
Algebras and Representation Theory
https://doi.org/10.1007/s10468-019-09878-4

Generalized VermaModules over Uq(sln(C))

Vyacheslav Futorny1 · Libor Křižka1 · Jian Zhang1
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Abstract
We construct realizations of quantum generalized Verma modules for Uq(sln(C)) by quan-
tum differential operators. Taking the classical limit q → 1 provides a realization of
classical generalized Verma modules for sln(C) by differential operators.

Keywords Quantum group · Quantum Weyl algebra · Generalized Verma module

1 Introduction

Generalized Verma modules for complex simple finite-dimensional Lie algebras play an
important role in representation theory of Lie algebras. They were first introduced by Gar-
land and Lepowsky in [9]. The theory was further developed by many authors, see [1, 2,
4–8, 11, 15, 16, 18, 20, 21] and references therein. The generalized Verma modules are
a natural generalization of the Verma modules defined in [24], they are obtained by the
parabolic induction for a given choice of a parabolic subalgebra. When a parabolic subal-
gebra coincides with a Borel subalgebra we obtain the corresponding Verma module. The
importance of generalized Verma modules was shown in [2, 4, 6, 8] by proving that any
weight (with respect to a fixed Cartan subalgebra) simple module over a complex simple
finite-dimensional Lie algebra g is either cuspidal or a quotient of a certain generalized
Verma module, which in turn is obtained by a parabolic induction from the simple weight
module over the Levi factor of the parabolic subalgebra. Let us note that the concept of
cuspidality depends whether the weight subspaces have finite or infinite dimension [6, 8].
Also, the structure theory of generalized Verma modules differs significantly depending on
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whether the inducing module over the Levi subalgebra is cuspidal or not. The case of cuspi-
dal inducing modules with finite-dimensional weight spaces was fully settled in [20] where
it was shown that the block of the category of such modules is equivalent to certain blocks
of the category O. On the other hand, the classical construction of generalized Verma mod-
ules in [9] uses finite-dimensional inducing modules over the Levi subalgebra. Such induced
modules have certain universal properties but at the same time they are quotients of the
corresponding Verma modules.

It is always useful and important to have a concrete realization of simple modules in
terms of differential operators. Such realizations for different representations of sln(C) can
be obtained, for instance, via the embedding into the Witt algebra Wn−1 [23]. The purpose
of the present paper is to study quantum deformations of the generalized Verma modules
and construct realizations of these modules (which are simple generically) by quantum dif-
ferential operators (Theorems 4.1 and 4.2). We note that our construction holds for finite
and infinite-dimensional inducing modules over parabolic subalgebras. Similar realizations
can be be constructed for quantum groups of all types. Taking the classical limit q → 1
provides a realization of classical generalized Verma modules by differential operators.

Throughout the article we use the standard notation N and N0 for the set of positive
integers and the set of nonnegative integers numbers, respectively.

2 QuantumWeyl Algebras

For q ∈ C
× satisfying q �= ±1 and v ∈ C, the q-number [v]q is defined by

[v]q = qv − q−v

q − q−1
. (2.1)

If n ∈ N0, then we introduce the q-factorial [n]q ! by

[n]q ! =
n∏

k=1

[k]q . (2.2)

The q-binomial coefficients are defined by the formula
[
n

k

]

q

= [n]q !
[k]q ![n − k]q ! , (2.3)

where n, k ∈ N0 and n ≥ k.
Let us consider an associative C-algebra A. Let σ : A → A be a C-algebra automor-

phism. Then a twisted derivation of A relative to σ is a linear mapping D : A → A

satisfying
D(ab) = D(a)σ (b) + σ−1(a)D(b) (2.4)

for all a, b ∈ A. An element a ∈ A induces an inner twisted derivation adσ a relative to σ

defined by the formula
(adσ a)(b) = aσ(b) − σ−1(b)a (2.5)

for all a, b ∈ A. Let us note that also Dσ = σ − σ−1 is a twisted derivation of A relative
to σ .

Lemma 2.1 Let D be a twisted derivation of A relative to σ . Then we have

σ ◦ λa = λσ(a) ◦ σ, D ◦ λa − λσ−1(a) ◦ D = λD(a) ◦ σ,

σ ◦ ρa = ρσ(a) ◦ σ, D ◦ ρa − ρσ(a) ◦ D = ρD(a) ◦ σ−1 (2.6)
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for all a ∈ A, where λa and ρa denote the left and the right multiplications by a ∈ A,
respectively.

Proof We have

(σ ◦ λa)(b) = σ(ab) = σ(a)σ (b) = (λσ(a) ◦ σ)(b)

(D ◦ λa)(b) = D(ab) = D(a)σ (b) + σ−1(a)D(b) = (λD(a) ◦ σ + λσ−1(a) ◦ D)(b)

for all a, b ∈ A.

Let V be a finite-dimensional complex vector space and let C[V ] be the C-algebra of
polynomial functions on V . Further, let {x1, x2, . . . , xn} be the linear coordinate functions
on V with respect to a basis {e1, e2, . . . , en} of V . Then there exists a canonical isomorphism
of C-algebras C[V ] and C[x1, x2, . . . , xn].

