Algebras and Representation Theory
https://doi.org/10.1007/510468-019-09878-4

®

Generalized Verma Modules over Uq(s(,(C)) Check for
updates

Vyacheslav Futorny’ @ . Libor Kfizka' - Jian Zhang'

Received: 6 April 2018 / Accepted: 5 March 2019 / Published online: 11 March 2019
© Springer Nature B.V. 2019

Abstract

We construct realizations of quantum generalized Verma modules for U, (s, (C)) by quan-
tum differential operators. Taking the classical limit ¢ — 1 provides a realization of
classical generalized Verma modules for sl,, (C) by differential operators.

Keywords Quantum group - Quantum Weyl algebra - Generalized Verma module

1 Introduction

Generalized Verma modules for complex simple finite-dimensional Lie algebras play an
important role in representation theory of Lie algebras. They were first introduced by Gar-
land and Lepowsky in [9]. The theory was further developed by many authors, see [1, 2,
4-8, 11, 15, 16, 18, 20, 21] and references therein. The generalized Verma modules are
a natural generalization of the Verma modules defined in [24], they are obtained by the
parabolic induction for a given choice of a parabolic subalgebra. When a parabolic subal-
gebra coincides with a Borel subalgebra we obtain the corresponding Verma module. The
importance of generalized Verma modules was shown in [2, 4, 6, 8] by proving that any
weight (with respect to a fixed Cartan subalgebra) simple module over a complex simple
finite-dimensional Lie algebra g is either cuspidal or a quotient of a certain generalized
Verma module, which in turn is obtained by a parabolic induction from the simple weight
module over the Levi factor of the parabolic subalgebra. Let us note that the concept of
cuspidality depends whether the weight subspaces have finite or infinite dimension [6, 8].
Also, the structure theory of generalized Verma modules differs significantly depending on
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whether the inducing module over the Levi subalgebra is cuspidal or not. The case of cuspi-
dal inducing modules with finite-dimensional weight spaces was fully settled in [20] where
it was shown that the block of the category of such modules is equivalent to certain blocks
of the category O. On the other hand, the classical construction of generalized Verma mod-
ules in [9] uses finite-dimensional inducing modules over the Levi subalgebra. Such induced
modules have certain universal properties but at the same time they are quotients of the
corresponding Verma modules.

It is always useful and important to have a concrete realization of simple modules in
terms of differential operators. Such realizations for different representations of sl, (C) can
be obtained, for instance, via the embedding into the Witt algebra W,,_; [23]. The purpose
of the present paper is to study quantum deformations of the generalized Verma modules
and construct realizations of these modules (which are simple generically) by quantum dif-
ferential operators (Theorems 4.1 and 4.2). We note that our construction holds for finite
and infinite-dimensional inducing modules over parabolic subalgebras. Similar realizations
can be be constructed for quantum groups of all types. Taking the classical limit ¢ — 1
provides a realization of classical generalized Verma modules by differential operators.

Throughout the article we use the standard notation N and Ny for the set of positive
integers and the set of nonnegative integers numbers, respectively.

2 Quantum Weyl Algebras

For g € C* satisfying ¢ # %1 and v € C, the g-number [v], is defined by

v

9’ —q"

[v], = . 2.1

1T g—q

If n € Ny, then we introduce the g-factorial [n],! by

n
[nly! = [ Jikl,. 22)
k=1
The g-binomial coefficients are defined by the formula

!

H - % (2.3)
k],  [klg'n —klg!

where n, k € Ngandn > k.

Let us consider an associative C-algebra A. Let 0: A — A be a C-algebra automor-
phism. Then a twisted derivation of A relative to o is a linear mapping D: A — A
satisfying

D(ab) = D(a)o (b) + o~ (a)D(b) 2.4

for all a,b € A. An element a € A induces an inner twisted derivation ad, a relative to o
defined by the formula

(adya)(h) = ao (b) — o~ (b)a 2.5)

1

for all a, b € A. Let us note that also D, = o0 — o~ is a twisted derivation of A relative

too.

Lemma 2.1 Let D be a twisted derivation of A relative to o. Then we have

O'O)\a =)Lg(a)oo', DO)\a —}»Uq(a)OD =)»D(a)00',

_ 2.6
00 = Po@©0, Dops—po@oD =ppayoo! 2.6)
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for all a € A, where A, and p, denote the left and the right multiplications by a € A,
respectively.

Proof We have
(0 0Aq)(b) = 0(ab) = o (a)o(b) = (Ag(a) 0 0)(D)
(D o0 Aq)(b) = D(ab) = D(a)o (b) + o ' (@)D(b) = (Ap@) 00 +As-1(y o D)(b)
foralla, b € A. O

Let V be a finite-dimensional complex vector space and let C[V] be the C-algebra of
polynomial functions on V. Further, let {x{, x3, ..., x,} be the linear coordinate functions
on V with respect to a basis {e1, e, . .., e,} of V. Then there exists a canonical isomorphism
of C-algebras C[V] and C[xy, x2, ..., x,].

Let g € C* satisfy g # £1. We define a C-algebra automorphism y ,, of C[V] by

Vo =q" ™ @.7)
and a twisted derivation 9 y; of C[V] relative to y; ,; through
1 g% — g—%idy
Oy =—1——4__ 2.8)
Xi q9—q9
fori =1,2,...,n.
Lemma 2.2 Let g € C* satisfy q # x1. Further, let D be a twisted derivation of C[V]
relative to yy x; for some i = 1,2, ..., n. Then we have
D = fid, x;, 2.9)
where f; € C[V].

Proof For j = 1,2, ..., nsatisfying j # i, we have
D(xixj) = D(xi)¥q.; () + Yo, () D(xj) = x;D(xi) + ¢~ ' xi D(x;).
D(xjx;) = D(x;)yq,x (xi) + Vq_,;,. (x;)D(x;) = qx; D(xj) + x; D(x;),

which implies that D(x;) = Oforall j =1,2,...,nsuchthat j #i.If weset f; = D(x;),
then we get

(D — fidgx)(x;) =0
forall j =1,2,...,n, which givesus D = f;d, ;. O

Let g € C* satisfy ¢ # =£1. Then based on the previous lemma, we define the quantum
Weyl algebra A’{, of the complex vector space V as an associative C-subalgebra of End C[V]

generated by x;, 9, x, and qu,t)l,- fori = 1,2,...,n. Let us note that the definition of A“’,
depends on the choice of a basis {ef, ez, ..., e,} of V. Moreover, we have the following
nontrivial relations
Yaq.xiXi = 4XiVq.x;» Yq.xi aq,x,- = q_laq,x,‘ Yq.xi (2.10)
and
g Xi — qXidgx; = Vv OguxiXi —q 'Xidgx = Vgux 2.11)

fori=1,2,...,n.
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3 Generalized Verma Modules
3.1 Generalized Verma Modules over Lie Algebras

Let us consider a finite-dimensional complex semisimple Lie algebra g. Let h be a Cartan
subalgebra of g. We denote by A the root system of g with respect to b, by AT a positive
root system in A, and by IT C A the set of simple roots.

