
Received: 3 April 2019 Revised: 30 November 2019 Accepted: 12 December 2019

DOI: 10.1002/eng2.12097

R E S E A R C H A R T I C L E

Implementation and performance evaluation of an inertial
navigation system/global navigation satellite system
real-time kinematic Ntrip navigation system aided by a
robot operating system-based emulated odometer for
high-accuracy land vehicle navigation in
urban environments

Jorge P. M. Galdames1 Carlos E. Milhor1 Daniel V. Magalhães1

Glauco A. P. Caurin2 Marcelo Becker1

1SEM-EESC, University of São Paulo,
São Carlos, SP, Brazil
2SAA-EESC, University of São Paulo,
São Carlos, SP, Brazil

Correspondence
Jorge Pablo Moraga Galdames,
SEM-EESC, University of São Paulo,
São Carlos, SP, Brazil.
Email: galdames@sc.usp.br

Funding information
Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior, DS00011/07-0,
PNPD20131735; Fundação de Apoio à
Física e à Química

Abstract
Advanced land-vehicle navigation commonly uses integrated systems to coun-
teract global navigation satellite system (GNSS) solution degradation. This
occurs mainly in urban environments due to blockage of the satellite signals.
This paper presents a loosely coupled inertial navigation system/GNSS naviga-
tion system that combines an attitude and heading reference system (AHRS)
device with a dual-frequency dual-antenna GNSS heading receiver. The inte-
grated navigation system is aided by a low-cost odometer which replaces external
wheel speed sensors usually installed in autonomous vehicles. The proposed
odometer extracts the anti-lock braking system-generated pulses of rear wheels
from vehicle controller area network messages. Following, it converts them into
software-generated signal pulses which are sent to the AHRS device through
the serial port. The system platform uses a mobile internet data link to get
differential GNSS corrections in real-time from a public Ntrip—networked
transport of Radio Technical Commission for Maritime Services via internet
protocol—broadcaster in order to allow the GNSS receiver to operate in differ-
ential global positioning system/real-time kinematic (RTK) modes. Thus, the
integrated navigation system provides centimeter-level positioning accuracy at
100 Hz. Since the positioning accuracy is severely affected by numerous fac-
tors, this work proposes a replicated 24 full factorial design with the purpose
of evaluating the in-field obtained positioning performance under different fac-
tors combinations. The experimental design chosen allows to know under which
conditions it is feasible to replace the available GNSS velocity by the proposed
odometry solution, when they are used as navigation aids, and knowing that
the proposed odometry has a low resolution. The analysis of 32-runs factorial
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design results, using a significance level of .05, demonstrated that the proposed
odometry can overcome GNSS/RTK velocity.

K E Y W O R D S

ABS odometry, GNSS/INS, navigation, RTK Ntrip

1 INTRODUCTION

Navigation systems are used for land, sea, airborne, and space vehicles (SVs).1 Generally, a global navigation satellite
system (GNSS) alone provides satisfactory performance in open fields by tracking signals from one or more satellite
constellations with global coverage, such as global positioning system (GPS), Globalnaya Navigatsionnaya Sputnikovaya
Sistema (GLONASS), Galileo, and in the future BeiDou-2. In order to compute its location in 3D space, a GNSS receiver
must be able to lock onto signals from at least four different satellites.2 So that, when there is a direct line-of-sight (LOS)
signal to four or more satellites, GPS system provides positioning information with a consistent and acceptable accuracy.3,4

Regardless of the GNSS constellation in use, however, the navigation solution availability is fragmented in urban envi-
ronments due to satellite blockages by buildings and other obstacles.5 In addition to shadowing, GNSS receivers are also
vulnerable to poor satellite constellation geometry, multipath propagation, and ionosphere variability, among other fac-
tors. For this reason, in general, a land-vehicle navigation system cannot continuously position a vehicle using a GNSS
receiver alone, and other navigation aids are necessary to obtain the desired accuracy, integrity, availability, and continuity
of service.2,6

In order to counteract GNSS navigation solution degradation, advanced land-vehicle navigation systems commonly
use complementary navigation techniques, relying upon information from dead-reckoning sensors such as accelerom-
eters, gyroscopes, and odometers.6 Dead-reckoning sensors, however, generally cannot be also used alone to position a
vehicle accurately for indefinitely long periods of time because dead-reckoning sensors, by definition, do not measure
absolute position.2 Thus, integrated navigation systems are used to take advantage of the complementary attributes of
two or more navigation systems in order to yield a system that provides greater precision than either of the component
systems operating in isolation.7 In other words, integrated navigation systems combine an onboard navigation solution
and independent navigation data to update or correct navigation solution.1

Potentially significant cost, size, weight advantages, and power consumption offered by micro-electro-mechanical
systems (MEMS) devices' increased their use in navigation applications, in particular, the inertial measurement unit
(IMU).7,8 The MEMS-based IMU is an inertial instruments arrangement constructed into an electronic block that is
usually composed by three mutually orthogonal accelerometers and three gyroscopes aligned with the accelerometers.7
Another device that combines an IMU, a magnetic compass, and a processor which solves attitude equations is known
as attitude and heading reference system (AHRS).7,9 Generally, implementations that include at least an IMU together
with a navigation processor are referred to as inertial navigation system (INS).1,9 An INS is a complete 3D dead-reckoning
navigation system that determines the position, velocity and attitude of a moving platform through the processing of the
accelerations and angular velocity measurements of an IMU.8,9

The benefits from integrating a GNSS receiver and an INS are well known.10 These benefits arise in part from the com-
plementary nature of the errors that appear in GNSS position fixes and in the outputs of dead-reckoning sensors.2,9 As
the INS is not dependent on external information, its internal dead-reckoning sensors smooth out the short-term GNSS
errors, consequently, assuring the continuous availability of navigation solution.2,9,10 On the other hand, GNSS fixes pre-
vent the dead-reckoning sensor drifts over long time periods.2,9 Adding more sensors to the GNSS receiver, however, it is
not merely a question of giving the navigation system higher accuracy and better integrity or providing a more continu-
ous navigation solution; it also increases the update rate of the system and provides additional elements into navigation
solution.6

A typical INS/GNSS navigation system compares the inertial navigation solution with GNSS output and estimates
corrections to the inertial position, velocity, and attitude solution using an integration algorithm usually based on a
Kalman filter.9 The integration architecture of INS/GNSS systems widely varies and is mostly divided into four main
classes: loosely coupled, tightly coupled, deep or ultra-tightly coupled, and uncoupled systems.7,9,11 Because of its sim-
plicity and redundancy, the loosely coupled is the most chosen approach.7,10 Today, tightly coupled solutions are also
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commercially available because of their better performance when compared to previous versions based on loosely cou-
pled systems. So that, the different types of coupling architectures can have an impact on navigation accuracy after
short-term losses of the GNSS data, however, for long-term loss of GNSS it is the inertial sensors quality that will dominate
system accuracy.7

In addition to variations in INS/GNSS integration architectures, there are several ways to improve the performance
of an INS/GNSS system using additional navigation aids such as wheel-speed sensor (WSS). Kubo et al’12 for example,
proposed a dual-mode navigation system that switches between differential GPS (DGPS)/INS and INS/wheel sensor
modes according to DGPS signal availability. Stephen13 developed a multi-sensor navigation system using a decentral-
ized Kalman filter to perform data fusion by combining GPS, gyroscope, barometer, and anti-lock braking system (ABS)
differential odometry. Scherzinger14 described the preliminary tests of an inertial/GPS real-time kinematic (RTK) navi-
gation system, in two levels of integration: loosely coupled and tightly coupled. Carlson et al15 in turn investigated how to
use differential WSS from the factory installed ABS to estimate heading during periods of GPS unavailability. Years later,
Hay16 presented an automotive GPS/WSS dead-reckoning system for navigation assistance in difficult urban environ-
ments using wheel-speed messages transmitted by the ABS controller. Embedded solutions also became available, such as
Applanix POS LV device used in positioning system installed on Boss17 autonomous vehicle which combines GNSS, IMU,
and wheel encoder to obtain a position estimation at 100 Hz. The authors reported a planar expected positioning error of
0.10 m using differential corrections from OMNISTAR18 virtual base station system. Current version of this device model
is able to provide a 0.035 m planar accuracy (X,Y position) at 200 Hz using inertially-aided RTK (IARTK) technology, as
reported in Applanix.19

Focusing on algorithms, Hazlett et al20 developed a six degrees of freedom (6 DOF) model that integrates the differ-
ential WSS with GPS and INS measurements, in two versions, one based on extended Kalman filter (EKF) and another
on unscented Kalman filter (UKF). Guan et al21 also proposed a Kalman filter-based navigation system which uses the
INS output as positioning source and corrects deviations using GPS information or ABS dead-reckoning measurements
when GPS is unavailable. In vehicle stability control applications, Bevly et al22 proposed a methodology based on GPS/INS
combination to estimate vehicle sideslip angle. Among the non-WSS aided improvements, Chiang et al23 presented a mod-
ified tightly coupled INS/GNSS integration architecture to detect and eliminate abnormal GPS measurements before data
fusion, for use in low-cost integrated navigation systems. Among the low-cost solutions, Liu et al24 presented a low-cost
implementation of a tightly coupled single-frequency GNSS precise point positioning (PPP)/INS navigation system. In
order to improve land vehicles positioning by using the visual odometry (VO) as a navigation aid, Rahman et al25 pro-
posed an INS/VO/GPS navigation solution. In order to provide precise and continuous positioning solutions in urban
environments, Li et al26 proposed a tightly-coupled single-frequency multi-GNSS RTK/MEMS-IMU integrated navigation
system, with resistance to measurement outliers.

In most cases, the inertial measurements, however, offer little correction to the GNSS positioning solution and
are primarily used during periods of GNSS unavailability.15 This is because the GNSS measurement data dominate
navigation estimates in an integrated navigation system when the GNSS data are available.7 Besides, in loosely cou-
pled approach, the use of velocity measurements improves the observability of attitude errors and sensor biases.7,9

For these reasons, improvements in velocity source of a loosely coupled INS/GNSS may improve the accuracy of
the navigation solution but the best possible accuracy will be determined by the accuracy of the GNSS navigation
solution.

GNSS positioning accuracy may be improved using some augmentation method, such as differential GNSS (DGNSS),9
previously known as DGPS27 or GPS relative positioning.3 This method calibrates correlated range errors by compar-
ing pseudo-range measurements with those made by equipment at a presurveyed location know as a reference station.
Such that, the closer the user is to the reference station, the more accurate the navigation solution is.9 DGPS tech-
niques may be categorized in different ways: as absolute or relative differential positioning; as local area, regional
area, or wide area; and as code-based or carrier-based.27 Code-based differential systems can provide decimeter-level
position accuracy, whereas state-of-the-art carried-based system can provide millimeter-level performance.27 Accord-
ing to integer ambiguity resolution, DGPS systems may still provide a fixed or float positioning solution, being the
fixed type more accurate. Carrier-based positioning techniques that can operate in real-time over moving baseline
are know as RTK.9 Different DGPS techniques implementations can be embedded into a GNSS receiver, so that, it
selects one according to internal settings and the signals availability in order to provide a position, velocity and time
(PVT) solution.

In a local area DGNSS system, corrections are transmitted through an arbitrary data link from a single reference station
to users, generally using a version of Radio Technical Commission for Maritime Services (RTCM) Study Committee 104
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(SC-104) protocol.28 Data link type varies according to DGNSS system requirements. It can use the marine radio-beacon
band, very high frequency (VHF) and ultra high frequency (UHF) bands, cellular frequencies, radio and television broad-
casts, Loran signals, or even the Internet to transmit the RTCM messages.9 The technique that uses the Internet to collect
and exchange GNSS data streams in real-time was developed through an initiative of Bundesamt für Kartographie und
Geodäsie (BKG), which established the format so called Ntrip (Networked Transport of RTCM via Internet Protocol).29

This technique allows stationary and mobile users connected to the Internet, simultaneously retrieve DGNSS correction
data from a Ntrip broadcaster, which in turn receives DGNSS corrections from multiple Ntrip servers each connected to
at least a GNSS receiver of a reference station.

Differential corrections computed from a single reference station are subject to a single point of failure. In addition,
the rover distance to the base restricts the validity of the corrections due to spatial decorrelation.30 However, using data
from multiple reference stations improves ambiguity resolution reliability and enhances GNSS positioning accuracy.31 In
addition, the use of a network of reference stations instead of a single reference station allows to model in-region system-
atic errors.32 Network RTK (NRTK) techniques use a network of reference stations to provide a resolution in real time.
These techniques collect raw measurements from the network of reference stations, solve the ambiguities within the refer-
ence network, generate error estimates, and then apply an interpolation scheme to generate the NRTK corrections for the
user location.33 Several NRTK solutions are used to generate NRTK corrections for rover users, such as virtual reference
station (VRS),32,34 multi reference station (MRS),35-37 master auxiliary concept (MAC),38 Flächen-korrektur-parameter
(FKP),31 individualised master-auxiliary (i-MAX),39 and network adjustment (NetAdjust).40 Takac and Zelzer41 examine
the relationship between some of these techniques aiming to improve estimation of the quality of the network correc-
tion information performed by the rover. In this context, Manzino and Dabove42 presented a real-time quality control of
NRTK positioning by using measurements of mass-market receivers.

