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In this work, we present a brief but insightful overview of the gauge theories, which are
defined on n-dimensional lattices by using finite gauge groups, in order to show how
they can be interpreted as a Hamiltonian system with constraints, analogous to what
happens with the classical (continuous) gauge (field) theories. As this interpretation
is not usually explored in the literature that discusses/introduces the concept of lattice
gauge theory, but some recent works have been exploring Hamiltonian models in order to
support some kind of quantum computation, we use this interpretation to, for example,
present a brief geometric view of one class of these models: the Kitaev Quantum Double
Models.
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1. Introduction

One of the ingredients that characterizes a classical system as a gauge theory is
its restriction on some submanifold M,, C M, with n dimensions.! When we
describe this system by using a Hamiltonian formulation, this restriction takes its
form through a Hamiltonian function?

Hr(z) = H(z) + N ®;(2), (1)

where S¢ = {®; : T* M, — R} is a set of independent differentiable functions,
which are responsible for defining the phase subspace T*M,, C T* M, 4 of this
system by taking ®;(z) = 0, and j = 1,...,k.3 Note that as T*M,,4; can be
parametrized by more than one atlas/coordinate system, the functions that describe
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this classical system can be expressed in a non-unique way. One of the consequences
is that, due to the differentiable decomposition*

T Mupsr = T My, @ (T M) (2)

that these constraints ®;(z) = 0 allow us to do, where q is a point that belongs to
M,,, there is another parametrization

K:(Qap):(wv &f/)
Q P

of T* M, 4+ that, for example, allows us to rewrite all the physical functions of
this same system by using only the intrinsic parameters w = (g, p) of the cotangent
bundle 7% M,,.> In this case, these new parametrizations let us rewrite (1) as®5:2

Hip(k) = Hyn(w) + ApP + O(P, P). (3)

However, it is worth to remember that these are not the only ingredients nec-
essary to characterize a classical gauge theory as a Hamiltonian system with con-
straints: it is also necessary that, at least, a part of the functions in the set Sg be
first-class® because the Lagrange multipliers (1), which implement these first-class
constraints (®;) to the Hamiltonian function (1), can never be solved unequivo-
cally.? In this way, by noting that all the parametrizations of a manifold are related
(one to the other) through diffeomorphisms,” it is not difficult to conclude that,
due to the bijection between the components of P and ® = (®4,..., D), the new
constraints P = 0 can also be divided between those that are of first- (P;) and
second-class (Pp). As a consequence, this new Hamiltonian function (3) describes
the same classical system through a set of new equations®

& ={w,Hpn}, Qr=Xp, Qu=Aw,Q) and P=0 (4)
that are very interesting. Why are these new equations so interesting? It is because

e by noting that w = (¢,p) and Q = (Q, P) are the intrinsic parameters of T*M,,
and (T*M,,)*, respectively, and

e as A\p, designates the new non-univocal Lagrange multipliers that implement the
new first-class constraints Py = 0 in (3),

this shows us that the endless choices that we can make for these multipliers and,
consequently, for the gauge Q = (Q1,Qm) and P = (P, P1) never change the
solution of the physical equations®:P

w={w, Hpn}. (5)

2Here, we are taking advantage of the fact that, by rearranging the entries of (Q,P), we can
rewrite it as (w, Q) = (¢, p, Q, P), where Q = (Q, P) parametrizes (T* My,)" intrinsically.
PNote that just as w = (g, p) can be interpreted as a canonical pair of variables, so can Q1 = (Q1, Pr)
and Qi1 = (Qir, Pr1). Therefore, (Q1, Q1) and (P, Pi1) must be interpreted as the components of
the canonical pair of variables Q = (Q, P).
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By remembering, once again, that all the different parametrizations of a manifold
are related by diffeomorphisms, it is exactly this freedom (which we have to fix any
gauge 2 = (Q, P)) that ensures that infinitely many other gauges Q' = (Q’, P’) can
also be chosen in all other parametrizations.t

Nevertheless, once it is already well known that this constrained interpretation
extends to the continuous gauge field theories,?5:€ it is interesting to go in the
“opposite” direction in order to show, for instance, how this same interpretation
fits with the physical systems that behave as gauge theories on lattices: i.e. as
theories whose gauge fields are attached to the edges of some spatial lattice £,
with n dimensions.? This is exactly what we will do throughout this review (i) by
analyzing a pure gauge theory on this £, and (ii) by assuming that this lattice
is a kind of “patchwork quilt” composed of not necessarily regular polyhedra that
(locally) discretizes some (sub)manifold M,,. After all, in addition to the fact that
there are not many references that go in this “opposite” direction, this constrained
interpretation is of great value due, for instance, to the recent interest in using
Hamiltonian models, which describe finite-group gauge theories on spatial lattices,
that try to support some kind of quantum computing.1% 23 We will give an example
of such Hamiltonian models in the penultimate section of this paper.

2. Gauge Theories on Lattices

Roughly speaking, it is not wrong to say that lattice gauge theories emerged from
the need to solve some problems that could not be solved by using the same formu-
lation as continuous gauge field theories. Among these problems, we can list those
that were directly related to elementary particle physics (in particular, to quantum
chromodynamics) that, for example, required a non-perturbative solution.” Thus,
as a solution for these problems, these continuous gauge theories were replicated
in a new scenario where this was possible: strictly speaking, to a scenario where,
instead of considering that a physical system evolves on M,,, it was considered that
this physical system evolves on the discretization £,, of this manifold.2