Let q ∈ C
× satisfy q �= ±1. We define a C-algebra automorphism γq,xi

of C[V ] by

γq,xi
= qxi∂xi (2.7)

and a twisted derivation ∂q,xi
of C[V ] relative to γq,xi

through

∂q,xi
= 1

xi

qxi∂xi − q−xi∂xi

q − q−1
(2.8)

for i = 1, 2, . . . , n.

Lemma 2.2 Let q ∈ C
× satisfy q �= ±1. Further, let D be a twisted derivation of C[V ]

relative to γq,xi
for some i = 1, 2, . . . , n. Then we have

D = fi∂q,xi
, (2.9)

where fi ∈ C[V ].

Proof For j = 1, 2, . . . , n satisfying j �= i, we have

D(xixj ) = D(xi)γq,xi
(xj ) + γ −1

q,xi
(xi)D(xj ) = xjD(xi) + q−1xiD(xj ),

D(xjxi) = D(xj )γq,xi
(xi) + γ −1

q,xi
(xj )D(xi) = qxiD(xj ) + xjD(xi),

which implies that D(xj ) = 0 for all j = 1, 2, . . . , n such that j �= i. If we set fi = D(xi),
then we get

(D − fi∂q,xi
)(xj ) = 0

for all j = 1, 2, . . . , n, which gives us D = fi∂q,xi
.

Let q ∈ C
× satisfy q �= ±1. Then based on the previous lemma, we define the quantum

Weyl algebra Aq
V of the complex vector space V as an associative C-subalgebra of EndC[V ]

generated by xi , ∂q,xi
and γ ±1

q,xi
for i = 1, 2, . . . , n. Let us note that the definition of Aq

V

depends on the choice of a basis {e1, e2, . . . , en} of V . Moreover, we have the following
nontrivial relations

γq,xi
xi = qxiγq,xi

, γq,xi
∂q,xi

= q−1∂q,xi
γq,xi

(2.10)

and
∂q,xi

xi − qxi∂q,xi
= γ −1

q,xi
, ∂q,xi

xi − q−1xi∂q,xi
= γq,xi

(2.11)

for i = 1, 2, . . . , n.
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3 Generalized VermaModules

3.1 Generalized VermaModules over Lie Algebras

Let us consider a finite-dimensional complex semisimple Lie algebra g. Let h be a Cartan
subalgebra of g. We denote by � the root system of g with respect to h, by �+ a positive
root system in �, and by � ⊂ � the set of simple roots.

Let rank g = r and � = {α1, α2, . . . , αr }. Then we denote by α∨
i ∈ h the coroot

corresponding to the root αi and by ωi ∈ h∗ the fundamental weight defined through
〈ωi, α

∨
j 〉 = δij for all j = 1, 2, . . . , r . We also set

Q =
∑

α∈�+
Zα =

r⊕

i=1

Zαi and Q+ =
∑

α∈�+
N0α =

r⊕

i=1

N0αi (3.1)

and call Q the root lattice and Q+ the positive root lattice. The Cartan matrix A =
(aij )1≤i,j≤r of g is given by aij = 〈αj , α

∨
i 〉.

Further, we denote by si ∈ GL(h∗) the reflection about the hyperplane perpendicular to
the root αi . Then we obtain si(αj ) = αj − aijαi . Let Wg be the Weyl group of g generated
by si for i = 1, 2, . . . , r . Then Wg is a finite Coxeter group with generators {s1, s2, . . . , sr }
and the relations

(sisj )
mij = 1, (3.2)

where mii = 1 and mij = 2, 3, 4 or 6 for aij aji = 0, 1, 2 or 3, respectively, provided i �= j .
Together with the Weyl group Wg it is useful to introduce the (generalized) braid group Bg

of g. It is an infinite group with generators {T1, T2, . . . , Tr } and the braid relations

TiTjTj · · ·
︸ ︷︷ ︸

mij

= TjTiTj · · ·
︸ ︷︷ ︸

mji

(3.3)

for i �= j , where mij = mji . Let us note that the Weyl group Wg is the quotient of Bg under
the further relations T 2

i = 1 for i = 1, 2, . . . , r . For an element w ∈ Wg we introduce the
length �(w) by

�(w) = |�+ ∩ w(−�+)|. (3.4)

Let us note that the length �(w) of w ∈ Wg is the smallest nonnegative integer k ∈ N0
required for an expression of w into the form

w = si1si2 · · · sik , (3.5)

where i1, i2, . . . , ik ∈ {1, 2, . . . , r}. Such an expression is called a reduced expression of w

if k = �(w). It is well known that there exists a unique element w0 ∈ Wg of the maximal
length �(w0) = |�+| called the longest element.

