNC)/(1-¥),
we get that
E[d(R,)] £2-¢.

If the cover C is selected by R, then d(R,(T)) < 2, since C is a minimum cost cover. On the
other hand, if C' is selected, then
7(C') + v(He) +7(H)

d(R(I)) < max{y{C),v(Hc) +v(H)}

Since ¥(C") < (¥(C) —¥(CNC")/(1 —¢), we haev d(R.(T)) < (2 -¢€)/(1 - €). Therefore (3) holds
and we are done. 0

The above analysis for the expected case is tight when ¢ = 1 — +/2/2. Indeed, consider the
instance Z = (G, 4,7), where G is a complete bipartite graph with bipartition {4, B} where |B} =
V24| ~ 1.41]4|, 6(a) = O for every a € A, §(b) = 1 for every b € B, and y(v) = 1 for every
v € V(G). Clearly, A is an evaluation of cost | 4| since it only checks the vertices in A. The set B,
however, is a minimum cover for (G,7c,) and vc.(B) < 7(A). Hence, R(Z) returns E(4) with
probability 1/2 and E(B) with probability 1/2, so that the expected deficiency is close to 1+v/2/2.

3.2. Lower bound for randomized algorithms. We have proved so far that algorithm R,, for
€ = 1 ~ 1/2/2, has expected deficiency 1.707. However, R, does not achieve this small deficiency
with high probability. For the instance which shows that its analysis is tight, it attains deficiency
2.41 with probability 1/2 and deficiency 1 with probability 1/2. One can speculate if a more
dynamic algorithm would not have smaller (closer to 1.5) deficiency with high probability. In this
section, we prove that this is not possible, that is, no randomized algorithm for DBO can have
deficiency smaller than x for any given 1 < u < 2 with probability close to 1 (see Theorem 11).
We shall prove this considering instances T = (G, 4,7) with G a balanced, complete bipartite graph
on n vertices and with v = 1 only. All instances in this section are assumed to be of this form.

Let A be a randomized algorithm for DBO and let 1/2 < A < 1. Given an instance I = (G, 4, 7)
where |V(G)| =n, let P(A,T,An) = P(7(A(Z)) 2 An) and let

P(A,An) = max P(A,T, An).

Given a deterministic algorithm B and an instance Z for DBO, we define the payoff of B with respect
toT as

1, ify(B{I)) 2 An;
B =
9(8,T) {0, otherwise.
One may deduce from Yao’s minimax principle [13] that, for any randomized algorithm A, we
have

maxE[g(4,T)] 2 maxE[g(opt, )], (9

where opt is an optimal deterministic algorithm, in the average case semse, for the probability
distribution p over the set of possible instances for DBO. (In (9), the expectation is taken with
respect to the coin flips of A on the left-hand side and with respect to p on the right-hand side; we
write Z,, for an instance generated according to p.)
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Since a randomized algorithm can be viewed as a distribution probability over the set of deter-
ministic algorithms, we have E[g(A,T)] = P(A,Z, An) and hence

maxE[g(A4,7)] = P(4, An).

Moreover, E[g(opt, Zp)] is the probability that the cost of the evaluation computed by the optimal
algorithm for the distribution p is at least An. Thus, if we are able to define a probability distribution
p over the set of possible instances and analyze the optimal algorithm for such a distribution, we
obtain a lower bound for P(A, An).

Let n be an even positive integer and let G be a complete bipartite graph with V(G) = {1,...,n}.
Let the vertex classes of G be {1,...,n/2} and {n/2+1,...,n}. Let v(v) = 1 for all v € V(G).
For 1 < i < n, define the function &;: V(@) = {0,1} putting

Mw={Liﬁ=5

0, otherwise.

