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Abstract:

Extracting meaningful insights from tabular data remains a fundamental challenge in machine learning, as traditional

methods often struggle to capture complex feature interactions. In this work, we propose a novel graph-based approach

for analyzing tabular datasets by leveraging spectral graph theory and community detection techniques. Our method

represents tabular data as a weighted directed graph, where edges encode feature dependencies based on SHAP

values. To enhance interpretability, we apply a sparsification technique that retains only the most significant

connections. We further analyze the structural properties of the resulting graph using the deformed magnetic Laplacian,

which captures directional dependencies among features. Additionally, we employ a nonparametric stochastic block

model (nSBM) to uncover hierarchical modular structures and use tabular embeddings (tab2vec) to reveal fine-grained

relationships in feature space. Our framework is validated on the PeNSE dataset, a large-scale survey on adolescent

health, demonstrating its ability to reveal hidden structures and improve feature interpretability. Results show that

spectral analysis provides an effective way to categorize features into meaningful clusters, identify redundant variables,

and highlight key relationships that may be overlooked by conventional techniques. This approach offers a powerful

alternative for exploring complex tabular datasets, with potential applications in various domains such as healthcare,

finance, and social sciences.
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Abstract—Extracting meaningful insights from tabular data
remains a fundamental challenge in machine learning, as tra-
ditional methods often struggle to capture complex feature
interactions. In this work, we propose a novel graph-based
approach for analyzing tabular datasets by leveraging spectral
graph theory and community detection techniques. Our method
represents tabular data as a weighted directed graph, where
edges encode feature dependencies based on SHAP values. To
enhance interpretability, we apply a sparsication technique
that retains only the most signicant connections. We further
analyze the structural properties of the resulting graph us-
ing the deformed magnetic Laplacian, which captures direc-
tional dependencies among features. Additionally, we employ
a nonparametric stochastic block model (nSBM) to uncover
hierarchical modular structures and use tabular embeddings
(tab2vec) to reveal ne-grained relationships in feature space.
Our framework is validated on the PeNSE dataset, a large-
scale survey on adolescent health, demonstrating its ability to
reveal hidden structures and improve feature interpretability.
Results show that spectral analysis provides an effective way to
categorize features into meaningful clusters, identify redundant
variables, and highlight key relationships that may be overlooked
by conventional techniques. This approach offers a powerful
alternative for exploring complex tabular datasets, with potential
applications in various domains such as healthcare, nance, and
social sciences.

Index Terms—Socioeconomic surveys, Explainable ML, Spec-
tral analysis, Feature embedding

I. INTRODUCTION

Tabular data is a fundamental representation in machine
learning, appearing in domains such as healthcare, finance,
and social sciences. Despite its ubiquity, extracting meaningful
insights from high-dimensional tabular datasets remains a
challenge. Traditional feature selection and transformation
techniques, such as principal component analysis (PCA) [1]
and autoencoders [2], often struggle to capture complex,
non-linear relationships between features. Recently, graph-
based approaches have emerged as powerful alternatives for
structuring and analyzing tabular data [3], [4].

Graph representation learning has gained significant atten-
tion in recent years due to its ability to model relational
data. Methods such as graph neural networks (GNNs) [5],
[6] and graph embedding techniques like node2vec [7] have
demonstrated their effectiveness in capturing structured de-
pendencies. In the context of tabular data, graphs provide
a way to encode relationships between features, facilitat-

ing interpretability and dimensionality reduction [8]. Existing
works have leveraged graph structures to improve feature
selection [9], detect hidden correlations [10], [11], and enhance
predictive models [12]. However, many of these approaches
rely on predefined structures or external domain knowledge,
which may not always be available.

A recent study [13] explored graph-based models in pub-
lic health, constructing a graph from PeNSE variables with
edges inferred via conditional dependency metrics. Their goal
was to identify potential confounders in adolescent health
analyses, showing how hidden dependencies could bias re-
gression results. This study served as an important motiva-
tion for our work. While both approaches leverage graph
theory to analyze tabular data, our methodology diverges in
focus and technique. Rather than refining causal inference,
we aim to uncover latent structure through spectral analysis.
We construct a directed, weighted graph using SHAP-derived
feature importance scores [14], aligning edge definitions with
machine learning explainability. In contrast to traditional graph
measures such as centrality or clustering coefficients, we
apply spectral techniques—specifically the deformed magnetic
Laplacian [15], [16]—to capture directional dependencies. We
further enhance interpretability by using the nonparametric
stochastic block model (nSBM) [17] for hierarchical cluster-
ing and tabular embeddings (tab2vec) to reveal fine-grained
relationships.

Our methodology is validated through a case study on the
PeNSE dataset, a large-scale survey on adolescent health con-
ducted in Brazil [18]. By leveraging spectral graph analysis,
we demonstrate how this approach can uncover meaningful
feature clusters, identify redundant attributes, and highlight
key relationships that might be overlooked by conventional
techniques. Unlike previous work focused on confounder
detection, our study provides a broader framework for struc-
turing and interpreting complex tabular data through graph-
based representations. Preliminary results from this line of
investigation were previously reported in [11].

II. METHODS

In this section, we present the methodology used to an-
alyze tabular data through graph-based representations. The
proposed approach consists of four main stages: (a) Graph
Representation, where the tabular dataset is mapped to a
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weighted directed graph using SHAP-based feature dependen-
cies; (b) Group Analysis, which employs spectral methods
and community detection techniques to uncover structural
relationships among features; (c) Individual Analysis, where
centrality measures and feature embeddings (tab2vec) are used
to assess the relevance and similarity of individual features;
and (d) Multilevel Analysis, which refines the interpretability
by focusing on selected subsets of features. Together, these
stages provide a structured framework for uncovering hidden
relationships and improving the interpretability of complex
tabular datasets.

In Fig.1, we present an overview of the proposed method,
which consists of four key stages: graph representation, group
analysis, individual analysis, and multilevel column analysis.
The process begins by constructing a weighted directed graph
from the tabular dataset, where vertices correspond to columns
and edges represent their relationships, weighted using SHAP
values. To enhance interpretability, we apply an edge filtering
technique to remove weak connections, completing the pre-
processing phase and enabling further analysis of the dataset’s
structure.

To achieve this, we leverage spectral information extracted
from the deformed magnetic Laplacian operator and employ
the hierarchical modular structure derived from nSBM. The
nSBM framework allows us to categorize columns into distinct
groups, while the spectral information helps refine the results
iteratively, focusing on a subset of the graph with increasing
granularity. In addition to these group-level analyses, we
incorporate techniques that assess feature relevance (using
centrality measures) and represent columns as vectors in a
latent space (tab2vec). In the following sections, we provide
a detailed discussion of each step in this framework.

