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In this work, we present a brief but insightful overview of the gauge theories, which are
defined on n-dimensional lattices by using finite gauge groups, in order to show how

they can be interpreted as a Hamiltonian system with constraints, analogous to what
happens with the classical (continuous) gauge (field) theories. As this interpretation

is not usually explored in the literature that discusses/introduces the concept of lattice

gauge theory, but some recent works have been exploring Hamiltonian models in order to
support some kind of quantum computation, we use this interpretation to, for example,

present a brief geometric view of one class of these models: the Kitaev Quantum Double

Models.

Keywords: Lattice gauge theories; Hamiltonian systems with constraints; conditional

probabilities.
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1. Introduction

One of the ingredients that characterizes a classical system as a gauge theory is

its restriction on some submanifold Mn ⊂ Mn+k with n dimensions.1 When we

describe this system by using a Hamiltonian formulation, this restriction takes its

form through a Hamiltonian function2

HT(z) = H(z) + λjΦj(z), (1)

where SΦ = {Φj : T ∗Mn+k → R} is a set of independent differentiable functions,

which are responsible for defining the phase subspace T ∗Mn ⊂ T ∗Mn+k of this

system by taking Φj(z) = 0, and j = 1, . . . , k.3 Note that as T ∗Mn+k can be

parametrized by more than one atlas/coordinate system, the functions that describe
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this classical system can be expressed in a non-unique way. One of the consequences

is that, due to the differentiable decomposition4

T ∗qMn+k = T ∗qMn ⊕ (T ∗qMn)⊥ (2)

that these constraints Φj(z) = 0 allow us to do, where q is a point that belongs to

Mn, there is another parametrization

κ = (Q,P) =
(
q,Q︸︷︷︸
Q

, p, P︸︷︷︸
P

)
of T ∗Mn+k that, for example, allows us to rewrite all the physical functions of

this same system by using only the intrinsic parameters ω = (q, p) of the cotangent

bundle T ∗Mn.1 In this case, these new parametrizations let us rewrite (1) as2,5,a

H ′T (κ) = Hph(ω) + λPP +O(Ṗ , P 2). (3)

However, it is worth to remember that these are not the only ingredients nec-

essary to characterize a classical gauge theory as a Hamiltonian system with con-

straints: it is also necessary that, at least, a part of the functions in the set SΦ be

first-class6 because the Lagrange multipliers (λI), which implement these first-class

constraints (ΦI) to the Hamiltonian function (1), can never be solved unequivo-

cally.2 In this way, by noting that all the parametrizations of a manifold are related

(one to the other) through diffeomorphisms,7 it is not difficult to conclude that,

due to the bijection between the components of P and Φ = (Φ1, . . . ,Φk), the new

constraints P = 0 can also be divided between those that are of first- (PI) and

second-class (PII). As a consequence, this new Hamiltonian function (3) describes

the same classical system through a set of new equations8

ω̇ = {ω,Hph}, Q̇I = λPI
, Q̇II = A(ω,Q) and P = 0 (4)

that are very interesting. Why are these new equations so interesting? It is because

• by noting that ω = (q, p) and Ω = (Q,P ) are the intrinsic parameters of T ∗Mn

and (T ∗Mn)⊥, respectively, and

• as λPI
designates the new non-univocal Lagrange multipliers that implement the

new first-class constraints PI = 0 in (3),

this shows us that the endless choices that we can make for these multipliers and,

consequently, for the gauge Q = (QI, QII) and P = (PI, PII) never change the

solution of the physical equations8,b

ω̇ = {ω,Hph}. (5)

aHere, we are taking advantage of the fact that, by rearranging the entries of (Q,P), we can
rewrite it as (ω,Ω) = (q, p,Q, P ), where Ω = (Q,P ) parametrizes (T ∗Mn)⊥ intrinsically.4
bNote that just as ω = (q, p) can be interpreted as a canonical pair of variables, so can ΩI = (QI, PI)
and ΩII = (QII, PII). Therefore, (QI, QII) and (PI, PII) must be interpreted as the components of

the canonical pair of variables Ω = (Q,P ).
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By remembering, once again, that all the different parametrizations of a manifold

are related by diffeomorphisms, it is exactly this freedom (which we have to fix any

gauge Ω = (Q,P )) that ensures that infinitely many other gauges Ω′ = (Q′, P ′) can

also be chosen in all other parametrizations.1

Nevertheless, once it is already well known that this constrained interpretation

extends to the continuous gauge field theories,2,5,c it is interesting to go in the

“opposite” direction in order to show, for instance, how this same interpretation

fits with the physical systems that behave as gauge theories on lattices: i.e. as

theories whose gauge fields are attached to the edges of some spatial lattice Ln
with n dimensions.9 This is exactly what we will do throughout this review (i) by

analyzing a pure gauge theory on this Ln and (ii) by assuming that this lattice

is a kind of “patchwork quilt” composed of not necessarily regular polyhedra that

(locally) discretizes some (sub)manifold Mn. After all, in addition to the fact that

there are not many references that go in this “opposite” direction, this constrained

interpretation is of great value due, for instance, to the recent interest in using

Hamiltonian models, which describe finite-group gauge theories on spatial lattices,

that try to support some kind of quantum computing.10–23 We will give an example

of such Hamiltonian models in the penultimate section of this paper.

2. Gauge Theories on Lattices

Roughly speaking, it is not wrong to say that lattice gauge theories emerged from

the need to solve some problems that could not be solved by using the same formu-

lation as continuous gauge field theories. Among these problems, we can list those

that were directly related to elementary particle physics (in particular, to quantum

chromodynamics) that, for example, required a non-perturbative solution.9 Thus,

as a solution for these problems, these continuous gauge theories were replicated

in a new scenario where this was possible: strictly speaking, to a scenario where,

instead of considering that a physical system evolves onMn, it was considered that

this physical system evolves on the discretization Ln of this manifold.24

Among the adaptations that had to be made in this new scenario, probably

the most basic was to assume that all matter could be represented by fields as-

signed only to the vertices of this lattice Ln. However, given the need to adapt the