Since Ntrip became the leading standard protocol for GNSS data streaming, it has become popular in various pub-
lic and private sectors.43 Today, there are Ntrip broadcasters that provide free access to DGNSS corrections of several
reference stations to registered users. Uradzinski et al43,44 used UNB3 mountpoint of BKG Ntrip broadcaster to carry
out a field experiment with the purpose of evaluating the performance of Ntrip/RTK solution in rover kinematic
mode. Souza et al45 evaluated positioning accuracy obtained by Ntrip/RTK and real-time PPP methods using Ntrip
broadcaster of the RBMC46 (Brazilian Network for Continuous Monitoring of the GNSS-RBMC Systems) managed by
IBGE (Brazilian Institute of Geography and Statistics). A first survey of IBGE/RBMC Ntrip service was presented by
Costa et al.47

Whereas DGNSS/RTK corrections improve INS/GNSS navigation solution, velocity measurements may also improve
the accuracy of loosely coupled INS/GNSS systems, as mentioned above. Information on the speed of the different
wheels are often available through the ABS WSSs at no additional cost in terms of extra sensors but generally with a low
resolution.6 Natural tire size variation still increases land-vehicles odometry error (see Hay16 for more details on WSS
design challenges). In addition, wheel sensors can become unreliable for another reason such as wheel slipping, skidding,
and error in the scale factor.12 Furthermore, some ABS WSS design parameters may be unknown or inaccessible, such as
sensor type (active or passive), sensor teeth number, and ABS controller transmission rate. The impact of ABS odometry
accuracy on the INS/GNSS navigation solution, however, is determined by the parameters and methods of integration
algorithm. Due to these reasons, the resulting performance improvement on integrated navigation systems by using ABS
odometry aid is uncertain. Carlson et al,15 for example, noted that the positioning error of their navigation system mean-
ingly grows when the vehicle navigates on speed bumps and/or uneven road surfaces. Carlson et al15 also noted that
increasing the resolution of the wheel encoder from 100 PPR (pulses per revolution) to 2000 PPR did not improve the
dead-reckoning global positioning accuracy by more than 2 cm.

GNSS/INS navigation systems evolved to devices with embedded integration architectures that make sensor integra-
tion easier because they avoid the complex algorithms implementation. These devices require a careful setting procedure,
as well as right sensors installation and calibration to obtain best performance. On the other hand, implementations
that employ this device type have a specific input of navigation aids that restricts the number and type of external sen-
sors inputs. Furthermore, although an integrated navigation system can work in GNSS-denied environments, problems
include the cost of the sensors and the length of time that the GNSS signals are unavailable.23 In addition, to give absolute
figures on the accuracy of the state-of-the-art land vehicle navigation systems is difficult, since not only does the perfor-
mance of the systems depends on the characteristics of the sensors, GNSS receiver, vehicle model, and map information
but on the trajectory dynamics and surrounding environment, as well.6

This paper is an important part of an outdoor mapping system presented in the author's doctoral thesis.48 Since
a positioning input is critical to perform robotic mapping tasks, a high-accuracy navigation system was implemented
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on a land vehicle platform. In robotic mapping applications, when a constant and high-accuracy positioning esti-
mation is required to derive close-features positions, the navigation system output along the trajectory may not be
sufficient to achieve the minimum accuracy required. Due to this, previous surveys and performance evaluations of
the integrated navigation system are done. As the positioning solution is not only influenced by the equipment used
but also by many other factors, using a model to predict the in-field performance of the navigation system is very
useful to select the best conditions for collecting data. Thus, the methodology proposed to evaluate integrated nav-
igation systems performance based on design of experiments (DOE) results in a model that allows to predict the
performance of custom systems. The procedures presented in this paper can be adapted to obtain the performance
model of other integrated navigation systems. This possibility of model replication represents the main contribution
of this work.

This paper presents a high-accuracy INS/GNSS navigation system developed by combining an AHRS device, a
GNSS receiver, and a custom odometer. The navigation system uses the loosely coupled INS/GNSS integration archi-
tecture embedded into the AHRS device. The GNSS receiver used is a dual-frequency dual-antenna multi-constellation
GNSS heading receiver configured to operate in DGPS/RTK modes using RTCM messages retrieved from IBGE/RBMC
Ntrip broadcaster connected via a 4G (LTE) mobile internet. Since the AHRS device used in this work, accepts
only pulse signals as odometer input, an emulated odometer based on robot operating system (ROS) was devel-
oped in order to use ABS odometry extracted from vehicle controller area network (CAN) messages. The proposed
odometry solution is called herein as CAN-odometry. The proposed navigation system was implemented on SENA49

(Autonomous Embedded Navigation System) project vehicle. An experimental design based on DOE methodology
was carried out in order to evaluate integrated navigation system performance under different experimental condi-
tions. Section 2 describes devices physical installation, wired connections, and setup details applied in integration of
the devices. Section 3 provides software architecture of the ROS-based odometer, and the ROS device driver devel-
oped for the AHRS device. Section 4 explains in detail experimental design, decisions, and procedures utilized to
evaluate the positioning performance of the proposed integrated navigation system. Section 5 describes the factorial
design analysis steps. It also provides the obtained models from the experimental results, as well as a discussion about
models interpretation and validity. Finally, Section 6 provides the conclusions of this work, as well as the proposed
future works.

2 HARDWARE AND SENSORS SETUP

This section provides an overview on hardware and sensors used in this work with focus on their installation and
setup. One may see in subsections that most of the configuration work was dedicated to AHRS and GNSS devices.
Subsection 2.1 explains the installation and setup decisions applied in the AHRS and GNSS integration, as well as
the AHRS integration with the CAN-based odometry system proposed in this work. Subsection 2.1.1 provides a brief
description of the embedded EKF filter, and profile settings applied to obtain the best performance. Subsection 2.1.2
explains installation and extrinsic calibration of AHRS device. Subsection 2.1.3 provides a diagram of the circuit used
to connect the external devices. Subsection 2.1.4 describes the AHRS settings for the correct interpretation of odome-
ter signal. Subsection 2.1.5 provides the GNSS-related AHRS settings. Subsection 2.2 details the GNSS side settings of
the integration, as well as the RTK-Ntrip configuration. Subsection 2.2.1 provides the configuration required to enable
the GNSS true heading estimation. Subsection 2.2.2 provides the PVT mode setup. Subsection 2.2.3 provides the NMEA
and x-pulse-per-second (xPPS) output setup. Finally, Subsection 2.3 describes main support equipments and CAN bus
connection.

2.1 AHRS settings

The AHRS sensor used in this work is an IG-500E-G4A2P1-S model manufactured by SBG Systems. The AHRS settings
can be applied by using the SBG Center tool or via SBG SDK (Software Development Kit) low level commands. The
presented settings in this section were configured by using the SBG Center tool and saved to the AHRS flash memory,
because they do not need to be dynamically modified. Table 1 shows some other AHRS devices available on the market
that allow a similar integration of odometer and GNSS external inputs, and that can be evaluated using the methodology
presented in this work.
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Model Manufacturer More information at

Ellipse 2 Micro INS SBG Systems www.sbg-systems.com

Ellipse2-D SBG Systems www.sbg-systems.com

Ekinox-E SBG Systems www.sbg-systems.com

Apogee-A SBG Systems www.sbg-systems.com

Applanix OEM products Applanix www.applanix.com

MTi-300 XSens www.xsens.com

Motus Advanced Navigation www.advancednavigation.com

μINSa Inertial Sense www.inertialsense.com

VN-300b VectorNav www.vectornav.com

aDoes not mention external GNNS input support.
bDoes not mention odometer input support.

T A B L E 1 AHRS devices currently
available on the market that allow a
similar integration

2.1.1 EKF setup

The EKF is embedded in AHRS CPU and provides a real time 17 EKF states. According to the user selected settings, it can
deliver precise orientation, position, and velocity, as well as sensors information to a host connected to the device. This
information is obtained by data fusion between inertial sensors, magnetometers, temperature sensors, GNSS receiver,
odometer, and sensors calibration data.50,p.09 Figure 1 shows the simplified block diagram of the embedded EKF. In order
to obtain the best performance from the embedded filter, the automotive motion profile was selected in the filter settings.
It is the motion profile which fits better to experimental platform. The motion profile provides embedded EKF the adjust-
ments and compensations to obtain the best performance of the filter. The magnetic declination estimated value of filter
settings was manually inserted during preparation of each experimental run. The values were calculated using the pro-
cedure detailed in Subsection 4.2.1. The remote heading was selected as heading source in filter settings in accordance
with SBG Systems support recommendation, thus enabling the EKF solution to use GNSS true heading in the Euler solu-
tion computation. The advanced options settings allows the user to enable some filter features; they were maintained at
default values. The filter automatically starts and runs according to device settings described in next subsections. The
device manufacturer documentation does not provide implementation details about the estimation algorithms used by
the filter.

F I G U R E 1 Simplified block
diagram of the embedded EKF,
adapted from SBG Systems.50,p.09

EKF, extended Kalman filter
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2.1.2 AHRS installation and extrinsic calibration

The AHRS placement was chosen in order to attend SBG Systems placement requirements, as well as to ease its extrinsic
calibration with other devices. According to SBG Systems,50,p.15 sensor coordinate frame must be aligned within less
than 1◦ to the vehicle coordinate frame, and X-axis must be turned toward vehicle direction of travel. Thus, the sensor
mounting set development was guided to reach these SBG Systems optimal installation guidelines. Figure 2 shows the
AHRS installation in vehicle roof rack using the designed mounting set.

In order to obtain highest precision position measurements, the origin of AHRS's coordinate system was based on
real 3D accelerometer location shown in Figure 3 extracted from SBG Systems50,p.46 with the SBG Systems authorization.
The extrinsic calibration addressed here refers to the external aiding devices distances with respect to this AHRS frame.
Table 2 shows the relative positions of the two connected external aiding devices in AHRS's coordinate system. The relative
distances were obtained through manual measuring using a measuring tape with 1 mm resolution.

F I G U R E 2 AHRS installation using the designed
mounting set. AHRS, attitude and heading reference system

F I G U R E 3 3D accelerometer physical location. All
dimensions are in millimeters (mm)

T A B L E 2 Devices relative positions in AHRS's coordinate
system

Coordinates in meters

External aiding device XAHRS Y AHRS ZAHRS

Virtual odometer −1.065 0 +1.287

GNSS main antenna −0.577 0 +0.005
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F I G U R E 4 Odometer's
relative distances to AHRS in X
and Z directions

In AHRS settings, Table 2 rows are denominated as odometer lever arm and GPS lever arm, respectively. The lever
arm between the AHRS device and the odometer needs to be properly entered for best performance.50,p.35 The manufac-
turer available documentation does not inform the recommended accuracy for odometer lever arm, but it considers the
alignment between AHRS device and odometer as crucial for dead reckoning performance.50,p.35 It also recommends an
accuracy within 10 cm for the distance between GNSS main antenna and AHRS device.50,p.35

As one may observe in Table 2, both distances in Y coordinate are zero. This is due to carefully chosen location to
mount the AHRS and the GNSS antennas, as well as the choice to adopt a centralized virtual odometer. Following this
procedure, the three devices frames keep aligned in longitudinal car symmetry line. Figure 4 shows relative distances
between odometer and AHRS in X and Z directions of the AHRS's coordinates system. Figure 6 provides a better view of
AHRS's relative position to GNSS antennas, as well as the AHRS's place in the vehicle roof rack.

2.1.3 AHRS external connections

Once that the pulse signal generation was tested and validated by an oscilloscope (see Subsection 3.2.3), a circuit was
designed and built to connect GND (ground) pins, and RTS (request to send) pin of PC COM1 to odometer input (Odo)
pin of AHRS extended connector (AHRS EXT). The connection between the AHRS and the GNSS, previously tested, was
also included in the design. The GNSS connection is composed by two wired connections: a serial bus communication
between GNSS COM2 and AHRS EXT; and a PPS (pulse-per-second) time synchronization. The serial bus connection
uses two pairs of serial pins: transmitter (Tx) and receiver (Rx). The PPS time synchronization is carried out by using PPS
output (PPSO) pin of GNSS connected to synchronization input (Sync) pin of AHRS EXT. Figure 5 shows the final version
of the circuit diagram of the AHRS external connections.

2.1.4 Odometer integration

This subsection provides necessary settings so that the AHRS translates rightly the signal received in the input channel
to the velocity value sent by the pulse signal generator. The AHRS has two input channels with multiple purposes; in
this work the odometer was assigned to input channel 1. In the input channel 1 settings, sensitivity is the option that
determines how the AHRS triggers the count of one pulse with three possible choices: rising edge, falling edge, and level
change, all of them working and resulting in an odometer velocity value. The loop block of pulse signal generator produces
a square wave signal with one rising edge, one falling edge and two level changes. After several tests, the final choice for
sensitivity was level change. It provides an 1:2 proportion in pulse signal transmission, so that one pulse sent by pulse
signal generator is translated in two pulses in the AHRS side. This is a way to mitigate the imprecision of higher speeds
by reducing to half the frequency that the pulse signal generator must emulate. Due to the software generation feature of
the pulse signal, the processing time of RTS pin activation and deactivation instructions is not constant. Consequently,
the generated pulse width may suffer little variations that are perceived as noise by the AHRS odometer velocity value. At
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GALDAMES et al. 9 of 47

F I G U R E 5 Pins connections of AHRS external connections (the numbers
correspond to connectors pin numbering)

higher frequencies, these variations represent a larger fraction in pulse width than at lower frequencies, therefore higher
speeds are subject to more noise.

