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Abstract. This manuscript offers a methodology to compute the effective properties of multilayered 
laminated composite with crack failure at the interface. In order to achieve the objective, the equilibrium 
problem for a curvilinear three-dimensional composite structure with generalized periodicity is 
considered. The problem is subjected to different conditions for the components like elasticity and 
piezoelectricity with perfect and imperfect contact at the interfaces. The two-scales asymptotic 
homogenization method (AHM) is used to derive the expressions of the local problems and the effective 
coefficients. In order to study the influence of the crack in the effective properties, different cases of 
geometry for the crack are considered and compared. The general expressions of the homogenized 
problem are derived for all the aforementioned cases. To validate the model, some numerical examples 
are studied, and the results are compared with the values obtained by finite elements method (FEM). 
 

 
1. INTRODUCTION 

Due to the great influence in the behavior and properties of the composite materials, the cracks 
and imperfections between the components of the solid structures have been widely studied. Many 
researches have focused their attention in the mechanical effective properties of composite materials with 
different fracture modes. In [1, 2],  the authors have developed mathematical model to study the effective 
properties of elastic and piezoelectric composite materials using the two-scales asymptotic homogenization 
method (AHM) and finite elements method (FEM) considering different fracture modes at the interface.  
In this manuscript, the methodology is extended to the case of piezocomposite with complex geometrical 
shapes. In section 2, the general equations of the equilibrium problem for a piezoelectric composite with 
generalized periodicity are presented. The AHM is used to derive the expressions of the effective 
coefficients and the homogenized problem in section 3. Finally, three numerical examples of laminate 
composite with different fracture modes are considered. In a first application of the methodology, a wavy 
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piezocomposite is studied, considering uniform imperfect contact at the interface. As a second example, 
an elastic rectangular composite structure with a crack between the layers is presented as limit case of a 
piezoelectric structure. Finally, a similar elastic structure is considered but with non-uniform imperfect 
contact at the interface. 
 
2. EQUILIBRIUM PROBLEM FOR A PIEZOCOMPOSITE 

In the present work, a periodic laminate piezocomposite is studied. The coordinates system 

1 2 3( , , )x x x=x  is used to describe the geometry of the compact connected solid 3Ω⊂  , bounded by the 

closed surface u t φ τ= Σ∂Ω = ∪Σ ∪ΣΣ , where u t φ τΣΣ Σ = ∩Σ∩ =∅ . The equilibrium equation for a 
solid is given by 

 0, 0 ,=∆ + = ∆σ Df   (1) 
with boundary conditions 

 0 0 on , on ,u t= Σ ⋅ = Σu u σ n S   (2) 
 0 0, on , , on ,φ τφ φ τ= Σ ⋅ = − ΣD n   (3) 

and interface conditions given by 
 [ ] [ ], 0, on ,   ⋅ = ⋅ ⋅ = Γ   σ n K u σ n   (4) 

 [ ] [ ], 0, on ,M φ   ⋅ = ⋅ = Γ   D n D n   (5) 

where ∆  is divergence operator, σ  is the stress tensor, f  are the body forces, D  is the electric 
displacement, u  represents the displacement vector, φ  is the electrical potential; 0u , 0S , 0φ , 0τ  are the 
prescribed displacement, tensions, electric potential and surface charge, respectively. The surface Γ  
represents the interface between the components of the composite. The vector n  denotes the corresponding 
normal vector and [ ] (1) (2)( ) ( ) • = • − •   represents the difference of the value of the function at the 

different components. The matrix K  and the parameter M   characterize the imperfect mechanical and 
electric contact at the interface Γ , respectively.  
 
The constitutive relations between stress σ  and electrical displacement D  with strain   and electric field 
E  have the following expression 

 : ,= − ⋅σ C e E    : ,= + ⋅D e κ E  (6) 
where “:” and “ ⋅ ” denote the tensor and dot product respectively; C , e  and κ  denote the stiffness, 
piezoelectric and permittivity tensors, respectively. For a periodic composite structure the coefficients C
, e  and κ  depend on the macro-coordinate variable x  and they are periodic with respect the micro-
coordinate ( ) / ε=y ρ x , where ρ  describes the geometry of the microstructure and ε  characterizes the 
periodicity. Also, for small deformations    and E   relate to the displacement vector u  and the electric 
potential φ   

 ( )1 , .
2

T φ∇ +∇ = −∇= u u E   (7) 