I. Graph Representation

II. Group Analysis III. Individual Analysis

Tabular dataset

Graph modeling
(SHAP + GBM)

Graph sparsification
(disparity filter)

Spectral analysis
(Deformed magnetic

Laplacian)

Community
detection
(nSBM)

Feature relevance
(Hub score)

Feature embedding
(tab2vec)

IV. Multilevel analysis

Fig. 1: Flow diagram of the proposed approach. The tabular
dataset is initially mapped to a weighted directed graph.
The graph is then sparsified to remove weak connections,
allowing for (b) group-level analysis via spectral methods and
community detection. Additionally, (c) individual-level anal-
ysis (centrality measures) and pairwise comparisons (feature
embeddings) are performed. These procedures can be further
refined (d) by considering only a selected subset of columns.
The algorithms used at each step are listed in parentheses.

A. Graph Modeling

To analyze tabular data using a graph-based approach, we
represent the dataset as a weighted directed graph. Formally, a
weighted directed graph is defined as a tuple (V,E,w), where:

• V is the set of vertices, each representing a feature
(column) in the dataset.

• E is the set of directed edges that capture relationships
between features.

• w : E → R+ is a weight function that quantifies the
strength of these relationships.

Constructing the Graph. Each feature (column) in the
tabular dataset is mapped to at least one vertex in the graph.
The edges between features are assigned weights based on
their predictive influence.

1) Selecting a Target Feature: a column c ∈ C is randomly
chosen as the target variable to be predicted.

2) Predicting the Target Feature: the remaining columns
serve as input features to train a gradient boosting
machine (GBM) model, which estimates the values of c.
The subset of features used in this prediction is denoted
by V̄c.

3) Defining Edge Weights: once the GBM model is trained,
we evaluate how much each feature contributes to pre-
dicting c. A directed edge (u, vc) is added to the graph,
where w(u, vc) represents the importance of feature u
in predicting c.

This procedure is repeated for every feature in the dataset,
ultimately constructing a fully connected weighted directed
graph.

Computing Edge Weights. A key challenge is determining
the contribution of a feature u to predicting another feature
v. This contribution should reflect the predictive power of the
trained GBM model.

We define the in-degree of a vertex vc as the sum of
incoming edge weights:

kin(vc) =


u∈V̄c

w(u, vc) = Acc(vc), (1)

where Acc(vc) denotes the predictive accuracy of the GBM
model for feature c. If a feature has weak or no predictive
relationships with others, its in-degree will be low, reducing
its influence in the graph.

The weight of an edge (u, v) is then computed as:

w(u, v) = Acc(v)
ϵ(u → v)

z∈V

ϵ(z → v)
 (2)

where ϵ(u → v) represents the contribution of feature u to
the prediction of feature v.

Using SHAP Values for Edge Weights. To quantify feature
contributions, various methods exist in the literature [3].
In this work, we adopt the SHapley Additive exPlanations
(SHAP) method [14], a technique rooted in cooperative game
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theory [19] that measures the marginal contribution of each
feature to the prediction task.

Since SHAP values are computed for individual instances,
they provide fine-grained insights into feature relationships.
However, to construct a single aggregated interpretability
graph, we average SHAP values across all instances:

w(u, v) = Acc(v)
E[|SHAPi(u → v)|]

z∈V

E[|SHAPi(z → v)|]  (3)

This ensures that the edge weights reflect global feature im-
portance rather than individual instance-specific relationships.

B. Graph sparsification

By construction, the interpretability graph is complete,
which poses challenges for further processing. One major issue
is the high computational cost associated with handling the
entire graph. Additionally, the large number of connections
can obscure meaningful patterns, making it difficult to extract
relevant insights [20].

A straightforward approach to reducing the number of
edges and improving interpretability in graph visualizations
is to apply a naive threshold to edge weights, retaining only
the strongest connections. However, selecting an appropriate
threshold value is not trivial and lacks a clear justification [20].
Furthermore, this method can result in a fragmented graph
with many disconnected components.

To address these challenges, various graph filtering tech-
niques, also known as graph sparsification methods, have been
developed over the past decade [20]. In this work, we adopt
the disparity filter criterion introduced in [21] to selectively
remove edges while preserving the structural backbone of the
graph.

Let s(u) =


v∈V |(u,v)∈E

w(u, v) denote the out-degree of a

feature associated with node u in the interpretability graph.
This value quantifies the total contribution of feature u in ex-
plaining the outputs of other features. The relative importance
of an edge (u, v) is given by p(u, v) = w(u, v)s(u), which
measures how much feature u contributes to predicting feature
v relative to its total explanatory power. Using this, we define
an edge filtering criterion based on the disparity filter:

wα(u, v) = 1− (kout(u)− 1)

p(u,v)

0

(1− x)kout(u)−2dx (4)

Edges with wα exceeding a given threshold α ∈ [0, 1] are
removed. This method enables edge filtering while preserving
the key structural relationships in the graph, ensuring that the
backbone of the network remains intact [21].

C. Spectral Analysis

Once the interpretability graph is constructed, we can ana-
lyze its structure to uncover meaningful feature relationships.
One powerful approach is to study the spectral properties

of the magnetic Laplacian, which helps reveal clusters of
interdependent features.

From Directed to Undirected Graph Representation. Since
the interpretability graph is directed and weighted, we begin
by decomposing the edge weight function into ws(u, v) and
wa(u, v), symmetric and asymmetric wa(u, v) components
respectively, capturing mutual relationships between features
and directional dependencies:

ws(u, v) =
w(u, v) + w(v, u)

2
, wa(u, v) =

w(u, v)− w(v, u)

2
.

(5)

Using this decomposition, we define the flow function at
vertex v due to u as:

a(v, u) = 2wa(u, v) (6)

This transformation allows us to construct an undirected
counterpart of the original directed graph, denoted as Gs =
(V,Es, ws).

Combinatorial Laplacian. The undirected graph Gs is as-
sociated with the combinatorial Laplacian operator L, which
is defined as:

(Lf)(u) = f(u)d(u)−


v∈V

ws(u, v)f(v), (7)

where d(u) =

v∈V

ws(u, v) represents the degree of vertex u.

Since L is symmetric, it provides valuable insights into the
structure of undirected graphs. However, it does not incorpo-
rate the directional nature of feature relationships. To address
this, we introduce the magnetic Laplacian, which incorporates
phase perturbations.

Introducing Directionality. To retain directionality in the
spectral analysis, we modify the combinatorial Laplacian by
introducing a phase perturbation to edge weights:

γq(u, v) = e2πiqa(v,u) (8)

This phase term encodes directional dependencies into the
spectral representation. Substituting this into Eq. (7), we obtain
the magnetic Laplacian Lq:

(Lqf)(u) = f(u)d(u)−


v∈V

ws(u, v)γq(u, v)f(v), (9)

where q ∈ [0, 1] is a parameter known as the charge [22],
controlling the influence of directionality.

Normalized Magnetic Laplacian. For practical analysis, we
define a normalized version of the magnetic Laplacian, Hq ,
given by:

(Hqf)(u) = f(u)−


v
ws(u, v)γq(u, v)f(v)

d(u)
 (10)

Unlike the standard combinatorial Laplacian, the magnetic
Laplacian is represented by a Hermitian matrix [23], making
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it particularly useful for spectral analysis. Additionally, it is
a positive semi-definite operator, meaning its eigenvalues and
eigenvectors can be leveraged to analyze graph structure.