The standard Borel subalgebra b of g is defined through b = h ⊕ n with the nilradical n
and the opposite nilradical �n given by

n =
⊕

α∈�+
gα and �n =

⊕

α∈�+
g−α . (3.6)

Moreover, we have a triangular decomposition

g = �n ⊕ h ⊕ n (3.7)

of the Lie algebra g.
Further, let us consider a subset 
 of � and denote by �
 the root subsystem in h∗

generated by 
. Then the standard parabolic subalgebra p = p
 of g associated to 




Generalized Verma Modules over Uq (sln (C))

is defined through p = l ⊕ u with the nilradical u and the opposite nilradical �u given
by

u =
⊕

α∈�+\�


gα and �u =
⊕

α∈�+\�


g−α (3.8)

and with the reductive Levi subalgebra l defined by

l = h ⊕
⊕

α∈�


gα . (3.9)

Moreover, we have a triangular decomposition

g = �u ⊕ l ⊕ u (3.10)

of the Lie algebra g. Furthermore, we define the 
-height ht
(α) of α ∈ � by

ht


( ∑

α∈�

mαα

)
=

∑

α∈�\

mα . (3.11)

This gives us a structure of a |k|-graded Lie algebra on g for some k ∈ N0. Let us note that
if 
 = ∅ then p = b and if 
 = � then p = g.

Definition 3.1 Let V be a simple p-module satisfying uV = 0. Then the generalized Verma
module M

g
p (V ) is the induced module

M
g
p (V ) = IndU(g)

U(p)(V ) ≡ U(g) ⊗U(p)V � U(�u) ⊗CV, (3.12)

where the last isomorphism of U(�u)-modules follows from Poincaré–Birkhoff–Witt theo-
rem.

If l is the Cartan subalgebra h, then p is the Borel subalgebra b. In that case, any simple
p-module V is 1-dimensional and M

g
p (V ) is the corresponding Verma module. Moreover,

if V is a finite-dimensional p-module, then M
g
p (V ) is a homomorphic image of a certain

Verma module M
g

b
(V ′), where V ′ is a 1-dimensional b-module, see e.g. [10]. Let us note

that M
g
p (V ) has a unique simple quotient L

g
p(V ) and generically M

g
p (V ) � L

g
p(V ).

3.2 Generalized VermaModules over QuantumGroups

In this section we describe generalized Verma modules for quantum groups. For more
detailed information concerning quantum groups see e.g. [3, 13, 14]. We use the notation
introduced in the previous section.

Let g be a finite-dimensional complex semisimple Lie algebra of rank r together with
the set of simple roots � = {α1, α2, . . . , αr }, the Cartan matrix A = (aij )1≤i,j≤r and
di = 1

2 (αi, αi) for i = 1, 2, . . . , r , where (· , ·) is the inner product on h∗ induced by the
Cartan–Killing form on g and normalized so that (α, α) = 2 for short roots α ∈ �+.

Let q ∈ C
× satisfy qdi �= ±1 for i = 1, 2, . . . , r . Then the quantum group Uq(g) is a

unital associative C-algebra generated by ei , fi , ki , k−1
i for i = 1, 2, . . . , r subject to the

relations

kik
−1
i = 1, kikj = kj ki, k−1

i ki = 1,

kiej k
−1
i = qaij ej , [ei, fj ] = δij

ki − k−1
i

qi − q−1
i

, kifj k
−1
i = q−aij fj

(3.13)
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for i, j = 1, 2, . . . , r and the quantum Serre relations

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

e
1−aij −k

i ej e
k
i = 0,

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

f
1−aij −k

i fjf
k
i = 0

(3.14)
for i, j = 1, 2, . . . , r satisfying i �= j , where qi = qdi for i = 1, 2, . . . , r .

There is a unique Hopf algebra structure on the quantum group Uq(g) with the coproduct
� : Uq(g) → Uq(g) ⊗ Uq(g), the counit ε : Uq(g) → C and the antipode S : Uq(g) →
Uq(g) given by

�(ei) = ei ⊗ ki + 1 ⊗ ei,

ε(ei) = 0,

S(ei) = −eik
−1
i ,

�(ki) = ki ⊗ ki,

ε(ki) = 1,

S(ki) = k−1
i ,

�(fi) = fi ⊗ 1 + k−1
i ⊗ fi,

ε(fi) = 0,

S(fi) = −kifi

(3.15)

for i = 1, 2, . . . , r .
Moreover, there exists a homomorphism of the braid group Bg into the group of C-

algebra automorphisms of Uq(g) determined by

Ti(ei) = −k−1
i fi , Ti(kj ) = kj k

−aij

i , Ti(fi) = −eiki (3.16)

for i, j = 1, 2, . . . , r and

Ti(ej ) =
−aij∑

s=0

(−1)s−aij q−s
i

es
i

[s]qi
! ej

e
−aij −s

i

[−aij − s]qi
! ,

Ti(fj ) =
−aij∑

s=0

(−1)s−aij qs
i

f
−aij −s

i

[−aij − s]qi
! fj

f s
i

[s]qi
!

(3.17)

for i, j = 1, 2, . . . , r satisfying i �= j .
Let w0 ∈ Wg be the longest element in the Weyl group Wg with a reduced expression

w0 = si1si2 · · · sin , (3.18)

where n = |�+|. If we set

βk = si1si2 · · · sik−1(αik ) (3.19)

for k = 1, 2, . . . , n, then the sequence β1, β2, . . . , βn exhausts all positive roots �+ of g.
Hence, we define

eβk
= Ti1Ti2 · · · Tik−1(eik ) and fβk

= Ti1Ti2 · · · Tik−1(fik ) (3.20)

and get elements of Uq(g) called root vectors of Uq(g) corresponding to the roots βk and
−βk for k = 1, 2, . . . , n, respectively.