Lagrangian/Hamiltonian formulation to this new scenario and, therefore, identify

the symmetry transformations performed by the new gauge fields, all these gauge

fields ended up being exclusively assigned to the lattice edges.25 After all, as the

set of constraints Φ = 0 (that define T ∗Mn ⊂ T ∗Mn+k in the continuous gauge

theories) generates symmetries that can be controlled by some (Lie) group,2,5,26

the replication of these continuous gauge theories in this new scenario forces, for

instance, that these lattice gauge fields be elements of some group G since they

need to be interpreted as parallel transporters.27,28

cThat is, gauge theories where all their Hamiltonian functions are defined by using Hamiltonian
densities.
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Fig. 1. Example of a two-dimensional lattice L2 where all the edges are oriented. Note that since
each of the edges of this “patchwork quilt” can be oriented in two ways, this example makes it

clear that there is no rule for making these orientations. As will become clear in the following

lines, these edge orientations are necessary not only so that the gauge fields can be interpreted
as parallel transporters, but also so that, among other things, the lattice gauge transformations

can be well defined. In any case, it is worth noting that, although the spatial lattices that define
the lattice gauge theories are usually interpreted as regular hypercubic lattices, we are using this

example to reinforce that we will not restrict considerations to only regular hypercubic lattices:

in this paper, we will only consider that Ln is a spatial lattice that discretizes an n-dimensional
manifold.

2.1. Gauge theories on lattices defined by using finite gauge groups

A simple but important thing we must note here is that, due to this interpretation

of the lattice gauge fields as parallel transporters, Ln should be an oriented lattice:

i.e. all their edges must be oriented as illustrated, for instance, in Fig. 1. The best

way for us to begin to understand why this orientation needs to be done is to

recognize, first, that one of the main consequences of this lattice approach is that,

when G is a finite group, we can obtain the Hamiltonian formulation of these lattice

gauge theories through a partition function9,29

Z =
∑
{g}

e−βS(g), (6)

where S is the action that describes this system and β is a real constant. As this

action is written as a function of the lattice gauge fields g ∈ G, the sum variable {g}
in (6) means that all the possible configurations of these fields are being computed

in Z.

As a matter of fact, if we turn our attention only to the lattice gauge theories

where there is no matter present (i.e. to the pure lattice gauge theories), it is not

hard to demonstrate that this action can be written as the sum30,31

S =
∑
f∈Ln

[ψ(Uf ) + ψ(U−1
f )] (7)

of all the values of ψ(Uf ) + ψ(U−1
f ) that can be estimated for the lattice faces,

where Uf : Gk → G is the holonomy associated with the fth lattice face, U−1
f is its
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g1

g2

g3

g4

Fig. 2. (Color online) Here, we see a lattice face f that is delimited by four edges, where it

is possible to identify a gauge field g` on each of them. Note that, if we calculate their face
holonomies by using the clockwise direction (highlighted in olive color), the four possible results

are: U
(1a)
f = g1 ·g2 · (g3)−1 ·g4, U

(2a)
f = g2 · (g3)−1 ·g4 ·g1, U

(3a)
f = (g3)−1 ·g4 ·g1 ·g2 and U

(4a)
f =

g4 · g1 · g2 · (g3)−1. This calculation was performed by noting that, when the orientation of the

edge that contains g` coincides (does not coincide) with the clockwise direction, the element that

defines U
(na)
f is g` ((g`)

−1).

inversed and ψ : G→ C is a class function. As Uf is an application that, as Fig. 2

illustrates, can be defined as

Uf (g1, . . . , gk) = ϕ(. . . ϕ(ϕ(g1, g2), g3), . . . , gk) = gf , (8)

where32

(g1, g2) 7→ ϕ(g1, g2) = g (9)

is the application that gives a group structure to G, it is not wrong to conclude

that Uf is responsible for assigning an element of G with a lattice face f that has

k sides. In other words, by assuming that

• there is a group element g` associated with each lattice edge, and

• each lattice face can always be characterized by some sequence g1, . . . , gk of these

elements,

Uf allows us to multiply all elements of this sequence (in the same order they

appear) and, therefore, assign a gf to this fth lattice face.e

2.1.1. But why is action (7) defined in this way?

In order to understand why (7) is defined in this way, it is worth noting that, as

illustrated in Figs. 2 and 3, there is nothing to prevent Uf from being calculated

dThat is, if we consider, for instance, that Uf is calculated by using a counterclockwise orientation,

U−1
f must be interpreted as the holonomy that can be calculated by using a clockwise orientation.

eNote that, since U−1
f must be interpreted as the inverse of Uf , it is not hard to conclude that,

if the latter is defined as Uf = g1 · g2 · . . . · gk−1 · gk, the former should be defined as U−1
f =

g−1
k · g−1

k−1 · . . . · g
−1
2 · g−1

1 .
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g1

g2

g3

g4

Fig. 3. Here, we see the same lattice face as in Fig. 2, but now it looks like we are calculating their

holonomies by using the counterclockwise direction since the four possible results are: U
(1b)
f =

(g4)−1 ·g3 · (g2)−1 · (g1)−1, U
(2b)
f = (g1)−1 · (g4)−1 ·g3 · (g2)−1, U

(3b)
f = (g2)−1 · (g1)−1 · (g4)−1 ·g3

and U
(4b)
f = g3 · (g2)−1 · (g1)−1 · (g4)−1. Note that, while it is clear that it is perfectly possible

to calculate holonomies by taking clockwise and counterclockwise directions, it is important to

observe that U
(na)
f = [U

(nb)
f ]−1. That is, although it seems that we are getting eight different

results for the holonomy around this lattice face, what we are getting are four different results and

their inverses. Therefore, if we want to calculate the holonomies of all the faces of Ln, we must
calculate the holonomy of a face by choosing a direction and apply this choice to all other faces in

order to avoid confusing. Observe that this comment implies that the submanifold Mn that Ln
(locally) discretizes must be orientable: after all, ifMn is not orientable, this non-orientation will
prevent us from choosing the direction in which these holonomies will be calculated.

in k different ways: in other words, there is nothing to prevent a face from being

characterized by different elements of G when this gauge group is non-Abelian.

In this fashion, as the gauge fields assigned to the lattice edges are responsible

for performing parallel transports and, therefore, this concept of holonomy can be

associated with an estimate of how curved is Mn from the point of view of the

faces of Ln,33 there is a problem that needs to be fixed here. What problem? The

action (7) needs to be defined so that the Boltzmann factor of each lattice face is

invariant. Thus, by observing that every class function ψ is such that

ψ(g′ · g′′ · g′′′) = ψ(g′′ · g′′′ · g′) = ψ(g′′′ · g′ · g′′)
holds for any group elements g′, g′′ and g′′′, it is precisely the use of a class function

that leads to one action (7) that does not depend on these k possible choices to

calculate Uf . Note that, since ψ(Uf ) is a complex number, the superposition ψ(Uf )+

ψ(U−1
f ) defines a real number.