Spectral Interpretation: Feature Clustering. The eigenvec-
tors of the normalized magnetic LaplacianHq provide valuable
insights into the organization of features:

Circular Dependencies and Group Synchronization. The
eigenvector corresponding to the smallest eigenvalue of Hq

helps approximate a group synchronization problem, capturing
cyclic dependencies in feature interactions [24]. Mathemati-
cally, this problem minimizes:

ηc(θ) =
1

2vol(Gs)



u,v∈V

ws(u, v)
eiθ(u) − γq(u, v)e

iθ(v)

2

,

(11)

where vol(Gs) =

u∈V

d(u) represents the total degree sum of

the graph.
Graph Partitioning via Eigenvector Phases. The phase an-

gles of eigenvectors, denoted as v
(l)
q ∈ C|V |, reveal natural

partitions within the dataset. The second smallest eigenvec-
tor of Hq provides an approximate solution to a graph-
cut problem, helping to identify clusters of strongly related
features [24], [25].

These spectral properties enable an interpretable decom-
position of feature relationships, uncovering structures that
conventional methods may overlook.

D. Community Detection

Features with similar interpretability characteristics should
naturally form communities within the interpretability graph.
To explore these relationships effectively, it is crucial to
determine a robust method for community identification. One
traditional approach is modularity optimization [26], but it has
limitations, including the tendency to detect communities even
in random graphs [27], leading to unreliable feature groupings.

To address this issue, we adopt the nested Stochastic Block
Model (nSBM) [28], a non-parametric Bayesian approach that
hierarchically clusters graph communities. Unlike the standard
Stochastic Block Model (SBM) [29], which partitions graphs
into predefined groups, nSBM constructs a hierarchy of nested
communities, improving the detection of small-scale structures
[28].

Mathematically, SBM applies Bayesian inference to esti-
mate graph partitions by considering block sizes and intra-
and inter-block connection probabilities. Let b represent the
partitioning of vertices and θ denote the parameters of the
generative model for a given graph G.

By leveraging nSBM’s hierarchical framework, we can
efficiently infer the modular organization of the graph, uncov-
ering intricate feature relationships. This allows us to better
understand the dataset’s structure and identify meaningful
groups of interrelated variables.

E. Feature Relevance

Beyond understanding feature communities, it is also essen-
tial to quantify the importance of individual features within
the dataset. Inspired by [30], we assess feature importance
using centrality measures. Various centrality metrics exist [31]
and each provides a different perspective on feature relevance
within the interpretability graph. In this work, we focus on
hub and authority scores due to their interpretability and
computational efficiency.

Originally introduced for ranking web pages [32], hub and
authority scores distinguish between two types of nodes: hubs,
which serve as connectors, and authorities, which represent
key informational sources. In the context of our interpretability
graph, highly ranked hubs indicate features strongly linked to
other important features, while high-authority nodes represent
the most influential features in prediction tasks.

Unlike the force-directed layout and nSBM, which require
graph sparsification, hub and authority scores can be efficiently
computed on the complete interpretability graph. This ensures
that we retain all relationships during the analysis, offering a
more comprehensive evaluation of feature relevance without
discarding potentially useful connections.

F. Feature Embedding (tab2vec).

While community detection groups features into broad
clusters, it does not quantify their pairwise similarity. To
capture fine-grained relationships, we employ node2vec [7],
generating a low-dimensional vector representation for each
feature, referred to as tab2vec.

The interpretability graph is used as input, where node2vec
simulates biased random walks to learn structural dependen-
cies. The transition probabilities are controlled by two hyper-
parameters: p, which biases the walk toward local neighbors,
and q, which encourages exploration of distant nodes. The
sampled walks are then used to train a skip-gram model [33],
optimizing feature embeddings so that features appearing in
similar graph contexts have similar representations.

Each feature is mapped to a d-dimensional vector zi ∈ Rd,
where similarity between features u and v is computed using
cosine similarity:

Similarity(u, v) =
zu · zv

∥zu∥∥zv∥
 (12)

These embeddings improve feature selection by identifying
redundant variables, enhance visualization, and support down-
stream tasks such as clustering and anomaly detection. Unlike
PCA, which captures variance, tab2vec retains relational struc-
ture, making it well-suited for structured data analysis.

G. Multilevel analysis

The previous analyses can be repeated for a selected subset
of columns. This step is conceptually similar to graph filtering,
as it aims to refine the interpretability of feature relationships
by reducing complexity. However, it differs in approach: in-
stead of filtering edges within an existing graph, it constructs a
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new graph based on a subset of columns, effectively modifying
the prediction task by excluding certain features.

Unlike simply extracting a subgraph from the original
interpretability graph, this method ensures that only relevant
features are considered in the new analysis. To define this
subset of columns, we leverage the magnetic eigenmaps of
the interpretability graph, which allow for feature separation
as described in [24]. This approach is analogous to using
the eigenvectors of the combinatorial Laplacian for image
segmentation [25].

III. CASE STUDY: PENSE

Adolescence is a formative stage that strongly influences
adult life, prompting extensive research into adolescent health
and behavior [34]. The PeNSE (National Survey of Scholar’s
Health) [35], conducted by IBGE with the Ministries of Health
and Education, offers detailed insights into the health and risk
factors of Brazilian teenagers.

Carried out in 2009, 2012, and 2015, PeNSE surveyed 9th-
grade students—typically around fourteen years old—from
public and private schools, following international ethical
standards. We focus on the 2015 edition, which collected
responses from nearly 130,000 students nationwide.

The electronic questionnaire covered domains such as so-
cioeconomic context, parental education, mental and oral
health, eating habits, family life, and school conditions.

Prior research has explored PeNSE from diverse angles. For
instance,[36], [37] addressed issues like bullying and chronic
illness.

Force-directed layout and the effect of the disparity filter

We first explore how our method can reveal groups of
related questions in the PeNSE survey. To achieve this, we
construct the interpretability graph following the previously
described approach and apply the disparity filter to remove
weaker edges.

In Fig.2, we present force-directed visualizations of both
the complete graph (Fig.2(a)) and the sparsified graph ob-
tained after applying edge filtering (Fig.2(b)). The complete
graph exhibits a hairy-ball structure, which hinders direct
interpretation. However, after applying the disparity filter with
a threshold of α = 01, underlying group structures become
apparent. A visual inspection suggests that questions related
to physical activity form two distinct clusters.

Despite the usefulness of force-directed layouts, it is well
known that their interpretation can be subjective. Therefore,
any observations made from these visualizations should be
validated using more rigorous analytical methods. In the
following sections, we further investigate the clustering be-
havior of these features using spectral analysis and community
detection.