The third setting to translate the odometer velocity correctly is the gain. In AHRS settings, the gain refers to the num-
ber of pulses computed by the AHRS to complete the distance of 1 m, namely, the number of pulses per meter. Due to
fact that this value was not found in vehicle parts datasheet, it was estimated based on two parameters: wheel circum-
ference (Cwheel) and encoder ring resolution (R̂wheel). The relation between the two parameters and gain is presented in
Equation (1). The encoder ring resolution was estimated by using a developed ROS node (see Subsection 3.2.4). Unlike
navigation systems of Carlson et al15 and Guan et al21 which used GPS to estimate the individual wheel radius, this work
uses a value of wheel circumference extracted from a factory setting published by a CAN message (see Subsection 3.2.5).

gain = R̂wheel

Cwheel
= 81 PPR

1620 mm
= 50 pulses/m. (1)

Once the pulse signal generator is started, the frequency of pulses is updated through ROS messages containing the
new pulse rate. A ROS tool node (see Subsection 3.3.1) was employed to publish ROS messages with constant values in
order to verify the odometer velocity deviations read from the AHRS. This test was repeated for several values; Table 3
shows the constant values that have been tested and their respective deviation range. This validation procedure was
applied to evaluate the performance of the odometer and to verify if high velocities lead C code of pulse signal generator
to crash. These tests were carried out by using this procedure, because it is very difficult to produce a constant velocity
by manually rotating the wheel or by driving the car. The best performance, presented in Table 3, was accomplished just
through connection of the GNSS PPS signal output to the AHRS input channel 0.

2.1.5 GNSS integration

In order to integrate the GNSS NMEA output (see Subsection 2.2.3) to the AHRS, the external aiding of AHRS settings was
set up as follows: the device type as NMEA, the baud rate according to GNSS output port which streams NMEA messages
in 115200, the serial mode as RS-232, and slew rate as fast slew. The NMEA options of the external aiding were configured
according to NMEA sentence sequence output by the GNSS. Since the HDT frame is sent after the RMC frame, the NMEA
options were configured in accordance with this pattern. In order to accomplish the AHRS main loop synchronization
with the received PPS signal (see Subsection 2.2.3), the input channel 0 settings of synchronization tab were set up as
follows: type was set up to time pulse, sensitivity as rising edge, location at external connector, and delay to 0.
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10 of 47 GALDAMES et al.

Velocity (m/s)

Pulse variation (𝚫P) Frequency (Hz) Input AHRS

10 50 2 2 + [−0.0023; +0.0034]

20 100 4 4 + [−0.0050; +0.0074]

50 250 10 10 + [−0.0118; +0.0181]

100 500 20 20 + [−0.0230; +0.0376]

200 1000 40 40 + [−0.3693; +0.0480]

400 2000 80 80 + [−2.0370; +0.1072]

Abbreviation: AHRS, attitude and heading reference system.

T A B L E 3 Validation of odometer
velocity read by the AHRS

2.2 GNSS settings

The GNSS model used in this work is the AsteRx2eH OEM equipped with two PolaNt*_ GG antennas, all from the Septen-
trio Satellite Navigation manufacturer. It has six external communication ports; these are: four COM ports, one USB
port, and one Ethernet port. The COM2 port was selected to send NMEA messages to the AHRS (see Subsection 2.2.3),
and the COM3 port to receive the differential corrections from the Ntrip server (see Subsection 2.2.4). The COM1 and
COM4 ports were reserved for other purposes not addressed in this work. The USB port was used exclusively to connect
the RxControl,51 that was used in the setup procedures, and in the GNSS monitoring during the preliminary tests and
the experimental runs. The Ethernet port was also used exclusively to connect the RxLogger51 in order to avoid possible
connection overloads by getting log data from a port being used by another connection.

2.2.1 Multi-antenna attitude

The multi-antenna attitude setup was carried out following default antenna configuration. It consists in placing the anten-
nas aligned with the longitudinal axis of the vehicle, where the aux1 antenna should be in front of the main antenna.52,p.26

The adoption of default antennas configuration eliminates the setup procedure required to remove the resulting GNSS
attitude biases, such as nondefault antennas relative position, heading angle offset, and pitch angle offset. Figure 6 shows
the antennas alignment in vehicle rear top view angle. The default antennas layout increased the distance between the
antennas from 0.80 m to 1.00 m approximately. This layout improved the GNSS attitude accuracy, as well as it increased
the GNSS heading availability. A new antenna support was designed to install the antennas in the default layout, and to
reuse the current rack installation on the vehicle roof. Figure 7 shows the fixation of the GNSS main antenna by using the
designed support. Some settings are required to activate the GNSS attitude computation in multi-antenna mode. In the

F I G U R E 6 GNSS antennas placed
in default antenna configuration (solid
blue line) and previous installation
places (dashed red line). GNSS, global
navigation satellite system
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GALDAMES et al. 11 of 47

F I G U R E 7 GNSS main antenna fixation. GNSS, global navigation satellite
system

Navigation>Positioning Mode>GNSS Attitude menu option of RxControl,51 the source of GNSS attitude was selected to
MultiAntenna, and the float and fixed multi-antenna modes were enabled. In the same menu option, the antenna location
modes were selected to Auto in order to have the GNSS compute automatically the relative distance between the antennas.

2.2.2 PVT mode setup

The GNSS model installed in the experimental platform allows the use of satellites from GPS, GLONASS, Galileo,
and SBAS constellations in the PVT computation. In this work, the allowed PVT modes along with RTCM input (see
Subsection 2.2.4) were configured in order to allow the GNSS to operate in GPS/GLONASS RTK fixed mode. The
Rover mode was selected in Navigation>Positioning Mode>PVT Mode settings in order to inform the receiver that
the receiver is moving, otherwise the receiver will assume that it is fixed when computing the PVT solution. Besides
RTK modes, the PVT modes DGPS and Standalone were enabled in Rover mode options. When more than one PVT
mode is enabled in Rover mode, the receiver automatically selects the PVT mode that provides the most accurate
solution with the available data.53,p.60 The reason for allowing other less accurate PVT modes was to keep sending
NMEA messages by the receiver, as well as the time synchronization (see Subsection 2.2.3), under constraints of satel-
lite signals and/or of differential corrections during the experimental runs. The satellite-based augmentation system
(SBAS) mode was not enabled due to the fact that the experiment region is out of operational SBAS systems cov-
erage. The Galileo and the SBAS constellations were disabled in Navigation>Advanced User Settings>PVT>Satellite
Usage settings in order to keep a smoother transition under Standalone PVT mode. The Galileo and the SBAS con-
stellations also were disabled in Navigation>Advanced User Settings>Tracking>Satellite Tracking settings in order to
reduce the load of the automatic channel allocation mechanism. As the planned experiments included regions with
different occlusions grades, it was found very difficult to choose an optimized elevation mask for all experimental
runs. Therefore, the elevation mask was kept at default value of 10◦ for the two defined masks: tracking mask and
PVT mask.

2.2.3 NMEA and xPPS output setup

Two output streams were configured in order to make the GNSS to stream the NMEA messages required by the AHRS.
Table 4 shows the NMEA sentences and the frequency of each stream, which were included in NMEA Output settings.
Additionally, inside Input/Output Selection settings, the NMEA data type was selected at Output COM2 in order to enable
the streaming. The NMEA messages requirements were obtained from SBG Systems.54,p.5

The xPPS output parameters were set up in Navigation>Receiver Operation>Timing. The time interval argument was
set equal to period of ZDA message output, 1 s, in order to attend requirement of SBG Systems.54,p.5 The signal polarity
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12 of 47 GALDAMES et al.

Outputs

Field Stream 1 Stream 2

Port COM2 COM2

NMEA sentences GGA, HDT, RMC ZDA

Frequency 10 Hz 1 Hz

T A B L E 4 NMEA output streams

Reference stations

Mountpoint Identifier RTCM message types

EESC0 Sao Carlos 1004 1006 1008 1012 1013 1019 1020 1033

SPJA1 Jaboticabal 1004 1006 1008 1012 1013 1019 1020 1033

T A B L E 5 RTCM messages types
sent by the selected reference stations

was set to Low2High, that is compatible with AHRS input channel sensitivity set as rising edge (see Subsection 2.1.5).
The delay parameter was maintained at the zero nsec default value, because no method was established in this work to
measure the delay coming from the tailor-made cable connecting AHRS input channel and PPSO (PPS output) pin of
the GNSS. The universal time coordinated (UTC) was selected as time scale reference in accordance with requirement in
SBG Systems.54,p.5 The Max Sync Age was set up to 60 s. Using the UTC time as reference has the accuracy of the position
of the xPPS pulse dependent on GNSS PVT computation. The xPPS position is extrapolated by the GNSS receiver during
PVT outages. Thence, the xPPS pulse output will stop when the age of the last PVT is older than the age specified in the
Max Sync Age argument.

2.2.4 Ntrip broadcaster connection

Initially, the connection between the GNSS and the Ntrip broadcaster was established by using the BKG Ntrip Client
(BNC) version 2.12.3, available for download on the BKG GNSS Data Center at BKG.55 This software handles the
HTTP communication and allows to transfer received real-time GNSS data streams from a Ntrip broadcaster to a
serial port.55 More details about the BNC development and resources can be found in Weber and Mervart.56 The
International GNSS Service (IGS)57 provides the access to several Ntrip broadcasters in different regions worldwide
through affiliated real-time service (RTS) station operators. In this work, we successfully applied to obtain the access
to the IGS-IP broadcasters for research purposes. In addition, we required the registration as user in the RBMC-IP
service provided by IBGE,58 in order to get free real-time access to all data streams of stations of the RBMC. Each
stream on Ntrip broadcaster is defined by using a unique source ID, also called mountpoint.56 The source-table
maintained by Ntrip broadcaster provides information about mountpoints available on the host. The Ntrip broad-
caster host IP of RBMC-IP service is 186.228.51.52 and its port number is 2101. Only one mountpoint is required
to have the GNSS operate in DGPS or RTK PVT modes. The Data Link software tool from Septentrio NV/SA51

allows the configuration of a Ntrip connection, and the forwarding to a serial port in a similar way to the BNC con-
figuration. Due to its easiness to change the connected mountpoint, it was used during the planned experimental
runs.

In order to allow the incoming of RTCM messages in the COM3 port of the GNSS, the RTCMv3 was selected in
the COM3 drop list of Input Communication>Input/Output Selection settings. Both reference stations used in this
work publish differential corrections of GPS and GLONASS systems in RTCM 3.0 format. Table 5 shows the RTCM
message types send by EESC0 and SPJA1 mountpoints. These message types should be enabled in the RTCMv3 of
Communication>Input Settings>Differential Corrections settings, so that the GNSS receiver uses the received messages
to compute PVT solution.

2.3 Support equipments

The operation of the integrated navigation system presented in this work is supported by another equipment installed
in the vehicle. Figures 8 and 9 show these equipments installation on the vehicle trunk. One may see in Figure 8 a
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GALDAMES et al. 13 of 47

F I G U R E 8 Installation of
the support equipments on the
vehicle trunk (front view)

F I G U R E 9 Installation of
the support equipments on the
vehicle trunk (top view)

metal shelf (red arrow), an industrial Ethernet switch (green arrow), a 12 V rechargeable battery case (blue arrow), and
a 4G modem (orange arrow). Figure 9 shows the top view of the installation, one may see in it four industrial fanless
computers (red arrows), an inverter (green arrow), a box of the GNSS receiver (blue arrow), and the location of the
plastic box of the circuit represented in Figure 5 (orange arrow), among others. A top view of this plastic box is shown in
Figure 10 (red arrow).

Figures 11 and 12 show CAN bus connection details. One may see in Figure 11 the pin connections that were used
to make the cable that allows the communication between vehicle CAN bus network and CAN bus board of industrial
computer. The specification of the on-board diagnostic (OBD) connector used in the cable end attached to vehicle CAN
bus input is OBD-II J1962 type A. Figure 12 shows the cable connected to vehicle CAN bus input (red arrow), located
near the vehicle instrument panel.

3 SOFTWARE ARCHITECTURE

The software architecture of the system presented in this work was implemented over ROS framework in order to allow
the integration of the system outputs with other experimental platform resources. A ROS package containing custom
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14 of 47 GALDAMES et al.

F I G U R E 10 Installation
top view of the integration circuit
of the AHRS with the external
connections. AHRS, attitude and
heading reference system

F I G U R E 11 Pin connections of the CAN bus cable. CAN, controller area network

F I G U R E 12 Vehicle CAN
bus input. CAN, controller area
network
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GALDAMES et al. 15 of 47

F I G U R E 13 Software
architecture components

messages definition was developed to support the software architecture operation under nodes and topics concepts of
ROS framework, see Romero.59 This package is described in Subsection 3.1.

One may observe in Figure 13 an overview of our system ROS elements. It shows the used device ports (represented
by gray elements), AHRS subsystem nodes (green elements), CAN subsystem nodes (blue elements), log nodes and bag
files (in black), ROS topics (white rectangles), and input/output links (solid and dashed arrows).