Consider the probability distribution p where the only instances with positive probability are 7; =
(G,8:,7) (1 €1 < n) and all these instances are equiprobable, with probability 1/n each. A key
property of these instances is that the cost of the optimum evaluation for all of them is n/2, since
all the vertices of the vertex class of the graph that does not contain the vertex with d-value 1 must
be evaluated in order to determine the value of all edges. We have the following lemma.
Lemma 10. Let opt be an optimal algorithm for the distribution probability p. Then
Efg(opt,Ip)] > 1 -\
Proof. First of all we observe that if opt finds a node v with §(v) = 1 during its execution, then it
must evaluate all nodes from the opposite side of v before it finishes (G is complete bipartite).
Let j be the integer such that opt evaluates the node j at the moment it completes the evaluation
of all nodes from one vertex class of the graph, say X, having obtained §(z) = 0 for all vertices z €
X before node j. (To determine j simply run opt and reply §(v) = 0 for all vertices until it is about
to evaluate all vertices from one vertex class.)
Let v3,v3,...,Up/9 = j be the nodes of X in the order that they were evaluated by opt. Let
t =) —1/2. Consider the instances Ly, ;, Lo, 415+ - Tv,jp- In all these instances, opt evaluates
at least [tn] nodes from X and all nodes from the other side. Thus, for at least n/2 — [tr] + 1
instances opt costs at least n/2 + [tn] = [An]. Hence,

nf2—[itn] +1

Elglopt, 7)) > P21+

and we are done. ]
Since v*(Z;) = n/2 for 1 < j < n, we have the following result.

Theorem 11. Let A be a randomized algorithm for DBO and let 1 < p < 2 a real number. Then
there is an instance T for which P(D(A(Z),T) 2 p) > 1 — p/f2.

ZI_A)

4. FAST ESTIMATION OF QUALIFYING TUPLES

In this brief section, we consider the ‘numeric version’ of DMO, as discussed at the end of
Section 1.2. Suppose we have a k-attributed database in which we would like to estimate very
quickly how many tuples are likely to satisfy a certain conjunctive query. We think of a scenario
where the database is a fixed set of k-tuples over which many different queries are posed for us to
answer.

More precisely, we consider the following formalization of the problem. Suppose we have a k-
uniform hypergraph G. An instance for our problem is the same as an instance for DMO, and we
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wish to determine or estimate very quickly the value of m(G,4) = {5-1(1)]. In fact, we suppose
that we shall have a large family ) (A € A) of queries and we wish to estimate m(G,d,) for each
A€A.

Our computation model is as follows. We may preprocess G as long as we spend time polynomial
in |V(G)|, and we suppose that we may sample elements from V(G) uniformly at random. We
further suppose that, given a k-tuple g C V(G), we may check whether or not g € E(G). Finally,
we suppose that the aperations of sampling a random vertex v from V(G), computing 4(v), and
checking whether g € G all have unit cost. We may prove the following result.

Theorem 12. There ezist ¢ randomized algorithm A and o deterministic, polynomial time algo-
rvithm R as follows. For any & > 0, there is a constant C = C(g) for which the following holds.
Let o k-uniform hypergraph G be given. We may preprocess G using algorithm R to obtain a
structure R(G) that may be given to A as an auziliary input so that, given any &: V(@) - {0,1},
algorithm A returns an integer m so that P {|lm — m(G,0)| < e[V(G)*) >1-e.

Moreover, A samples at most C vertices from V(G). In fact, if we let S C V(G) be the set of
vertices sampled by A, then A only evaluates § on S and only ezamines those edges e € E(G) where
e C 5. In particular, A(G,6) returns m in constant time (that is, independent on the size of G or
the particular 6).

In view of Theorem 12, we may process a family dy (A € A) of queries in time linear in [A],
because the cost of processing each 4, is constant. The overhead in our procedure is the cost
of preprocessing G, which is polynomial in |[V(G)|. We do not go into the details of the proof
of Theorem 12. We only observe that we may use for R the algorithm for constructing regular
partitions for hypergraphs given in {6).
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