Hierarchical categorization of the features

Community detection is a challenging problem, partly be-
cause there is no universally agreed-upon definition of what
constitutes a community [28]. The nSBM approach addresses

Fig. 2: Interpretability graph of the PeNSE dataset. Nodes
represent features, and edges indicate relationships between
feature pairs based on our proposed approach. In (b), the
graph was filtered using a disparity filter, as defined in (2),
with a parameter of 01. The node layout follows a force-
directed algorithm, with vertex and edge colors corresponding
to feature groups in the dataset. A strong agreement between
spatial communities and predefined categories is visible, such
as the brown group in the lower section of the figure.

this challenge by providing a statistically principled method
to infer modular structures. In this work, we utilize the graph-
tool1 implementation of nSBM [29], [38].

Fig.3 presents a circular visualization of the filtered inter-
pretability graph from the PeNSE survey, as inferred by nSBM.
The gray vertices and edges represent the hierarchical structure
of the detected communities, with vertex positions determined
by the modular structure of the graph. The color of each node
and edge corresponds to the predefined class of the respective
question in the survey, as originally assigned by the survey
designers. Consequently, communities where vertices share the
same color indicate alignment between the inferred modular
structure and the survey’s original classification.

This hierarchical visualization (Fig.3) allows for multiple
analyses, with two being particularly relevant to our study.
First, we examine how the detected communities align with
the divisions proposed in the survey. Second, we investigate
the connections between different feature groups, identifying
dominant clusters and their interrelations.

In Fig.3, we observe a strong correspondence between the
inferred and predefined groupings for at least two categories:
Food (mustard) and Body Image (pink). The Safety (violet)

1https://graph-tool.skewed.de/
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Fig. 3: Circular visualization [28] of the filtered interpretabil-
ity graph with edge bundling. The outer vertices represent
features, while directed edges illustrate relationships between
them. Nodes are grouped according to the inferred modular
structure, and their colors correspond to their respective cate-
gories in the survey. The overlaid hierarchical structure reveals
the community hierarchy.

category also exhibits reasonable alignment, though some
features are positioned separately on the left side of the circle,
forming a cluster with questions related to drug use (Fig.4(a)).
This suggests that an alternative classification could categorize
these features under Illicit Drugs. It is important to emphasize
that the nSBM approach is entirely data-driven and non-
subjective, relying solely on the observed response patterns
in the survey.

(a) (b)

Fig. 4: Distinct feature groupings in the hierarchical commu-
nity structure. In (a), a subset of safety-related features is po-
sitioned separately, suggesting a more refined categorization.
In (b), the highlighted orange features have strong connections
to the green vertices, reflecting an expected relationship based
on the survey’s original classification.

Fig.4(b) highlights a small cluster in mustard, positioned
on the left side of the circle. This group exhibits strong
connectivity with the green cluster at the bottom. The orange
category corresponds to Food, with the highlighted nodes
representing questions about eating meals with parents. The
nodes at the bottom, corresponding to the category Situations
at home and at school, in contrast, relate to questions about
the respondent’s relationship with their parents. This suggests
a strong correlation between family interactions and shared
meals, potentially revealing an alternative way to categorize
these questions in the survey.

(a) (b)

Fig. 5: Questions originally classified under Physical Activi-
ties. Although located near each other in the circular layout,
they are divided into two distinct subgroups. In (a), they
pertain to recreational sports, while in (b), they are related
to mobility constraints driven by socioeconomic factors, such
as walking or cycling to school.

The hierarchical nature of nSBM enables a more granular
categorization of features. As shown in Fig.5, most ques-
tions related to Physical Activities (in wine) are positioned
within the same region but are subdivided into two distinct
groups. Upon closer inspection, we observe that the first group
(Fig.5(a)) consists of recreational activities, such as playing
football or dancing. The second group (Fig.5(b)) consists
of mobility-related activities, such as walking or cycling to
school, which are often dictated by socioeconomic conditions.
The following questions, with the highest hub scores in the
community highlighted in Fig.5(b), while categorized under
Physical Activities, are strongly linked to socioeconomic con-
ditions.

• During the last 7 days, on how many days did you walk or ride
a bicycle to school?

• During the last 7 days, on how many days did you return from
school on foot or by bicycle?

• When you travel to school on foot or by bicycle, how long does
the journey take?

• When you return from school on foot or by bicycle, how long
does the journey take?

This pattern aligns with findings in developing countries,
where mobility choices are often influenced by economic
factors [39].

Features with a similar interpretation structure as revealed by
a tab2vec approach

The hierarchical structure inferred from nSBM provides a
mesoscale view of feature relationships, enabling the grouping
of related questions and assessing their level of association.
However, for certain tasks—such as detecting potential data
leakage or investigating specific factors—it is useful to identify
features with highly similar roles in the dataset.

One way to address this is by embedding features into
a vector space using a word-embedding approach, such as
node2vec [40]. Table I shows an example where we applied
node2vec to the interpretability graph and computed cosine
similarities between feature embeddings. The table lists the
top four questions most similar to “At school, have you
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ever received pregnancy prevention counseling?”. Notably, the
question “At school, have you ever received advice on how
to get condoms for free?” has a cosine similarity of 0.99,
indicating that their embeddings are nearly identical. This
result is intuitive, as discussions on pregnancy prevention often
include information about condoms. Such findings suggest
that embedding-based approaches can be useful for detecting
relationships between survey questions.

TABLE I: Most similar questions (cosine similarity) to “At
school, have you ever received pregnancy prevention counsel-
ing?”.

Sim. Question

0.99 At school, have you ever received advice on how to get
condoms for free?

0.98 At school, have you ever received advice about AIDS or other
sexually transmitted diseases?

0.87 Have you heard about the vaccination campaign against the
HPV virus?

0.52 In the last twelve months, how many times did you get into a
physical fight?

Fig. 6: Embedding of the rows from the PeNSE survey, color-
coded based on responses to the survey question What is your
gender?. Meanwhile, the images at the left display the UMAP
embedding, weighted by the hub score of the interpretability
graph that incorporates all the survey questions. The image at
the right show the embedding results for a subset of questions,
excluding those from the left of the figure of the toroidal
embedding, and obtained without considering the physical
activity-related questions.

Zooming In on Feature Sets: Figure 6 shows a UMAP
projection of survey respondents, colored by their answers
to a specific question. This embedding was computed using
cosine similarity between rows and all available features.
Notably, the projection exhibits no clear clustering, suggesting
that irrelevant or noisy features may be diluting meaningful
structure. One strategy to enhance the quality of such embed-
dings is to weight the features based on their relevance—an
approach successfully applied in previous work [41] using
feature importance scores. Here, we use the hub score derived
from the interpretability graph as a feature weighting scheme.
However, as shown on the left of Figure 6, this strategy alone
still results in many small, fragmented clusters. In contrast, by
segmenting the features based on the toroidal space induced
by the interpretability graph and reapplying UMAP using only
one of these feature subsets, we obtain more coherent and
semantically meaningful clusters—particularly with respect to
the gender variable. This illustrates how focused feature selec-

tion, informed by graph structure, can substantially improve
the expressiveness of embedding spaces.