Let Uq(n) and Uq(�n) be the C-subalgebras of Uq(g) generated by the root vectors ei for
i = 1, 2, . . . , r and fi for i = 1, 2, . . . , r , respectively. For the quantum group Uq(g) we
have a direct sum decomposition

Uq(g) =
⊕

α∈Q

Uα
q (g), (3.21)

where

Uα
q (g) = {u ∈ Uq(g); kiuk−1

i = q〈α,α∨
i 〉u for i = 1, 2, . . . , r}. (3.22)
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Since Uα
q (g)U

β
q (g) ⊂ U

α+β
q (g), the preceding shows that Uq(g) is a Q-graded C-algebra.

Moreover, this grading induces Q-grading on the C-subalgebras Uq(n) and Uq(�n) as well.
In particular, we have

Uq(n) =
⊕

α∈Q+
Uα

q (n) and Uq(�n) =
⊕

α∈Q+
U−α

q (�n), (3.23)

where Uα
q (n) = Uα

q (g) ∩ Uq(n) and Uα
q (�n) = Uα

q (g) ∩ Uq(�n) for α ∈ Q.
Further, we denote by Uq(h) and Uq(b) the C-subalgebras of Uq(g) generated by the

elements ki , k−1
i for i = 1, 2, . . . , r and ei , ki , k−1

i for i = 1, 2, . . . , r , respectively. Then
we have

Uq(b) � Uq(h) ⊗ Uq(n). (3.24)

Moreover, we have a triangular decomposition

Uq(g) � Uq(�n) ⊗ Uq(h) ⊗ Uq(n) (3.25)

of the quantum group Uq(g). Let us note that Uq(h) and Uq(b) are Hopf subalgebras of
Uq(g) unlike Uq(n) and Uq(�n).

Let 
 be a subset of �. Then we have the standard parabolic subalgebra p of g associated
to 
 with the nilradical u, the opposite nilradical �u and the Levi subalgebra l.

Let Uq(u) and Uq(�u) be the C-subalgebras of Uq(g) generated by the root vectors eα for
α ∈ �+ satisfying ht
(α) �= 0 and fα for α ∈ �+ satisfying ht
(α) �= 0, respectively.
Further, we denote by Uq(l) the Levi quantum subgroup of Uq(g) generated by the elements
ki , k−1

i for i = 1, 2, . . . , r and the root vectors ei , fi for i = 1, 2, . . . , r such that αi ∈ 
.
Finally, we define the parabolic quantum subgroup Uq(p) of Uq(g) as the C-subalgebra of
Uq(g) generated by ei , ki for i = 1, 2, . . . , r and fi for i = 1, 2, . . . , r such that αi ∈ 
.
Then we have

Uq(p) � Uq(l) ⊗ Uq(u). (3.26)

Moreover, we have a triangular decomposition

Uq(g) � Uq(�u) ⊗ Uq(l) ⊗ Uq(u) (3.27)

of the quantum group Uq(g). Let us note that Uq(l) and Uq(p) are Hopf subalgebras of
Uq(g) unlike Uq(u) and Uq(�u).

Definition 3.2 Let V be a simple Uq(p)-module satisfying Uq(u)V = 0. Then the
generalized Verma module M

g
p,q (V ) is the induced module

M
g
p,q (V ) = Ind

Uq(g)

Uq(p)(V ) ≡ Uq(g) ⊗Uq(p)V � Uq(�u) ⊗CV, (3.28)

where the last isomorphism of Uq(�u)-modules follows from Poincaré–Birkhoff–Witt theo-
rem.

It is well known that a class of simple highest weight modules for Uq(g) can be obtained
as flat deformations of simple highest weight modules for g in the sense of Lusztig [17],
that is these modules have the same character formula and the latter can be obtained by the
classical limit via the A-forms of Uq(g). We refer to the paper [19] where the A-forms tech-
nique in quantum deformation was described in details. Using this method one can easily
show that some generalized Verma modules for Uq(g) are flat deformations of generalized
Verma modules for g.
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4 Representations of the QuantumGroup Uq(sln(C))

4.1 The QuantumGroup Uq(sln (C))

Let us consider the finite-dimensional complex simple Lie algebra sln(C) of rank n − 1
together with the set of simple roots � = {α1, α2, . . . , αn−1} and the Cartan matrix A =
(aij )1≤i,j≤n−1 given by aii = 2, aij = −1 if |i − j | = 1 and aij = 0 if |i − j | > 1.

Let q ∈ C
× satisfy q �= ±1. Then the quantum group Uq(sln(C)) is a unital associative

C-algebra generated by ei , fi , ki , k−1
i for i = 1, 2, . . . , n − 1 subject to the relations

kik
−1
i = 1, kikj = kj ki, k−1

i ki = 1,

kiej k
−1
i = qaij ej , [ei, fj ] = δij

ki − k−1
i

q − q−1
, kifj k

−1
i = q−aij fj

(4.1)

for i, j = 1, 2, . . . , n − 1 and the quantum Serre relations

e2
i ej − (q + q−1)eiej ei + ej e

2
i =0,

eiej = ej ei ,

f 2
i fj −(q + q−1)fifj fi + fjf

2
i = 0

fifj = fjfi,

(|i−j | = 1),

(|i − j | > 1).