Among the adaptations that had to be made in this new scenario, probably
the most basic was to assume that all matter could be represented by fields as-
signed only to the vertices of this lattice £,,. However, given the need to adapt the
Lagrangian/Hamiltonian formulation to this new scenario and, therefore, identify
the symmetry transformations performed by the new gauge fields, all these gauge
fields ended up being exclusively assigned to the lattice edges.2> After all, as the
set of constraints ® = 0 (that define T*M,, C T* M, 41 in the continuous gauge
theories) generates symmetries that can be controlled by some (Lie) group,:26
the replication of these continuous gauge theories in this new scenario forces, for
instance, that these lattice gauge fields be elements of some group G since they

need to be interpreted as parallel transporters.27:28

°That is, gauge theories where all their Hamiltonian functions are defined by using Hamiltonian
densities.
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Fig. 1. Example of a two-dimensional lattice L2 where all the edges are oriented. Note that since
each of the edges of this “patchwork quilt” can be oriented in two ways, this example makes it
clear that there is no rule for making these orientations. As will become clear in the following
lines, these edge orientations are necessary not only so that the gauge fields can be interpreted
as parallel transporters, but also so that, among other things, the lattice gauge transformations
can be well defined. In any case, it is worth noting that, although the spatial lattices that define
the lattice gauge theories are usually interpreted as regular hypercubic lattices, we are using this
example to reinforce that we will not restrict considerations to only regular hypercubic lattices:
in this paper, we will only consider that £,, is a spatial lattice that discretizes an n-dimensional
manifold.

2.1. Gauge theories on lattices defined by using finite gauge groups

A simple but important thing we must note here is that, due to this interpretation
of the lattice gauge fields as parallel transporters, £,, should be an oriented lattice:
i.e. all their edges must be oriented as illustrated, for instance, in Fig. 1. The best
way for us to begin to understand why this orientation needs to be done is to
recognize, first, that one of the main consequences of this lattice approach is that,
when G is a finite group, we can obtain the Hamiltonian formulation of these lattice

gauge theories through a partition function®?29

7 = Z e PS(e), (6)
{a}

where S is the action that describes this system and f is a real constant. As this
action is written as a function of the lattice gauge fields g € G, the sum variable {g}
in (6) means that all the possible configurations of these fields are being computed
in Z.

As a matter of fact, if we turn our attention only to the lattice gauge theories
where there is no matter present (i.e. to the pure lattice gauge theories), it is not

hard to demonstrate that this action can be written as the sum3%:3!
S= > [+ (U (7)
feﬁn

of all the values of ¢¥(Uy) + w(Uf_l) that can be estimated for the lattice faces,
where Uy : G¥ — G is the holonomy associated with the fth lattice face, U N Vs its
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Fig. 2. (Color online) Here, we see a lattice face f that is delimited by four edges, where it
is possible to identify a gauge field g, on each of them. Note that, if we calculate their face
holonomies by using the clockwise direction (highlighted in olive color), the four possible results

1 _ 2 _ 3 _ 4
are: U} Y = g102-(g3) "' g4, U} Y = g2 (g3) " 9401, U; ) = (g3)'-ga-91-g2 and U} 9 =
g4 - 91 - 92 - (g3) L. This calculation was performed by noting that, when the orientation of the
edge that contains g, coincides (does not coincide) with the clockwise direction, the element that

defines U}na) is go ((ge) ™).

inversed and 1 : G — C is a class function. As U ¢ is an application that, as Fig. 2
illustrates, can be defined as

Ur(g1,-- -, 0k) = o(- - p(p(01,02),83); - - -, O1) = 05, (8)

where??

(91,82) — ¢(01,02) = ¢ 9)

is the application that gives a group structure to G, it is not wrong to conclude
that Uy is responsible for assigning an element of G with a lattice face f that has
k sides. In other words, by assuming that

e there is a group element g, associated with each lattice edge, and
e each lattice face can always be characterized by some sequence g1, . . ., g of these
elements,

Uy allows us to multiply all elements of this sequence (in the same order they
appear) and, therefore, assign a gy to this fth lattice face.®

2.1.1. But why is action (7) defined in this way?

In order to understand why (7) is defined in this way, it is worth noting that, as
illustrated in Figs. 2 and 3, there is nothing to prevent Uy from being calculated

dThat is, if we consider, for instance, that U 7 is calculated by using a counterclockwise orientation,
U;l must be interpreted as the holonomy that can be calculated by using a clockwise orientation.
¢Note that, since U;l must be interpreted as the inverse of Uy, it is not hard to conclude that,
if the latter is defined as Uy = g1 - g2 - ... gk—1 * gk, the former should be defined as Uf_1 =

11 11
O "1 82 "8 -
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Fig. 3. Here, we see the same lattice face as in Fig. 2, but now it looks like we are calculating their
holonomies by using the counterclockwise direction since the four possible results are: U;lb) =

(60) " g3+ (92) "1 (91) 71, UFY = (91) 71 (94) 7 03+ (02) 1, U = (g2) 71+ (a1) - (00) g3
and Uj(c4b> =g3-(g2)" ' - (g1)"' - (g4)~!. Note that, while it is clear that it is perfectly possible
to calculate holonomies by taking clockwise and counterclockwise directions, it is important to
observe that U\ = [U(nb)}_l. That is, although it seems that we are getting eight different
results for the holonomy around this lattice face, what we are getting are four different results and
their inverses. Therefore, if we want to calculate the holonomies of all the faces of £,, we must
calculate the holonomy of a face by choosing a direction and apply this choice to all other faces in
order to avoid confusing. Observe that this comment implies that the submanifold M,, that £,
(locally) discretizes must be orientable: after all, if M, is not orientable, this non-orientation will
prevent us from choosing the direction in which these holonomies will be calculated.

in k different ways: in other words, there is nothing to prevent a face from being
characterized by different elements of G when this gauge group is non-Abelian.
In this fashion, as the gauge fields assigned to the lattice edges are responsible
for performing parallel transports and, therefore, this concept of holonomy can be
associated with an estimate of how curved is M, from the point of view of the
faces of £,,33 there is a problem that needs to be fixed here. What problem? The
action (7) needs to be defined so that the Boltzmann factor of each lattice face is
invariant. Thus, by observing that every class function ¢ is such that

V(g 9" g") =y g" o) =¥ o ")
holds for any group elements g’, g” and g'”, it is precisely the use of a class function
that leads to one action (7) that does not depend on these k possible choices to

calculate Uy. Note that, since ¢)(Uy) is a complex number, the superposition ¢(Uy )+
’(/J(U;l) defines a real number.