IV. CONCLUSIONS

In this work, we introduced a novel framework for ana-
lyzing tabular data by leveraging graph-based representations,
spectral analysis, and community detection techniques. By
constructing a weighted directed graph where edges encode
predictive relationships between features, our approach pro-
vides a structured way to uncover hidden patterns in high-
dimensional datasets. The integration of spectral methods,
particularly the deformed magnetic Laplacian, allowed us to
extract meaningful insights from directional dependencies.
Furthermore, the application of nonparametric stochastic block
modeling (nSBM) revealed hierarchical structures, while fea-
ture embeddings through tab2vec helped capture fine-grained
relationships among variables.

The case study on the PeNSE dataset demonstrated the
effectiveness of this methodology. The results highlighted how
spectral graph analysis can refine interpretability, revealing
clusters of features that traditional techniques may overlook.
The sparsification process improved the clarity of feature
interactions while preserving the structural integrity of the
data. Additionally, the embedding-based analysis provided
an alternative perspective, identifying redundant or highly
correlated variables that could inform feature selection or
dimensionality reduction.

Despite its advantages, our method has some limitations.
The reliance on SHAP values for defining graph edges means
that the results are influenced by the predictive power and
potential biases of the underlying model. Additionally, while
the disparity filter effectively reduces noise, it requires careful
parameter tuning to balance interpretability and information
retention. Future work will explore the extension of this ap-
proach to dynamic datasets where feature relationships evolve
over time, the use of alternative weighting schemes such
as mutual information or causal inference methods, and its
application to other domains, including healthcare, finance,
and social sciences, to assess its generalizability.

Overall, our results suggest that spectral graph analysis
provides a powerful toolkit for enhancing the interpretability
of tabular data. By structuring feature interactions as a graph
and leveraging spectral techniques, we offer a new perspective
on data analysis that uncovers complex relationships hidden
under traditional paradigms.
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Introduction

Tabular data is a fundamental representation in machine learning, appearing in domains such as healthcare,

finance, and social sciences. Despite its ubiquity, extracting meaningful insights from high-dimensional tabular

datasets remains a challenge. Traditional feature selection and transformation techniques, such as principal

component analysis (PCA) [1] and autoencoders [2], often struggle to capture complex, non-linear relationships

between features. Recently, graphbased approaches have emerged as powerful alternatives for structuring and

analyzing tabular data [3], [4].

Graph representation learning has gained significant attention in recent years due to its ability to model relational

data. Methods such as graph neural networks (GNNs) [5], [6] and graph embedding techniques like node2vec [7]

have demonstrated their effectiveness in capturing structured dependencies. In the context of tabular data, graphs

provide a way to encode relationships between features, facilitating interpretability and dimensionality reduction

[8]. Existing works have leveraged graph structures to improve feature selection [9], detect hidden correlations

[10], [11], and enhance predictive models [12]. However, many of these approaches rely on predefined structures

or external domain knowledge, which may not always be available.

A recent study [13] explored graph-based models in public health, constructing a graph from PeNSE variables with

edges inferred via conditional dependency metrics. Their goal was to identify potential confounders in adolescent
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health analyses, showing how hidden dependencies could bias regression results. This study served as an important

motivation for our work. While both approaches leverage graph theory to analyze tabular data, our methodology

diverges in focus and technique. Rather than refining causal inference, we aim to uncover latent structure through

spectral analysis. We construct a directed, weighted graph using SHAP-derived feature importance scores [14],

aligning edge definitions with machine learning explainability. In contrast to traditional graph measures such as

centrality or clustering coefficients, we apply spectral techniques—specifically the deformed magnetic Laplacian

[15], [16]—to capture directional dependencies. We further enhance interpretability by using the nonparametric

stochastic block model (nSBM) [17] for hierarchical clustering and tabular embeddings (tab2vec) to reveal fine-

grained relationships.

Our methodology is validated through a case study on the PeNSE dataset, a large-scale survey on adolescent health

conducted in Brazil [18]. By leveraging spectral graph analysis, we demonstrate how this approach can uncover

meaningful feature clusters, identify redundant attributes, and highlight key relationships that might be overlooked

by conventional techniques. Unlike previous work focused on confounder detection, our study provides a broader

framework for structuring and interpreting complex tabular data through graph-based representations. Preliminary

results from this line of investigation were previously reported in [11].

SECTION II.

Methods

In this section, we present the methodology used to analyze tabular data through graph-based representations. The

proposed approach consists of four main stages: (a) Graph Representation, where the tabular dataset is mapped to

a weighted directed graph using SHAP-based feature dependencies; (b) Group Analysis, which employs spectral

methods and community detection techniques to uncover structural relationships among features; (c) Individual

Analysis, where centrality measures and feature embeddings (tab2vec) are used to assess the relevance and

similarity of individual features; and (d) Multilevel Analysis, which refines the interpretability by focusing on

selected subsets of features. Together, these stages provide a structured framework for uncovering hidden

relationships and improving the interpretability of complex tabular datasets.

In Fig. 1, we present an overview of the proposed method, which consists of four key stages: graph representation,

group analysis, individual analysis, and multilevel column analysis. The process begins by constructing a weighted

directed graph from the tabular dataset, where vertices correspond to columns and edges represent their

relationships, weighted using SHAP values. To enhance interpretability, we apply an edge filtering technique to

remove weak connections, completing the preprocessing phase and enabling further analysis of the dataset’s

structure.

To achieve this, we leverage spectral information extracted from the deformed magnetic Laplacian operator and

employ the hierarchical modular structure derived from nSBM. The nSBM framework allows us to categorize

columns into distinct groups, while the spectral information helps refine the results iteratively, focusing on a subset

of the graph with increasing granularity. In addition to these group-level analyses, we incorporate techniques that

assess feature relevance (using centrality measures) and represent columns as vectors in a latent space (tab2vec). In

the following sections, we provide a detailed discussion of each step in this framework.

Fig. 1:
Flow diagram of the proposed approach. The tabular dataset is initially mapped to a weighted
directed graph. The graph is then sparsified to remove weak connections, allowing for (b) group-


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A. Graph Modeling

To analyze tabular data using a graph-based approach, we represent the dataset as a weighted directed graph.

Formally, a weighted directed graph is defined as a tuple (V,E,w), where:

• V is the set of vertices, each representing a feature (column) in the dataset.

• E is the set of directed edges that capture relationships between features.

• w: E ↦ ℝ  is a weight function that quantifies the strength of these relationships.

Constructing the Graph. Each feature (column) in the tabular dataset is mapped to at least one vertex in the

graph. The edges between features are assigned weights based on their predictive influence.

1) Selecting a Target Feature: a column c ∈ C is randomly chosen as the target variable to be predicted.

2) Predicting the Target Feature: the remaining columns serve as input features to train a gradient boosting

machine (GBM) model, which estimates the values of c. The subset of features used in this prediction is

denoted by .

3) Defining Edge Weights: once the GBM model is trained, we evaluate how much each feature contributes to

predicting c. A directed edge (u,v ) is added to the graph, where w(u,v ) represents the importance of feature u

in predicting c.