2.1.2. A small parenthesis

Of course, what we have just said still does not clarify all aspects of why (7) is

defined in this way. But, before we delve a little further into this discussion, it is

important to make a little parenthesis here to make three important observations.

The first one is related to the fact that this description of lattice gauge theories,

based on the use of this partition function (6), had its origin in Ref. 34, where a

generalization of the Ising model35 was presented by assigning the spin variables to

the lattice edges. After all, as the use of this generalization was successful in a first
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work, where it was possible to evaluate questions related to the quark confinement,24

the prototype of this generalization was used as a cornerstone for the development

of other lattice gauge theories.

By putting that historical information aside, which justifies the successful use

of (6) in the formulation of lattice gauge theories is that, for example, it provides

a good way to compute the path integral over all the possible configurations of the

gauge fields in a quantum field theory.36 In other words, just as the path integral is

a sum over all possible histories of a system,37 this partition function (6) computes

this sum in a more tractable way by breaking it down into a product of simpler

factors. We will return to this discussion later on, when we are finished clarifying

why (7) is defined in this way. For now, the second observation we need to make

here concerns the fact that, in the case of the lattice gauge theories where there is

matter present in the vertices, their actions are given by25

βS = β′Sgauge + β′′Smatter, (10)

where β′ and β′′ are two real numbers, Sgauge is the same action (7), and the new

Smatter must describe how the matter fields interact with each other. But when we

note that this historical information makes it clear, for example, that these more

general lattice gauge theories need to bring the Ising models as special cases, the

interaction model between first neighbors endorses that25,38

Smatter =
∑
`∈Ln

〈
v

(`)
1 , ρ(g`) · v(`)

2

〉
, (11)

since the term inside this summation is an inner product that models how aligned

are the two matter fields v
(`)
1 and v

(`)
2 that endpoint of the `th lattice edge.f It is

clear that the presence of ρ(g`) makes this inner product in (11) a little different

from those that define the Ising and Potts models.39,40 What explains this difference

is the fact that, as these matter fields v
(`)
1 and v

(`)
2 need to interact with each other,

this interaction needs to be moderated by the lattice gauge field that appear on the

`-edge. Thus, by remembering that a group always admits a matrix representation

ρ, it is correct to say that the product ρ(g`) ·v(`)
2 , between the matrix ρ(g`) and the

vector v
(`)
2 (which belongs to a finite-dimensional vector space), can be interpreted

as a gauge group action.41 That is, these matter fields are coupled to the lattice

gauge fields by using this group action in a situation where β′′ is a nonzero real

number.25

However, while this second observation suggests that the lattice gauge theories

that we need to evaluate are those whose actions are more general than (7), we still

need to make the third (and, perhaps, most important) observation here. After all,

regardless of the form that Smatter takes, (6) and (10) allow us to conclude that,

if a pure lattice gauge theory can be interpreted as a Hamiltonian system with

fNote that this sum is similar to the one in (7): i.e. as the symbol “`” indexes the `th edge of Ln,

this action Smatter sums all the values that 〈v(`)
1 , ρ(g`) · v

(`)
2 〉 assumes for all the lattice edges.
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constraints, the pure gauge action (7) alone can already lead to the formulation

where these first-class constraints appear. In other words, as

• the action (10) is such that

e−(β′Sgauge+β′′Smatter) = e−β
′Sgauge · e−β′′Smatter , and

• the Hamiltonian formulation is obtained by taking the logarithm of (6),

if a pure lattice gauge theory can be interpreted as a Hamiltonian system with

constraints, a more general lattice gauge theory can also be interpreted in the

same way. Note that an alternative way to understand this same conclusion is,

for example, by exploring the limiting case where v
(`)
1 and v

(`)
2 belong to a one-

dimensional vector space: as, in this limiting case, ρ(g`) · v(`)
1,2 = v

(`)
1,2 and, therefore〈

v
(`)
1 , ρ(g`) · v(`)

2

〉
= 1 (12)

holds for all the values of `, the advent of the correspondence principle in Physics

ensures that this interpretation, of a more general lattice gauge theory as a Hamilto-

nian system with constraints, is the sole responsibility of Sgauge, since the presence

of these matter fields on the lattice vertices is irrelevant for this purpose.

2.1.3. Gauge transformations

Having made this small parenthesis, now we can return to the discussion of why (7)

is defined in this way, and we will do this by explaining why these lattice systems,

where there is no matter present, are usually interpreted as gauge theories. By

remembering that the characterization of any physical system as a gauge theory is

directly related to the covariance of its equations of motion,42 there are two critical

remarks that we should make here, and the first one is precisely related to this

concept of covariance. After all, although it is quite common to “hear” that the

equations of motion of a physical system are covariant because they maintain their

“form” unchanged under gauge transformations, the truth is that the origin of this

predicate “covariance” is geometric: i.e. this predicate reflects the fact that these

equations depend exclusively on the parameters/functions that intrinsically describe

the geometry of this physical system.4,43,g Why is this first remark critical? Because,

as these lattice gauge theories are usually described without ever mentioning that

gIn other words, the equations of motion

ż = {z,HT (z)}Φ(z)=0

of a physical system are rewritten as

ż′ = {z′, H′T (z′)}Φ(z′)=0

under a gauge transformation z 7→ z′ = T (z).2 Note that this reinforces the comment we made

in the introduction, about the fact that the physics of a classical gauge system can be described
by (5). After all, as ω describes the intrinsic parameters of T ∗Mn, the gauge transformations

(ω,Ω) 7→ (ω,Ω′) = T (ω,Ω) never change (5).2,43
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Ln discretizes a submanifold, it is not wrong to assert that, at least, the elements

of the gauge group G allow to identify the intrinsic parameters of Ln.

But what does it mean to say that the equations of motion of a lattice gauge

theory are covariant for someone looking, for instance, only at the configuration of

the gauge elements assigned to the lattice edges? As we have already said that (7)

needs to be defined so that the Boltzmann factor of each lattice face is invariant,

the natural answer to this question is: the equations of motion of a lattice gauge

theory are covariant under lattice gauge transformations that do not change the

holonomies around the lattice faces, and this is precisely the second critical remark

that we needed to make. As we have already said that Uf can be associated with

an estimate of how curved isMn from the point of view of the faces of Ln, it is not

difficult to conclude that: saying that the lattice gauge transformations are those

that do not change these holonomies is equivalent to saying that, whatever the new

group elements that will be assigned to the lattice edges, these new group elements

continue to intrinsically describe the same Ln. Therefore, by remembering that the

elements of a non-trivial group cannot be unequivocally expressed as a product of k

group elements,44 the characterization of these lattice systems as gauge theories can

be related to the freedom we have to change any of the group elements g`, which

are assigned to the edges of Ln, to other g′` as long as the value of Uf remains

unchanged.