Let rankg = r and I1 = {oy, «2,..., ). Then we denote by aiv € b the coroot
corresponding to the root «; and by w; € bh* the fundamental weight defined through
(w;, ozjy) =g;jforall j =1,2,...,r. We also set

r r
0= > Za=@PZau and Q4= ) Noo=HNow; (3.1)
aeAt i=1 aeAt i=1

and call Q the root lattice and Q. the positive root lattice. The Cartan matrix A =

(aij)1<i,j<r of gis given by a;; = («, o)

Further, we denote by s5; € GL(h*) the reflection about the hyperplane perpendicular to

the root ;. Then we obtain s;(et;) = aj — a;;ja;. Let Wy be the Weyl group of g generated

by s; fori =1,2,...,r. Then Wy is a finite Coxeter group with generators {s1, 52, ..., 5}
and the relations

(S,'Sj)mij = 1, (32)

where m;; = landm;; = 2,3,4 or6fora;jaj; =0, 1, 2 or 3, respectively, provided i # j.

Together with the Weyl group Wy it is useful to introduce the (generalized) braid group By

of g. It is an infinite group with generators {71, T3, ..., T} and the braid relations
L,TiTj-- - =T,T;Tj--- 3.3)
—— ——
m,-j mj,-

fori # j, where m;; = m ;. Let us note that the Weyl group Wy is the quotient of By under
the further relations Ti2 = 1fori =1,2,...,r. For an element w € Wy we introduce the
length £(w) by

Lw) = AT Nw(—=A)|. (3.4)
Let us note that the length £(w) of w € Wy is the smallest nonnegative integer k € Ny
required for an expression of w into the form

W = 8i;Siy - Sigs (3~5)

where i, iz, ..., ik € {1,2,...,r}. Such an expression is called a reduced expression of w
if k = £(w). It is well known that there exists a unique element wy € Wy of the maximal
length £(wg) = |A™| called the longest element.

The standard Borel subalgebra b of g is defined through b = h @ n with the nilradical n
and the opposite nilradical n given by

n=@P g ad =P g (3.6)
acAT aeAt
Moreover, we have a triangular decomposition
g=ndhon (3.7

of the Lie algebra g.
Further, let us consider a subset X of IT and denote by Ay the root subsystem in h*
generated by X. Then the standard parabolic subalgebra p = py of g associated to X
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is defined through p = [ @ u with the nilradical u and the opposite nilradical u given
by
u= P g ad T= P g (3.8)
aeAt\Ay acAt\Ay

and with the reductive Levi subalgebra [ defined by

(=h® P g (3.9)

OtEA)j

Moreover, we have a triangular decomposition
g=udlodu (3.10)

of the Lie algebra g. Furthermore, we define the X-height hty (@) of @ € A by

htz(Zmaa>: Z M. (3.11)

aell acll\XZ
This gives us a structure of a |k|-graded Lie algebra on g for some k € Ny. Let us note that
if X =@thenp=>bandif ¥ =Ilthenp =g.

Definition 3.1 Let V be a simple p-module satisfying uV = 0. Then the generalized Verma
module Mg (V) is the induced module

ME(V) = Indy (V) = U(®) Quan V = U@ ®cV, (3.12)

where the last isomorphism of U (u)-modules follows from Poincaré—Birkhoff—Witt theo-
rem.

If [ is the Cartan subalgebra b, then p is the Borel subalgebra b. In that case, any simple
p-module V is 1-dimensional and Mg(V) is the corresponding Verma module. Moreover,
if V is a finite-dimensional p-module, then Mg(V) is a homomorphic image of a certain
Verma module M g(V’ ), where V' is a 1-dimensional b-module, see e.g. [10]. Let us note
that M (V) has a unique simple quotient Ly (V') and generically Mg (V) =~ L} (V).

3.2 Generalized Verma Modules over Quantum Groups

In this section we describe generalized Verma modules for quantum groups. For more
detailed information concerning quantum groups see e.g. [3, 13, 14]. We use the notation
introduced in the previous section.

Let g be a finite-dimensional complex semisimple Lie algebra of rank r together with
the set of simple roots IT = {ay, a2, ..., a,}, the Cartan matrix A = (a;;)1<;,j<r and
d; = %(a,-, a;) fori = 1,2,...,r, where (-, -) is the inner product on h* induced by the
Cartan—Killing form on g and normalized so that («, o) = 2 for short roots & € A™.

Let g € C* satisfy g% # =41 fori = 1,2,...,r. Then the quantum group Uy(g) is a
unital associative C-algebra generated by e;, fi, ki, ki Ufori = 1,2, ..., r subject to the
relations

kik ' =1,  kkj=kik, Kk 'k=1,
— k! 3.13
kiejk7' = q%e;, e, fil1=28; bk k’fl, kifik; ' =q= f; 19

! i
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fori, j =1,2,...,r and the quantum Serre relations
1—a;; 1—a;j
/ |l 1 —aij l—ajj—k 1 Y k| 1—aij l—a;j—k k
> (=1 ¢ eje; =0, > (=1) f; fifi =0
k , k ,
k=0 gi k=0 qi

(3.14)
fori, j =1,2,...,r satisfying i # j, where ¢; :qdf fori =1,2,...,r.
There is a unique Hopf algebra structure on the quantum group U, (g) with the coproduct
A: Uy(g) — Uy(g) ® Uy(g), the counit e: Uy(g) — C and the antipode S: U, (g) —
U, (g) given by

Ale)=e®@kit1®ei,  Ak)=k®ki, A(f)=fi®1+k'®f,
e(er) =0, (ki) = 1, e(fi) =0, (3.15)
S(ei) = —eik; !, Stki) = k", S(f) = —kif;
fori=1,2,...,r.