2.1.2. A small parenthesis

Of course, what we have just said still does not clarify all aspects of why (7) is
defined in this way. But, before we delve a little further into this discussion, it is
important to make a little parenthesis here to make three important observations.
The first one is related to the fact that this description of lattice gauge theories,
based on the use of this partition function (6), had its origin in Ref. 34, where a
generalization of the Ising model®® was presented by assigning the spin variables to
the lattice edges. After all, as the use of this generalization was successful in a first
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work, where it was possible to evaluate questions related to the quark confinement, 2
the prototype of this generalization was used as a cornerstone for the development
of other lattice gauge theories.

By putting that historical information aside, which justifies the successful use
of (6) in the formulation of lattice gauge theories is that, for example, it provides
a good way to compute the path integral over all the possible configurations of the
gauge fields in a quantum field theory.3® In other words, just as the path integral is
a sum over all possible histories of a system,?” this partition function (6) computes
this sum in a more tractable way by breaking it down into a product of simpler
factors. We will return to this discussion later on, when we are finished clarifying
why (7) is defined in this way. For now, the second observation we need to make
here concerns the fact that, in the case of the lattice gauge theories where there is
matter present in the vertices, their actions are given by2®

65 = ﬁ/sgauge + B”Smattera (10)

where " and " are two real numbers, Sgauge is the same action (7), and the new
Smatter Must describe how the matter fields interact with each other. But when we
note that this historical information makes it clear, for example, that these more
general lattice gauge theories need to bring the Ising models as special cases, the

interaction model between first neighbors endorses that2°3%
‘ ¢
Shmatter = Z <U§ ),p(gg) 'Ué )>7 (11)
eL,

since the term inside this summation is an inner product that models how aligned
are the two matter fields vgé) and vée) that endpoint of the ¢th lattice edge.! Tt is
clear that the presence of p(gy) makes this inner product in (11) a little different
from those that define the Ising and Potts models.?>4? What explains this difference
is the fact that, as these matter fields Uge) and vy) need to interact with each other,
this interaction needs to be moderated by the lattice gauge field that appear on the
f-edge. Thus, by remembering that a group always admits a matrix representation
p, it is correct to say that the product p(ge) ~"U§£), between the matrix p(g¢) and the
vector véz) (which belongs to a finite-dimensional vector space), can be interpreted
as a gauge group action.*! That is, these matter fields are coupled to the lattice
gauge fields by using this group action in a situation where 8" is a nonzero real
number.25

However, while this second observation suggests that the lattice gauge theories
that we need to evaluate are those whose actions are more general than (7), we still
need to make the third (and, perhaps, most important) observation here. After all,
regardless of the form that Spaster takes, (6) and (10) allow us to conclude that,
if a pure lattice gauge theory can be interpreted as a Hamiltonian system with

fNote that this sum is similar to the one in (7): i.e. as the symbol “¢” indexes the £th edge of L,

this action Smatter sums all the values that (v%f), p(ge) - v§[)> assumes for all the lattice edges.

2330001-7



Mod. Phys. Lett. A 2023.38. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 07/26/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. F. Araujo de Resende

constraints, the pure gauge action (7) alone can already lead to the formulation
where these first-class constraints appear. In other words, as

e the action (10) is such that

67(ﬂ/Sgaxlge+,8//Sxxxattex') — efﬁlsgauge . effé)llsumatter7 and

e the Hamiltonian formulation is obtained by taking the logarithm of (6),

if a pure lattice gauge theory can be interpreted as a Hamiltonian system with
constraints, a more general lattice gauge theory can also be interpreted in the
same way. Note that an alternative way to understand this same conclusion is,
for example, by exploring the limiting case where vgo and vy) belong to a one-

dimensional vector space: as, in this limiting case, p(ge) - vgg = vgg and, therefore

(W9, p(ge) - 0iy =1 (12)

holds for all the values of ¢, the advent of the correspondence principle in Physics
ensures that this interpretation, of a more general lattice gauge theory as a Hamilto-
nian system with constraints, is the sole responsibility of Sgauge, since the presence
of these matter fields on the lattice vertices is irrelevant for this purpose.

2.1.3. Gauge transformations

Having made this small parenthesis, now we can return to the discussion of why (7)
is defined in this way, and we will do this by explaining why these lattice systems,
where there is no matter present, are usually interpreted as gauge theories. By
remembering that the characterization of any physical system as a gauge theory is
directly related to the covariance of its equations of motion,*2 there are two critical
remarks that we should make here, and the first one is precisely related to this
concept of covariance. After all, although it is quite common to “hear” that the
equations of motion of a physical system are covariant because they maintain their
“form” unchanged under gauge transformations, the truth is that the origin of this
predicate “covariance” is geometric: i.e. this predicate reflects the fact that these
equations depend exclusively on the parameters/functions that intrinsically describe
the geometry of this physical system.*42:& Why is this first remark critical? Because,
as these lattice gauge theories are usually described without ever mentioning that

8In other words, the equations of motion
2= {2z, Hr(2)}o(z)=0
of a physical system are rewritten as
' ={2Hr(z)}o()=0

under a gauge transformation z — 2z’ = T(z).2 Note that this reinforces the comment we made
in the introduction, about the fact that the physics of a classical gauge system can be described
by (5). After all, as w describes the intrinsic parameters of T* M, the gauge transformations
(W, Q) = (w0, Q") = T(w, ) never change (5).2:43
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L, discretizes a submanifold, it is not wrong to assert that, at least, the elements
of the gauge group G allow to identify the intrinsic parameters of L,,.