Given these two critical remarks, we can conclude that, if we know anyone

of the field configurations of a pure gauge lattice system, all the others can be

obtained from this first one through lattice gauge transformations. Yet, as any

lattice edge may belong to more than one face of Ln, a good way to perform these

transformations is by modifying all the group elements, which are assigned to all

the nv edges that composes a same lattice vertex v, for others45,46

(a) g · g`, if the `th edge orientation pointing out of this vth vertex, or

(b) g` · g−1, otherwise.

An instructive example of these lattice gauge transformations T (g)
v : Gnv → Gnv

can be seen in Fig. 4: after all, if we calculate all the holonomies by using the same

counterclockwise orientation, it is not difficult to see that T (g)
v does not change the

holonomies around the lattice faces. Observe that, as

ψ(Uf ) = ψ(g−1 · g · Uf ) = ψ(g · Uf · g−1)

holds for all g ∈ G, this no-change in the values of ψ(Uf ) can be associated with

the fact that Uf and g · Uf · g−1 belong to the same conjugacy class.41

Anyway, although Fig. 5 continues to explore the same situation as Fig. 4 do,

for example, reinforce that the way that we introduce the concept of the lattice

gauge transformation here is equivalent to the definition given in the literature, it

is undeniable that everything we have said so far has made one thing very clear:
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g1

g2

g3

g4

g5
g6

g7

g8

v

v′

T (g)
v

=⇒ g1

g2

g3

g4

g5 · g−1

g · g6

g · g7
g8 · g−1

v

v′

Fig. 4. (Color online) On the left, we can see a piece of a two-dimensional lattice L2 whose edges

support elements of the gauge group G. Note that, in this piece, we have four faces/edges sharing
the same vertex v (highlighted in red color). On the right, we see the result of a lattice gauge

transformation T (g)
v (highlighted with the same red color), which was performed on the group

elements that are assigned to these four edges. As the discussion presented in Figs. 2 and 3 claims
that we must choose a single direction to calculate the face holonomies of this piece, it is not

difficult to conclude that T (g)
v does not modify these holonomies.

g3

g4

g · g6

g · g7
g8 · g−1

g9

v

v′

T (g′)
v′

=⇒ g′ · g3

g4 · (g′)−1

g · g6

g · g7 · (g′)−1

g8 · g−1

g′ · g9

v

v′

Fig. 5. Although Fig. 4 shows us a single example of a lattice gauge transformation, it is worth

noting that not only this example, but also the way that we introduce the concept of the lattice

gauge transformation are equivalent to the definition given in the literature. In order to understand
the reason of this equivalence, it is enough to observe that, when we perform a new transformation

T (g′)
v′ on the same piece shown in Fig. 4, but now on the group elements assigned to the edges

that share the v′th vertex, the element g · g7 gives way to g · g7 · (g′)−1. After all, by remembering

that T (g′)
v′ ◦T

(g)
v is, for instance, a lattice gauge transformation when T (g)

v and T (g′)
v′ are also, the

fact that g7 7→ g · g7 · (g′)−1 retrieves the definition (of lattice gauge transformations) given in the

literature45 makes it clear that T (g)
v , T (g′)

v′ and, therefore, T (g′)
v′ ◦T

(g)
v can actually be interpreted

as such.

the class function ψ is the main protagonist of the action (7). After all, as this

function

• gets its name because it defines different conjugacy classes by assigning a distinct

complex number to each one of them, and (consequently),
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• gathers all the possible holonomies, which can be calculated for the same lattice

face, in the same conjugacy class,

it is precisely its presence in (7) that makes this action invariant under these lattice

gauge transformations. In this fashion, since these lattice gauge transformations

cannot change the physics of this lattice system, it is correct to say that the real

explanation, for the fact that (6) can be written by using (7), is directly associated

with the fact that the presence of ψ in (7) allows us to define (6) as a sum over

all the gauge-invariant configurations. In plain English, in the same way that the

partition function (6) plays a role analogous to that of the path integral, the use

of this action (7) comes to establish a covariance in these lattice gauge theories

because, as we just said, their gauge transformations cannot change the physics of

this lattice system.

3. The Hamiltonian Formulation with Constraints

Although it has become clear that the interpretation of a pure lattice gauge the-

ory is closely associated with the fact that, for example, T (g)
v does not modify the

holonomies around the lattice faces, it is interesting to note that (7) and, conse-

quently, (6) make no mention of the fact that Ln can be interpreted as the lattice

that discretizes a submanifold. So, since the elements of G lead us to an intrin-

sic parametrization of Ln through of ψ (because to gather all the possible face

holonomies in the same conjugacy class reduces the number of degrees of freedom

in this lattice system), the burning question that we need to answer now is: how can

we find a partition function that not only makes it clear that Ln can be interpreted

as the lattice that discretizes a submanifold, but also allows us to recover (6) by

taking Φf = 0?

By analogy with what was said in the introduction, a naive answer that we can

give to this burning question is: by finding a way to find what are the extrinsic

parameters to Ln. In order to find these extrinsic parameters, it seems to be inter-

esting to assume that G is a subgroup of G′ because, as the elements of G lead us to

an intrinsic parametrization of Ln, the elements of G′\G might be good candidates

to lead to these extrinsic parameters. Nonetheless, a most consistent answer to this

burning question can be well understood, for example, by remembering that there

is an application32

(g′, g′′) 7→ ϕ′(g′, g′′) = g (13)

that gives a group structure to G′. After all, just as we were able to define Uf by

using (9), we are also able to define another application

Mf (g1, . . . , gk) = ϕ′(. . . ϕ′(ϕ′(g1, g2), g3), . . . , gk) (14)

by using (13). Why does (13) help us to understand this most consistent answer?

Because as32

ϕ = ϕ′|G′=G, (15)
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this is exactly what allows us to explore the possibility that Mf may be reduced to

Uf when, for example, G′ = G.