Substituting the equations (6)-(7) into (1)-(5), the components of the equilibrium problem are 

 , ,
| , , , | , , , 0  ,m j l j

ijkl m ijkl j k l ijkl k lj kij l kij j k kij kj iC C u C u e e e f
ρ ρ

φ
ε

φ
ε

+ + +
   
   
  

+


+ + =   (8) 

 ( ) ,
| , , , | , ,

,
,  0,s i

ikl s ikl i k l ikl k li ij s ij i j i
s

j ji
i e e u e u κ κ φ φ

ρ
ε

κ
ρ
ε

 
+ + − + − = 

  

 
 


  (9) 

with boundary conditions 
 0 0o , n ,n oi i ij j iu tu u n Sσ= Σ = Σ   (10) 
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 0 0, on , , on ,i iD nφ τφ φ τ= Σ = − Σ   (11) 
and interface conditions given by 

 , 0, on ,jij j ij ij jn K nuσ σ      = = Γ         (12) 

 [ ] [ ], 0, on ,i i i iD n M D nφ   = = Γ      (13) 

where ( ) ( ),
/ jj

x= ∂ ∂   and ( ) ( )|
/ jj

y= ∂ ∂  . 

The coefficients of the system (8)-(13) are rapidly oscillating functions. Following the methodology 
described in Chapter 6 of [3], the two-scales asymptotic homogenization method is used to derive the 
homogenized equilibrium problem.  

 
3. ASYMPTOTIC HOMOGENIZATION METHOD 

The solutions [ , ]φu   of the equilibrium problem (8)-(13) admits the following asymptotic 
expansions 

 ( ) ( ) ( ) ( )
1 1

,: :,: :k k k k k k
k k k k

k k
ϕ φ ϕε ε ϕ

∞ ∞

= =

   = + ∇ +∇ = + ∇ +∇   ∑ ∑u v v N Π v Ψ Θ   (14) 

where ( )≡v v x  and ( )ϕ ϕ≡ x . The functions ( ) ( ) ( ),k k≡N N x y , ( ) ( ) ( ),k k≡Π Π x y , 

( ) ( ) ( ),k k≡Ψ Ψ x y  and ( ) ( ) ( ),k k≡Θ Θ x y  are periodic with respect the micro-variable y  functions, i.e. 

( ) ( ) ( ) ( ) 0k k k k= = = =N Π Ψ Θ , where 1/ | | ( )d⋅ = ⋅∫YY y denotes the average operator with 

respect the variable y . 
3.1. Local Problems 

Substituting the expansions (14) into the equilibrium problem (8)-(13), a family of recurrent 
problems for the different power of ε  and the local functions ( )kN , ( )kΠ , ( )kΨ  and ( )kΘ  are derived. In 

order to avoid singularities when 0ε → , the coefficients for 1ε −  are equated to zero. This system of 
partial differential equations is known as the local problems and for a piezocomposite has the following 
form 

 ( ), , , (1) | , , (1)| |
0,mn mn

t j ijmn r l ijkl t j k r t j kij r r tkC C N eρ ρ ρ ρ ρ+ + =Ψ   (15) 

 ( )
|, , , (1) | , , (1)| 0,mn mn

t j jmn t j jkl r l k r t j jk r k tre e Nρ ρ ρ ρ κ ρ+ − =Ψ   (16) 

 ( ), , (1)| , , , (1 |) | 0,m m
t j mij kij r k r t j t j ijkl r l r tke e Cρ ρ ρ ρ ρ+ Θ + =Π   (17) 

 ( )(1) | (1), ||, , , , 0,m m
jkl k r jt j r l t m jt j k tk rj reρ ρ ρ κ κρ ρΠ Θ =− −   (18) 

with interface conditions  
 ( ), (1) | , (1)| (1) ,mn mn mn

ijmn r l ijkl k r kij r jk r j i jC C N e n NKρ ρ =+ + Ψ  

 
 

  (19) 

 ( ), (11) | , (11)| (11) ,ijmn k kij nij k k
r n m r r n r j ij jC e e n Kρ ρΠ + + Θ = Π 

 
 

  (20) 

 ( ), (11) | , (11)| (11) ,ilk imn lk ij lk lk
r m n r r j r ie e N k n Mρ ρ+ − Ψ = Ψ 

 
 

  (21) 

 ( ), (11) | , (11)| (11) .ikn l il ij l l
r n k r r j r ie n Mρ κ κ ρΠ − + Θ = Θ 

 
 

  (22) 

The system of equations (15)-(22), satisfies the conditions of the Theorem 1, p. 346 of [4], that guarantees 
the existence of the solution of the system. 
 