But what does it mean to say that the equations of motion of a lattice gauge
theory are covariant for someone looking, for instance, only at the configuration of
the gauge elements assigned to the lattice edges? As we have already said that (7)
needs to be defined so that the Boltzmann factor of each lattice face is invariant,
the natural answer to this question is: the equations of motion of a lattice gauge
theory are covariant under lattice gauge transformations that do not change the
holonomies around the lattice faces, and this is precisely the second critical remark
that we needed to make. As we have already said that Uy can be associated with
an estimate of how curved is M,, from the point of view of the faces of L,,, it is not
difficult to conclude that: saying that the lattice gauge transformations are those
that do not change these holonomies is equivalent to saying that, whatever the new
group elements that will be assigned to the lattice edges, these new group elements
continue to intrinsically describe the same L,,. Therefore, by remembering that the
elements of a non-trivial group cannot be unequivocally expressed as a product of k
group elements,** the characterization of these lattice systems as gauge theories can
be related to the freedom we have to change any of the group elements gy, which
are assigned to the edges of £, to other g; as long as the value of Uy remains
unchanged.

Given these two critical remarks, we can conclude that, if we know anyone
of the field configurations of a pure gauge lattice system, all the others can be
obtained from this first one through lattice gauge transformations. Yet, as any
lattice edge may belong to more than one face of £, a good way to perform these
transformations is by modifying all the group elements, which are assigned to all
the n, edges that composes a same lattice vertex v, for others%:46

(a) g- gy, if the £th edge orientation pointing out of this vth vertex, or
(b) g¢- g1, otherwise.

An instructive example of these lattice gauge transformations 7;(9) G — G
can be seen in Fig. 4: after all, if we calculate all the holonomies by using the same
counterclockwise orientation, it is not difficult to see that 77)(9) does not change the
holonomies around the lattice faces. Observe that, as

Y(Up) =g~ -g-Up) =(g-Us-g7")

holds for all g € G, this no-change in the values of ¥(Uy) can be associated with
the fact that Uy and g- Uy - g~ ! belong to the same conjugacy class. 4

Anyway, although Fig. 5 continues to explore the same situation as Fig. 4 do,
for example, reinforce that the way that we introduce the concept of the lattice
gauge transformation here is equivalent to the definition given in the literature, it
is undeniable that everything we have said so far has made one thing very clear:
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92 g2
95 g5 g
96 (g) 996
v 7:' v
g1 g3 = O g3
g8 gs - 0/
g7 g-97
v’ v’
94 g4

Fig. 4. (Color online) On the left, we can see a piece of a two-dimensional lattice L2 whose edges
support elements of the gauge group G. Note that, in this piece, we have four faces/edges sharing
the same vertex v (highlighted in red color). On the right, we see the result of a lattice gauge
transformation 7—1)(9) (highlighted with the same red color), which was performed on the group
elements that are assigned to these four edges. As the discussion presented in Figs. 2 and 3 claims
that we must choose a single direction to calculate the face holonomies of this piece, it is not
difficult to conclude that 77)(9) does not modify these holonomies.

996 T(g') 996

v v’ v ,

93 = g 93
989, 98- 0,
897 g o7 (9)
v’ v’
/7 94 /7 g4 (g))"

g9 g’ g9

Fig. 5. Although Fig. 4 shows us a single example of a lattice gauge transformation, it is worth
noting that not only this example, but also the way that we introduce the concept of the lattice
gauge transformation are equivalent to the definition given in the literature. In order to understand
the reason of this equivalence, it is enough to observe that, when we perform a new transformation

’
7;(,9 ) on the same piece shown in Fig. 4, but now on the group elements assigned to the edges
that share the v'th vertex, the element g- g7 gives way to g- g7 - (g’) ~!. After all, by remembering

! !
that 7'1)(,g Do 77,(9) is, for instance, a lattice gauge transformation when Tv(g) and ’7'11(,g ) are also, the
fact that g7 — g-g7 - (g’) "' retrieves the definition (of lattice gauge transformations) given in the

’ ’
literature?® makes it clear that 72,(9), 7;(,9 ) and, therefore, 7;(,9 ) 07;,(9) can actually be interpreted
as such.

the class function ¢ is the main protagonist of the action (7). After all, as this
function

e gets its name because it defines different conjugacy classes by assigning a distinct
complex number to each one of them, and (consequently),
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e gathers all the possible holonomies, which can be calculated for the same lattice
face, in the same conjugacy class,

it is precisely its presence in (7) that makes this action invariant under these lattice
gauge transformations. In this fashion, since these lattice gauge transformations
cannot change the physics of this lattice system, it is correct to say that the real
explanation, for the fact that (6) can be written by using (7), is directly associated
with the fact that the presence of ¥ in (7) allows us to define (6) as a sum over
all the gauge-invariant configurations. In plain English, in the same way that the
partition function (6) plays a role analogous to that of the path integral, the use
of this action (7) comes to establish a covariance in these lattice gauge theories
because, as we just said, their gauge transformations cannot change the physics of
this lattice system.

3. The Hamiltonian Formulation with Constraints

Although it has become clear that the interpretation of a pure lattice gauge the-
ory is closely associated with the fact that, for example, ’Tv(E) does not modify the
holonomies around the lattice faces, it is interesting to note that (7) and, conse-
quently, (6) make no mention of the fact that £,, can be interpreted as the lattice
that discretizes a submanifold. So, since the elements of G lead us to an intrin-
sic parametrization of £, through of ¢ (because to gather all the possible face
holonomies in the same conjugacy class reduces the number of degrees of freedom
in this lattice system), the burning question that we need to answer now is: how can
we find a partition function that not only makes it clear that £,, can be interpreted
as the lattice that discretizes a submanifold, but also allows us to recover (6) by
taking ®; = 07

By analogy with what was said in the introduction, a naive answer that we can
give to this burning question is: by finding a way to find what are the extrinsic
parameters to L,. In order to find these extrinsic parameters, it seems to be inter-
esting to assume that G is a subgroup of G’ because, as the elements of G lead us to
an intrinsic parametrization of £, the elements of G'\G might be good candidates
to lead to these extrinsic parameters. Nonetheless, a most consistent answer to this
burning question can be well understood, for example, by remembering that there

is an application32

g9V g9 )=y (13)

that gives a group structure to G’. After all, just as we were able to define Uy by
using (9), we are also able to define another application

Mf(gl7 e 7gk) = QDI( . @/(30/(915 92)5 93)1 o 79]6) (14)
by using (13). Why does (13) help us to understand this most consistent answer?
Because as®?

v =¢'le=c, (15)
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this is exactly what allows us to explore the possibility that My may be reduced to
Uy when, for example, G' = G.