Moreover, there exists a homomorphism of the braid group By into the group of C-
algebra automorphisms of U, (g) determined by

Tie) =—k'fi, Tk =kik; ", Ti(f) = —eiki (3.16)
fori,j=1,2,...,rand
—lll'j e_? .—a,-j—s
(o) — _1\s—aij,—s_"i . i
T;(e]) - Z( 1) ,qi [S]q-! €j [_aij _ S]q-!’
s=0 ! !
3.17)
—djj fA_aij_S fb
T( ) — (_I)S*aij l.y i . i
D = L i

fori, j =1,2,...,r satisfying i # j.
Let wy € Wy be the longest element in the Weyl group Wy with a reduced expression

WO = Si; Siy *** Siys (3.18)
where n = |AT|. If we set
Br = SiySiy -+ Sip_y () (3.19)
fork = 1,2,...,n, then the sequence B1, B2, ..., B, exhausts all positive roots At of g.
Hence, we define
e =ToTy Ty (er) and  fo =TTy Ty (fy)  (320)

and get elements of U, (g) called root vectors of U, (g) corresponding to the roots S and
—pBx fork =1,2,...,n, respectively.

Let U, (n) and U, (n) be the C-subalgebras of U, (g) generated by the root vectors e; for
i=12,...,rand f; fori = 1,2,...,r, respectively. For the quantum group U, (g) we
have a direct sum decomposition

Uy(a) = EP U (@), (3.21)
aeQ
where
UZ(g) = {u € Ug(9): kiuk; " = q'**ufori =1,2,....r). (3.22)
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Since U;‘ (9) U(f (g9) C U;Hﬂ (9), the preceding shows that U, (g) is a Q-graded C-algebra.
Moreover, this grading induces Q-grading on the C-subalgebras U, (n) and U, (n) as well.
In particular, we have

U= P vim and  U®= P U m, (3.23)
DéEQ+ QEQ+

where Ug(n) = Ug(g) N U, (n) and Ug(ﬁ) = U(‘;(g) NU;m) fora € Q.
Further, we denote by U, (h) and U, (b) the C-subalgebras of U,(g) generated by the

elements k;, kl._1 fori =1,2,...,r and ¢;, k;, ki_1 fori =1,2,...,r, respectively. Then
we have
Uy (b)) = Uy(h) @ Uy (n). (3.24)
Moreover, we have a triangular decomposition
Uy(9) = Uy(m) ® Uy (h) ® Uy(n) (3.25)

of the quantum group U, (g). Let us note that U, (h) and U, (b) are Hopf subalgebras of
U, (g) unlike Uy (n) and U, (n).

Let X be a subset of I1. Then we have the standard parabolic subalgebra p of g associated
to X with the nilradical u, the opposite nilradical w and the Levi subalgebra [.

Let U, (u) and U, (u) be the C-subalgebras of U, (g) generated by the root vectors e, for
a € AT satisfying htg(a) # 0 and f, for € AT satisfying hts (a) # 0, respectively.
Further, we denote by U, (I) the Levi quantum subgroup of U, (g) generated by the elements
ki, ki_1 fori =1,2,...,r and the root vectors e;, f; fori = 1,2,...,r such that ; € X.
Finally, we define the parabolic quantum subgroup Uy (p) of U, (g) as the C-subalgebra of
U,(g) generated by e;, k; fori =1,2,...,r and f; fori =1,2,...,r such that o; € .
Then we have

U,(p) 2 U; (D) @ Uy (w). (3.26)
Moreover, we have a triangular decomposition
Uy(g) 2 U;,w) @ Uy () ® Uy (w) (3.27)

of the quantum group U, (g). Let us note that U, (l) and U, (p) are Hopf subalgebras of
Uy () unlike U, (u) and U, (w).

Definition 3.2 Let V be a simple U,(p)-module satisfying U,(uw)V = 0. Then the
generalized Verma module Mg,q (V) is the induced module
Uq(9)
Mg 4 (V) = Ind;! (V) = Uy (0) ®u, ) V = Ug@ ®cV, (3.28)
where the last isomorphism of U, (1)-modules follows from Poincaré-Birkhoff-Witt theo-
rem.

It is well known that a class of simple highest weight modules for U, (g) can be obtained
as flat deformations of simple highest weight modules for g in the sense of Lusztig [17],
that is these modules have the same character formula and the latter can be obtained by the
classical limit via the A-forms of U, (g). We refer to the paper [19] where the A-forms tech-
nique in quantum deformation was described in details. Using this method one can easily
show that some generalized Verma modules for U, (g) are flat deformations of generalized
Verma modules for g.
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4 Representations of the Quantum Group Ug(s(,(C))
4.1 The Quantum Group Ug(s(,(C))

Let us consider the finite-dimensional complex simple Lie algebra sl,,(C) of rank n — 1
together with the set of simple roots IT = {oj, &2, ..., oy—1} and the Cartan matrix A =
(a,'j)lf,',jsn_l givenby aj = 2, ajj = —1 if|i — j| = 1and ajj = 0if |i — ]| > 1.

Let g € C* satisfy g # £1. Then the quantum group U, (sl,(C)) is a unital associative
C-algebra generated by e;, fi, ki, k;l fori =1,2,...,n — 1 subject to the relations

kik7' =1, kkj =kjki, kK 'ki=1,
-1 aij ki _ki_l -1 —ajj @D
kiejk; " =q"ej, lei, fi1=6ij PR kifik; " =q " f;
fori, j =1,2,...,n — 1 and the quantum Serre relations

ej — (g +q Veiejej +eje? =0, fRfi—(q+a Dfififi+ fifP=0 (i—jl=1,
ejej =eje;, fifi=fifi, (Ji —j| > 1.
4.2)

Moreover, there exists a unique Hopf algebra structure on the quantum group
U, (50, (C)) with the coproduct Ay: Uy(sl,(C)) — Uy (sl,(C)) ® Uy(sl,(C)), the counit
e1: Uy (s1,(C)) — C and the antipode Sy : U, (sl,(C)) — U,(sl,(C)) given by

A(e)) =6 @ki +1Qe, Ay(ki) = ki ® ki, AM(f)=[®1+k'® f,
e1(e;) =0, e1(k;) =1, e1(f)) =0, 4.3)
Si(er) = —eik; ", Sitki) = k7', Si(fi) = —ki fi
fori =1,2,...,n — 1. Let us note that we can introduce a different unique Hopf algebra

structure on Uy (s, (C)) with the coproduct Az : U, (s[,(C)) — U, (s1,(C)) ® U, (5L, (C)),
the counit &5 : U, (s1,(C)) — C and the antipode S, : U, (s[,(C)) — U,(s1,(C)) given by

Me)=e @k +1®e, Ao(ki) = ki ® ki, MAo(fi)=fi®1+k ® fi,
e2(e;) =0, eaki) =1, e(fi) =0, (4.4)
Sa(ei) = —eiki, So(ki) = k7, S(fi) =~k 'f;

fori=1,2,....,n—1.
Furthermore, there is a homomorphism of the braid group By, (c) into the group of C-
algebra automorphisms of U, (sl,,(C)) determined by