3.2. Effective coefficients and homogenized problem 
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The effective coefficients of the homogenized problem associated with (8)-(13) are obtained using 
the average operator ⋅  to the coefficients for 0ε . The non-identically zero expressions lead to the 
following effective coefficients,  

 (1) | (1)|, ,
ˆ ,mn mn

ipmn ipmn ipkl kr l r kr kip rC C C N eρ ρ= + + Ψ   (23) 

 (1)| (1) | (1) | (, , , , 1)|ˆ ,m m in in
min min kin r inkl k r min mkl k r mr k r l r l kk rre e e C e e N κρ ρ ρ ρ= + Θ + Π = + − Ψ   (24) 

 (1)|, , (1) |ˆ .m m
mn mn nk r nkl l rr k kreρκ κ ρκ = + Θ − Π   (25) 

The expressions (23)-(25) are known as the effective coefficients of the homogenized problem,  
 ( ) ( ), , , , ,,

ˆ ˆˆ ˆ0, 0,ijkl k l kij k i ikl k l ij j ij
C v e f e vϕ κ ϕ+ + = − =   (26) 

with boundary conditions 
 0 0 ˆon , on ,i i u tij j iv u n Sσ= Σ = Σ   (27) 

 0 0
ˆ, on , , on ,i iD nφ τϕ φ τ= Σ = − Σ   (28) 

where ˆijσ , ˆ
iD  are the effective stress and effective electrical displacement respectively. 

 
4. NUMERICAL CALCULATIONS  

4.1. Piezoelectric with wavy geometry  

In this section a piezoelectric wavy laminate composite is studied. The structure is periodically 
distributed along 2x . The function 1 2 2 1( , ) sin(2 )x x x H xρ π= +  described the geometry of 
microstructure, where H  represent the wave height, [6]. The surface Γ  denotes the interface between the 
two components, 1Γ  and 2Γ  are the surfaces at the boundary of the unit cell Y,  (see Figure 1).  

 
 

Figure 1 – Wavy piezocomposite with imperfect contact at the interface. 
 
The piezocomposite is made of the piezoelectric material PZT-7A with symmetry 6mm and the other 
component is Epoxy. The mechanical properties of the elements are reported in [5], see Table 1. 
 

Table 1 – Material properties of the composite constituents PZT-7A and Epoxy. 
 

 
1111C  1122C  1133C  3333C  2323C  1212C  113e  133e  333e  11κ  33κ  

PZT-7A 154.84 83.24 82.71 131.39 25.7 35.8 9.35 -2.12 9.52 4.07 2.08 
Epoxy 8.0 4.4 4.4 8.0 1.8 1.8 - - - 0.037 0.037 

 
In Figure 2, a comparison of the effective coefficients 1111 1313 113 322

ˆ ˆ ˆ ˆ, , ,C C e e  is shown. In order to illustrate 
the influence of the damage at the interface in the effective properties, two cases of imperfect contact are 
compared with the effective coefficients with perfect contact at the interface. The figure illustrates the 
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effective coefficients considering imperfect contact for 11 33 1K K M= = =  (blue line) and 

11 33 100K K M= = =  (red line); the perfect contact case (yellow line) is a limit case when the ijK →∞
and | |M →∞ . On the other hand, the figure shows the influence of the geometry and the function 

1 2( , )x xρ  in the effective properties. 
 

   
 

Figure 2 – Effective coefficients 1111 1313 113 322
ˆ ˆ ˆ ˆ, , ,C C e e  for a wavy piezocomposite considering imperfect contact 

at the interface. 
 
 

4.2. Elastic rectangular composite with a crack at the interface 

In this section, a three-dimensional elastic laminate shell composite with a crack at the interface are 
studied. The composite is made of aluminum and stainless steel, with Young's modulus 1 206.74E = , 

2 72.04E =  and Poisson's ratio 1 0.3ν = , 2 0.35ν =  respectively. The volume fraction for aluminum is 

1 0,8V =  and for stainless steel is 1 0, 2V = . The layers are periodically distributing along 3x  and the 
properties of the materials are constant along 2x , see Figure 3. 

 

 
 

Figure 3 – Laminate elastic composite with cracks at the interface. 
 