Note that, when we defined this new application (14), we have not made any
mention of the possibility of identifying the coordinate g, of the k-tuple (g1, .., gx)
with the group element assigned to the fth side of a lattice face f. We did not
make any mention of this possibility because, in addition to it being possible for G’
to differ from G, we also want to interpret M; as the application that calculates
all |G’|* possible values that can be obtained by multiplying k arbitrary elements
of G'. However, although M has no commitment to calculate the holonomies of
the fth face of £, it is important to observe that it accidentally calculates them:
this happens when each of the ¢th coordinates of (g1, ..., gx) is the fth element of
the sequence g1, ..., g of gauge fields that is assigned to this lattice face. Why is
this important to observe? Because it is precisely this accidental calculation that
allows us to conclude that (6) can be recovered, for instance, from a more general
partition function

7 Z H o BlU(M )+ (M; ) M (16)
{9} f€Ln
where Ay is a positive real number and
Dy = @((My)) = Ino(p(My), ¥ (Uy)). (17)

After all, as 6(¢)(My),¥(Uy)) should be interpreted as a Kronecker delta that was
written differently only for the sake of intelligibility (i.e. §()(My), ¥(Us)) = bap,
where a = ¢¥(My) and b = ¢(Uy)), it becomes quite clear that (16) actually leads
us to a Hamiltonian formulation

=-ImZ=8Y [Mp)+p(M ]+ Y Aoy (18)

fE€Ln fE€Ln

with constraints, which shows us that

H|o- o—ﬂz (Us) + Uy HN=-mz=H
feLln

3.1. What else can be said about My ?

In view of the last results/comments, perhaps you, the reader, are feeling a little
uncomfortable. After all, as much as everything we have done seems to be math-
ematically correct, the use of this application My (which, a priori, should not be
interpreted as a “holonomy meter”) to obtain a Hamiltonian formulation with con-
straints sounds a bit unnatural, is it not? But, as unnatural as it sounds, there
is no way to say that it is wrong to interpret Ms(g1,...,g%) as a holonomy that
is not necessarily physical. What do we mean “a holonomy that is not necessarily
physical”?

In order to understand the answer to this question, we should remember that
Uy can be associated with a local estimate of how curved is M,, from the point of
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view of the faces of £,,.33 After all, note that, due to the way that Uy was defined
in (8), it is not difficult to conclude, for instance, that each of the elements of G can
characterize different face deformations of £,,.*7 Observe that this is a conclusion
that, due to this same definition (8), does not extend to the elements of G'\G when
G’ is different from G. However, it is important to note that there is nothing to
prevent the existence of several hypothetical lattices, which may have the same
dimension as £,,, whose face deformations can be characterized by all the elements
of G’. Why is this important to note? Because, since G is a subset of G’, it is not
difficult to conclude that one of these hypothetical lattices is precisely the same £,
where the physics of our system is defined. Thus, by noting that

e it is not absurd to think that there is another application that can measure all
the holonomies of these hypothetical lattices, and
e this other application needs to define Uy as a special case by using (15),

it is reasonable to identify this other application with the same M that we already
defined in (14).

3.2. The first-class constraints

Once the interpretation of M is already well understood, it is also worth mentioning
that the result

Z H e—ﬂ[w(Mf)-Fw(M]l)] LM P = Z H e_B[w(Uwa(U;l)],

{9} fELn ®;=0 {g} fELn

which allows us to get (6) as
Z= Z|<I>:O’

can be interpreted in terms of conditional probabilities.#® After all, by considering
that Pr(A) = e VM) FVME] §g the probability of the fth face holonomy to be
equal to My (event A), and Py(B) = e ®7|g,—¢ is the probability of (My) =
¥(Uy) occurring (event B), it is not difficult to conclude that the probability
Pr(ANB) = e PWUNTUW] of the fth face holonomy to be equal to Uy (event
AN B) satisfies

Y Pi(AnB) =Y Ps(A|B)- P(B)

{g} {a}
since the events A and B are independent (i.e. Py(A|B) = Py(A)). Here, the sum
variable {g¢} is analogous to {g}: i.e. the sum variable {g} in (16) means that all
the possible configurations of the elements of G’ are being computed in Z. In this
way, although it seems that we choose to define Z as (16) just because it results in
a Hamiltonian formulation with constraints, it is valid to say that our choice was
also based on probabilistic considerations.
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Anyway, given this realization of the pure gauge lattice systems as Hamiltonian
systems with constraints, it is important to conclude this section by showing that ®
actually can be interpreted as the discretized version of the first-class constraints.
One of the ways to show this is to observe that nothing changes if, for instance,
we use

Do ;= Pa(P(My)) = In[6((My), (Uy))%;

where « is a real number such that 0 < o < 00, instead of using (17) because
(I)f = IH(S(?/}(Mf),w(Uf)) =0
= o =Wlo((My), ¥(Uy))*] = a Ind(y(My), $(Uy)) = 0.

And since this allows us to see, for example, that the last term in (18) is such that

>N md(p(Mp), ¥(Uf) =0 = > (Ap-a) nd(y(My),(Uy)) =

fe€Ln fE€Ln

it also becomes clear that the Lagrange multipliers Ay, which implements the con-
straints ®; = 0 in (18), cannot be unequivocally determined. In other words, at
the same time that these last three expressions show us that there are infinite
choices that can be made for the constraints that define £,,, these same expressions
also make it clear that, for any constraint, the Lagrange multiplier is not uniquely
determined. As

e the elements of G’ lead us to an extrinsic parametrization of £,, through of 1,
when ¢(My) # 1 (Uy), and (therefore)

e this resonates with what was said in the introduction about the pair Q = (Q, P)
that parametrizes (T*M,,)" intrinsically (i.e. that is extrinsic to T*M,,),

the interpretation of these finite-group gauge theories on lattices as Hamiltonian
systems with constraints becomes quite evident.