Note that, when we defined this new application (14), we have not made any

mention of the possibility of identifying the coordinate g` of the k-tuple (g1, . . . , gk)

with the group element assigned to the `th side of a lattice face f . We did not

make any mention of this possibility because, in addition to it being possible for G′

to differ from G, we also want to interpret Mf as the application that calculates

all |G′|k possible values that can be obtained by multiplying k arbitrary elements

of G′. However, although Mf has no commitment to calculate the holonomies of

the fth face of Ln, it is important to observe that it accidentally calculates them:

this happens when each of the `th coordinates of (g1, . . . , gk) is the `th element of

the sequence g1, . . . , gk of gauge fields that is assigned to this lattice face. Why is

this important to observe? Because it is precisely this accidental calculation that

allows us to conclude that (6) can be recovered, for instance, from a more general

partition function

Z̃ =
∑
{g}

∏
f∈Ln

e−β[ψ(Mf )+ψ(M−1
f )] · eλfΦf , (16)

where λf is a positive real number and

Φf = Φ(ψ(Mf )) = ln δ(ψ(Mf ), ψ(Uf )). (17)

After all, as δ(ψ(Mf ), ψ(Uf )) should be interpreted as a Kronecker delta that was

written differently only for the sake of intelligibility (i.e. δ(ψ(Mf ), ψ(Uf )) = δab,

where a = ψ(Mf ) and b = ψ(Uf )), it becomes quite clear that (16) actually leads

us to a Hamiltonian formulation

H̃ = − ln Z̃ = β
∑
f∈Ln

[ψ(Mf ) + ψ(M−1
f )] +

∑
f∈Ln

λf Φf (18)

with constraints, which shows us that

H̃|Φ=0 = β
∑
f∈Ln

[ψ(Uf ) + ψ(U−1
f )] = − lnZ = H.

3.1. What else can be said about Mf?

In view of the last results/comments, perhaps you, the reader, are feeling a little

uncomfortable. After all, as much as everything we have done seems to be math-

ematically correct, the use of this application Mf (which, a priori, should not be

interpreted as a “holonomy meter”) to obtain a Hamiltonian formulation with con-

straints sounds a bit unnatural, is it not? But, as unnatural as it sounds, there

is no way to say that it is wrong to interpret Mf (g1, . . . , gk) as a holonomy that

is not necessarily physical. What do we mean “a holonomy that is not necessarily

physical”?

In order to understand the answer to this question, we should remember that

Uf can be associated with a local estimate of how curved is Mn from the point of
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view of the faces of Ln.33 After all, note that, due to the way that Uf was defined

in (8), it is not difficult to conclude, for instance, that each of the elements of G can

characterize different face deformations of Ln.47 Observe that this is a conclusion

that, due to this same definition (8), does not extend to the elements of G′\G when

G′ is different from G. However, it is important to note that there is nothing to

prevent the existence of several hypothetical lattices, which may have the same

dimension as Ln, whose face deformations can be characterized by all the elements

of G′. Why is this important to note? Because, since G is a subset of G′, it is not

difficult to conclude that one of these hypothetical lattices is precisely the same Ln
where the physics of our system is defined. Thus, by noting that

• it is not absurd to think that there is another application that can measure all

the holonomies of these hypothetical lattices, and

• this other application needs to define Uf as a special case by using (15),

it is reasonable to identify this other application with the same Mf that we already

defined in (14).

3.2. The first-class constraints

Once the interpretation ofMf is already well understood, it is also worth mentioning

that the result∑
{g}

∏
f∈Ln

e−β[ψ(Mf )+ψ(M−1
f )] · eλf Φf

∣∣∣∣∣
Φf=0

=
∑
{g}

∏
f∈Ln

e−β[ψ(Uf )+ψ(U−1
f )],

which allows us to get (6) as

Z = Z̃
∣∣
Φ=0

,

can be interpreted in terms of conditional probabilities.48 After all, by considering

that Pf (A) = e−β[ψ(Mf )+ψ(M−1
f )] is the probability of the fth face holonomy to be

equal to Mf (event A), and Pf (B) = eλf Φf |Φf=0 is the probability of ψ(Mf ) =

ψ(Uf ) occurring (event B), it is not difficult to conclude that the probability

Pf (A ∩ B) = e−β[ψ(Uf )+ψ(U−1
f )] of the fth face holonomy to be equal to Uf (event

A ∩B) satisfies ∑
{g}

Pf (A ∩B) =
∑
{g}

Pf (A |B) · Pf (B)

since the events A and B are independent (i.e. Pf (A |B) = Pf (A)). Here, the sum

variable {g} is analogous to {g}: i.e. the sum variable {g} in (16) means that all

the possible configurations of the elements of G′ are being computed in Z. In this

way, although it seems that we choose to define Z̃ as (16) just because it results in

a Hamiltonian formulation with constraints, it is valid to say that our choice was

also based on probabilistic considerations.
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Anyway, given this realization of the pure gauge lattice systems as Hamiltonian

systems with constraints, it is important to conclude this section by showing that Φf
actually can be interpreted as the discretized version of the first-class constraints.

One of the ways to show this is to observe that nothing changes if, for instance,

we use

Φα,f = Φα(ψ(Mf )) = ln[δ(ψ(Mf ), ψ(Uf ))α],

where α is a real number such that 0 < α <∞, instead of using (17) because

Φf = ln δ(ψ(Mf ), ψ(Uf )) = 0

⇒ Φα,f = ln[δ(ψ(Mf ), ψ(Uf ))α] = α ln δ(ψ(Mf ), ψ(Uf )) = 0.

And since this allows us to see, for example, that the last term in (18) is such that∑
f∈Ln

λf ln δ(ψ(Mf ), ψ(Uf )) = 0 ⇒
∑
f∈Ln

(λf · α) ln δ(ψ(Mf ), ψ(Uf )) = 0,

it also becomes clear that the Lagrange multipliers λf , which implements the con-

straints Φf = 0 in (18), cannot be unequivocally determined. In other words, at

the same time that these last three expressions show us that there are infinite

choices that can be made for the constraints that define Ln, these same expressions

also make it clear that, for any constraint, the Lagrange multiplier is not uniquely

determined. As

• the elements of G′ lead us to an extrinsic parametrization of Ln through of ψ,

when ψ(Mf ) 6= ψ(Uf ), and (therefore)

• this resonates with what was said in the introduction about the pair Ω = (Q,P )

that parametrizes (T ∗Mn)⊥ intrinsically (i.e. that is extrinsic to T ∗Mn),

the interpretation of these finite-group gauge theories on lattices as Hamiltonian

systems with constraints becomes quite evident.