The description of CAN-odometry subsystem nodes is presented in Subsection 3.2. The CAN publisher node (Subsec-
tion 3.2.1) extracts the rear wheels pulse counter from vehicle CAN bus messages. The RTS pulses node (Subsection 3.2.2)
utilizes the serial port to generate a pulse signal which emulates an odometer signal by using a pulse signal generator
thread (Subsection 3.2.3). Subsection 3.2.4 describes a node used only during CAN-odometry subsystem development to
obtain the wheel ring resolution. Subsection 3.2.5 describes the procedure adopted to obtain the nominal wheel circum-
ference. Subsection 3.3 approaches the nodes used to test the CAN-odometry subsystem. The AHRS subsystem nodes
are listed in Subsection 3.4. The AHRS output node (Subsection 3.4.1) accounts for device communication. The AHRS
status node (Subsection 3.4.2) displays warning messages about AHRS operation. The ROS echo node (Subsection 3.4.3)
displays Pose3d messages published by AHRS output node.

3.1 Custom messages package

This package is composed by a set of .msg files and two common files (CMakeLists.txt and package.xml) of packages
structure, see Hansen.60 A subset of 31 .msg files matches the division of AHRS device output buffer available in SBG
Systems.61,p.12 Each file of this subset corresponds to one of the 31 outputs that may be activated in the device output
mask. The outputs are composed by fields with a specific type definition. This type definition follows the SBG System
serial protocol specifications available in SBG Systems.61,p.11 The ROS message definition consists in listing a field type
and a field name per line inside the .msg file in text format, where the assigned field type may be a ROS primitive type or
other .msg file. An equivalent ROS primitive type was selected for each device type definition in order to keep memory
allocation compatibility. Table 6 shows the ROS message definition of the SBG output Euler.

Beyond the SBG output messages subset, the package contains the .msg files shown in Table 7. The
RearWheelsPulses.msg is used by CAN publisher node (Subsection 3.2.1) and RTS pulses node (Subsection 3.2.2). The
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16 of 47 GALDAMES et al.

Activation mask: ROS msg file:

SBG_OUTPUT_EULER sbgEuler.msg

Roll real32 float32 roll

Pitch real32 float32 pitch

Yaw real32 float32 yaw

Abbreviation: ROS, robot operating system.

T A B L E 6 ROS msg file of SBG output Euler

T A B L E 7 ROS custom msg files

RearWheelsPulses.msg RearWheelsOdo.msg Pose3d.msg

Header header Header header Header header

uint16 right uint16 pulses_right sbgPosition position

uint16 left uint16 pulses_left sbgEuler euler

float32 vel_right sbgAttitudeAccuracy attitude_accuracy

float32 vel_left sbgNavAccuracy nav_accuracy

float32 pulses_per_revolution_right sbgDeviceStatus device_status

float32 pulses_per_revolution_left sbgUTCTime utc_time

sbgOdoVelocity odo_velocity

Abbreviation: ROS, robot operating system.

RearWheelsOdo.msg is used by the Ring resolution estimator node (Subsection 3.2.4). The Pose3d.msg is used by AHRS
subsystem nodes (Subsections 3.4.1, 3.4.2, and 3.4.3). One may see in Table 7 that the SBG Output Euler is a field of Pose3d
message.

3.2 CAN-odometry subsystem

Three CAN messages ids were employed in CAN-odometry subsystem. The id codes were omitted in this work for reasons
of confidentiality.

3.2.1 CAN publisher node

This ROS node basically extracts rear wheels pulse counter from data field of CAN messages filtered according to a specific
CAN message identifier and publishes a custom ROS message enclosing the rear wheels pulse counter difference between
two consecutive CAN messages. Before CAN publisher node operation, the Advantech CAN device driver (advcan) was
set to load automatically during Ubuntu system boot time by using Linux modprobe command. Additionally, the CAN
devices permissions were configured to be changed at system boot time, too, in order to allow CAN-odometry ROS nodes
have open read access to the CAN devices. The available version of advcan code was developed to be compatible with
Ubuntu 12.10 and it was necessary to be modify it in order to enable code compilation under Ubuntu 16.04. After the
ROS node is launched, the main code block initializes the CAN device in the selected port using can4linux library. If the
CAN device was successfully initialized, the acceptance filtering is configured by using acceptance code and acceptance
mask in base frame format with 11 identifier bits.

Once the CAN device boot is completed, this ROS node processes each incoming CAN message in a loop block. The
bit fields that correspond to left and right rear wheels pulse counter are extracted from CAN data field by using their
bit position as shown in Figure 14. This loop does not have elapsed time constraint, thus, messages are read from CAN
buffer as the loop block processing is completed. One may see in Figure 14 that each rear wheel pulse counter has a
13-bit allocated space to receive pulses count information, which allows a maximum of 8191 pulses. When this number is
achieved the pulse counter restarts from zero. After extracting the pulse counters, the node calculates the pulses variation
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GALDAMES et al. 17 of 47

F I G U R E 14 Rear wheels pulse
counter raw data field bit position

of each rear wheel in relation to values obtained from previous CAN message and adjusts negative values resulting from
maximum pulse counter transition. Finally, the pulse counter difference of each wheel is published in a ROS topic at 10 Hz.

The main reason to divide the CAN messages reading and the pulse signal generation in two ROS nodes was to avoid
possible delays by extracting rear wheel pulses count and update pulse signal generation frequency at same loop step.
The CAN buffer increases cumulatively if the loop step processing time exceeds the time window between two incoming
CAN messages, consequently the pulse signal frequency will be updated based on old CAN messages, because they are
read following FIFO (first-in, first-out) method. Moreover, this nodes division allows a better code reuse to obtain another
useful information from CAN bus and convert them into ROS messages. Nodes division also improves testing procedure
by testing CAN publisher node separately from RTS pulses node. Another benefit is that RTS pulses node can be adapted
to reproduce other odometry types by changing the ROS message type of its subscriber.

3.2.2 RTS pulses node

This ROS node produces a pulse signal switching RTS pin state of serial port and adjusts the frequency of the signal
according with the ROS messages published by CAN publisher node. The main code block of this node initializes the
access to a serial port and creates a thread object which accounts for pulse signal generation. This thread is the core
of the node, its operation and validation are described in detail in Subsection 3.2.3. The Linux groups configuration of
computer running ROS nodes was modified to allow the access of ROS nodes to serial port without sudo privileges. Two
components, a global variable and a ROS subscriber control the frequency of pulse signal generation. The global variable
is initialized with zero value and determines the frequency of pulse signal generation. The thread object checks this value
at the beginning of each period of the square wave signal. As the thread object is running in parallel to ROS subscriber
component, at initialization no pulse signal is generated until the value of global variable has been changed from zero to
a positive value.

A callback function associated with the ROS subscriber is executed every time a ROS message is published in the ROS
topic of subscriber, that is the same ROS topic where CAN publisher node publishes the ROS messages containing the
rear wheel pulses variation. The callback function calculates the new frequency value using the pulses variation of the
two rear wheels, a mean of these two values corresponds to the pulses variation of a virtual odometer located at the center
between the two rear wheels. The use of a virtual odometer provides a better estimation of velocity than use of only the
pulses of one of the two rear wheels, mainly in curved trajectories when each rear wheel has a different pulses variation.
Moreover, the position of virtual odometer facilitates the extrinsic calibration, because the AHRS was installed in the
same vehicle longitudinal axis of symmetry. The new frequency is obtained through Equation (2), where ΔP symbols are
pulses variations. As the rear wheels pulses variations are acquired from CAN bus at 10 Hz, the pulses variation must
be divided by the period of 0.1 s to obtain a pulses frequency value in Hz. The global variable is updated with the new
frequency by using the reduced form of Equation (3).

f =
(ΔPright + ΔPleft

2

)
∕0.1 s, (2)

f = 10 (ΔPvirtual odometer)Hz. (3)

3.2.3 Pulse signal generator thread

The first reason to have chosen the serial port as output for the pulse signal generator was the availability of this port
in the same computer with CAN interface. The next step was the development of a C code able to change the signal
value in Volts of any pin of DB9 serial RS232 port. So, pin 7 (RTS) of this standard was selected because it is a control

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12097 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 of 47 GALDAMES et al.

(A) f=50Hz, timescale=10ms. (B) f=100Hz,timescale=10ms.

(C) f=250Hz, timescale=10ms. (D) f=500Hz, timescale=2ms.

(E) f=1,000 Hz, timescale=2ms. (F) f=2,000Hz, timescale=0.5ms.

F I G U R E 15 Signals output in the
RTS pin by pulse signal generator as seen
when probed by an oscilloscope Minipa
MO-2200. RTS, request to send

pin and its state can be set via one function of Linux serial programming. The combination of this I/O control function
with the sleep function made possible to obtain a pulse signal with C code, where the generation of a single pulse signal
consists in changing the RTS pin state from inactive to active, wait for a preselected time, and then return the RTS pin
state to inactive. The inclusion of a loop and a sleep time between pulses in the code resulted in a square wave signal.
The pulse signal generator thread was probed in an oscilloscope at different frequencies using as input the output of
testing node described in Subsection 3.3.1. This measurement procedure was used for testing the first versions of C code,
to check signal shape, and to confirm if signal values obtained in the serial port are compatible with AHRS electrical
specifications.

Figure 15 shows the pulse signals generated by final version code at different frequencies, as seen when probed by an
oscilloscope Minipa MO-2200. One may see in Figure 15A-D that the frequencies estimated by the oscilloscope show no
bias in the generated pulse frequencies. A bias of around +4.2% appears at 1000 Hz and 2000 Hz frequencies, as one may
see in Figure 15E and F.
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T A B L E 8 Electrical compatibility
verification

Electrical
parameter

SBG IG-500E AHRS
odometer input

Advantech serial port RTS
pin signal values

Compatible
devices?

Range ±20 V ±11 V Yes

Low level <0.8 V −11 V Yes

High level >2.2 V +11 V Yes

Table 8 shows the electrical compatibility verification between SBG AHRS device and Advantech serial port. One may
conclude that the serial port output is fully compatible with the AHRS odometer input.

3.2.4 Ring resolution node

Considering that the wheel magnetic ring resolution is a integer given its constructive nature and that this value is used
internally by the vehicle systems, to estimate the ring resolution is to obtain the integer which best fits to the velocities and
pulses count values extracted from CAN messages. A ROS node was developed to estimate the odometer ring resolution
adopting the hypothesis that the wheels velocity value extracted from a specific CAN message is based on the registered
value of wheel circumference (see Subsection 3.2.5) and the wheels cumulative pulses (see Subsection 3.2.1).

The initialization of this node is similar to first steps of CAN publisher node code described in Subsection 3.2.1, such
as CAN device access setup and ROS components initialization. Besides to compute rear wheels pulses count difference
between two consecutive CAN messages, this node extracts the rear wheels velocities from another CAN message using
bit fields presented in Figure 16 and Equation (4).

The equation terms: factor, offset, and unit were obtained from vehicle manufacturer documentation. These computed
values were used to estimate the ring resolution integer that best fit the velocity and pulses variation pair.

vwheel = (raw ⋅ factor + offset)unit = ((raw)Dec ⋅ 0.0625 + 0)km/h. (4)

Because velocity values less than 2.75 km/h are truncated at this value by vehicle device system, only velocity and
pulses variation pairs with velocity values higher than this were considered as valid pairs in the estimation. Due to the
100 Hz rate of the CAN message which contains the wheels velocities raw values, the message use as velocity input to RTS
pulses node (Subsection 3.2.2) seems a good choice but the truncation behavior precludes its adoption. One CAN message
identifier is broadcast at 10 Hz and the second used CAN message identifier at 100 Hz, this difference makes it difficult to
read the two message types simultaneously. A solution to filter the two types using a combination of acceptance code and
mask was tested, but it does not work satisfactorily. The implemented solution switches the acceptance code register and
running in a loop block at the rate of the slower CAN message identifier at 10 Hz. For each reading of the slower CAN
message, 10 faster CAN messages are read in order to prevent the outdated messages accumulation in the CAN buffer
due to the set loop rate.

Since pulses variation and velocities of rear wheels were computed in the loop block, the estimated ring resolution
is calculated in PPR using the Equation (5), where ΔPwheel is the pulse variation of left or right rear wheel, T is the time
period of pulses variation, Cwheel is the wheel circumference estimated in Subsection 3.2.5, and vwheel is the velocity of left
or right rear wheel. The fraction ΔPwheel

T
corresponds to pulses rate and the fraction Cwheel

vwheel
represents the time to complete

a wheel revolution.

R̂wheel =
(
ΔPwheel

T
⋅

Cwheel

vwheel

)
PPR

. (5)

F I G U R E 16 Rear wheel velocities
data field bit position
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20 of 47 GALDAMES et al.

F I G U R E 17 Extracted raw data of
wheel circumference and data field bit
position

Two ring resolutions (R̂wheel) are obtained, one for each rear wheel. At the loop block end, a custom ROS message
RearWheelsOdo.msg (see Table 7) is employed to publish velocity, pulses variation, and resolution of each rear wheel.
A test drive was carried out to collect and record the data published by this node. The tire pressure was set to 31 psi before
test drive execution. The analysis of the recorded data determined that R̂wheel = 81 PPR is the best adjusted integer.

3.2.5 Wheel circumference calculation

The car wheel circumference value is required to estimate the odometer gain parameter explained in Subsection 2.1.4.
This value was obtained from the CAN bus by using a C code containing a library to access the CAN device by filtering
user selected CAN messages. The C code shows on the screen the data frame of each read CAN message in hexadecimal.
A specific CAN identifier was filtered to extract the wheel circumference-related value, the extracted raw data, and its bit
position in the CAN data field is shown in Figure 17.