While this last observation is already enough for us to indirectly conclude that
all equations ®, s = 0, which can be defined with the infinite values of a,® can
be interpreted as first-class constraints, it is interesting to note that this same
conclusion can also be obtained directly from the calculation of

[@af, Do y7]- (19)
After all, according to (quantum version of the) Dirac’s consistency conditions®4°

(i)a,f = [‘I)(Lf’[:[]
=B Y [Par 0(Mp) + (M + D Ap[®a,p, @] =0,

fleln freLy

bNote that @5 = ®q 5.
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if all these equations ®, s = 0 can, indeed, be interpreted as first-class constraints,
(19) needs to vanish on L,, for all values of «, ', f and f’. By taking into account

that

(Inz)(Iny) = (Iny)(Inz) & (Inz)(Iny) — (Iny)(nz) =0

[Inz,Iny]

holds for any non-negative real numbers x and y, it is not difficult to conclude that
this is exactly what happens.

In view of what was demonstrated in the last paragraph, there is no denying
that the fact that all the functions ®,, s commute between them further reinforces,
now from another point of view, that all the Lagrange multipliers in (18) really
cannot be unequivocally determined. But, for the sake of completeness, it is also
of paramount importance to end this section keeping in mind that, even though
this last demonstration was done in a very simple way, ®,, ¢ is a function of a
class function. Why is it of paramount importance to end this section with this in
mind? Because every function of a class function can be also interpreted as a class
function.5” After all, as this interpretation also extends to the sum (M f)+¢(Mf_1 ),
we can conclude that all these Lagrange multipliers are also class functions. That
is, even though all these Lagrange multipliers are real numbers that cannot be
unequivocally determined, all of them are also class functions of the elements of G’
that, as noted earlier, lead us to an extrinsic parametrization of L,,.

4. The Kitaev Quantum Double Models as an Example

Before we conclude this paper, it is interesting to cite an example of lattice gauge
theories, where its interpretation as a Hamiltonian system with constraints is al-
ready quite clear. After all, in addition to this example being useful for those who
are being introduced to the concept of (lattice) gauge theory, it is also useful for
those who, because they already have some familiarity with models that support
some kind of quantum computing, may be under the impression that they have
seen it all (what we have discussed here) somewhere before. What useful example
is this? This is the class of the Kitaev Quantum Double Models (D(G)), so named in
honor of Alexei Yu. Kitaev and because they satisfy the Drinfeld’s quantum double
algebra.51:52

There are several references that can be used to understand the various features
of these D(G) models®® %% and, precisely because of that, we will not use this
section to detail them. But something that should be said about the D(G) models
is that, for instance, they were defined to be deliberately interpreted as lattice gauge
theories. Two reasons that support this assertion are

(i) classical and quantum computing need to be done using/manipulating real
objects (i.e. physical objects) which, therefore, obey the laws of Physics; and
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(i) the quantum theories that describe electromagnetic phenomena (i.e. the pheno-
mena that occur in any material that can be used to perform any of these
computations) are gauge theories.

But, before we explain why these D(G) models are examples of lattice gauge
theories, it is very important to mention that the quantum foundation of these
computational models is based on the manipulations of quantum dits (qudits): i.e.
on the manipulations of a quantum version of the d-ary digits, which can be de-
scribed as a unitary vector of a d-dimensional Hilbert space $4.52%6 And given this
computational context, it is also very important to mention that, in order to avoid
any problems with reading the data encoded by these qudits, these D(G) models
are defined by associating one $; with each of the edges of an oriented lattice Lo,
which discretizes a two-dimensional compact orientable (sub)manifold Ms. In other
words, as with the lattice gauge theories evaluated in this paper, it is already clear
that these D(G) models are, for instance, deliberately defined by using an oriented
lattice Lo in which a vector is allocated on each of its edges.

4.1. Why can these D(G) models be interpreted as Hamiltonian
systems with constraints?

Of course, the fact that the D(G) models are defined by allocating vectors of a
Hilbert space to edges of L5 is not enough to characterize these models as lattice
gauge theories. But, by noting that these D(G) models are defined by taking B =
{|g) : g € G} as the single-qudit computational basis of £4,°1:>* this “paves the way”
for such a characterization. After all, since the vectors (kets) of this orthonormal
basis are indexed by the elements of a group G, this allows us to define, for instance,
two operations

LOlg)=lg-¢) and L9|g)=1|g'-g ") (20)

by using the same multiplications that have already been mentioned in items (a;
and (b) on p. 9. That is, it opens up the possibility of defining a single operator ASP

that, when acting on the edge subset S, that gives structure to the vth vertex, per-
forms a transformation similar to that presented in Sec. 2.1.3: i.e. a single operator
given by

A = T £,
leSy,

where L{? acts as

(a") Lf), if the ¢th edge orientation pointing out of this vth vertex, or
(b”) L9 otherwise.

Since we just talked about this operator AS}”, a natural question that you, the
reader, may be asking right now is: how does the possibility of defining this ASP’
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help us, for instance, to interpret these D(G) models as lattice gauge theories? By
noting that the D(G) Hamiltonian operator5?

Hpey= Y (1,—A)+ > (1, - By), (21)
vELy s€ELs
which can be obtained by taking the logarithm of a partition function as explained
in Ref. 57, is defined by using a vertex operator given by%7

A, A(E)
|G| >
geG
After all, this operator A,, which (unlike 1,) acts not identically only on S,,, aver-
ages out the possible transformations that ASJQ) is able to do by using all elements
of G.

4.1.1. How does the operator B, act on Lo?

Given what we have seen so far, it is tempting to conclude that ASﬂ) performs
lattice gauge transformations. But before confirming this conclusion, it is important
to identify an operator that is capable of measuring the lattice face holonomies in
these D(G) models. While we still have not said anything about the operator Bg
that appears in (21), it is interesting to point out that this is exactly what By does
when acting on the lattice site s = (v, f).