This procedure is repeated for every feature in the dataset, ultimately constructing a fully connected weighted

directed graph.

Computing Edge Weights. A key challenge is determining the contribution of a feature u to predicting another

feature v. This contribution should reflect the predictive power of the trained GBM model.

We define the in-degree of a vertex v  as the sum of incoming edge weights:

View Source

where Acc(v ) denotes the predictive accuracy of the GBM model for feature c. If a feature has weak or no predictive

relationships with others, its in-degree will be low, reducing its influence in the graph.

The weight of an edge (u,v) is then computed as:

View Source

where ϵ(u → v) represents the contribution of feature u to the prediction of feature v.

Using SHAP Values for Edge Weights. To quantify feature contributions, various methods exist in the literature

[3]. In this work, we adopt the SHapley Additive exPlanations (SHAP) method [14], a technique rooted in

cooperative game theory [19] that measures the marginal contribution of each feature to the prediction task.

Since SHAP values are computed for individual instances, they provide fine-grained insights into feature

relationships. However, to construct a single aggregated interpretability graph, we average SHAP values across all

instances:

level analysis via spectral methods and community detection. Additionally, (c) individual-level
analysis (centrality measures) and pairwise comparisons (feature embeddings) are performed.
These procedures can be further refined (d) by considering only a selected subset of columns. The
algorithms used at each step are listed in parentheses.

+

V̄ c

c c

c

( ) = w (u, ) = Acc ( ) ,kin vc ∑
u∈V̄ c

vc vc (1)

c

w(u, v) = Acc(v) .
ε(u → v)

ε(z → v)∑
z∈V

(2)
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View Source

This ensures that the edge weights reflect global feature importance rather than individual instance-specific

relationships.

B. Graph sparsification

By construction, the interpretability graph is complete, which poses challenges for further processing. One major

issue is the high computational cost associated with handling the entire graph. Additionally, the large number of

connections can obscure meaningful patterns, making it difficult to extract relevant insights [20].

A straightforward approach to reducing the number of edges and improving interpretability in graph visualizations

is to apply a naive threshold to edge weights, retaining only the strongest connections. However, selecting an

appropriate threshold value is not trivial and lacks a clear justification [20]. Furthermore, this method can result in

a fragmented graph with many disconnected components.

To address these challenges, various graph filtering techniques, also known as graph sparsification methods, have

been developed over the past decade [20]. In this work, we adopt the disparity filter criterion introduced in [21] to

selectively remove edges while preserving the structural backbone of the graph.

Let  denote the out-degree of a feature associated with node u in the interpretability

graph. This value quantifies the total contribution of feature u in explaining the outputs of other features. The

relative importance of an edge (u,v) is given by p(u,v) = w(u,v)/s(u), which measures how much feature u

contributes to predicting feature v relative to its total explanatory power. Using this, we define an edge filtering

criterion based on the disparity filter:

View Source

Edges with w  exceeding a given threshold α ∈ [0, 1] are removed. This method enables edge filtering while

preserving the key structural relationships in the graph, ensuring that the backbone of the network remains intact

[21].

C. Spectral Analysis

Once the interpretability graph is constructed, we can analyze its structure to uncover meaningful feature

relationships. One powerful approach is to study the spectral properties of the magnetic Laplacian, which helps

reveal clusters of interdependent features.

From Directed to Undirected Graph Representation. Since the interpretability graph is directed and weighted, we

begin by decomposing the edge weight function into w (u,v) and w (u,v), symmetric and asymmetric w (u,v)

components respectively, capturing mutual relationships between features and directional dependencies:

View Source

Using this decomposition, we define the flow function at vertex v due to u as:

View Source

This transformation allows us to construct an undirected counterpart of the original directed graph, denoted as G

=(V,E ,w ).

Combinatorial Laplacian. The undirected graph G  is associated with the combinatorial Laplacian operator L,

w(u, v) = Acc(v) .
E [| (u → v)|]SHAPi

E [| (z → v)|]∑
z∈V

SHAPi

(3)

s(u) = w(u, v)∑
v∈V ∣(u,v)∈E

(u, v) = 1 − ( (u) − 1) dx.wα kout  ∫ p(u,v)

0
(1 − x) (u)−2kout  (4)

α

s a a

(u, v) = , (u, v) = .ws

w(u, v) + w(v, u)
2

wa

w(u, v) − w(v, u)
2

(5)

a (v, u)   =  2 (u, v) .wa (6)

s

s s

s
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which is defined as:

View Source

where  represents the degree of vertex u.

Since L is symmetric, it provides valuable insights into the structure of undirected graphs. However, it does not

incorporate the directional nature of feature relationships. To address this, we introduce the magnetic Laplacian,

which incorporates phase perturbations.

Introducing Directionality. To retain directionality in the spectral analysis, we modify the combinatorial Laplacian

by introducing a phase perturbation to edge weights:

View Source

This phase term encodes directional dependencies into the spectral representation. Substituting this into Eq. (7),

we obtain the magnetic Laplacian ℒ :

View Source

where q ∈ [0, 1] is a parameter known as the charge [22], controlling the influence of directionality.

Normalized Magnetic Laplacian. For practical analysis, we define a normalized version of the magnetic Laplacian,

, given by:

View Source

Unlike the standard combinatorial Laplacian, the magnetic Laplacian is represented by a Hermitian matrix [23],

making it particularly useful for spectral analysis. Additionally, it is a positive semi-definite operator, meaning its

eigenvalues and eigenvectors can be leveraged to analyze graph structure.

Spectral Interpretation: Feature Clustering. The eigenvectors of the normalized magnetic Laplacian H  provide

valuable insights into the organization of features:

Circular Dependencies and Group Synchronization. The eigenvector corresponding to the smallest eigenvalue of

 helps approximate a group synchronization problem, capturing cyclic dependencies in feature interactions

[24]. Mathematically, this problem minimizes:

View Source

where  represents the total degree sum of the graph.

Graph Partitioning via Eigenvector Phases. The phase angles of eigenvectors, denoted as , reveal

natural partitions within the dataset. The second smallest eigenvector of  provides an approximate solution to

a graphcut problem, helping to identify clusters of strongly related features [24], [25].

(Lf)(u) = f(u)d(u) − (u, v)f(v),∑
v∈V

ws (7)

d(u) = (u, v)∑
v∈V

ws

(u, v) = .γq e2πiqa(v,u) (8)

q

( f) (u) = f(u)d(u) − (u, v) (u, v)f(v),Lq ∑
v∈V

ws γq (9)

Hq

( f) (u) = f(u) − .Hq

(u, v) (u, v)f(v)∑
v

ws γq

d(u)
(10)

q

Hq

(θ) = (u, v) ,ηc

1
2 vol( )Gs

∑
u,v∈V

ws − (u, v)∣∣e
iθ(u) γq eiθ(v)∣∣

2
(11)

vol( ) = d(u)Gs ∑
u∈V

∈v(l)
q C|V |

Hq
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These spectral properties enable an interpretable decomposition of feature relationships, uncovering structures

that conventional methods may overlook.