The extracted raw data is the first term of conversion formula of Equation (6) used to obtain the wheel circumference
(Cwheel). The terms: factor, offset, and unit were obtained from vehicle manufacturer documentation.

Cwheel = (raw ⋅ factor + offset)unit = ((24)Dec ⋅ 5 + 1440)mm = 1620 mm. (6)

In order to check the obtained value coherence, this was compared with circumference value calculated from mea-
sured wheel diameter. The choice to adopt the CAN value came from the best practice of manufacturer value use instead
of the manual measurement subjected to inaccuracies, such as tire pressure variations, tire wear, and measuring proce-
dure. No ROS node was implemented to extract CAN raw data containing the wheel circumference, because this extracted
value is constant and it needs to be calculated only once.

3.3 CAN-odometry testing nodes

In order to verify odometer velocities read by AHRS, two nodes were launched during validation tests. The two test nodes
publish same message type of CAN publisher node output at 10 Hz. This allows temporarily to replace the CAN publisher
node output with custom values for testing purpose. The node launched to test constant velocity values is described in
Subsection 3.3.1, and the node developed to test acceleration behavior is presented in Subsection 3.3.2.

3.3.1 Pub node

The node was launched by using a ROS tool which publishes a ROS message with the inserted values at selected constant
rate. Below, the command line used to launch a rostopic node which publishes RearWheelPulses messages in topic call
as /test at 10 Hz:

rostopic pub -r 10 /test car_msgs/RearWheelsPulses ’{header: seq: 0, stamp: 0, frame_id: odom, right: 10, left: 10}’
The count value 10 for each rear wheel is equivalent to 2 m/s using the AHRS settings detailed in Subsection 2.1.4.

3.3.2 MSG publisher node

A ROS node was developed to reproduce car acceleration behavior because the ROS tool used in the Pub node only works
with fixed content messages. This node code creates a ROS publisher object and then enters into a loop block divided in
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two stages. In the first stage a pulses count variable initialized with zero value is increased at fixed steps. The updated value
is assigned to the two ROS message fields which matches rear wheels pulses count, next the ROS message is published to
/test topic. The second stage performs the same procedure, but instead, decreasing the last pulses count value. The fixed
step value is set on the basis of acceleration parameter value input at node launch, and it has a minimum value of 1 pulse.
The increase and decrease steps are limited to 100 steps at each stage, or 10 s at publishing rate at 10 Hz. The odometer
velocity showed no strange delays when analysed in SBG Center with acceleration inputs of 2 m/s2 and 4 m/s2.

3.4 AHRS subsystem

3.4.1 AHRS output node

This node accounts for AHRS external communication. This device model uses the serial protocol to receive commands,
to return acknowledge about commands execution, and to send data frames. The device has three types of communi-
cation which define how data frames are sent, they are: normal mode, continuous mode, and trigger mode. The main
configurations of AHRS were made using SBG Center software and saved to nonvolatile flash memory. Therefore, few
commands are sent to AHRS during node operation. The main code block of the node initializes the access protocol of
AHRS device in the USB port. If the access was successfully established, the main code sends a command to define the
default output mask and another command to enable the communication in continuous mode. The sent commands are
C library functions of SBG SDK. The default output mask determines which data fields will be included in the output
buffer according to active bit positions. Including all possible outputs in default output mask may lead to output buffer
saturation and loss of data frames, as well as embedded EKF malfunction due to AHRS CPU overload.

To run the continuous mode, two handle functions are required; they are callback functions which solve in response
to protocol handle call which is carried out in a loop block with controlled rate. One of the handle functions deals with
error codes, it is called each time that an error occurs on a continuous frame. The second handle function processes the
output buffer, it is called each time that new data are received on a continuous frame. It is in this second callback function
that the output buffer data fields values are assigned to fields of a ROS message which is then published. A custom ROS
message, as called Pose3d, was created to include the chosen fields of this project which are not present in AHRS message
of the ROS sensors standard messages.

Initially, the node was developed to operate in normal mode in which a request is sent to AHRS and a frame is returned
with the requested fields. The normal mode has a simpler implementation than continuous mode, but it demands addi-
tional AHRS CPU load that results in an output buffer saturation when requesting the set of fields of the implemented
project. This wrong status of output buffer saturation was detected during preliminary tests through the warning mes-
sages of AHRS status node (Subsection 3.4.2). With the node in continuous mode it was possible to obtain the chosen set
of fields without output buffer saturation at the maximum permissible operating rate at 100 Hz.

3.4.2 AHRS status node

The purpose of this node is to convert the status frame of 32 bits output by the AHRS in human-readable messages. This
feature provides the capacity of performance evaluation of AHRS, as well as it allows to inspect possible sources of errors
or malfunctions during operation of integrated sensors. The node implementation was made apart from AHRS output
node in order to avoid delays in AHRS output node rate. This node was employed during preliminary tests and planned
data collection.

The first 21 bit positions of status frame represent 21 statuses defined in SBG Systems,61,p.19 some of them are only
updated during device initialization and others are updated in real-time. If any of these bit positions is set to 0, it means
that something is wrong and that the AHRS operation can be affected. As the status frame is updated at 100 Hz, the node
was programmed to print only the wrong statuses in the form of ROS warning messages on the screen. Each printed ROS
warning message is bit-specific and has a message text according to SBG Systems.61,p.19 The node subscribes to the ROS
topic which the AHRS output node publishes Pose3d messages, the status frame is a field of Pose3d.msg (see Table 7).
Using a callback function, the node processes each published status frame and prints applicable ROS warning messages.
The bit 17 mask of status frame which corresponds to GPS leap seconds validation was removed from warning messages
set, because it does not apply to the model IG-500E due to the fact that NMEA protocol does not support this datum.
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Factor Name Type Low High

A SVs above horizon Categorical 13-15 18-20

B Reference station Categorical EESC SPJA

C Route Categorical UFSCar USP2

D Velocity source Categorical GNSS CAN-odometry

T A B L E 9 Factor levels of the 24 design

3.4.3 Echo node

The echo node was launched by using a ROS tool which displays messages published to a topic. The command line used
to launch a rostopic node, which displays Pose3d messages published by AHRS output node, was: rostopic echo /Pose3d.

4 EXPERIMENTAL DESIGN AND PROCEDURE

4.1 Experimental design

An experimental design was carried out to establish if CAN-odometry system improves or worsens positioning accuracy
of our INS/GNSS navigation system. The positioning accuracy herein refers to one of the navigation accuracy components
of the accuracy output estimated by the EKF-embedded AHRS, that is specified in SBG Systems.61,p.18 According to SBG
Systems,50,p.43 the position accuracy output of the AHRS device can provide good real-time information about robustness
of the embedded filter. A 2k factorial design was then chosen in order to evaluate the resulting position accuracy under
different conditions. As the experimental platform was not equipped with external wheel encoders, the CAN-odometry
input was compared with GNSS velocity input, which is the velocity source allowed by the AHRS in the absence of
odometer pulses signal. Thus, velocity source was the first factor that was included in the 2k factorial design.

The AHRS alone does not estimate a position, it requires the input from a position source. In this way, the AHRS
provides a position estimation based on: the last estimated state, the internal sensors inputs (gyroscopes, accelerometers,
magnetometers, and temperature sensors), and the external sensors inputs (odometer and GNSS). This estimation task is
performed by an EKF embedded in the AHRS's CPU. The EKF loop rate allows the AHRS to provide a position estimation
at 100 Hz rate, higher than the configured GNSS output at 10 Hz. The embedded EKF also provides an estimation during
GNSS outages, as well as a smooth transition under high variations in accuracy of GNSS output. However, the position
accuracy of EKF solution is limited by the position accuracy of GNSS output.

Several factors can affect the performance of the embedded EKF, including the calibration issues previously mentioned
in Subsection 2.1. Assuming that calibration errors of AHRS internal sensors equally affect the position accuracy in the
two velocity input modes, the choice of other factors of the 2k factorial design was focused on effects that impact the
positioning accuracy of the GNSS PVT solution. In this context, some effects that can be predicted or controlled were
included in the final design. Besides the velocity source factor, three other factors were included in the 2k factorial design,
resulting in a 24 factorial design. Table 9 shows the four factors and their respective levels. The details about each factor
are described in next subsections.

Initially, a replicated 24 full factorial design with 8 partial blocks was created in order to consider differences between
days of the experiment. Blocking of the replicated 24 full factorial design reduces the influence of extraneous factors on
the analysis, such as meteorological conditions, space weather influence, ionospheric irregularities, among others. In this
way, four experimental runs were initially planned for each experiment day, totalling 32 runs over 8 days. The 4-run per
block choice was established because of experimental time constraints per day, and due to the run order generated by
randomization which may require a long waiting time for the change in the level of SVs above horizon, besides of the
short time windows at each level (which are better explained in Subsection 4.1.1).

Moreover, if one of the runs in a block fails, it would be necessary to repeat all block runs, because the failing run must
be repeated on the same day and it must follow the established run order. Consequently, this would increase the overall
experimental time and the experiment costs. Furthermore, the partial blocking contribution of 1/8 is minimal on the anal-
ysis step of factorial design when compared to full block contribution. For this reason, the final replicated 24 full factorial
design contains only one full block that ignores influence related to each day of the experiment on the analysis. With one
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block it was possible to allocate on the same day all runs allowed by the established run order. The two replicates choice,
which increases the number of runs by 16, was necessary to compute p-numbers, required to classify significant effects.

4.1.1 Factor A: SVs above horizon

The availability of SVs above horizon is a key factor in the computation of PVT solution by the GNSS. So that, a better
accuracy in the solution is expected for a higher number of SVs above horizon. As position of this solution is sent to AHRS
via NMEA messages, a better performance of EKF solution is expected with a greater number of SVs above horizon, too.
This number varies according to day time and depends on geographical location. In order to control this factor during
experimental runs, it became necessary to make a prediction of the SVs above horizon at the route waypoints. Some
software and online tools provide this prediction based on user input parameters. In this work we used the RxPlanner tool
from Septentrio NV/SA51 to obtain the prediction of SVs above horizon for the experimental runs days. The RxPlanner
computes the satellites trajectories based on an almanac automatically updated during the software loading procedure,
and it provides among other information the satellites number above horizon with minutes resolution. Figures 18 and 19
show the linear chart of the predicted SVs above horizon generated by RxPlanner for two different locations, one on each
route. The prediction period was from 07:00 AM to 07:00 PM on 19 September 2017.

As one may see in Figures 18 and 19, the time windows at the higher quantity of satellites, as well as the time windows
at the lower quantity are very short, some of them have a duration of only 4 min. The mean estimated time to complete
the routes is around 15 min and 12 min, for UFSCar and USP2 routes, respectively. So, these time windows are not enough
to complete the routes. As the route is also an experiment factor, short time windows would restrict the route extension
if a fixed number was applied at each level of SVs above horizon factor. Because of this, we adopted a quantity range for
each Factor A level instead of fixed quantities, in order to allow the vehicle to always complete the routes at the planned
level. Due to this, the factor type was defined as being of categorical type instead of numerical type. This choice reduces
the expected accuracy of the model, but it provides a greater flexibility to plan the data acquisition. One may conclude
that the 2k design approach is not the best choice for models refinements, it applies better to explore significant factors
and interactions.

On the other hand, the predicted quantity of satellites is computed based on the coordinates of a fixed location. It is not
feasible for the planned experiment to estimate or to verify the satellite availability for many waypoints across the routes
for each experiment day. One may observe that, by comparing the two predictions (Figures 18 and 19), the difference
between the two is minimal considering that distance between the two routes is about 4 km. That way, it is possible to
adopt only one reference point at each route with a minimal loss in prediction accuracy. The predicted number of SVs was
confirmed at the beginning and at the ending of each experimental run using RxControl.51 Sometimes, it was necessary
to wait for about 2 min for the number of SVs in view to change to the predicted value.

F I G U R E 18 Prediction of
satellites above horizon on 19 September
2017 (experiment day 7) at UFSCar
reference point
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F I G U R E 19 Prediction of
satellites above horizon on 19 September
2017 (experiment day 7) at USP2
reference point

In addition to the location in geodetic or Cartesian coordinates, the elevation mask and the satellite selec-
tion are required for the SVs prediction computation. For all runs of the presented planned experiment an eleva-
tion mask of 10◦ was adopted, the same elevation mask configured in the GNSS settings (see Subsection 2.2.2).
All satellites of the GPS and the GLONASS constellations were selected, the same satellite selection applied in
the GNSS settings (see Subsection 2.2.2), no exception for unhealthy satellites in the Septentrio almanac was
applied.

The fact of two sets having the same number of SVs above horizon does not imply that the sets will produce similar
PVT solution accuracy. The different observation geometry of each set may result in a relevant difference in the dilution
of precision (DOP). Due to this geometry factor, an experimental design approach that includes the DOP as a factor in
place of the number of SVs above horizon may yield a more precise model of the effects. This model refinement based on
the DOP will be addressed in future works.

4.1.2 Factor B: Reference station

A better accuracy in the PVT solution is expected by using differential corrections coming from a nearby refer-
ence station than from one located far away. Among all the stations connected to IBGE/RBMC Ntrip broadcaster,
the mountpoint located in the EESC-USP (Figure 20) is the nearest to this project facilities, and it was the first
to be chosen.