In order to understand how By does this, it is relevant to note, for instance,
that the operations mentioned in (20) are not the only ones that we can define by
using B: two others are

Tlg) = 8(g.0)lg) and  T0)g) = 5" 8)la)- (22)
And since 6(a,b) = 04 is a Kronecker delta, another operator that we can define
with the help of these operations (22) is®

BW = %" ( I1 ¥ > (23)

U;U):g [GSf

which acts on the edge subset Sy that gives structure to the fth face, by using an

)

operator TZ(g that acts as

° TJ(FQ)7 if the fth edge is oriented counterclockwise from the point of view of the
fth face, or
° ng), otherwise.

Here, U () calculates the fth face holonomy (i) by using the counterclockwise di-
rection and (ii) by taking, as the first term of its product, the group element that
is associated with one of the edges that is delimited by the vth vertex. After all,
as the operators ng) are defined without using any class function explicitly (and,

therefore, the possibility that different holonomies characterize the same lattice face
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lg2)

lgs) C

[g4)

lg1)

Fig. 6. (Color online) On the left, we see (in baby yellow color) an example of lattice site: i.e.
an ordered pair s = (v, f), which is composed of one vertex v and one face f (highlighted in red

and blue colors, respectively), that helps to define how the operators ng) act on the faces of La.

After all, even though each lattice face is indexed by a single value of f, the way these operators
are defined in the D(G) models requires, for instance, that there is some kind of “origin” from
which the holonomy of the fth face can be estimated. According to what we see on the right, this
“origin” is precisely the vertex v that defines the site s, since this holonomy U is calculated
by taking, as the first term of this calculation, the group element that is associated with the first

ket /edge appearing in counterclockwise order. That is, in the case of this lattice face that we see

on the right, this calculation is done as U}w = (g1) "' -92-(g3) "' -(g4) ! in deference, for instance,

to what has already been explained in Figs. 2 and 3.

is nonzero), so that the “scan” performed by the operator By in (21) to lead to con-
sistent results, the operators ng ) are deliberately defined by using a sum restricted
to U ng) = g. This calculation is well illustrated in Fig. 6.

Note that, as artificial as ng) may seem, its definition makes it possible to
interpret it, for instance, as a projector and that is precisely what allows us to
recognize it as a kind of “holonomy meter”. After all, since the sum in (23) is
constrained to the fact that U J(cv) must be equal to g, the Kronecker deltas in

(22) make all the measurements, which are performed by ng) on any (site that

characterizes a) face of Lo, always equal to

o 1,if U}”) =g, and
e (, otherwise.

But, despite what we are saying is correct, the operator that appears in (21) is
B and not ng). Hence, the question that needs to be answered now is: what is
the definition of By and what does it have to do with ng)? And since we already
stated that B, is capable of measuring the lattice face holonomies, the answer to
this question is®>67:

B, = B9, (24)

where ¢ is the neutral element of GG. That is, Bs is a special case of the operators
ng) that measures flat connections (i.e. trivial holonomies that are characterized
by b = ¢ along the faces) in the D(G) models.

Given this scenario, it is finally possible to confirm the interpretation of ASf’) as
an operator that performs lattice gauge transformations. For this to be done, it is
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crucial to note that, since

0L - QL. 0L - 0,

Lg:g)Tih) — Tigh)Lgf), L(ig)T:EZh) — T:gzhgil)Lg:g)

T:E:Q)T:E:h) — T:f:h)Tzf:g) and T:E:B)T:g]) — T:E:h)T:E:g)a

A, and ng) commute among them for all values of v and s. After all, since these
operators commute among them, this means that all the holonomies measured by
ng) are not changed by the action of A, on Ls. In other words, and in light of
what was discussed in Sec. 2, A, actually performs lattice gauge transformations

because its action on £ does not modify the face holonomies.??

4.1.2. Some geometric considerations on these D(G) models

Just for the sake of completeness, it is important to point out here that, as with
all the operators ng), the vertex operator A, can also be interpreted as a pro-
jector.51:53 After all, as much as it actually replaces the kets associated with S, for
others, it is not difficult to prove that its action, on all the vertices of Lo, does not
change the encoding written in this lattice. That is, as with all the operators ng),
this vertex operator A, is incapable of modifying the state of this lattice system
and its eigenvalues are equal to 0 and 1.

As a matter of fact, as a consequence of the Hamiltonian (21) being nothing
less than a superposition of several operators A, and By, it is not wrong to say
that it is precisely this fact, which A, and B are projectors, that makes Hpq)
able to measure the energies of these D(G) models. In order to understand how
Hp(c) measures these energies, it is interesting to note that, since 1 is the identity
operator that acts effectively on Sy, the smallest eigenvalue of Hp (g is 0. After all,
as 0 and 1 are the only values that A, and B, can measure by acting on Lo, what
these operators do, from the Hp g point of view, can be interpreted as a count of
how many local elevations of energy (i.e. of how many quasiparticles) there are on
this lattice. Observe that, since the smallest eigenvalue of Hp ) is associated with
an eigenstate |£), where?1:53:67

Ayl€o) = [€0) and B |&o) = [€o) (25)

hold for all the possible values of v and s, it is not wrong to say, for instance,
that these quasiparticles can be created by violating at least one of the conditions
in (25).

Nevertheless, since the main purpose of this section is to show why these D(G)
models, which are good examples of finite-group gauge theories on lattices, can be
interpreted as Hamiltonian systems with constraints, it is interesting to analyze
(25) by taking a geometric point of view. After all, as (24) tells us that the smallest
eigenvalue of Hp(¢) is obtained only when, for instance, U )(CU) = ¢ holds for all the
values of s, it is not difficult to conclude that, when these D(G) models are in their
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ground states, Lo is locally flat. Since L5 discretizes a two-dimensional compact
orientable (sub)manifold Ma, this conclusion makes sense because, as in the D(G)
ground states there are no quasiparticles, each of the lattice faces can be seen as
locally flat since they are rough approximations of some open sets of M.