Ti(ei) = —fik,»_l, Ti(ki) = k', Ti(fi) = —kie; 4.5)
fori =1,2,...,n—1and

Ti(ej) = eiej —qejei,  Ti(kj) =kikj, T(f)=fifi—q ' fif; (i—jl=1,

L 4.6
Ti(ej) = e, Ti(kj) = kj. T;(f) = fj (i = jl > D. *6)

Let us note that a simple computation shows that
TiTje)=e; and  TTi(f) = f; @7

fori,j=1,2,...,n—1suchthat|i — j| = 1.
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Now, we construct root basis of U, (n) and U, (n) by the approach described in the
previous section. The longest element wg in the Weyl group Wy, () has a reduced

expression
WO = §1 - Sp—181 -+ Sp—2 - - - S18251.
If we set
Wi j =81 Sp—1"S1" " Sp—i4151 " Sj—i—1,
we obtain

wi,j(aj—[) =a; +iy1 + -t
for 1 <i < j < n.Hence, we denote by

Eij =Ty, (ej-i) and Eji =Ty, (fi-i)

(4.8)

4.9)

(4.10)

(4.11)

elements of U, (n) and U, () for 1 <i < j < n, respectively, where T, ; stands for

Ty, =T Thr---Ti- Tt Tj—j—1.
Furthermore, we define by
Ki j = kikiyy---kj
elements of U, (h) for 1 <i < j <n.
Proposition 4.1 We have
Eiiy1 =ei, Eit1i=fi
fori=1,2,...,n—1and

Eij=EixExj—qEr;Eik forl <i<k<j<n,
Eij=EiyEx _qflEk’jE,-’k forn>i>k>j>1.

Proof Letus assume thati < j. For 1 <i < k < n we have
T ---Ti(ej) =T ---TiTiy1(e;) =T - - - Ti—1(eiv1) = eiy1,

which implies E; ;1 = e¢; fori = 1,2, ..., n — 1. Further, we may write

(4.12)

(4.13)

(4.14)

(4.15)

Eij = Tu;(ej—i) =Tw; Tj—i-1(ej—i) = Ty, ; \(ej—i—1€j—i —qej_iej_i—1)

= Tw,'_j_l(ejfifl)Tw,‘yj_l(ejfi) _qu,"j_l(ejfi)Twi'j_l(ejfifl)
= Eij1Ej-1j—qEj-1;Eij-1

for j —i > 1. Hence, we proved the statement for j —i = 1 and j —i = 2. The rest of the
proof is by inductionon j—i.For j—i > 2wehave E; j = E; j_1E;_1 j—qE;_1;E; 1,
which together with the induction assumption E; j_| = E;;Ex ;-1 — qE j1E; for

1<i<k<j—1<ngivesus

Eij = (EixErj1—qExj1Eix)Ej-1,j —qEj1,j(EixExj—1 —qEk j-1E;ik)

EixEx j — qEr jEik,

Eik(Erj1Ej1j —qEj_1,jErj-1) —q(Ekj-1Ej1j —qEj_1,jEr j-1)Eix
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where we used E; yE;_| j = E;_1 ;E; in the second equality. For i > j the proof goes
along the same lines. This finishes the proof. O

Let us note that the root vectors E; ; of U, (s, (C)) coincide with the elements introduced
by Jimbo in [12]. Moreover, these vectors are linearly independent in U, (s, (C)) and they
have analogous properties as the corresponding elements E; j,i, j = 1,2,...,nandi # j,
in the matrix realization of 5[, (C).

Lemma 4.1 We have
EivE'; = q "E} jEii + [ml Ep'S Eij fori >k > j,
E/vExj = q "Er;E]} + [m]qu,jETk_l fori >k > j,
iwEij = q"EijEy fori>k>j,
Ei,jE,’(’fj = quijE,-J fori >k > j,

— 1 —1 -1
m—14 mt Kiiv1—q" K,‘,i+1
i+1,i q—q-

EiE}'; = E{'Eij —qm—z[m]qE,’;f;lEk,jKijjl fori < j <k,

m m
Ei,i+1E[+1,i = Ei+1,l’Ei,i+1 + [m]qE

)

EjkE}; = EJEji+[ml Ej EXT Ky fori < j <k,
E[,l'Ek’j = Ek’jE[,,' fori < j <k < Z,

E¢ jExi — ExiEej=(q—q DWEx Ee; fori<j<k<U{,
E¢iEjr = EjxEe; fori <j<k<{

in the quantum group Uy (s, (C)).

Proof All formulas are easy to be verified by induction. O

Lemma 4.2 We have
AE;)=Kij®Eji+Eji®l+(@—q") Y EwiKij®Ejx  (416)
i<k<j

forl <i<j<n.

Proof We prove the statement by induction on j — i. The case j —i = 1 follows immedi-
ately from (4.4). Further, for j —i > 1wehave E;; = E; ;11 Ei11,i — q_lE,-_H,,‘Ej,,-H.
Therefore, we may write A>(Ej ;) = Ay (Eji+1)A2(Eit1,i) — g Ao(Eig1,)A2(Ejiy1).
By induction assumption we have

AyEjit1) =Kiy1j®Ej i +Ejisn1®1+(@—q " Z Eri+1Ki,j ® Ejk
itl<k<j

and also

Ay(Eiy1;) =Kiit1®Ei11i+Ei;1,;®1,
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which gives us
A (Eji) = Ejit1Eip1i ®1— q_lEi-H,iEj,i—H 1
+Kis1jEit1i ® Ejiv1 —q 'Eig1iKit1,j ® Ej it
+Eji+1Kii+1 ® Eiy1,i — q_]Ki,i+1Ej,i+1 ® Eit1,i
+Kiy1,jKiiv1 ®Ejip1Eiq1,i — q_lKi,i+1Ki+1,j QEit1,iEj it
+q—q7" Z Erit1Kr jEiv1i ® Ejk

i+l<k<j
—¢ -9 ) EiriEcinKi®E;x
i+l<k<j
-1 . K L Ei Ly
+q—q") Y. EritiKijKiiy1 ® EjEiy,
i+l<k<j
—q¢ -4 ) Kiit1Ei1Kij ® Eip1iEjx.
i+l<k<j

Further, using the relations K11 jEi+1,; = qEi+1,iKi+1,j, Kii+1Eji+1 = qEji+1K;i+1
and K; ;11 Ex iy1 = qEk ;+1K; ;11 we may simplified A>(E; ;) into the form

AYEji) = (Ejiv1Eiv1i —q "Eis1iEjir1) @ 1+ Kij @ (Ejis1Eiv1i —q "Eit1,Eji+1)
+(@ = ¢ DEi+1iKit1,; ® Ejit1
+q—q7h Z (Exit1Eiv1i —q " Eis1iExiv1)Kr j ® Eji.

i+l<k<j

Therefore, we have
M(Eji)=Kij®E; ;i +Ej;®l+(q—q") Z EiiKi j® Ejk,
i<k<j

which finishes the proof. O
4.2 The Parabolic Induction for Ug(s(,+m(C))

For simplicity we concentrate now on one particular choice of a parabolic quantum sub-
group of U, (sl,4m(C)). This offers a good insight into the construction for a general
case.