One may observe in Figure 21 that there are two stations (SPJA and SPPI) nearby to EESC station, both about 90 km far
away. As SPJA is the station nearest to the place of an experiment of a future work, a mountpoint of this one was chosen
as second reference station to the planned experiment. The location of RBMC's stations in zipped KML (Keyhole Markup
Language) format (.kmz) was retrieved from IBGE.62 Besides the distance criterion for mountpoints selection, only those
which transmit differential corrections of GPS and GLONASS systems in RTCM 3.0 format were used. No differentiation
was made regarding equipment models installed in the stations.

4.1.3 Factor C: Route

In order to evaluate impact of the occlusion effects during the experiment, we used two predefined routes during the
experimental runs. Figures 22 and 23 show the two selected routes plotted on satellite images. The images were gener-
ated using Google Earth Pro. Aiming to insert the path of each route in the maps, two KML files were extracted from
experimental run logs using SBF converter tool provided by Septentrio, and loaded in Google Earth Pro.

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12097 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GALDAMES et al. 25 of 47

F I G U R E 20 GNSS antenna of EESC0 mountpoint (photograph taken by
author on 6 April 2018)

F I G U R E 21 Satellite images generated by Google Earth Pro pointing out the RBMC's stations located nearby EESC station in a 100 km
radius (red circle)

The two routes differ in their buildings density, as well as in type and number of roadside trees across the route path.
One may observe in Figure 22 that the UFSCar route has a higher buildings density than USP campus 2 route (Figure 23).
Also, the path of UFSCar has more route stretches surrounded by roadside trees than USP campus 2 path. One of the
most occluded stretches is located in the south area of UFSCar path (left bottom side of cyan path). This route stretch
is surrounded by tall eucalyptus trees on both sides of the road. Due to this, a higher impact in the embedded EKF
performance due to occlusions is expected during the UFSCar runs.
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F I G U R E 22 Satellite image generated by Google Earth Pro pointing out the UFSCar route (cyan path)

F I G U R E 23 Satellite image generated by Google Earth Pro pointing out the USP2 route (yellow path)
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T A B L E 10 Approximate distance from route waypoints to reference stations in
kilometers

Mountpoint

Route EESC0 SPJA1

UFSCar 2.25-3.73 91.7-92.9

USP Campus 2 3.00-3.66 91.5-92.4

F I G U R E 24 Satellite image generated by Google Earth Pro pointing out the routes UFSCar (cyan path) and USP campus 2 (yellow
path), as well as the antenna of EESC0 mountpoint (yellow icon)

Since the distance to reference station is also a performance factor, the routes must be carefully chosen so that their
distances to the reference stations are approximately equal. This procedure helps to mitigate that occlusion effects be
confused with the accuracy variation coming from bias in the distance to the reference station. Table 10 shows the
approximate distances between the routes waypoints and the selected reference stations. These values can be obtained by
processing the GNSS logs, however as this choice should be made during the planning of the experiment, it was carried
out by using Google Earth Pro measuring resource. Figure 24 illustrates through red lines the distance from the antenna
of EESC0 mountpoint to the routes UFSCar and USP campus 2.

4.1.4 Factor D: Velocity source

This factor allows to compare the EKF performance under two different velocity inputs, one provided by the GNSS and
other obtained from the odometer emulated by the CAN-odometry framework. As the GNSS has been configured to
operate in the RTK fix mode (see Subsection 2.2.2), always that the GPS/GLONASS signals availability and the received
differential corrections allow it, the expected accuracy of GNSS velocity input will be the better possible. The setup pro-
cedure to set the factor level at each experimental run requires only one setting change and it was carried out by using
SBG Center settings interface in Velocity source option of Navigation tab settings during experimental run preparation.

Whereas the CAN-odometry output has an independent behavior, the velocity estimation output by GNSS is subjected
to variations that depend on the three other experiment factors, due to their influence in the accuracy of the PVT solution.
This dependence leads to expect significant contributions of two-way interactions between factors and it was one of the
reasons to adopt a 2k factorial design for the planned experiment.
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4.2 Experimental procedure

In order to reduce unavoidable experimental errors, a standard procedure was established to carry out the experimental
runs. A waiting time of at least 15 min was applied before the start of each run in order to allow the synchronization
between the GNSS and the AHRS, as well as equipments warm-up. All runs were carried out only during sunny days. A
start and end point was chosen for each route, and same points were used during all experimental runs. The criteria for
selection of start and end points, called herein as reference points, were low occlusion of SVs, and impact on the local
transit of each route. The settings of each experimental run were checked at the reference points before the start. Table 11
shows the geodetic coordinates of reference points used to plan day and time of each experimental run by using RxPlanner
tool to predict the SVs above horizon. The pictures of the experimental platform parked at each location of the reference
points are shown in Figures 25 and 26.

4.2.1 Magnetic declination estimation

The magnetic declination refers to the angle of difference between true North and magnetic North.63 In this work,
we opted for manually setting the magnetic declination value instead of activating automatic estimation by the AHRS.
This procedure allows the choice of model used in the estimation. The declination value was calculated using the
most recent World Magnetic Model (WMM)64 sponsored by the U.S. National Geospatial-Intelligence Agency (NGA)
and the U.K. Defence Geographic Centre (DGC).65 An online calculator provided by the National Centers for Envi-
ronmental Information (NCEI)63 was used to calculate declination value input in AHRS filter settings at each run of
the designed experiment. These values were calculated by using as input parameters the latitude and the longitude of
routes reference points as well as the experimental run date. Figure 27 shows the NCEI calculator result in HTML for-
mat for the reference point of USP Campus 2 on 4 September 2017. This result was used in the first four runs of the
designed experiment.

Reference point

Geodetic coordinates UFSCar USP2

Latitude (𝜑) S 21◦58′49.93627′′ S 21◦59′54.20501′′

Longitude (𝜆) W 47◦52′37.80188′′ W 47◦55′42.07644′′

Height (h) 867.910 m 836.540 m

T A B L E 11 Geodetic coordinates of reference
points in DMS (degrees minutes seconds)

F I G U R E 25 Picture of the
location of the UFSCar reference
point
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F I G U R E 26 Picture of the
location of the USP2 reference
point

F I G U R E 27 Estimated declination by NCEI calculator. NCEI, National
Centers for Environmental Information

4.2.2 Experiment logs

A set of logs was made from the experimental runs. A bag file was recorded to save the published messages in the ROS
topics at each run as previously shown in Figure 13. A software tool called RxLogger provided by Septentrio NV/SA51 was
configured, it runs during each experimental run in order to produce two log files. One of them is used to keep a record of
raw data received from GPS and GLONASS systems in a SBF (Septentrio Binary Format) file, as well as the PVT solution
in geodetic coordinates, the received differential corrections, the status of GNSS, and the attitude estimation. The second
log file contains the same NMEA streams configured in COM2 port (see Table 4) in order to look for fail conditions and
to perform a deeper analysis of the NMEA messages values sent to the AHRS, if required.

4.2.3 Logs processing

The EKF-embedded AHRS-estimated position metric performance is published in a subfield of sbgNavAccuracy field of
Pose3d message type previously described in Table 7. One way to extract the message fields values from bag files is by
playing them and reading the messages by using a ROS subscriber. This is a good way to combine messages from different
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topics and to test custom ROS nodes. However, beyond the time spent to write the custom subscriber code, it demands
time to play the bag files. Due to this, a rostopic echo command was used in order to extract the Pose3d messages from
the bag files in a faster way. The command below extracts the Pose3d messages from a bag file and writes them in a text
file in CSV (Comma-Separated Values) format.

rostopic echo -p -b log_file.bag/Pose3d > log_file.Pose3d.

The CSV files were then analyzed in MATLAB environment. Before computing the responses presented in Table 12, a
cut-off threshold was established for each experimental run in order to exclude values recorded during the delays between

T A B L E 12 Replicated 24 full factorial design matrix with the extracted responses

Order Factors Position accuracy

Standard Run Center point Blocks A B C D Mean Minimal

2 1 1 1 18-20 EESC0 USP2 GNSS 0.1009 0.0273

3 2 1 1 13-15 SPJA1 USP2 GNSS 0.4110 0.2453

1 3 1 1 13-15 EESC0 USP2 GNSS 0.6408 0.2453

4 4 1 1 18-20 SPJA1 USP2 GNSS 0.4022 0.2277

31 5 1 1 13-15 SPJA1 UFSCar CAN-odometry 0.9639 0.2435

22 6 1 1 18-20 EESC0 UFSCar GNSS 5.9997 0.0273

13 7 1 1 13-15 EESC0 UFSCar CAN-odometry 2.2471 0.0319

28 8 1 1 18-20 SPJA1 USP2 CAN-odometry 0.9893 0.2262

23 9 1 1 13-15 SPJA1 UFSCar GNSS 9.4465 0.2453

5 10 1 1 13-15 EESC0 UFSCar GNSS 8.5428 0.2612

21 11 1 1 13-15 EESC0 UFSCar GNSS 5.9598 0.2453

12 12 1 1 18-20 SPJA1 USP2 CAN-odometry 0.2871 0.2262

7 13 1 1 13-15 SPJA1 UFSCar GNSS 13.8355 0.2453

6 14 1 1 18-20 EESC0 UFSCar GNSS 6.5145 0.0273

26 15 1 1 18-20 EESC0 USP2 CAN-odometry 0.7238 0.0273

16 16 1 1 18-20 SPJA1 UFSCar CAN-odometry 5.2855 0.2263

9 17 1 1 13-15 EESC0 USP2 CAN-odometry 0.0802 0.0319

15 18 1 1 13-15 SPJA1 UFSCar CAN-odometry 0.5471 0.0319

32 19 1 1 18-20 SPJA1 UFSCar CAN-odometry 11.0421 0.2262

20 20 1 1 18-20 SPJA1 USP2 GNSS 0.3057 0.2277

8 21 1 1 18-20 SPJA1 UFSCar GNSS 8.2502 0.2277

27 22 1 1 13-15 SPJA1 USP2 CAN-odometry 1.8200 0.2435

14 23 1 1 18-20 EESC0 UFSCar CAN-odometry 7.9623 0.0273

25 24 1 1 13-15 EESC0 USP2 CAN-odometry 0.0796 0.0319

30 25 1 1 18-20 EESC0 UFSCar CAN-odometry 0.9651 0.0273

18 26 1 1 18-20 EESC0 USP2 GNSS 1.5976 0.0273

10 27 1 1 18-20 EESC0 USP2 CAN-odometry 0.1397 0.0273

17 28 1 1 13-15 EESC0 USP2 GNSS 0.1087 0.0319

24 29 1 1 18-20 SPJA1 UFSCar GNSS 2.6284 0.2453

19 30 1 1 13-15 SPJA1 USP2 GNSS 0.6918 0.2612

29 31 1 1 13-15 EESC0 UFSCar CAN-odometry 3.4014 0.0364

11 32 1 1 13-15 SPJA1 USP2 CAN-odometry 2.4894 0.2435

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12097 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GALDAMES et al. 31 of 47

the log recording and the vehicle movement at the start and the ending of each route. A MATLAB code was developed to
perform the steps mentioned above, and the resulting outputs were saved using diary function. The diary files organized
by experimental runs were then used to input the responses values in Minitab environment to perform the DOE analysis.

5 RESULTS

In a 24 full factorial design all 16 combinations of low and high levels for each of four factors are employed. This was
the final design chosen to evaluate the performance of the position estimated by the INS/GNSS navigation system. The
adoption of two replicates, in order to obtain an estimate of experimental error, resulted in 32 experimental runs. Table 12
shows the 32 experimental runs in randomized order with respective response values extracted from log files using the
MATLAB codes. In Table 12, the low and high factor levels are uncoded, that is, they are in categorical text instead of
coded as −1 and +1. This worksheet data format was chosen to better control the setup of experimental runs during data
collection. The first column of Table 12 represents the standard order of runs after randomization performed by Minitab
utilizing an optional decimal number as reference, and the second column, the order for execution of experimental runs.
In Minitab options, the decimal number 11 was employed for randomization. The use of reference numbers allows the
random order reproducibility by other researchers that use Minitab in their experiments. No additional center points and
neither additional blocks were included in the design definition as can be seen in the third and fourth columns of the
design matrix (Table 12).

Two response types were extracted and computed from the data logs of experimental runs using MATLAB codes. The
response values were then recorded in DOE worksheet of Minitab 18 in order to carry out analysis of factorial design. The
last two columns of Table 12 show responses of the mean values of position accuracy and the minimal values of position
accuracy of each experimental run, respectively, where position accuracy refers to positioning accuracy computed by the
EKF-embedded AHRS device. The analysis of factorial design was done separately for each response type, and it was
divided in four steps. Subsection 5.1 describes the results analysis of “Mean Position Accuracy” response type; Subsection
5.2 describes the results analysis of “Minimal Position Accuracy” response type. Subsections of 5.1 and 5.2 describe details
of the analysis steps. A statistical significance criterion was manually applied in the analysis procedure of factorial design.
Thus a significance level of .05 was employed in the analysis of the two response types. The experimental design choice,
as well as the factorial design analysis were based on concepts and procedures extracted from several references.66-76

5.1 Response: Mean position accuracy

5.1.1 Step 1: Determination of significant terms

Table 13 shows the analysis of variance (ANOVA) table generated by Stat > DOE > Factorial > Analyze Factorial Design
menu option of Minitab 18, where the column associated with “Mean Position Accuracy” values was entered in Responses
field. As shown in this ANOVA table, the P values for linear terms “Route” (C) and “Velocity source” (D), 2-way interac-
tions “SVs above horizon” * “Velocity source” (AD) and “Route” * “Velocity source” (CD), as well as 3-way interaction “SVs
above horizon” * “Route” * “Velocity source” (ACD) are significant because they are less than the employed significance
level of .05.