Note that, as the quasiparticles detectable by B, are always such that U](cv) #e,
the geometric point of view associated with this condition allows us to say, for
instance, that the presence/existence of these quasiparticles must be interpreted
as local deformations of £5. Bearing in mind that quantum-computational models
try /need to model some reality that can be physically implemented, this interpre-
tation is not strange at all because there are several physical theories that, for
instance, assign some spatial curvature to the presence of fields/particles. In fact,
a good example of these physical theories is the Standard Model of elementary
particles (SM)%8 since, due to the presence of several covariant derivatives®”43 in
its Lagrangian formulation, it is impossible not to recognize that its fermions are
responsible for curving space in some sense.®? In plain English, this good example
is in line with what we said at the beginning of Sec. 2 because, in addition to the
SM being an example of gauge theory,*>7° it was precisely some of its problems,
which required a non-perturbative solution, that have fostered the development of
the lattice gauge theories.?24

Nevertheless, in view of this geometric scenario, in which we see that quasipar-
ticles detectable by By are responsible for deforming Lo locally, it is worth noting
that quasiparticles that are detectable only by A; are not capable of doing the
same thing. In other words, as the operators ng) (and not AEF)) are interpreted
as “holonomy meters”, B is the only operator in (21) that can check if there is
any deformed face in Lo and, therefore, define the constraints that determine this
lattice. After all, observe that, analogously to what we saw on p. 12, the D(G)
Hamiltonian operator is nothing more than an

Hpe) = Hp@)| g

where

Hpey= Y (Mo —A)+ D [1,—BW] and & =lnsU",e).
vELy s€ELy

5. Final Remarks

In view of everything we have presented in this review, it is quite clear that the
lattice gauge theories, where G is a finite group, can indeed be interpreted in terms
of Hamiltonian systems with constraints, similarly to what happens in the classi-
cal (continuous) gauge (field) theories. After all, as unnatural as it may seem to
rewrite (6) using conditional probabilities, the fact is that, as this gauge system
is constrained to £, (i.e. to the lattice that is defined when ®; = 0 holds for
all the values of f), it makes physical sense to get a zero partition function when
e Pr |q>f750 holds for, at least, one value of f.
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Given that the function ®; is just one of the infinite functions ®, ; that are
capable of defining the same £,, (i.e. given that ®; = 0 is equivalent to ®, 5 =0
for all 0 < @ < o), and that this implies that there are infinite choices that we can
make for all the Lagrangian multipliers Af, which implement any of the constraints
@, ; = 0 to (18) without ever-changing P;(B), it was possible to infer that all
these constraints can be interpreted as first-class. Although this inference was made
without calculating the quantum version of the Dirac brackets [®, ¢, ®qs /], this
calculation, which was made in the final of Sec. 3, only endorsed this interpretation
because these brackets are equal to zero for all values of o, o', f and f’. In this
fashion, by remembering that

o these constraints ®, ¢ = 0 are also invariant under lattice gauge transformations,
and

e the elements of the finite gauge group lead us to an intrinsic parametrization of
L, through of 1,

the analogy between this result and what was said in the introduction is even
stronger: after all, all these Lagrangian multipliers A¢, which are real numbers that
cannot be unequivocally determined, are also class functions of the elements of G’
that lead us to an extrinsic parametrization of L.

Of course, while these conclusions make sense, perhaps you, the reader, are
seeing a difference that seems to be quite profound between the Hamiltonian
formulation (18) and the one mentioned in the introduction. After all, while the for-
mulation mentioned in the introduction points out that only the components of the
pair Q1 = (Q1, P1) can be interpreted as gauge parameters, the formulation of Sec. 3
seems to be suggesting that both intrinsic and extrinsic parameters of the lattice
gauge theories can be interpreted as such. If you are seeing this difference, we need
to remind you of an important mathematical result, which is directly related to the
manifold parametrizations. What important mathematical result is this? The one
that tells us that, despite the parameters w are not necessarily identified as gauge
parameters in (3), the open sets of a differentiable manifold may be intrinsically
parametrized in several ways.»743 And since, for two open sets .4 and B such that
ANB # @, all these intrinsic parametrizations are related by diffeomorphisms,* 743
this is another aspect that also ensures the covariance of the physical equations.?°¢
In other words, as

e all the faces of £, can be roughly interpreted as discretizations of the n-
dimensional open sets of M,,, and

e the intersection of two neighboring faces of £,, is always non-empty, since they
always have at least a common edge,

this situation is very similar to what is happening in (18) because both w and v (gs)
intrinsically parametrize the physical realities they describe.

Anyway, note that, although most authors always present £,, as a spacial lattice
that is, at most, three-dimensional, there is no obstacle for the partition function
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(6) to describe physical systems in spatial lattices with larger dimensions: the only
conditions that £,, needs to satisfy for this to happen is to

e support a gauge field on each of its edges, and
e (locally) discretize an orientable (sub)manifold M,,.

Surely, in view of our last comment, you, the reader, may be thinking that, when
we deal with dimensionally larger lattices, other geometric information need to
be invoked in order to better characterize this (sub)manifold that £, discretizes.
If you are thinking about it, know that you are right and an excellent example
of this is the 2-holonomies™ that appear in the lattice formulation of the higher
gauge theories.™ After all, while the usual lattice gauge theories are described by
using only one gauge group, these higher lattice gauge theories are defined by using
two groups that, for instance, compose a crossed module”™7: one of these groups
is the same G that defines the usual lattice gauge theories, while the other one
describes other (2-)holonomies that can be defined for the higher gauge fields.” In
this fashion, it is clear that there is an open possibility to evaluate how these higher
lattice gauge theories fit the description of a Hamiltonian system with constraints.
As a matter of fact, it is worth noting that some generalizations of the D(G) models,
which we cited as an example in the last section, are being developed in the context
of these higher lattice gauge theories.”7>~77
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