While this last observation is already enough for us to indirectly conclude that

all equations Φα,f = 0, which can be defined with the infinite values of α,h can

be interpreted as first-class constraints, it is interesting to note that this same

conclusion can also be obtained directly from the calculation of

[Φα,f ,Φα′,f ′ ]. (19)

After all, according to (quantum version of the) Dirac’s consistency conditions6,49

Φ̇α,f = [Φα,f , H̃]

= β
∑
f ′∈Ln

[Φα,f , ψ(Mf ) + ψ(M−1
f )] +

∑
f ′∈Ln

λf ′ [Φα,f ,Φα′,f ′ ] = 0,

hNote that Φf = Φ1,f .
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if all these equations Φα,f = 0 can, indeed, be interpreted as first-class constraints,

(19) needs to vanish on Ln for all values of α, α′, f and f ′. By taking into account

that

(lnx)(ln y) = (ln y)(lnx) ⇔ (lnx)(ln y)− (ln y)(lnx)︸ ︷︷ ︸
[ln x,ln y]

= 0

holds for any non-negative real numbers x and y, it is not difficult to conclude that

this is exactly what happens.

In view of what was demonstrated in the last paragraph, there is no denying

that the fact that all the functions Φα,f commute between them further reinforces,

now from another point of view, that all the Lagrange multipliers in (18) really

cannot be unequivocally determined. But, for the sake of completeness, it is also

of paramount importance to end this section keeping in mind that, even though

this last demonstration was done in a very simple way, Φα,f is a function of a

class function. Why is it of paramount importance to end this section with this in

mind? Because every function of a class function can be also interpreted as a class

function.50 After all, as this interpretation also extends to the sum ψ(Mf )+ψ(M−1
f ),

we can conclude that all these Lagrange multipliers are also class functions. That

is, even though all these Lagrange multipliers are real numbers that cannot be

unequivocally determined, all of them are also class functions of the elements of G′

that, as noted earlier, lead us to an extrinsic parametrization of Ln.

4. The Kitaev Quantum Double Models as an Example

Before we conclude this paper, it is interesting to cite an example of lattice gauge

theories, where its interpretation as a Hamiltonian system with constraints is al-

ready quite clear. After all, in addition to this example being useful for those who

are being introduced to the concept of (lattice) gauge theory, it is also useful for

those who, because they already have some familiarity with models that support

some kind of quantum computing, may be under the impression that they have

seen it all (what we have discussed here) somewhere before. What useful example

is this? This is the class of the Kitaev Quantum Double Models (D(G)), so named in

honor of Alexei Yu. Kitaev and because they satisfy the Drinfeld’s quantum double

algebra.51,52

There are several references that can be used to understand the various features

of these D(G) models53–64 and, precisely because of that, we will not use this

section to detail them. But something that should be said about the D(G) models

is that, for instance, they were defined to be deliberately interpreted as lattice gauge

theories. Two reasons that support this assertion are

(i) classical and quantum computing need to be done using/manipulating real

objects (i.e. physical objects) which, therefore, obey the laws of Physics; and
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(ii) the quantum theories that describe electromagnetic phenomena (i.e. the pheno-

mena that occur in any material that can be used to perform any of these

computations) are gauge theories.

But, before we explain why these D(G) models are examples of lattice gauge

theories, it is very important to mention that the quantum foundation of these

computational models is based on the manipulations of quantum dits (qudits): i.e.

on the manipulations of a quantum version of the d-ary digits, which can be de-

scribed as a unitary vector of a d-dimensional Hilbert space Hd.
65,66 And given this

computational context, it is also very important to mention that, in order to avoid

any problems with reading the data encoded by these qudits, these D(G) models

are defined by associating one Hd with each of the edges of an oriented lattice L2,

which discretizes a two-dimensional compact orientable (sub)manifoldM2. In other

words, as with the lattice gauge theories evaluated in this paper, it is already clear

that these D(G) models are, for instance, deliberately defined by using an oriented

lattice L2 in which a vector is allocated on each of its edges.

4.1. Why can these D(G) models be interpreted as Hamiltonian

systems with constraints?

Of course, the fact that the D(G) models are defined by allocating vectors of a

Hilbert space to edges of L2 is not enough to characterize these models as lattice

gauge theories. But, by noting that these D(G) models are defined by taking B =

{|g〉 : g ∈ G} as the single-qudit computational basis of Hd,
51,54 this “paves the way”

for such a characterization. After all, since the vectors (kets) of this orthonormal

basis are indexed by the elements of a group G, this allows us to define, for instance,

two operations

L
(g)
+ |g′〉 = |g · g′〉 and L

(g)
− |g′〉 = |g′ · g−1〉 (20)

by using the same multiplications that have already been mentioned in items (a)

and (b) on p. 9. That is, it opens up the possibility of defining a single operator A
(g)
v

that, when acting on the edge subset Sv that gives structure to the vth vertex, per-

forms a transformation similar to that presented in Sec. 2.1.3: i.e. a single operator

given by

A(g)
v =

∏
`∈Sv

L
(g)
` ,

where L
(g)
` acts as

(a′) L
(g)
+ , if the `th edge orientation pointing out of this vth vertex, or

(b′) L
(g)
− , otherwise.

Since we just talked about this operator A
(g)
v , a natural question that you, the

reader, may be asking right now is: how does the possibility of defining this A
(g)
v
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help us, for instance, to interpret these D(G) models as lattice gauge theories? By

noting that the D(G) Hamiltonian operator51

HD(G) =
∑
v∈L2

(1v −Av) +
∑
s∈L2

(1s −Bs), (21)

which can be obtained by taking the logarithm of a partition function as explained

in Ref. 57, is defined by using a vertex operator given by67

Av =
1

|G|
∑
g∈G

A(g)
v .

After all, this operator Av, which (unlike 1v) acts not identically only on Sv, aver-

ages out the possible transformations that A
(g)
v is able to do by using all elements

of G.

4.1.1. How does the operator Bs act on L2?

Given what we have seen so far, it is tempting to conclude that A
(g)
v performs

lattice gauge transformations. But before confirming this conclusion, it is important

to identify an operator that is capable of measuring the lattice face holonomies in

these D(G) models. While we still have not said anything about the operator Bs
that appears in (21), it is interesting to point out that this is exactly what Bs does

when acting on the lattice site s = (v, f).