Figure 28 shows Pareto chart of the standardized effects generated by Minitab 18. The red line threshold in the Pareto
chart indicates the reference T value for a P value of .05. The effects that surpass this red line are statistically significant.
As can be seen, Route (C) is the effect with greater impact. Out of the main effects, only “C” and “D” significantly impact
the mean of position accuracy values output by the AHRS along the routes. It was expected a significant contribution of
main effect “A” because more SVs above horizon tend to increase accuracy of PVT solution computed by GNSS. Also, a
significant impact of main effect “B” was expected since differential corrections coming from a closer reference station
provide a PVT solution with better accuracy. The ANOVA output (Table 13) does not imply that main effects “A” and “B”
do not affect position accuracy of AHRS. Since literature states that variations in these factors impact position accuracy
of PVT solution, this ANOVA result indicates that the chosen factorial design did not have sufficient statistical power to
detect main effects “A” and “B” under the chosen experimental conditions, and with a significance level of .05.

The interpretation of the results as well as a deeper analysis about nondetected effects are provided in Step 4 (Sub-
section 5.1.4). A model reduction was carried out in order to simplify the obtained model and to increase the precision
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Source DF Adj SS Adj MS F value P value

Model 15 375.975 25.065 5.52 0.001

Linear 4 242.188 60.547 13.33 0.000

A 1 0.116 0.116 0.03 0.875

B 1 6.419 6.419 1.41 0.252

C 1 213.852 213.852 47.10 0.000

D 1 21.801 21.801 4.80 0.044

2-way interactions 6 60.433 10.072 2.22 0.095

AB 1 0.490 0.490 0.11 0.747

AC 1 0.938 0.938 0.21 0.656

AD 1 27.387 27.387 6.03 0.026

BC 1 1.313 1.313 0.29 0.598

BD 1 0.054 0.054 0.01 0.914

CD 1 30.251 30.251 6.66 0.020

3-way interactions 4 54.832 13.708 3.02 0.049

ABC 1 1.203 1.203 0.26 0.614

ABD 1 11.956 11.956 2.63 0.124

ACD 1 39.096 39.096 8.61 0.010

BCD 1 2.577 2.577 0.57 0.462

4-way interactions 1 18.522 18.522 4.08 0.060

ABCD 1 18.522 18.522 4.08 0.060

Error 16 72.652 4.541

Total 31 448.627

T A B L E 13 ANOVA table for
response “Mean Position Accuracy”

F I G U R E 28 Pareto chart of the standardized effects
for response “Mean Position Accuracy”

of predictions. This procedure consists of conducting a new analysis of factorial design using only significant terms. The
results after model reduction are presented in the next step (Subsection 5.1.2).

5.1.2 Step 2: Model reduction

Table 14 shows the ANOVA results after factorial design analysis of the reduced model. The significant terms before model
reduction remained significant in the new ANOVA, however, with minor variations in their P values.
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T A B L E 14 ANOVA table for
response “Mean Position Accuracy” after
model reduction

Source DF Adj SS Adj MS F value P value

Model 5 332.39 66.478 14.87 0.000

Linear 2 235.65 117.827 26.36 0.000

C 1 213.85 213.852 47.83 0.000

D 1 21.80 21.801 4.88 0.036

2-way interactions 2 57.64 28.819 6.45 0.005

AD 1 27.39 27.387 6.13 0.020

CD 1 30.25 30.251 6.77 0.015

3-way interactions 1 39.10 39.096 8.74 0.007

ACD 1 39.10 39.096 8.74 0.007

Error 26 116.24 4.471

Lack-of-fit 10 43.59 4.359 0.96 0.510

Pure error 16 72.65 4.541

Total 31 448.63

F I G U R E 29 Pareto chart of the standardized
effects for response “Mean Position Accuracy” after
model reduction

T A B L E 15 Model summaries for response
“Mean Position Accuracy”

Statistics

Model S R2 R2 (adjusted) R2 (predicted)

Original 2.13090 83.81% 68.62% 35.22%

Reduced 2.11441 74.09% 69.11% 60.75%

The order of the significant terms was also kept as shown in the Pareto chart of Figure 29 generated by
Minitab 18.

Table 15 shows comparison of model statistics before and after reduction. The decrease of S indicates that the reduced
model fits slightly better the response “Mean Position Accuracy.” According to difference in R2, the percentage of varia-
tion in the response explained by the reduced model is smaller due to the reduction of predictors. Since the two models
have a different number of predictors, the adjusted R2 provides a more appropriate evaluation of the model improve-
ment. Therefore, the increase of the adjusted R2 indicates a real improvement in the reduced model. In original model,
the substantially less value of predicted R2 than R2 indicates that the first model may be over-fit. Lastly, the largest
value of predicted R2 of the reduced model, as compared to the original model, confirms the improvement after model
reduction.
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34 of 47 GALDAMES et al.

5.1.3 Step 3: Validation of model assumptions

Figure 30 and Figure 31 show residuals plots for response “Mean Position Accuracy” before and after model reduction,
respectively. The histogram (bottom left plot) of both figures shows no skewness or suggests outliers. Nonetheless, the
normal probability plot (top left plot) of both models shows a nonlinear pattern, therefore the residuals do not follow a
normal distribution. This pattern indicates a symmetric light-tailed distribution. This means that outliers are produced in
both sides of the distribution at a reduced rate from what it would be expected from a normal distribution. The residuals
versus fits plot (top right plot) of both models suggests that the variance of the residuals are unequal due to the uneven
spreading across fitted values. The residuals versus order plot (bottom right plot) of both figures shows no trends or
patterns in the points that indicate correlation between near residuals in time order. In this plot, it is possible to identify
large residual observations diagnosed by Minitab 18 (observations 23 and 25 in Figure 30, and observations 13, 19, and
25 in Figure 31).

Since both models did not meet the assumption that the residuals are normally distributed, as well as violate the
assumption that the variance of the residuals is constant, the obtained models may not fit well the data.

5.1.4 Step 4: Interpretation of results

As the obtained model does not meet all factorial analysis assumptions, the magnitude of the effects can be inaccurate.
However, the results analysis provides a good insight about factors influence on the positioning accuracy of INS/GNSS
navigation system, as well as about factors interaction. Figure 32 shows the main effects that are statistically significant for
“Mean Position Accuracy” response. As can be seen in the plot, the UFSCar route increases the mean position accuracy
value, on average, by 5.170 m. This effect is associated with the highest number of occlusion of the UFSCar route. This
term is specific because it reflects the difference between occlusion levels of the two routes. The second main effect in
the plot indicates that the CAN-odometry reduces the mean position accuracy value, on average, by 1.651 m. As there are
significant interactions, the interpretation of the results should also consider the impact of these interactions.

Figure 33 shows the 2-way interactions that are statistically significant for response “Mean Position Accuracy.” The left
interaction of Figure 33 shows the effect of the SVs above horizon when combined with the velocity sources. In the range
of 13-15 SVs above horizon, the GNSS velocity increases the mean position accuracy value, on average, by 3.501 m more

F I G U R E 30 Residual plots for response “Mean Position Accuracy”
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GALDAMES et al. 35 of 47

F I G U R E 31 Residual plots for response “Mean Position Accuracy” after model reduction

F I G U R E 32 Main effects plot for response:
“Mean Position Accuracy”

than CAN-odometry velocity, whereas in the range of 18-20 SVs above horizon the obtained averages of mean position
accuracy values with both velocity sources are similar. As a result, the average for GNSS velocity decreases and the average
for CAN-odometry velocity increases. In fact, the highest number of SVs above horizon improves the accuracy of PVT
solution of the GNSS, consequently, the velocity accuracy estimation, which impacts in the position accuracy of AHRS.
However, there is not an interpretation for the reduction of the position accuracy performance, when the CAN-odometry
velocity is combined with SVs above horizon in the range of 18-20.

The right interaction of Figure 33 shows the effect of the routes when combined with the velocity sources. In USP2
route, the obtained averages of mean position accuracy values with both velocity sources are similar, whereas in UFS-
Car route the average increases for both velocities but at an higher rate for GNSS velocity. In fact, the highest occlusion
level of the UFSCar route also negatively impacts the velocity component of PVT solution of the GNSS, whereas the
CAN-odometry velocity accuracy is not affected by occlusions due to the nature of its sensors. The GNSS velocity increases
the mean position accuracy value, on average, by 3.595 m more than CAN-odometry velocity in the UFSCar route. Each
vertex of the cube represents one combination of factor settings

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12097 by U

niv of Sao Paulo - B
razil, W

iley O
nline L

ibrary on [16/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



36 of 47 GALDAMES et al.

F I G U R E 33 Interaction plot for response: “Mean Position Accuracy”

Although only the significant predictors have been kept in the reduced model, it still contains terms of 2-way and 3-way
interactions that makes hard the synthesization of the effects during model interpretation. The regression equation in
coded units (Equation (7)) shows the synthesization of the effects of each term in the form of coefficients. This equation,
generated by Minitab 18 during analysis of factorial design, was used to make a prediction of “Mean Position Accuracy”
response for all possible combinations of factor settings of the reduced model.

Mean Position Accuracy = 3.264 + 2.585 Route − 0.825 Velocity source
+ 0.925 SVs above horizon*Velocity source − 0.972 Route*Velocity source
+ 1.105 SVs above horizon*Route*Velocity source. (7)

Table 16 shows the result of the prediction. As reference station factor is not present in the significant terms, it is
also not present in settings of the prediction. The values fitted for the response were ranked by quality of the predicted
mean accuracy. The position of each combination of variables in the ranking is shown in the last column of Table 16. The
high values of the standard error of the fit (SE fit) indicate a low accuracy of the prediction, which demands a careful
interpretation of predictions. The USP2 route in the settings of top four ranking and the fit difference to the remaining

Settings Prediction

Item
SVs above
horizon Route Velocity source Fit (m) SE fit

Accuracy
ranking

1 13-15 USP2 GNSS 0.35 0.916 1

2 13-15 USP2 CAN-odometry 1.01 0.916 4

3 13-15 UFSCar GNSS 9.68 0.916 8

4 13-15 UFSCar CAN-odometry 2.02 0.916 5

5 18-20 USP2 GNSS 0.71 0.916 3

6 18-20 USP2 CAN-odometry 0.65 0.916 2

7 18-20 UFSCar GNSS 5.62 0.916 6

8 18-20 UFSCar CAN-odometry 6.08 0.916 7

T A B L E 16 Prediction for mean
position accuracy
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settings confirm the occlusion effect. The difference between fits of items 3 and 4 indicates that CAN-odometry overcomes
GNSS under unfavorable condition of SVs in view, that is, low level of SVs above horizon and high occlusion level. Due
to the value of SE fit, the difference between the top four ranking fits does not allow the researches to assert which
velocity source is better under favorable conditions of SVs in view but it provides a hypothesis that GNSS can overcome
the CAN-odometry under high levels of SVs above horizon and low occlusion levels.

The magnitude of the effect of Route factor (C) may have hidden the effect of Reference station factor (B), as well
as the main effect of SVs above horizon factor (A). This is due to the found effect of C which is in the range of meters,
whereas the effect of B may result in centimeter variations only. Due to this, a factorial analysis using the minimal posi-
tion accuracy values was carried out with the purpose of finding these effects without the need to perform a new full
experiment. The idea was finding the best possible accuracy allowed by the other three factors based on the fact that the
two routes have path excerpts with partially open sky which are less affected by occlusion. Subsection 5.2 presents the
results of this second analysis.

5.2 Response: Minimal position accuracy

5.2.1 Step 1: Determination of significant terms

Table 17 shows the ANOVA table associated with response: “Minimal Position Accuracy.” As shown in the ANOVA table,
the P values for linear terms “Reference station” (B) and “Velocity source” (D), as well as 2-way interactions “SVs above
horizon” * “Reference station” (AB) and “SVs above horizon” * “Velocity source” (AD) are significant since the P values
are less than the significance level of .05.