D. Community Detection

Features with similar interpretability characteristics should naturally form communities within the interpretability

graph. To explore these relationships effectively, it is crucial to determine a robust method for community

identification. One traditional approach is modularity optimization [26], but it has limitations, including the

tendency to detect communities even in random graphs [27], leading to unreliable feature groupings.

To address this issue, we adopt the nested Stochastic Block Model (nSBM) [28], a non-parametric Bayesian

approach that hierarchically clusters graph communities. Unlike the standard Stochastic Block Model (SBM) [29],

which partitions graphs into predefined groups, nSBM constructs a hierarchy of nested communities, improving

the detection of small-scale structures [28].

Mathematically, SBM applies Bayesian inference to estimate graph partitions by considering block sizes and intra-

and inter-block connection probabilities. Let b represent the partitioning of vertices and θ denote the parameters of

the generative model for a given graph G.

By leveraging nSBM’s hierarchical framework, we can efficiently infer the modular organization of the graph,

uncovering intricate feature relationships. This allows us to better understand the dataset’s structure and identify

meaningful groups of interrelated variables.

E. Feature Relevance

Beyond understanding feature communities, it is also essential to quantify the importance of individual features

within the dataset. Inspired by [30], we assess feature importance using centrality measures. Various centrality

metrics exist [31] and each provides a different perspective on feature relevance within the interpretability graph.

In this work, we focus on hub and authority scores due to their interpretability and computational efficiency.

Originally introduced for ranking web pages [32], hub and authority scores distinguish between two types of nodes:

hubs, which serve as connectors, and authorities, which represent key informational sources. In the context of our

interpretability graph, highly ranked hubs indicate features strongly linked to other important features, while high-

authority nodes represent the most influential features in prediction tasks.

Unlike the force-directed layout and nSBM, which require graph sparsification, hub and authority scores can be

efficiently computed on the complete interpretability graph. This ensures that we retain all relationships during the

analysis, offering a more comprehensive evaluation of feature relevance without discarding potentially useful

connections.

F. Feature Embedding (tab2vec)

While community detection groups features into broad clusters, it does not quantify their pairwise similarity. To

capture fine-grained relationships, we employ node2vec [7], generating a low-dimensional vector representation for

each feature, referred to as tab2vec.

The interpretability graph is used as input, where node2vec simulates biased random walks to learn structural

dependencies. The transition probabilities are controlled by two hyperparameters: p, which biases the walk toward

local neighbors, and q, which encourages exploration of distant nodes. The sampled walks are then used to train a

skip-gram model [33], optimizing feature embeddings so that features appearing in similar graph contexts have

similar representations.

Each feature is mapped to a d-dimensional vector z  ∈ ℝ , where similarity between features u and v is computed

using cosine similarity:

View Source

These embeddings improve feature selection by identifying redundant variables, enhance visualization, and support

downstream tasks such as clustering and anomaly detection. Unlike PCA, which captures variance, tab2vec retains

relational structure, making it well-suited for structured data analysis.

G. Multilevel analysis

The previous analyses can be repeated for a selected subset of columns. This step is conceptually similar to graph

filtering, as it aims to refine the interpretability of feature relationships by reducing complexity. However, it differs

in approach: instead of filtering edges within an existing graph, it constructs a new graph based on a subset of

i
d

Similarity(u, v) = .
⋅zu zv

∥ ∥ ∥ ∥zu zv

(12)
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columns, effectively modifying the prediction task by excluding certain features.

Unlike simply extracting a subgraph from the original interpretability graph, this method ensures that only relevant

features are considered in the new analysis. To define this subset of columns, we leverage the magnetic eigenmaps

of the interpretability graph, which allow for feature separation as described in [24]. This approach is analogous to

using the eigenvectors of the combinatorial Laplacian for image segmentation [25].

SECTION III.

Case study: PeNSE

Adolescence is a formative stage that strongly influences adult life, prompting extensive research into adolescent

health and behavior [34]. The PeNSE (National Survey of Scholar’s Health) [35], conducted by IBGE with the

Ministries of Health and Education, offers detailed insights into the health and risk factors of Brazilian teenagers.

Carried out in 2009, 2012, and 2015, PeNSE surveyed 9thgrade students—typically around fourteen years old—

from public and private schools, following international ethical standards. We focus on the 2015 edition, which

collected responses from nearly 130,000 students nationwide.

The electronic questionnaire covered domains such as socioeconomic context, parental education, mental and oral

health, eating habits, family life, and school conditions.

Prior research has explored PeNSE from diverse angles. For instance,[36], [37] addressed issues like bullying and

chronic illness.

Force-directed layout and the effect of the disparity filter

We first explore how our method can reveal groups of related questions in the PeNSE survey. To achieve this, we

construct the interpretability graph following the previously described approach and apply the disparity filter to

remove weaker edges.

In Fig. 2, we present force-directed visualizations of both the complete graph ( Fig. 2(a)) and the sparsified graph

obtained after applying edge filtering ( Fig. 2(b)). The complete graph exhibits a hairy-ball structure, which hinders

direct interpretation. However, after applying the disparity filter with a threshold of α = 0.1, underlying group

structures become apparent. A visual inspection suggests that questions related to physical activity form two

distinct clusters.

Despite the usefulness of force-directed layouts, it is well known that their interpretation can be subjective.

Therefore, any observations made from these visualizations should be validated using more rigorous analytical

methods. In the following sections, we further investigate the clustering behavior of these features using spectral

analysis and community detection.

Hierarchical categorization of the features

Community detection is a challenging problem, partly because there is no universally agreed-upon definition of

what constitutes a community [28]. The nSBM approach addresses this challenge by providing a statistically

principled method to infer modular structures. In this work, we utilize the graphtool  implementation of nSBM

[29], [38].

1
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Fig. 3 presents a circular visualization of the filtered interpretability graph from the PeNSE survey, as inferred by

nSBM. The gray vertices and edges represent the hierarchical structure of the detected communities, with vertex

positions determined by the modular structure of the graph. The color of each node and edge corresponds to the

predefined class of the respective question in the survey, as originally assigned by the survey designers.

Consequently, communities where vertices share the same color indicate alignment between the inferred modular

structure and the survey’s original classification.

This hierarchical visualization (Fig. 3) allows for multiple analyses, with two being particularly relevant to our

study. First, we examine how the detected communities align with the divisions proposed in the survey. Second, we

investigate the connections between different feature groups, identifying dominant clusters and their interrelations.

In Fig. 3, we observe a strong correspondence between the inferred and predefined groupings for at least two

categories: Food (mustard) and Body Image (pink). The Safety (violet) category also exhibits reasonable alignment,

though some features are positioned separately on the left side of the circle, forming a cluster with questions related

to drug use ( Fig. 4(a)). This suggests that an alternative classification could categorize these features under Illicit

Drugs. It is important to emphasize that the nSBM approach is entirely data-driven and non-subjective, relying

solely on the observed response patterns in the survey.