In order to understand how Bs does this, it is relevant to note, for instance,

that the operations mentioned in (20) are not the only ones that we can define by

using B: two others are

T
(g)
+ |g′〉 = δ(g, g′)|g′〉 and T

(g)
− |g′〉 = δ(g−1, g′)|g′〉. (22)

And since δ(a, b) = δab is a Kronecker delta, another operator that we can define

with the help of these operations (22) is51

B(g)
s =

∑
U

(v)
f =g

( ∏
`∈Sf

T
(g)
`

)
, (23)

which acts on the edge subset Sf that gives structure to the fth face, by using an

operator T
(g)
` that acts as

• T (g)
+ , if the `th edge is oriented counterclockwise from the point of view of the

fth face, or

• T (g)
− , otherwise.

Here, U
(v)
f calculates the fth face holonomy (i) by using the counterclockwise di-

rection and (ii) by taking, as the first term of its product, the group element that

is associated with one of the edges that is delimited by the vth vertex. After all,

as the operators B
(g)
s are defined without using any class function explicitly (and,

therefore, the possibility that different holonomies characterize the same lattice face

2330001-17

M
od

. P
hy

s.
 L

et
t. 

A
 2

02
3.

38
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

E
 S

A
O

 P
A

U
L

O
 o

n 
07

/2
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 21, 2023 9:34 MPLA S021773232330001X page 18

M. F. Araujo de Resende

|g1〉

|g2〉

|g3〉

|g4〉

Fig. 6. (Color online) On the left, we see (in baby yellow color) an example of lattice site: i.e.

an ordered pair s = (v, f), which is composed of one vertex v and one face f (highlighted in red

and blue colors, respectively), that helps to define how the operators B
(g)
s act on the faces of L2.

After all, even though each lattice face is indexed by a single value of f , the way these operators

are defined in the D(G) models requires, for instance, that there is some kind of “origin” from

which the holonomy of the fth face can be estimated. According to what we see on the right, this

“origin” is precisely the vertex v that defines the site s, since this holonomy U
(v)
f is calculated

by taking, as the first term of this calculation, the group element that is associated with the first

ket/edge appearing in counterclockwise order. That is, in the case of this lattice face that we see

on the right, this calculation is done as U
(v)
f = (g1)−1 ·g2 ·(g3)−1 ·(g4)−1 in deference, for instance,

to what has already been explained in Figs. 2 and 3.

is nonzero), so that the “scan” performed by the operator Bs in (21) to lead to con-

sistent results, the operators B
(g)
s are deliberately defined by using a sum restricted

to U
(v)
f = g. This calculation is well illustrated in Fig. 6.

Note that, as artificial as B
(g)
s may seem, its definition makes it possible to

interpret it, for instance, as a projector and that is precisely what allows us to

recognize it as a kind of “holonomy meter”. After all, since the sum in (23) is

constrained to the fact that U
(v)
f must be equal to g, the Kronecker deltas in

(22) make all the measurements, which are performed by B
(g)
s on any (site that

characterizes a) face of L2, always equal to

• 1, if U
(v)
f = g, and

• 0, otherwise.

But, despite what we are saying is correct, the operator that appears in (21) is

Bs and not B
(g)
s . Hence, the question that needs to be answered now is: what is

the definition of Bs and what does it have to do with B
(g)
s ? And since we already

stated that Bs is capable of measuring the lattice face holonomies, the answer to

this question is51,67:

Bs ≡ B(e)
s , (24)

where e is the neutral element of G. That is, Bs is a special case of the operators

B
(g)
s that measures flat connections (i.e. trivial holonomies that are characterized

by h = e along the faces) in the D(G) models.

Given this scenario, it is finally possible to confirm the interpretation of A
(g)
v as

an operator that performs lattice gauge transformations. For this to be done, it is
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crucial to note that, since

L
(g)
± L

(h)
± = L

(h)
± L

(g)
± , L

(g)
± L

(h)
∓ = L

(h)
∓ L

(g)
± ,

L
(g)
± T

(h)
± = T

(gh)
± L

(g)
± , L

(g)
± T

(h)
∓ = T

(hg−1)
∓ L

(g)
± ,

T
(g)
± T

(h)
± = T

(h)
± T

(g)
± and T

(g)
± T

(h)
∓ = T

(h)
∓ T

(g)
± ,

Av and B
(g)
s commute among them for all values of v and s. After all, since these

operators commute among them, this means that all the holonomies measured by

B
(g)
s are not changed by the action of Av on L2. In other words, and in light of

what was discussed in Sec. 2, Av actually performs lattice gauge transformations

because its action on L2 does not modify the face holonomies.53

4.1.2. Some geometric considerations on these D(G) models

Just for the sake of completeness, it is important to point out here that, as with

all the operators B
(g)
s , the vertex operator Av can also be interpreted as a pro-

jector.51,53 After all, as much as it actually replaces the kets associated with Sv for

others, it is not difficult to prove that its action, on all the vertices of L2, does not

change the encoding written in this lattice. That is, as with all the operators B
(g)
s ,

this vertex operator Av is incapable of modifying the state of this lattice system

and its eigenvalues are equal to 0 and 1.

As a matter of fact, as a consequence of the Hamiltonian (21) being nothing

less than a superposition of several operators Av and Bs, it is not wrong to say

that it is precisely this fact, which Av and Bs are projectors, that makes HD(G)

able to measure the energies of these D(G) models. In order to understand how

HD(G) measures these energies, it is interesting to note that, since 1s is the identity

operator that acts effectively on Sf , the smallest eigenvalue of HD(G) is 0. After all,

as 0 and 1 are the only values that Av and Bs can measure by acting on L2, what

these operators do, from the HD(G) point of view, can be interpreted as a count of

how many local elevations of energy (i.e. of how many quasiparticles) there are on

this lattice. Observe that, since the smallest eigenvalue of HD(G) is associated with

an eigenstate |ξ0〉, where51,53,67

Av |ξ0〉 = |ξ0〉 and Bs |ξ0〉 = |ξ0〉 (25)

hold for all the possible values of v and s, it is not wrong to say, for instance,

that these quasiparticles can be created by violating at least one of the conditions

in (25).