Let ¥ = {o1,...,00—1, %41, - -+, Xypm—1} be a subset of IT = {1, a2, ..., ¥pgpm—1}
and let p = [ & u be the corresponding parabolic subalgebra of g = sl,4,,(C) with
the nilradical u, the opposite nilradical 1 and the Levi subalgebra [. We have a triangular
decomposition

g=udldu (4.17)
of the Lie algebra g, where | ~ sl[,,(C) & sl,,(C) & C, v ~ Hom(C™,C") and u =~
Hom(C", C™). Furthermore, we have the corresponding quantum parabolic subgroup U, (p)
of U,(g) with the C-subalgebras U, (u), U, (1) and the Levi quantum subgroup U, ([).
Moreover, we have a triangular decomposition

Uy U, @ Uy (D @ Uy (w) (4.18)
of the quantum group Uy (g).

@ Springer



V. Futorny et al.

Let V be a U, (p)-module. Then for the induced module ng 4 (V) we have
Ug(9) ®u, )V = Ugm) @V, (4.19)

where the isomorphism of vector spaces is in fact an isomorphism of U, (u)-modules.
Hence, the action of U, (1) on U, (1) ®c V is just the left multiplication, like in the clas-
sical case. Our next step is to describe the action of the Levi quantum subgroup U, () on
U, (W) ®cV, since in the classical case the action of the Levi subalgebra [ on U (1) ®c V is
equal to the tensor product of the adjoint action on U (u) and the action on V.

Let us recall that the Levi quantum subgroup U, () of U, (g) has a Hopf algebra struc-
ture determined either by (4.3) or by (4.4). However, we introduce a different (mixed)
Hopf algebra structure on U, (I) with the coproduct A: U, (1) — U, () ® Uy (D), the counit
e: Uy() — Uy (D) and the antipode S: U, (I) — U, ([) given by

Ae)=e¢ @k ' +1®e;, Ak)=k®k, A(f)=fi®l+k® fi
e(e;) =0, ki) =1, e(fi) =0, (4.20)
S(ei) = —eiki, Stki) = k', S(f) ==k f;

fori=1,2,....,n—1,

Alkn) = kn ® k.,

elkn) = 1,
Stkn) = k", “.21)
and
Ale)) =ei @k +1®e;, Aki) = ki ® ki, Af)=fi®l+k'® fi,
e(e)) =0, e(ki) =1, e(f)) =0, (4.22)
S(e;) = —eik; ", Stki) = k", S(f) = —kif;

fori=n+1,n+2,....n+m—1.
The Hopf algebra structure on Uy ([) ensures that we can define the (left) adjoint action
of Uy (1) on Uy (g) by

ad(a)b = Za(l)bS(a(z)), 4.23)
where
Aa) = Za(l) R a), (4.24)
foralla € U, (l) and b € U, (g). Let us note that we also have
ad(a)bc = Z(ad(a(l))b)(ad(a(g))c) (4.25)

foralla € U;(I) and b, ¢ € Uy (g).

Proposition 4.2 The C-subalgebra U, (w) of U, (g) is a Uy ()-module with respect to the
adjoint action. Moreover, we have

ad(e))Entjx = —q "8i kEntjit1, ad(fi)Ejink = —q8i+1 kEntjk—1, 4.26)
ad(ki) Enyjx = q " PHIAE, g
fori=1,2,....,n—1,
ad(kp)Enyjx = q " " Eyy i 4.27)
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and
ad(enti)Entjx = i1, Enyj—1k; ad( futi) Envjk = 8ij Envjrik,
ad(kn+i)En+j,k — qB,’.jﬂSi-H,j En+j,k (4.28)
fori=1,2,....m—1,wherel < j<mandl <k <n.

Proof Due to the formula (4.25), it is enough to verify that the set of generators
{Enyjik: 1 < j <m,1 <k =< n} of the C-subalgebra U, (w) of U,(g) is preserved by
U, (D) with respect to the adjoint action. The formulas (4.26), (4.28) and (4.27) are easy
consequence of Lemma 4.1. O

Proposition 4.3 Let V be a U, (p)-module. Then the Uy (1)-module structure on Mg’ eV)
is given by

au®v) = Z(ada(l))u ®apv, (4.29)
where

Aa) = Za(l) ® aew), (4.30)

fora e Uy(), u € Uy;(w) and v € V. In particular, we get that Mg,q(V) is isomorphic to
U,(w) ®cV as Uy (D)-module, where the U, (1)-module structure on Uy (W) is given through
the adjoint action.

Proof For an element a € U, (l) we have A(a) = Za(]) ®agw, Alaqy) = Za(n) ® a(12)
and A(a@)) = D a@i) ® aey). Then foru € U,(u) and v € V we may write

> (adagyu ® agyv = Y aqnuSau) ® apv = Y aqnuSag))am) ® v
= Zaa)us(a(zl))a(zz) Quv= Za(l)lw(a(z)) Qv
= Za(l)s(a(z))u Quv=au®u,

where we used (A ®id) o A = (id® A) o A in the third equality, m o (S®id)o A =io¢ein
the fourth equality, and (id ® &) o A = id in the last equality. Since U, () is a U, ([)-module
by Proposition 4.2, we immediately obtain that M, 3, ¢(V) is isomorphic to Uy () @cV as
Uy (h)-module. O

Let us note that the formula (4.29) holds for an arbitrary Hopf algebra structure on U (I).
However, the main difficulty is to find such a Hopf algebra structure that U, (w) is a U, ([)-
module with respect to the adjoint action (4.23).

As a consequence of Proposition 4.2 we have that the vector space

Ug = {Entjks 1 =j=m,1 <k =n}) (4.31)

is a Uy (I)-submodule of U, (1). By the specialization ¢ — 1 of the root vectors Ej, j x, we
obtain the canonical root vectors x; ; of wfor 1 < j <m and 1 < k < n. Hence, we define
an isomorphism v, : & — u, of vector spaces by

l[fq (xj,k) = En+j,k 4.32)
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Coordlnate functlons on u* Fu[ther we introduce a Uy, ([) module structure on u through
74: Uy () — Endu defined by

t4(a) = ¥, ' oad(a) o Yy (4.33)

for all @ € Uy(l). Moreover, when g is specialized to 1, we get the original [-module
structure on u.