Fig. 2:
Interpretability graph of the PeNSE dataset. Nodes represent features, and edges indicate
relationships between feature pairs based on our proposed approach. In (b), the graph was filtered
using a disparity filter, as defined in (2), with a parameter of 0.1. The node layout follows a force-
directed algorithm, with vertex and edge colors corresponding to feature groups in the dataset. A
strong agreement between spatial communities and predefined categories is visible, such as the
brown group in the lower section of the figure.



Fig. 3:
Circular visualization [28] of the filtered interpretability graph with edge bundling. The outer vertices
represent features, while directed edges illustrate relationships between them. Nodes are grouped
according to the inferred modular structure, and their colors correspond to their respective
categories in the survey. The overlaid hierarchical structure reveals the community hierarchy.


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Fig. 4(b) highlights a small cluster in mustard, positioned on the left side of the circle. This group exhibits strong

connectivity with the green cluster at the bottom. The orange category corresponds to Food, with the highlighted

nodes representing questions about eating meals with parents. The nodes at the bottom, corresponding to the

category Situations at home and at school, in contrast, relate to questions about the respondent’s relationship with

their parents. This suggests a strong correlation between family interactions and shared meals, potentially revealing

an alternative way to categorize these questions in the survey.

The hierarchical nature of nSBM enables a more granular categorization of features. As shown in Fig. 5, most

questions related to Physical Activities (in wine) are positioned within the same region but are subdivided into two

distinct groups. Upon closer inspection, we observe that the first group ( Fig. 5(a)) consists of recreational activities,

such as playing football or dancing. The second group ( Fig. 5(b)) consists of mobility-related activities, such as

walking or cycling to school, which are often dictated by socioeconomic conditions. The following questions, with

the highest hub scores in the community highlighted in Fig. 5(b), while categorized under Physical Activities, are

strongly linked to socioeconomic conditions.

• During the last 7 days, on how many days did you walk or ride a bicycle to school?

• During the last 7 days, on how many days did you return from school on foot or by bicycle?

• When you travel to school on foot or by bicycle, how long does the journey take?

• When you return from school on foot or by bicycle, how long does the journey take?

This pattern aligns with findings in developing countries, where mobility choices are often influenced by economic

factors [39].

Features with a similar interpretation structure as revealed by a tab2vec approach

The hierarchical structure inferred from nSBM provides a mesoscale view of feature relationships, enabling the

grouping of related questions and assessing their level of association. However, for certain tasks—such as detecting

potential data leakage or investigating specific factors—it is useful to identify features with highly similar roles in

the dataset.

Fig. 4:
Distinct feature groupings in the hierarchical community structure. In (a), a subset of safety-related
features is positioned separately, suggesting a more refined categorization. In (b), the highlighted
orange features have strong connections to the green vertices, reflecting an expected relationship
based on the survey’s original classification.



Fig. 5:
Questions originally classified under Physical Activities. Although located near each other in the
circular layout, they are divided into two distinct subgroups. In (a), they pertain to recreational
sports, while in (b), they are related to mobility constraints driven by socioeconomic factors, such as
walking or cycling to school.


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One way to address this is by embedding features into a vector space using a word-embedding approach, such as

node2vec [40]. Table I shows an example where we applied node2vec to the interpretability graph and computed

cosine similarities between feature embeddings. The table lists the top four questions most similar to “At school,

have you ever received pregnancy prevention counseling?”. Notably, the question “At school, have you ever

received advice on how to get condoms for free?” has a cosine similarity of 0.99, indicating that their embeddings

are nearly identical. This result is intuitive, as discussions on pregnancy prevention often include information about

condoms. Such findings suggest that embedding-based approaches can be useful for detecting relationships

between survey questions.

Zooming In on Feature Sets:Figure 6 shows a UMAP projection of survey respondents, colored by their answers to

a specific question. This embedding was computed using cosine similarity between rows and all available features.

Notably, the projection exhibits no clear clustering, suggesting that irrelevant or noisy features may be diluting

meaningful structure. One strategy to enhance the quality of such embeddings is to weight the features based on

their relevance—an approach successfully applied in previous work [41] using feature importance scores. Here, we

use the hub score derived from the interpretability graph as a feature weighting scheme. However, as shown on the

left of Figure 6, this strategy alone still results in many small, fragmented clusters. In contrast, by segmenting the

features based on the toroidal space induced by the interpretability graph and reapplying UMAP using only one of

these feature subsets, we obtain more coherent and semantically meaningful clusters—particularly with respect to

the gender variable. This illustrates how focused feature selection, informed by graph structure, can substantially

improve the expressiveness of embedding spaces.

TABLE I: Most similar questions (cosine similarity) to “At school, have you ever received pregnancy
prevention counseling?”.



Fig. 6:
Embedding of the rows from the PeNSE survey, colorcoded based on responses to the survey
question What is your gender?. Meanwhile, the images at the left display the UMAP embedding,
weighted by the hub score of the interpretability graph that incorporates all the survey questions.
The image at the right show the embedding results for a subset of questions, excluding those from
the left of the figure of the toroidal embedding, and obtained without considering the physical
activity-related questions.



SECTION IV.

Conclusions

In this work, we introduced a novel framework for analyzing tabular data by leveraging graph-based

representations, spectral analysis, and community detection techniques. By constructing a weighted directed graph

where edges encode predictive relationships between features, our approach provides a structured way to uncover

hidden patterns in high-dimensional datasets. The integration of spectral methods, particularly the deformed

magnetic Laplacian, allowed us to extract meaningful insights from directional dependencies. Furthermore, the

application of nonparametric stochastic block modeling (nSBM) revealed hierarchical structures, while feature

embeddings through tab2vec helped capture fine-grained relationships among variables.

The case study on the PeNSE dataset demonstrated the effectiveness of this methodology. The results highlighted
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how spectral graph analysis can refine interpretability, revealing clusters of features that traditional techniques may

overlook. The sparsification process improved the clarity of feature interactions while preserving the structural

integrity of the data. Additionally, the embedding-based analysis provided an alternative perspective, identifying

redundant or highly correlated variables that could inform feature selection or dimensionality reduction.

Despite its advantages, our method has some limitations. The reliance on SHAP values for defining graph edges

means that the results are influenced by the predictive power and potential biases of the underlying model.

Additionally, while the disparity filter effectively reduces noise, it requires careful parameter tuning to balance

interpretability and information retention. Future work will explore the extension of this approach to dynamic

datasets where feature relationships evolve over time, the use of alternative weighting schemes such as mutual

information or causal inference methods, and its application to other domains, including healthcare, finance, and

social sciences, to assess its generalizability.

Overall, our results suggest that spectral graph analysis provides a powerful toolkit for enhancing the

interpretability of tabular data. By structuring feature interactions as a graph and leveraging spectral techniques,

we offer a new perspective on data analysis that uncovers complex relationships hidden under traditional

paradigms.
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