(4.2)

Moreover, there exists a unique Hopf algebra structure on the quantum group
Uq(sln(C)) with the coproduct �1 : Uq(sln(C)) → Uq(sln(C)) ⊗ Uq(sln(C)), the counit
ε1 : Uq(sln(C)) → C and the antipode S1 : Uq(sln(C)) → Uq(sln(C)) given by

�1(ei) = ei ⊗ ki + 1 ⊗ ei,

ε1(ei) = 0,

S1(ei) = −eik
−1
i ,

�1(ki) = ki ⊗ ki,

ε1(ki) = 1,

S1(ki) = k−1
i ,

�1(fi) = fi ⊗ 1 + k−1
i ⊗ fi,

ε1(fi) = 0,

S1(fi) = −kifi

(4.3)

for i = 1, 2, . . . , n − 1. Let us note that we can introduce a different unique Hopf algebra
structure on Uq(sln(C)) with the coproduct �2 : Uq(sln(C)) → Uq(sln(C)) ⊗ Uq(sln(C)),
the counit ε2 : Uq(sln(C)) → C and the antipode S2 : Uq(sln(C)) → Uq(sln(C)) given by

�2(ei) = ei ⊗ k−1
i + 1 ⊗ ei,

ε2(ei) = 0,

S2(ei) = −eiki ,

�2(ki) = ki ⊗ ki,

ε2(ki) = 1,

S2(ki) = k−1
i ,

�2(fi) = fi ⊗ 1 + ki ⊗ fi,

ε2(fi) = 0,

S2(fi) = −k−1
i fi

(4.4)

for i = 1, 2, . . . , n − 1.
Furthermore, there is a homomorphism of the braid group Bsln(C) into the group of C-

algebra automorphisms of Uq(sln(C)) determined by

Ti(ei) = −fik
−1
i , Ti(ki) = k−1

i , Ti(fi) = −kiei (4.5)

for i = 1, 2, . . . , n − 1 and

Ti(ej ) = eiej − qej ei ,

Ti(ej ) = ej ,

Ti(kj ) = kikj ,

Ti(kj ) = kj ,

Ti(fj ) = fjfi − q−1fifj

Ti(fj ) = fj

(|i − j | = 1),

(|i − j | > 1).
(4.6)

Let us note that a simple computation shows that

TiTj (ei) = ej and TiTj (fi) = fj (4.7)

for i, j = 1, 2, . . . , n − 1 such that |i − j | = 1.
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Now, we construct root basis of Uq(n) and Uq(�n) by the approach described in the
previous section. The longest element w0 in the Weyl group Wsln(C) has a reduced
expression

w0 = s1 · · · sn−1s1 · · · sn−2 · · · s1s2s1. (4.8)

If we set

wi,j = s1 · · · sn−1 · · · s1 · · · sn−i+1s1 · · · sj−i−1, (4.9)

we obtain

wi,j (αj−i ) = αi + αi+1 + · · · + αj−1 (4.10)

for 1 ≤ i < j ≤ n. Hence, we denote by

Ei,j = Twi,j
(ej−i ) and Ej,i = Twi,j

(fj−i ) (4.11)

elements of Uq(n) and Uq(�n) for 1 ≤ i < j ≤ n, respectively, where Twi,j
stands for

Twi,j
= T1 · · · Tn−1 · · · T1 · · · Tn−i+1T1 · · · Tj−i−1. (4.12)

Furthermore, we define by

Ki,j = kiki+1 · · · kj−1 (4.13)

elements of Uq(h) for 1 ≤ i < j ≤ n.

Proposition 4.1 We have

Ei,i+1 = ei, Ei+1,i = fi (4.14)

for i = 1, 2, . . . , n − 1 and

Ei,j = Ei,kEk,j − qEk,jEi,k

Ei,j = Ei,kEk,j − q−1Ek,jEi,k

for 1 ≤ i < k < j ≤ n,

for n ≥ i > k > j ≥ 1.
(4.15)

Proof Let us assume that i < j . For 1 ≤ i < k ≤ n we have

T1 · · · Tk(ei) = T1 · · · TiTi+1(ei) = T1 · · · Ti−1(ei+1) = ei+1,

which implies Ei,i+1 = ei for i = 1, 2, . . . , n − 1. Further, we may write

Ei,j = Twi,j
(ej−i ) = Twi,j−1Tj−i−1(ej−i ) = Twi,j−1(ej−i−1ej−i − qej−iej−i−1)

= Twi,j−1(ej−i−1)Twi,j−1(ej−i ) − qTwi,j−1(ej−i )Twi,j−1(ej−i−1)

= Ei,j−1Ej−1,j − qEj−1,jEi,j−1

for j − i > 1. Hence, we proved the statement for j − i = 1 and j − i = 2. The rest of the
proof is by induction on j −i. For j −i > 2 we have Ei,j = Ei,j−1Ej−1,j −qEj−1,jEi,j−1,
which together with the induction assumption Ei,j−1 = Ei,kEk,j−1 − qEk,j−1Ei,k for
1 ≤ i < k < j − 1 < n gives us

Ei,j = (Ei,kEk,j−1 − qEk,j−1Ei,k)Ej−1,j − qEj−1,j (Ei,kEk,j−1 − qEk,j−1Ei,k)

= Ei,k(Ek,j−1Ej−1,j − qEj−1,jEk,j−1) − q(Ek,j−1Ej−1,j − qEj−1,jEk,j−1)Ei,k

= Ei,kEk,j − qEk,jEi,k,
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where we used Ei,kEj−1,j = Ej−1,jEi,k in the second equality. For i > j the proof goes
along the same lines. This finishes the proof.