T A B L E 17 ANOVA table for response “Minimal
Position Accuracy”

Source DF Adj SS Adj MS F value P value

Model 15 0.304147 0.020276 7.12 0.000

Linear 4 0.226934 0.056734 19.92 0.000

A 1 0.012152 0.012152 4.27 0.055

B 1 0.188897 0.188897 66.32 0.000

C 1 0.000018 0.000018 0.01 0.938

D 1 0.025867 0.025867 9.08 0.008

2-way interactions 6 0.058834 0.009806 3.44 0.022

AB 1 0.018586 0.018586 6.52 0.021

AC 1 0.000004 0.000004 0.00 0.970

AD 1 0.023263 0.023263 8.17 0.011

BC 1 0.006149 0.006149 2.16 0.161

BD 1 0.004836 0.004836 1.70 0.211

CD 1 0.005995 0.005995 2.10 0.166

3-way interactions 4 0.018311 0.004578 1.61 0.221

ABC 1 0.007170 0.007170 2.52 0.132

ABD 1 0.006061 0.006061 2.13 0.164

ACD 1 0.005075 0.005075 1.78 0.201

BCD 1 0.000004 0.000004 0.00 0.970

4-way interactions 1 0.000068 0.000068 0.02 0.879

ABCD 1 0.000068 0.000068 0.02 0.879

Error 16 0.045575 0.002848

Total 31 0.349722
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F I G U R E 34 Pareto chart of the standardized
effects for response “Minimal Position Accuracy”

Source DF Adj SS Adj MS F value P value

Model 4 0.25661 0.064153 18.60 0.000

Linear 2 0.21476 0.107382 31.14 0.000

B 1 0.18890 0.188897 54.78 0.000

D 1 0.02587 0.025867 7.50 0.011

2-way interactions 2 0.04185 0.020925 6.07 0.007

AB 1 0.01859 0.018586 5.39 0.028

AD 1 0.02326 0.023263 6.75 0.015

Error 27 0.09311 0.003448

Lack-of-fit 11 0.04753 0.004321 1.52 0.218

Pure error 16 0.04557 0.002848

Total 31 0.34972

T A B L E 18 ANOVA table for response “Minimal Position
Accuracy” after model reduction

Figure 34 shows Pareto chart of the standardized effects for response “Minimal Position Accuracy.” The red line
threshold in the Pareto chart indicates the reference T value for a P value of .05. The effects that surpass this red line
are statistically significant. As can be seen, the linear term Reference station (B) became the effect with greater impact,
whereas the occlusion effect of Route (C) factor was suppressed by picking the best possible position accuracy across each
trajectory. The main effect of “D” continued to be significant at threshold of minimal value for position accuracy. The
expected significant contribution of main effect “A” did not appear with a significance level of .05 but its obtained P value
indicates that the effect may become significant in an analysis with a significance level of .10.

5.2.2 Step 2: Model reduction

A model reduction was also carried out for response “Minimal Position Accuracy” by following the same procedure
applied for response “Mean Position Accuracy.” Table 18 shows the ANOVA table after model reduction. The significant
terms remained significant after model reduction, although with minor variations in their P values.

Figure 35 shows the Pareto chart after model reduction. The order of the significant terms remains the same.
Table 19 shows comparison of model statistics before and after reduction. The increase of S indicates that the original

model fits slightly better the response “Minimal Position Accuracy.” According to the difference in R2, the percentage of
variation in the response explained by the reduced model is smaller, partially due to the reduction of predictors. As previ-
ously explained, since the two models have a different number of predictors, the adjusted R2 provides a more appropriate
evaluation of the model improvement. Therefore, the decrease of the adjusted R2 indicates a degradation in the reduced
model. In the original model the substantially less value of predicted R2 than R2 indicates that the first model may be
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F I G U R E 35 Pareto chart of the standardized
effects for response “Minimal Position Accuracy” after
model reduction

T A B L E 19 Model summaries for response
“Minimal Position Accuracy”

Statistics

Model S R2 R2 (adjusted) R2 (predicted)

Original 0.0533707 86.97% 74.75% 47.87%

Reduced 0.0587237 73.38% 69.43% 62.60%

over-fit. Lastly, the largest value of predicted R2 of the reduced model, as compared to the original model, indicates the
reduction of the over-fit behavior but not necessarily an improvement due to the decrease of adjusted R2.

5.2.3 Step 3: Validation of model assumptions

Figures 36 and 37 show residuals plots for response “Minimal Position Accuracy” before and after model reduction,
respectively. The histogram (bottom left plot) of Figure 36 does not indicate skewness but shows the presence of outliers.
The histogram (bottom left plot) of Figure 37 suggests a little skewness, and also shows the presence of outliers. The
normal probability plot (top left plot) of both models shows a nonlinear pattern, since this pattern indicates a distribution
with thin tails. This means that outliers are produced in both sides of the distribution. The residuals versus fits plot (top
right plot) of both models indicates the presence of outliers. The residuals versus order plot (bottom right plot) of both
figures shows no trends or patterns in the points that indicate correlation between near residuals in time order. In this plot,
it is possible to identify large residual observations diagnosed by Minitab 18 (observations 03, 05, 18, and 28 in Figure 36,
and observations 10, 18, and 28 in Figure 37).

Since both models did not meet the assumption that the residuals are normally distributed the obtained models may
not fit well the data.

5.2.4 Step 4: Interpretation of results

As the obtained model does not meet all the factorial analysis assumptions, the magnitude of the effects can be inaccurate.
However, the results analysis provide a good insight about factors influence in the positioning accuracy of INS/GNSS
navigation system without occlusion presence, as well as about factors interaction. Figure 38 shows the main effects
that are statistically significant for response “Minimal Position Accuracy.” As can be seen in the plot, the SPJA1 station
increases the minimal position accuracy value, on average, by 0.154 m. This effect is associated with the distance of SPJA1
station to the data collection points, which is larger than that of EESC0 station, which is very close to both data collection
routes. In fact, differential corrections from closer stations better reflect local atmospheric-related errors. The second main
effect in the plot indicates that the CAN-odometry reduces the mean position accuracy value, on average, by 0.057 m. As
there are significant interactions, the interpretation of the results should also consider their impact.
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F I G U R E 36 Residual plots for response “Minimal Position Accuracy”

F I G U R E 37 Residual plots for response “Minimal Position Accuracy” after model reduction
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F I G U R E 38 Main effects plot for response:
“Minimal Position Accuracy”

F I G U R E 39 Interaction plot for response: “Minimal Position Accuracy”

Figure 39 shows the 2-way interactions that are statistically significant for response “Minimal Position Accuracy.”
The top interaction of Figure 39 shows the effect of the SVs above horizon when combined with the reference stations.
The SPJA1 station increases the minimal position accuracy value, on average, by 0.105 m more than EESC0 station in
the range of 13-15 SVs above horizon, whereas in the range of 18-20 SVs above horizon the average for EESC0 station
decreases and the average for SPJA1 station increases resulting in a difference, on average, of 0.202 m. This result indicates
that the EESC0 station produces a better performance under more SVs above horizon. However, so far there is not an
interpretation for the position accuracy performance reduction with the SPJA1 station in the range of 18-20 SVs above
horizon.

The bottom interaction of Figure 39 shows the effect of the SVs above horizon when combined with the veloc-
ity sources. The GNSS velocity increases the minimal position accuracy value, on average, by 0.111 m more than
CAN-odometry velocity in the range of 13-15 SVs above horizon, whereas in the range of 18-20 SVs above horizon the
obtained averages of minimal position accuracy values with both velocity sources are similar. Therefore, the average for
GNSS velocity decreases and the average for CAN-odometry velocity increases. This interaction repeats the behavior of
the same 2-way interaction of the first response analysis (see Subsection 5.1.4), except that now this interaction results
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Settings Prediction

Item
SVs above
horizon

Reference
station Velocity source Fit (m) SE fit

Accuracy
ranking

1 13-15 EESC0 GNSS 0.150 0.0232 5

2 13-15 EESC0 CAN-odometry 0.040 0.0232 1

3 13-15 SPJA1 GNSS 0.256 0.0232 8

4 13-15 SPJA1 CAN-odometry 0.145 0.0232 4

5 18-20 EESC0 GNSS 0.048 0.0232 3

6 18-20 EESC0 CAN-odometry 0.045 0.0232 2

7 18-20 SPJA1 GNSS 0.250 0.0232 7

8 18-20 SPJA1 CAN-odometry 0.247 0.0232 6

T A B L E 20 Prediction for
minimal position accuracy

in a variation of some centimeters instead of meters. The interpretation of this interaction is the same applied to the first
response analysis (see Subsection 5.1.4).

Although only the significant predictors have been kept in the reduced model, it still contains terms of 2-way inter-
actions that makes hard the synthesization of the effects during model interpretation again. The regression equation in
coded units (Equation (8)) shows the synthesization of the effects of each term in the form of coefficients. This equation,
generated by Minitab 18 during the analysis of factorial design, was used to make a prediction of Minimal Position
Accuracy response for all possible combinations of factor settings of reduced model.

Minimal Position Accuracy =0.1477 + 0.0768 Reference station − 0.0284 Velocity source
+ 0.0241 SVs above horizon*Reference station
+ 0.0270 SVs above horizon*Velocity source. (8)

Table 20 shows the result of the prediction. As Route factor became absent in the significant terms, it is also not present
in settings of this prediction. The values fitted for the response were ranked by quality of the predicted mean accuracy.
The position of each combination of variables in the ranking is shown in the last column of Table 20. The high values
of the standard error of the fit (SE fit) indicate a low accuracy of the prediction, and it demands a careful interpretation
of predictions again. The EESC0 station in the settings of top three ranking confirms the station distance effect. The
difference between fits of items 3 and 4 indicates that CAN-odometry can overcomes GNSS under unfavorable GNSS
inputs, that is, low level of SVs above horizon and differential corrections from a farther reference station. Due to the value
of SE fit, the difference between the top three ranking fits does not allow to assert which velocity source is better under
favorable GNSS inputs but it provides a hypothesis that CAN-odometry can overcome the GNSS velocity even under high
levels of SVs above horizon and differential corrections from a closer station.

5.3 Discussion

The performance evaluation of this INS/GNSS system without using any multi-factor approach, such as 2k factorial design,
could lead to wrong conclusions about viability of the odometry proposal. Relying on the values shown in Table 12, it can
be stated that the system presented a performance similar to fully integrated solutions which are currently commercial-
ized. This statement is valid, considering an ideal surrounding environment, and assuming that the error estimate of the
implemented INS/GNSS navigation system is close to realistic error.

Regarding the proposed experimental design, it is possible to obtain a better model fit by adding more replicates and
repeats. This action increases the statistical power of the experimental design, consequently, the ability to detect minor
effect sizes. However, due to the increase in the number of experimental runs, this also results in an higher experiment
cost. Besides, this procedure does not cut out the outliers stemmed from extraneous factors or from factors that are difficult
to control. Another alternative to refine the model is to add one more factor with known influence, but this will double
the number of experimental runs.

For these reasons, it is better to reduce the experimental error by solving the control issues of experimental conditions.
As mentioned in Subsection 4.1.1, the control of Factor A is improved by adopting the DOP as metric instead of the
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number of SVs above horizon, as well as by removing the unhealthy satellites from the prediction. Another way to better
control Factor A is to reduce the extension of routes.

On the other hand, the effects of occlusion are difficult to control due to their time dependence on the satellite constel-
lation geometry. In addition, the occlusion impact on PVT solution accuracy is satellite-specific. Thus, occlusions blocking
the same satellites being tracked by the reference station directly affect DGNSS/RTK solution. In addition, due to the
effect size of occlusion, which is much larger than that of the reference station, it becomes difficult to evaluate in-motion
the reference station effects in high-occlusion environments, when carrying out at the same experimental design. This
issue can be solved by using only low-occluded route segments.

The CAN-odometry uses low-resolution ABS encoders, as compared to current options of external encoders. However,
due to the fact that encoder-based velocities are less affected by the trajectory dynamics and that are not affected by the
occlusions, they always provide a velocity value with a smooth transition. Besides, the proposed ROS-based odometry pro-
vides the velocity value equal to zero during vehicle stop times. Therefore, these features make the average performance
of CAN-odometry to overcome that of GNSS/RTK velocity during some factor combinations.

6 CONCLUSION AND FUTURE WORKS

This work presented a framework called CAN-odometry, a low-cost odometry based on CAN protocol messages and flow
control pins of RS232 standard. The proposed framework was integrated with an INS/GNSS system able to operate in
RTK fixed mode with the aid of a local area DGNSS system connected to a Ntrip broadcaster. In order to evaluate the
performance of the integrated system, a kinematic survey was planned into a 2k factorial design and carried out under
different controlled conditions. In order to avoid miscalculations, the obtained results were analyzed using the Minitab 18
software tools. The interpretation of results demonstrated that CAN-odometry can overcome the GNSS estimation when
used as velocity source input to INS/GNSS system. It also provides an insight into magnitude of impacts of studied effects
on integrated system performance, whereas sky obstructions was the factor of greater impact. Furthermore, by running
the INS/GNSS system output on ROS framework, the experimental platform can read position and attitude values by
high-level functions. Finally, the implemented integrated navigation system is a high-accuracy positioning and attitude
system but is still limited by the satellite blockages.

Some improvements were proposed during the development of this work to enhance the CAN-odometry and the
INS/GNSS navigation system accuracy. The first proposal is to develop a calibration model based on velocity values of the
GNSS/RTK fixed mode, in order to mitigate the CAN-odometry low-accuracy at slow velocities. Another improvement is
to modify the current SENA vehicle roof rack, or design a new one, in order to increment the distance between the GNSS
main antenna and the aux1 antenna. This allows to obtain a better GNSS heading accuracy and availability.

In the robotics applications scope, the presented INS/GNSS navigation system will be integrated and synchronized
with the currently installed perception sensors, such as LiDARs, and cameras. This task will include sensors extrinsic
calibration and additional ROS nodes development. In addition, the potential use of the integrated navigation system in
rural zones stemmed from the current project purpose. Since, under the current scenario, the cell phone signal is quite
weak in these areas due to distance to the cell towers, it is proposed to install a cellular quad-band antenna to increase
the modem reception signal strength.

The software architecture of CAN-odometry allows to be reused to emulate other odometry types. This could allow to
transform odometry algorithms outputs in RTS pulses that can be sent to the AHRS device. Thus, one can transform the
visual odometry in an odometer input of the AHRS. This is also a proposal for future performance evaluation using DOE
approach.
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