For now, let us assume that ¢ is not a root of unity. Then we have 1 =~ me (wp—1 —
2w +wp41) as Uy (1)- modules where me Ly (A) is the simple highest weight U, ([) module
with highest Welght g* for A € b*. Further, smce we have

URC U me[’q Qwp—1 — 4wy + 2w541) ® Lhm[’q(wn—Z — 2wy + wpt2) 4.34)
® Lgﬁ[,q Cwn—1 = 3wn + 0p42) O L{,m,q(wnfz —3wn + 2w,41) ’
as U, ([)-modules, we define
S;w) =T/, (4.35)

where I, is the two-sided ideal of the tensor algebra T (u) generated by

L;Jﬁ[,q(w” 2= 3wn+2wn+1)—(,“, f]kg,1<z<j<m 1<k <t<n), (436)

where
U;_kyg =Xi¢ ®Xik —qXik Q Xiz,
N . 4.37)
Wi ke =Xj e @Xik —Xik ®Xje —qXjk @Xie+q Xig®Xjk,
and by
LLm,q(an—l —3wp +wpy2) = (v;j’k, w;j,k,f; l1<i<j<m,1<k<{<n), (438)
where
Vi i = Xjk @ Xik — qXik Q Xjk,
ik Js , , J»
o » (4.39)
Wik =Xj @Xik —Xik @Xjetq Xjk®Xie—qxi¢®Xjk,
which gives us
S, (@ =~ C, ] (4.40)
with
Cylw] = Clx)/ (xi e Xik — qXikXie, XjkXik — GXikXjk XjkXie — Xi ¢Xjk, @41

XjeXik — XikXje — (@ —q Dxiexj 1 <i<j<m1<k<t<n).

In the previous discussion, we assumed that g is not a root of unity. However, the definition
of S, () makes sense for all ¢ € C* satisfying ¢ # £1. Moreover, since the two-sided ideal
I, is a U, (D)-submodule of T'(u), we obtain that also S, (1) is a U, ([)-module for all g € C*
satisfying g # 1. The specialization ¢ — 1 gives us I, — I, hence C,[u*] — C[u*]. Let
us note that the C-algebra C,[u*] is usually called the coordinate algebra of the quantum
vector space u* introduced in [22].

It follows immediately from Lemma 4.1 that the mapping (4.32) may be uniquely
extended to a C-algebra homomorphism

Yy Cou*]l — Uy, (). (4.42)
Moreover, since the set
BB B Bl Enimns 7 € MuaMNo)) - (443)
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forms a basis of U, (1), we obtain that v, is an isomorphism of C-algebras. Further, by the
formula (4.25) and the fact that v, : C,[u*] — U, (w) is an isomorphism of C-algebras, we
get that ¥, is an isomorphism of U, (I)-modules.

by x" an element of C,[u*] defined by

ro_ L1 12 ln Tm,1 Ym,n
X=X XS Xy Xy X (4.44)

and by E” an element of U, (1) defined by

1,1

1,2 Fl,n Tm,1 Ym,n
n+1,1E . E ... FE - E

E"=E n+1,2" " Fndln n+m,1 """ Fntmn:
Since the C-algebra C,[u*] has a basis {x"; r € M,, ,(Ng)} we can find a family of iso-
morphisms ¢, : C[u*] — C,[u*] of vector spaces such that ¢, — id for ¢ — 1. Let us
define ¢, : C[w*] — C,[u*] by

0 (x") =x" (4.45)

for all r € M, ,,(Np). Furthermore, we denote by 1; ; € My, ,(Np) the (m x n)-matrix
having 1 at the intersection of the i-th row and j-th column and O elsewhere. Then the
corresponding U, (I)-module structure on C[u*] is given through the homomorphism

g Ug() — .A%* (4.46)

of associative C-algebras, where .A%* is the quantum Weyl algebra of the vector space u*,
defined by

pg(@) = ¢, 0 14(a) 0 g (4.47)

forall a € Uy (D).

Let y;,; be the C-algebra automorphism of C[u*] given by y; j: x ¢ — ¢ Xk.¢ and
9;,; the corresponding twisted derivation of C[u*] relative to y; ; for 1 < i < m and
I<j=<n

Sikdje

Theorem 4.1 We have

m m

m k
pgler) ==Y [ [veiviiaxuivioei, pg(fi) == xiidein | [v' viisr,
k=1 1=k § k=1 =1 (4.48)
pg k) = [ v vein
=1

fori=1,2,....,n—1,

n m
pekn) =1 T1vem (4.49)
t=1 s=1
and
n n n k—1
pglenti) =Y xixdipik || vievipis pg(fari) = Y [ T vid visraxit kdik
k=1 1=k+1 k=1 1=1 (4.50)

n
Pq(knti) = l_[ Vi,tyiq-ll,t
=1

fori=1,2,....,m—1.
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Proof The proof is a straightforward computation. Using (4.26) and (4.20) we have

Tq (e;)(xr) = —qil kazl Z;k:ll qZ;n:k("t,i*Vr.iH)*./’ foil .. 'xlgyl_‘lxk,i—klx]?:-i_j . .x;’nn:,r;;
— _q—l ZZ’ZI Z;k:[l qz;’;k(rt,i_rf,i+l)+rk,i_Zj x;f’ll .. ~x,:k;<i_l)€£k;-i_:_r}+1 .. x;;"’r’;
— Z;?:l qZ:”:k(rt,i_rt,iJrl)_z[rkyi]q x;f’ll . xk ; 7lx]:’fl’_:_ri+l .. .x:n"j;;”
T, () =—gY T, Zr’““ Y i —re)—J x?‘ll . "x;zk;l:rjxk,ﬂ;{;i] X
=—q Zk 1 Zrk i+l qZ, L it =T, i) ki1 —2) xl 1 . 'xlzk;'i—HxI:/,{%ii_l .. x:’;’jrf‘
riitl rkipi—1 Fmn