Let us note that the root vectors Ei,j of Uq(sln(C)) coincide with the elements introduced
by Jimbo in [12]. Moreover, these vectors are linearly independent in Uq(sln(C)) and they
have analogous properties as the corresponding elements Ei,j , i, j = 1, 2, . . . , n and i �= j ,
in the matrix realization of sln(C).

Lemma 4.1 We have

Ei,kE
m
k,j = q−mEm

k,jEi,k + [m]qEm−1
k,j Ei,j for i > k > j,

Em
i,kEk,j = q−mEk,jE

m
i,k + [m]qEi,jE

m−1
i,k for i > k > j,

Em
i,kEi,j = qmEi,jE

m
i,k for i > k > j,

Ei,jE
m
k,j = qmEm

k,jEi,j for i > k > j,

Ei,i+1E
m
i+1,i = Em

i+1,iEi,i+1 + [m]qEm−1
i+1,i

q−m+1Ki,i+1 − qm−1K−1
i,i+1

q − q−1
,

Ei,jE
m
k,i = Em

k,iEi,j − qm−2[m]qEm−1
k,i Ek,jK

−1
i,j for i < j < k,

Ej,kE
m
k,i = Em

k,iEj,k + [m]qEj,iE
m−1
k,i Kj,k for i < j < k,

E�,iEk,j = Ek,jE�,i for i < j < k < �,

E�,jEk,i − Ek,iE�,j = (q − q−1)Ek,jE�,i for i < j < k < �,

E�,iEj,k = Ej,kE�,i for i < j < k < �

in the quantum group Uq(sln(C)).

Proof All formulas are easy to be verified by induction.

Lemma 4.2 We have

�2(Ej,i) = Ki,j ⊗ Ej,i + Ej,i ⊗ 1 + (q − q−1)
∑

i<k<j

Ek,iKk,j ⊗ Ej,k (4.16)

for 1 ≤ i < j ≤ n.

Proof We prove the statement by induction on j − i. The case j − i = 1 follows immedi-
ately from (4.4). Further, for j − i > 1 we have Ej,i = Ej,i+1Ei+1,i − q−1Ei+1,iEj,i+1.
Therefore, we may write �2(Ej,i) = �2(Ej,i+1)�2(Ei+1,i ) − q−1�2(Ei+1,i )�2(Ej,i+1).
By induction assumption we have

�2(Ej,i+1) = Ki+1,j ⊗ Ej,i+1 + Ej,i+1 ⊗ 1 + (q − q−1)
∑

i+1<k<j

Ek,i+1Kk,j ⊗ Ej,k

and also

�2(Ei+1,i ) = Ki,i+1 ⊗ Ei+1,i + Ei+1,i ⊗ 1,
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which gives us

�2(Ej,i) = Ej,i+1Ei+1,i ⊗ 1 − q−1Ei+1,iEj,i+1 ⊗ 1

+Ki+1,jEi+1,i ⊗ Ej,i+1 − q−1Ei+1,iKi+1,j ⊗ Ej,i+1

+Ej,i+1Ki,i+1 ⊗ Ei+1,i − q−1Ki,i+1Ej,i+1 ⊗ Ei+1,i

+Ki+1,jKi,i+1 ⊗ Ej,i+1Ei+1,i − q−1Ki,i+1Ki+1,j ⊗ Ei+1,iEj,i+1

+(q − q−1)
∑

i+1<k<j

Ek,i+1Kk,jEi+1,i ⊗ Ej,k

−q−1(q − q−1)
∑

i+1<k<j

Ei+1,iEk,i+1Kk,j ⊗ Ej,k

+(q − q−1)
∑

i+1<k<j

Ek,i+1Kk,jKi,i+1 ⊗ Ej,kEi+1,i

−q−1(q − q−1)
∑

i+1<k<j

Ki,i+1Ek,i+1Kk,j ⊗ Ei+1,iEj,k .

Further, using the relations Ki+1,jEi+1,i = qEi+1,iKi+1,j , Ki,i+1Ej,i+1 = qEj,i+1Ki,i+1
and Ki,i+1Ek,i+1 = qEk,i+1Ki,i+1 we may simplified �2(Ej,i) into the form

�2(Ej,i ) = (Ej,i+1Ei+1,i − q−1Ei+1,iEj,i+1) ⊗ 1 + Ki,j ⊗ (Ej,i+1Ei+1,i − q−1Ei+1,iEj,i+1)

+(q − q−1)Ei+1,iKi+1,j ⊗ Ej,i+1

+(q − q−1)
∑

i+1<k<j

(Ek,i+1Ei+1,i − q−1Ei+1,iEk,i+1)Kk,j ⊗ Ej,k .