The periodic cell Y  with the crack is compose by two main components 1Y  and 2Y  with thickness 

1t  and 2t  respectively. The interface between the layers is denoted by 1 2 [0,1]Γ = Γ ∪Γ = . In order to 
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study the influence of the cracks in the effective properties, the spring type imperfect contact condition is 
considered at 1 [0,0.2]Γ =  (crack) and perfect contact on the rest of the interface, ( ]2 0.2,1Γ = .  

The layers aY  are assume isotropic materials for 1, 2a = . For the points in Γ , the matrix K  
characterized the spring type imperfect contact at 1Γ . It has the expression 

3 3[ ] [40 40( ) ]ij ij i jK µδ λ µ δ δ= = + +K , where ijδ  is the Kronecker delta, 1 20.5 0.5µ µ µ= + , 

1 20.5 0.5λ λ λ= + ; 1µ , 1λ  and 2µ , 2λ  are the Lame's constant of the elements 1Y  and 2Y  respectively. 

In 2Γ , the norm of the matrix ijK →∞ (perfect contact).  

In Table 2 and Table 3, a comparison between the effective coefficients Ĉ  obtained using the 
asymptotic homogenization method (AHM) with the results computed by finite elements method (FEM) 
is shown. A good coincidence between the solutions is appreciated. A detailed description of the model 
for an elastic composite is described in [1].    

 
Table 2 – Effective coefficients 1111Ĉ , 3333Ĉ , 1122Ĉ  for an elastic composite with crack at the interface. 

 
Ĉ  1111Ĉ   3333Ĉ  1122Ĉ  

Interval 
1Γ   2Γ  1Γ  2Γ  1Γ  2Γ  

AHM 155.4646 192.8182 3.5191 163.4246 49.2677 86.6213 
FEM 155.5800 192.8400 5.3548 163.4300 49.6000 86.6460 

 
Table 3 – Effective coefficients 1133Ĉ , 2323Ĉ , 1212Ĉ  for an elastic composite with crack at the interface. 

 
Ĉ  1133Ĉ   2323Ĉ  1212Ĉ  

Interval 
1Γ   2Γ  1Γ  2Γ  1Γ  2Γ  

AHM 2.3111 78.9557 1.2848 39.9437 53.0984 53.0984 
FEM 2.5894 79.0110 1.3174 39.9760 52.9920 53.0980 

 
4.3. Elastic composite with non-uniform imperfect contact 

In contrast to the composite presented in subsection 4.2, here an elastic composite with non-uniform 
imperfect contact condition is considered. The structure has the same elements, distribution of the layers 
and volume fraction that the composite material mentioned in subsection 4.2. However, for the new 
structure the imperfect contact matrix is characterized by a function 1( )yτ .  

 
 

Figure 4 – Unit cell of an elastic composite with non-uniform imperfect contact at the interface. 
 
In Figure 4, a three and a two-dimensional representations of the unit cell is shown. The parameter 

1 (0,1)γ ∈  is the endpoint of the imperfect contact at the interface, i.e. 1 1[0, ]γΓ = . The function τ  has 
the following expression  



 
 
 

 
  7 

5th Brazilian Conference on Composite Materials – BCCM 5 
Sao Carlos School of Engineering – University of São Paulo,  

18th – 22nd January, 2021. 
V. Tita, J. R. Tarpani and M. L. Ribeiro (Editors) 

 ( ) ( )
1

2
1 1 1 [0, ] 12

1

( ),y y I yγ
ατ γ
γ

= −   (29) 

where (0)α τ=  is the maximum distance between 1Y  and 2Y ,  
1[0, ] 1( ) 1I yγ =  if 1 1y ∈Γ  and 

1[0, ] 1( ) 0I yγ =  

if 1 2y ∈Γ . The matrix K  for the structure described in Figure 4, has the following form  

 
1

3 3[ ( ) ]1 .
( ) ij i jy

µδ λ µ δ
τ

δ+ +=K   (30) 

In Figure 5, a comparison between the effective coefficients 1111 1122 3333 1313
ˆ ˆ ˆ ˆ, , ,C C C C  of an elastic 

composite with non-uniform imperfect contact at the interface and different values of the parameter 1γ  is 
shown. The influence of the imperfection is appreciated when 1γ moves between (0,1) . 

 

 
 

Figure 5 – Effective coefficients 1111 1122 3333 1313
ˆ ˆ ˆ ˆ, , ,C C C C  of an elastic composite with non-uniform imperfect 

contact at the interface and different values of the parameter 1γ . 
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