" i+1=T1,i L1
= — i g D g g 2 T
and
1, (ki) (x") = gEr= i1 =7 7

forallr € M), ,(No) andi = 1,2,...,n — 1, which gives us (4.48). Analogously, from
(4.28) and (4.22) we obtain

n Titlk
r =3 e il k—J+L T Fitl,k—J J—1 77
Tg(enti)(x') = E E q Liskt fi14 =] Xpy Xk XXy g X
k=1 j=I
n Ti+lk
_ ri—r +r -2 +1 rik+1 rip1k—1 Tm,n
_ZZqZ, k1 Tik—Tig 1 ) +rip1,k—2] ...xlk ”xi+l,k X
k=1 j=1
k1 ik —ri 1 rik+l rigik—1 m,
— E g L=k Uik 1+1,k)[rl.+1!k]qx1.1 cx T
k=1
n Tik
- e i1 T, rik—J I'm,
T (far)(x") = E Zq it i X ex] e xmkx,k e X
k=1 j=1
n ik 1
_ Yo Cira—ri 0t =2j+1 i ikl riaekl e
=)D g U YL Xik Yitlk Xm.n
k=1 j=1
" k—1
L, —r ri Vi,k_l ri+1,k+1 Ym,n
— ZqZ;_](Hrl.l l'[)[rl',k]qxl,] ”.xi,k .'.xi+1,k "'xm,n
k=1
and

Tq(kni) (x7) = L= Vi Tieta) 7

forallr € M, ,(No) andi = 1, 2,...,m — 1, which implies (4.50). Finally, using (4.27)
and (4.21) we get

T (kn) (27) = g Zim MR ey
forall r € My, ,(No), which finishes the proof.

Lemma 4.3 We have

s kg

pg(Eji) = — Z ) E s TN T ]_[ ]_[ Vt,i+aV¢TiL.a_1

1<k <--<kgy<m a=11t=1

(4.51)
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forl1 <i < j<n wheres =j—1i, t(ky,...,ks) is the number of distinct integers in the
s-tuple (ky, ko, ..., ks),

Oky.....ks = By Biy - - Bry (4.52)

. . -1 .
with B, = O, i+t Xk i+t I ke 7 kit and B, = vy 14y ke = kg1

Proof We prove the statement by induction on j — i. The case j — i = 1 follows from
Theorem 4.1. Further, for s = j —i > 1 we have py(E; ;) = pg(Ej j—1)pq(Ej-1,) —
q_lpq (Ej-1,i)pq(E; j—1)- By induction assumption we have

m k
Pg(Ej j—1) = — Zxk,j—lak,j 1_[ yt,jy[317]

k=1 =1
and
s—1 kq
Pq(Ej-1.i) = — Yoo @ 0" ik O [ [ ] reiva¥iiass
I<ki < <hks_1 <m a=l1=1

where 7’ = t(ky, ..., ks_1) for greater clarity, which gives us

m
pg(Eji) = Z Z (@' - Q)T(kl"”’ks")_lpq(Ej,i)k,kl,...,k.\._l,

k=11<kj<-<ky_1<m

where o4 (E;j i)k k,....k,_; denotes the expression

k s—1 kq
Xk, j—10k,j l_[ )’t,jV,y_j]_lxkl,iekl,..‘,ks,l Ok, j—1 1_[ 1_[ Vt,i+ay,;L.a_1
t=1 a=1t=1
s—1 kq k
_q_lxkl,iekl,...,k:,l Oy, j—1 l_[ 1_[ Vti+a V,}La_lxk,j—lak,j l_[ yt,jyt;l_l
a=11t=1 =1

forl<k1<---<ks_1<mandk=1,2,...,m.

If k£ < ky_1, we have py (E;j i)k ky,...k,—, = 0. Fork = ky_| we may write
s—1 kg ks—1
-1 -1
PgCEj i )kky.okeey = A%y Ok ks Xk 10k 10k [ [ [ ] vriva¥i et T ViV -1
a=1t=1 =1
s—1 kg4 ks—1
-1 -1
=Xpey 1Okt kg1 Ok, j—1Xks 1, j—10ks_y, l_[ 1_[ ViitaVyita—1 1_[ Yi,jiYe -1
a=11t=1 =1
s—1 kq ks—1

—1 —1 -1
= =Xk, ik ..k kal’j_lakkl.j l_[ 1_[ ViitaVsita—1 l_[ ViV j-1

a=11t=1 t=1

s—1 kq ks—1
B % R L
= —Xky,i%q,..., ks—1.ks—19kg_1,j Vt,H—u)/N‘jLa,] Vt,]y,,j,]v
a=11=1 t=1
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where the second equality follows from 0; jx; j — qx; j0; j = yl.jjl. Finally, if k > ks_1, we
obtain

s—1 kq
pq(Ejt)qu qultekl ky— 1akX 1.j—1Xk,j— lak/l_[I—[ytt+ay“+a 11_[%]]/[/ 1
a=11t=1
s—1 kg
—q71Xk1,i9k1 kg1 Oks_1,j—1Xk, j— 13k11_[1_[)/m+a7/,,+a 11_[%;)’” 1

a=11t=1 t=1
s—1 kg k

-1 -1 -1
=(q—q" )Xky,iOky, ... kg1 Oy_y,j—1 %k, j—10k, 1_[ l_[ YeitvaVyita—1 l_[ ViV j-1

a=1t=1 t=1
s—1 kg
:(q - qil)xkl,iekl ks—1, kak .J 1_[ l_[yt H—ay; ,+a 1 l_[yt /yr j 1°

a=11t=1

Therefore, we have

m
pq(Eji) = Z Z (g =gk kf")_lpq(Ej,i)k,kl ..... ks

k=ks—1 1<k <--<ks_1<m

s kg
-1 ik =1, ) S
=— Y @' =" 0 ko [T veivar et
I<ki<--<ks<m a=11=1
which gives the required statement. O

Now, let (o, V) be a U, (p)-module. Then we can identify U, (W) ¢V with C,[u*] ®c
V and obtain a U, (g)-module structure on C,[t*] ®c V. Further, using the isomorphism
¢q: C[u*] — C,[u*] of vector spaces, we can transfer the U, (g)-module structure even on
Clw*l ®cV
The main result of the present article is an explicit realization of the induced U, (g)-
module structure on C[u*] ®c V using quantum differential operators through the
homomorphism
mg.v: Ug(g) > AL, ®c End V (4.53)

of C-algebras defined by
((Yg 0 9q) ®idy) (g, v (@) (x" ® ) = a(E" @ v) (4.54)

forallr € My, ,(No) and v € V. This is the content of the following theorem. Let us recall
that C[ur*] has a canonical structure of an A%* -module.