Therefore, we have

�2(Ej,i) = Ki,j ⊗ Ej,i + Ej,i ⊗ 1 + (q − q−1)
∑

i<k<j

Ek,iKk,j ⊗ Ej,k,

which finishes the proof.

4.2 The Parabolic Induction for Uq(sln+m(C))

For simplicity we concentrate now on one particular choice of a parabolic quantum sub-
group of Uq(sln+m(C)). This offers a good insight into the construction for a general
case.

Let 
 = {α1, . . . , αn−1, αn+1, . . . , αn+m−1} be a subset of � = {α1, α2, . . . , αn+m−1}
and let p = l ⊕ u be the corresponding parabolic subalgebra of g = sln+m(C) with
the nilradical u, the opposite nilradical �u and the Levi subalgebra l. We have a triangular
decomposition

g = �u ⊕ l ⊕ u (4.17)

of the Lie algebra g, where l � sln(C) ⊕ slm(C) ⊕ C, �u � Hom(Cm,Cn) and u �
Hom(Cn,Cm). Furthermore, we have the corresponding quantum parabolic subgroup Uq(p)

of Uq(g) with the C-subalgebras Uq(u), Uq(�u) and the Levi quantum subgroup Uq(l).
Moreover, we have a triangular decomposition

Uq(g) � Uq(�u) ⊗ Uq(l) ⊗ Uq(u) (4.18)

of the quantum group Uq(g).
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Let V be a Uq(p)-module. Then for the induced module M
g
p,q (V ) we have

Uq(g) ⊗Uq(p)V � Uq(�u) ⊗CV, (4.19)

where the isomorphism of vector spaces is in fact an isomorphism of Uq(�u)-modules.
Hence, the action of Uq(�u) on Uq(�u) ⊗CV is just the left multiplication, like in the clas-
sical case. Our next step is to describe the action of the Levi quantum subgroup Uq(l) on
Uq(�u) ⊗CV , since in the classical case the action of the Levi subalgebra l on U(�u) ⊗CV is
equal to the tensor product of the adjoint action on U(�u) and the action on V .

Let us recall that the Levi quantum subgroup Uq(l) of Uq(g) has a Hopf algebra struc-
ture determined either by (4.3) or by (4.4). However, we introduce a different (mixed)
Hopf algebra structure on Uq(l) with the coproduct � : Uq(l) → Uq(l) ⊗ Uq(l), the counit
ε : Uq(l) → Uq(l) and the antipode S : Uq(l) → Uq(l) given by

�(ei) = ei ⊗ k−1
i + 1 ⊗ ei,

ε(ei) = 0,

S(ei) = −eiki ,

�(ki) = ki ⊗ ki,

ε(ki) = 1,

S(ki) = k−1
i ,

�(fi) = fi ⊗ 1 + ki ⊗ fi,

ε(fi) = 0,

S(fi) = −k−1
i fi

(4.20)

for i = 1, 2, . . . , n − 1,

�(kn) = kn ⊗ kn,

ε(kn) = 1,

S(kn) = k−1
n , (4.21)

and

�(ei) = ei ⊗ ki + 1 ⊗ ei,

ε(ei) = 0,

S(ei) = −eik
−1
i ,

�(ki) = ki ⊗ ki,

ε(ki) = 1,

S(ki) = k−1
i ,

�(fi) = fi ⊗ 1 + k−1
i ⊗ fi,

ε(fi) = 0,

S(fi) = −kifi

(4.22)

for i = n + 1, n + 2, . . . , n + m − 1.
The Hopf algebra structure on Uq(l) ensures that we can define the (left) adjoint action

of Uq(l) on Uq(g) by

ad(a)b =
∑

a(1)bS(a(2)), (4.23)

where

�(a) =
∑

a(1) ⊗ a(2), (4.24)

for all a ∈ Uq(l) and b ∈ Uq(g). Let us note that we also have

ad(a)bc =
∑

(ad(a(1))b)(ad(a(2))c) (4.25)

for all a ∈ Uq(l) and b, c ∈ Uq(g).

Proposition 4.2 The C-subalgebra Uq(�u) of Uq(g) is a Uq(l)-module with respect to the
adjoint action. Moreover, we have

ad(ei)En+j,k = −q−1δi,kEn+j,k+1, ad(fi)Ej+n,k = −qδi+1,kEn+j,k−1,

ad(ki)En+j,k = q−δi,k+δi+1,kEn+j,k

(4.26)

for i = 1, 2, . . . , n − 1,

ad(kn)En+j,k = q−δ1,j −δn,kEn+j,k (4.27)
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and

ad(en+i )En+j,k = δi+1,jEn+j−1,k, ad(fn+i )En+j,k = δi,jEn+j+1,k,

ad(kn+i )En+j,k = qδi,j −δi+1,j En+j,k

(4.28)

for i = 1, 2, . . . , m − 1, where 1 ≤ j ≤ m and 1 ≤ k ≤ n.