Nevertheless, since the main purpose of this section is to show why these D(G)

models, which are good examples of finite-group gauge theories on lattices, can be

interpreted as Hamiltonian systems with constraints, it is interesting to analyze

(25) by taking a geometric point of view. After all, as (24) tells us that the smallest

eigenvalue of HD(G) is obtained only when, for instance, U
(v)
f = e holds for all the

values of s, it is not difficult to conclude that, when these D(G) models are in their
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ground states, L2 is locally flat. Since L2 discretizes a two-dimensional compact

orientable (sub)manifoldM2, this conclusion makes sense because, as in the D(G)

ground states there are no quasiparticles, each of the lattice faces can be seen as

locally flat since they are rough approximations of some open sets of M2.

Note that, as the quasiparticles detectable by Bs are always such that U
(v)
f 6= e,

the geometric point of view associated with this condition allows us to say, for

instance, that the presence/existence of these quasiparticles must be interpreted

as local deformations of L2. Bearing in mind that quantum-computational models

try/need to model some reality that can be physically implemented, this interpre-

tation is not strange at all because there are several physical theories that, for

instance, assign some spatial curvature to the presence of fields/particles. In fact,

a good example of these physical theories is the Standard Model of elementary

particles (SM)68 since, due to the presence of several covariant derivatives4,7,43 in

its Lagrangian formulation, it is impossible not to recognize that its fermions are

responsible for curving space in some sense.69 In plain English, this good example

is in line with what we said at the beginning of Sec. 2 because, in addition to the

SM being an example of gauge theory,42,70 it was precisely some of its problems,

which required a non-perturbative solution, that have fostered the development of

the lattice gauge theories.9,24

Nevertheless, in view of this geometric scenario, in which we see that quasipar-

ticles detectable by Bs are responsible for deforming L2 locally, it is worth noting

that quasiparticles that are detectable only by Af are not capable of doing the

same thing. In other words, as the operators B
(g)
s (and not A

(g)
v ) are interpreted

as “holonomy meters”, Bs is the only operator in (21) that can check if there is

any deformed face in L2 and, therefore, define the constraints that determine this

lattice. After all, observe that, analogously to what we saw on p. 12, the D(G)

Hamiltonian operator is nothing more than an

HD(G) = H̃D(G)

∣∣
Φ=0

,

where

H̃D(G) =
∑
v∈L2

(1v −Av) +
∑
s∈L2

[1s −B(g)
s ] and Φf = ln δ(U

(v)
f , e).

5. Final Remarks

In view of everything we have presented in this review, it is quite clear that the

lattice gauge theories, where G is a finite group, can indeed be interpreted in terms

of Hamiltonian systems with constraints, similarly to what happens in the classi-

cal (continuous) gauge (field) theories. After all, as unnatural as it may seem to

rewrite (6) using conditional probabilities, the fact is that, as this gauge system

is constrained to Ln (i.e. to the lattice that is defined when Φf = 0 holds for

all the values of f), it makes physical sense to get a zero partition function when

eλf Φf |Φf 6=0 holds for, at least, one value of f .
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Given that the function Φf is just one of the infinite functions Φα,f that are

capable of defining the same Ln (i.e. given that Φf = 0 is equivalent to Φα,f = 0

for all 0 < α <∞), and that this implies that there are infinite choices that we can

make for all the Lagrangian multipliers λf , which implement any of the constraints

Φα,f = 0 to (18) without ever-changing Pf (B), it was possible to infer that all

these constraints can be interpreted as first-class. Although this inference was made

without calculating the quantum version of the Dirac brackets [Φα,f ,Φα′,f ′ ], this

calculation, which was made in the final of Sec. 3, only endorsed this interpretation

because these brackets are equal to zero for all values of α, α′, f and f ′. In this

fashion, by remembering that

• these constraints Φα,f = 0 are also invariant under lattice gauge transformations,

and

• the elements of the finite gauge group lead us to an intrinsic parametrization of

Ln through of ψ,

the analogy between this result and what was said in the introduction is even

stronger: after all, all these Lagrangian multipliers λf , which are real numbers that

cannot be unequivocally determined, are also class functions of the elements of G′

that lead us to an extrinsic parametrization of Ln.

Of course, while these conclusions make sense, perhaps you, the reader, are

seeing a difference that seems to be quite profound between the Hamiltonian

formulation (18) and the one mentioned in the introduction. After all, while the for-

mulation mentioned in the introduction points out that only the components of the

pair ΩI = (QI, PI) can be interpreted as gauge parameters, the formulation of Sec. 3

seems to be suggesting that both intrinsic and extrinsic parameters of the lattice

gauge theories can be interpreted as such. If you are seeing this difference, we need

to remind you of an important mathematical result, which is directly related to the

manifold parametrizations. What important mathematical result is this? The one

that tells us that, despite the parameters ω are not necessarily identified as gauge

parameters in (3), the open sets of a differentiable manifold may be intrinsically

parametrized in several ways.4,7,43 And since, for two open sets A and B such that

A∩B 6= ∅, all these intrinsic parametrizations are related by diffeomorphisms,4,7,43

this is another aspect that also ensures the covariance of the physical equations.2,5,6

In other words, as

• all the faces of Ln can be roughly interpreted as discretizations of the n-

dimensional open sets of Mn, and

• the intersection of two neighboring faces of Ln is always non-empty, since they

always have at least a common edge,

this situation is very similar to what is happening in (18) because both ω and ψ(g`)

intrinsically parametrize the physical realities they describe.

Anyway, note that, although most authors always present Ln as a spacial lattice

that is, at most, three-dimensional, there is no obstacle for the partition function
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(6) to describe physical systems in spatial lattices with larger dimensions: the only

conditions that Ln needs to satisfy for this to happen is to

• support a gauge field on each of its edges, and

• (locally) discretize an orientable (sub)manifold Mn.

Surely, in view of our last comment, you, the reader, may be thinking that, when

we deal with dimensionally larger lattices, other geometric information need to

be invoked in order to better characterize this (sub)manifold that Ln discretizes.

If you are thinking about it, know that you are right and an excellent example

of this is the 2 -holonomies71 that appear in the lattice formulation of the higher

gauge theories.72 After all, while the usual lattice gauge theories are described by

using only one gauge group, these higher lattice gauge theories are defined by using

two groups that, for instance, compose a crossed module73,74: one of these groups

is the same G that defines the usual lattice gauge theories, while the other one

describes other (2-)holonomies that can be defined for the higher gauge fields.71 In

this fashion, it is clear that there is an open possibility to evaluate how these higher

lattice gauge theories fit the description of a Hamiltonian system with constraints.

As a matter of fact, it is worth noting that some generalizations of the D(G) models,

which we cited as an example in the last section, are being developed in the context

of these higher lattice gauge theories.71,75–77
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