Since the C-algebra isomorphism v, : C,[u*] — U, (1) is a homomorphism of U, (I)-
modules by construction of C, [w*] and the vector space isomorphism ¢, : C[u*] — C, [u*]
is a homomorphism of U, ([)-modules by definition of the U, (I)-module structure on C[u*],
the identification of U, (W) @cV with C,[u*]®cV is also an isomorphism of U, (I)-modules
and we obtain

g, v(a) = Z pqlaqy) ® a4(a)), (4.55)
where
A(a) = Za(l) ®ap), (4.56)

forall a € Uy (D). If V is the trivial U, (p)-module, then we have 74 v (a) = py(a) for all
a € Uy (l). In that case, we shall denote 7z, v by p,.
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Theorem 4.2 Let (04, V) be a Uy(p)-module. Then the induced U (sl,1n (C))-module
structure on C[u*] Q¢ V is defined through the homomorphism

7g.v: Ug(slypm(C)) > AL ®c End V (4.57)
of C-algebras by

g v ([fi) = pg(fi) ®idv + pg(ki) ® oq(fi),

g v(er) = pgle)) ® oq(k; ) + 1 ® ag(er), (4.58)
7q,v (ki) = pg (ki) ® og(k;)
fori=1,2,...,n—1,

Tqv (fati) = Pg (fasi) @ idy + pg (k) ® 0 (fasi)

nq,V(enJri) = Pgq (enti) @ Oq (knti) +1® Oq (en+i), (4.59)
ﬂq,V(kn+i) = Pgq (kn+i) ® o (kn+i)
fori=1,2,....m—1, and
n—1
wg.v(f) = x10 [ [ 11 ®idy,
=1
n—1 k

m m
g, (en) = Y g v (Enikn) ( [[nde® idv> = T [n0kn ® 04y Engiens)

k=1 =1 k=2 t=k
m k—1 m

- Z ]_[ Yt.n 1_[ Vz;ll xk,nak,nal,n ® Uq(kn) +1Q® Oq (en)

k=11t=1 t=k+1

m —1

oykn) —og(k, ")

+ [T riminn @ 2o =% )
=1 q9—4

(4.60)

”q,V(kn) = pq(kn) ® Gq(kn),
where
nq,V(En,k) = pq(En,k) ®idy + pq(Kk,n) ® gy (En,k)
+a—q7" D pg(EciKen) ®0q(Ene)

k<t<n

fork=1,2,...,n—1.

Proof From the previous considerations we know that the action of the Levi quantum
subgroup U, (I) on C[ir*] ®c V is given through the homomorphism

mgv: Ug() > AL, ® End V
of C-algebras by the formula
mq,v(a) = Z pqlany) ® a4(aew)),
where A(a) = )" aq) ® a), for all a € Uy (l). Hence, by using Theorem 4.1 we get the

corresponding expressions for all generators of U, (g) except e, and f,.
By Lemma 4.1 we have

n—1
En+1,nEr = qzt:l . Er+11.,17
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which together with (4.54) gives us

n—1
n—1
7.0 Ent1.) (& ® v) = gZi= ix i @y = (xl,n [[r® idV) '@ )
t=1

forallr € My, ,(No) and v € V. Further, using Lemma 4.1 we may write

AR
n+1,1

n

NEnnt1, E\ E""

i1, rmn
[En,n+17 E . ] =F n+1,n]'” n—+m,n

n+1,1 n+m n

n—1
AN Ym,n
+ Z En+1,1 [Enn+1, En+l W Enymn

m
1,1 Yk.n Fm,n
+ Z En+1,1 e [E"s”"‘l’ En+k,n] T En+m,n

q—Z;ilrr,n""] Kpnt1 — qZ?‘:m.n Kn_l

= [rialg B - -
q9—9
n—1
n m
+ D [riklgg ik TR By (BT
k=1
m

1
_Zq rkn qqu_krlnEV k"En+k n-‘rlKn 1

which together with (4.54) implies

ﬂq,V(En.tlJrl)(xr@ v) = x'® Uq(En,n+l)U

Zr 17+l — Zr 1rn—1
q 0q(Knn+1) — ¢ 04 (K, 1)
~|—[}’1.”]qxr_l]‘” ® n,n+ - 49\ n, n+1 v

q9—4q
n—1

Y Irnadgq T Ry (B ) 61 0 (K 1)V)
k=1

m
-2 " -1 -1
- Z q [rk,n]qqzr’krt‘nxr k@ 04 (En+k.n+l Kn,n+1 v
k=2

forallr € My, ,(No) and v € V. Furthermore, using

q -Xi= lrtn-HK n+1 _th 1= 1Kn,n+1 = qZ;n=1rr,n—l Knnv1 — K;Jll+1
q-q7" q-q7"
qu":m,rl _ q*Z;”:ﬂt.n+1
- 1 Kn,n+ls

q9—9
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we get

Ogq (Knnt1) — o (Kn n+1)
q-q"

m
7Tq,V(En,nJrl)(xr(g U) = xr® Oq (En,n+1)v + H J/t,nal,n-xr®
t=1

[T ven =TT vin
===l qn_ qflt Lo al,nxr®0q(Kn,n+l)U

n—1 k
+> g v (En) (Pq(Kn,n+1) [[rdexe Gq(Kn,n+1)v)
k=1 i=1
m m

-1
- Z 1_[ YinOknx" ® 0q(K, 41 Entkont1)V
k=2 1=k

forallr € My, ,(No) and v € V. Finally, using the formula

k—1
[T v =TT v
: z _1t o :Znytn l_[ yznxknakn,

9-4 k=11=1 t=k+1

we obtain the required statement. Moreover, from Lemma 4.2 we have

ﬂq,V(En,k) = Pq(En,k)®idv+pq(Kk,n)®Uq(En,k)+(q_q_l) Z pq(EK,kKl,n)®Uq(En,Z)

k<t<n

fork =1,2,...,n — 1. This finishes the proof. O

Theorem 4.2 together with Theorem 4.1 and Lemma 4.3 give us an explicit realiza-
tion of induced modules M, g p(V) ~ (CF*]@Y by quantum differential operators for any

U, (p)-module V. In fact, we have a stronger result. As 7y v : Uy (g) — A .®cEndVisa
homomorphlsm of associative C-algebras, we may take another A— -module M instead of
C[w*] and we obtain a U, (g)-module structure on M®cV through the homomorphism 7,y .
Moreover, since the classical limit of A%* via the specialization ¢ — 1 is the Weyl algebra
Az, it would be interesting to consider such Aq -modules for M that the corresponding
U, (g)-module M ®c V is a flat deformation of a tw1sted induced module.

A finite-dimensional module V over U, (l) has the classical limit V over I. As it was
mentioned at the end of the previous section, extending properly V' to a module over U, (p)
we can guarantee that it still admits the classical limit and that C,[*] ®c V is a flat defor—
mation of a generalized Verma module for g. Moreover, from Theorem 4.2 we easily get the
classical limit by the specialization ¢ — 1.
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