Proof Due to the formula (4.25), it is enough to verify that the set of generators
{En+j,k; 1 ≤ j ≤ m, 1 ≤ k ≤ n} of the C-subalgebra Uq(�u) of Uq(g) is preserved by
Uq(l) with respect to the adjoint action. The formulas (4.26), (4.28) and (4.27) are easy
consequence of Lemma 4.1.

Proposition 4.3 Let V be a Uq(p)-module. Then the Uq(l)-module structure on M
g
p,q (V )

is given by

a(u ⊗ v) =
∑

(ad a(1))u ⊗ a(2)v, (4.29)

where

�(a) =
∑

a(1) ⊗ a(2), (4.30)

for a ∈ Uq(l), u ∈ Uq(�u) and v ∈ V . In particular, we get that M
g
p,q (V ) is isomorphic to

Uq(�u) ⊗CV as Uq(l)-module, where the Uq(l)-module structure on Uq(�u) is given through
the adjoint action.

Proof For an element a ∈ Uq(l) we have �(a) = ∑
a(1) ⊗ a(2), �(a(1)) = ∑

a(11) ⊗ a(12)

and �(a(2)) = ∑
a(21) ⊗ a(22). Then for u ∈ Uq(�u) and v ∈ V we may write

∑
(ad a(1))u ⊗ a(2)v =

∑
a(11)uS(a(12)) ⊗ a(2)v =

∑
a(11)uS(a(12))a(2) ⊗ v

=
∑

a(1)uS(a(21))a(22) ⊗ v =
∑

a(1)uε(a(2)) ⊗ v

=
∑

a(1)ε(a(2))u ⊗ v = au ⊗ v,

where we used (�⊗ id) ◦� = (id ⊗�) ◦� in the third equality, m ◦ (S ⊗ id) ◦� = i ◦ ε in
the fourth equality, and (id⊗ ε)◦� = id in the last equality. Since Uq(�u) is a Uq(l)-module
by Proposition 4.2, we immediately obtain that M

g
p,q (V ) is isomorphic to Uq(�u) ⊗CV as

Uq(l)-module.

Let us note that the formula (4.29) holds for an arbitrary Hopf algebra structure on Uq(l).
However, the main difficulty is to find such a Hopf algebra structure that Uq(�u) is a Uq(l)-
module with respect to the adjoint action (4.23).

As a consequence of Proposition 4.2 we have that the vector space

�uq = 〈{En+j,k; 1 ≤ j ≤ m, 1 ≤ k ≤ n}〉 (4.31)

is a Uq(l)-submodule of Uq(�u). By the specialization q → 1 of the root vectors En+j,k , we
obtain the canonical root vectors xj,k of�u for 1 ≤ j ≤ m and 1 ≤ k ≤ n. Hence, we define
an isomorphism ψq : �u → �uq of vector spaces by

ψq(xj,k) = En+j,k (4.32)
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for 1 ≤ j ≤ m and 1 ≤ k ≤ n. Let us note that x = (xj,k)1≤j≤m,1≤k≤n gives us linear
coordinate functions on �u∗. Further, we introduce a Uq(l)-module structure on �u through
τq : Uq(l) → End�u defined by

τq(a) = ψ−1
q ◦ ad(a) ◦ ψq (4.33)

for all a ∈ Uq(l). Moreover, when q is specialized to 1, we get the original l-module
structure on �u.

For now, let us assume that q is not a root of unity. Then we have �u � Ll
b∩l,q (ωn−1 −

2ωn +ωn+1) as Uq(l)-modules, where Ll
b∩l,q (λ) is the simple highest weight Uq(l)-module

with highest weight qλ for λ ∈ h∗. Further, since we have

�u ⊗C�u � Ll
b∩l,q (2ωn−1 − 4ωn + 2ωn+1) ⊕ Ll

b∩l,q (ωn−2 − 2ωn + ωn+2)

⊕ Ll
b∩l,q (2ωn−1 − 3ωn + ωn+2) ⊕ Ll

b∩l,q (ωn−2 − 3ωn + 2ωn+1)
(4.34)

as Uq(l)-modules, we define
Sq(�u) = T (�u)/Iq, (4.35)

where Iq is the two-sided ideal of the tensor algebra T (�u) generated by

Ll
b∩l,q (ωn−2 − 3ωn + 2ωn+1) = 〈v+

i,k,�, w
+
i,j,k,�; 1 ≤ i < j ≤ m, 1 ≤ k < � ≤ n〉, (4.36)

where

v+
i,k,� = xi,� ⊗ xi,k − qxi,k ⊗ xi,�,

w+
i,j,k� = xj,� ⊗ xi,k − xi,k ⊗ xj,� − qxj,k ⊗ xi,� + q−1xi,� ⊗ xj,k,

(4.37)

and by

Ll
b∩l,q (2ωn−1 −3ωn +ωn+2) = 〈v−

i,j,k, w
−
i,j,k,�; 1 ≤ i < j ≤ m, 1 ≤ k < � ≤ n〉, (4.38)

where

v−
i,j,k = xj,k ⊗ xi,k − qxi,k ⊗ xj,k,

w−
i,j,k,� = xj,� ⊗ xi,k − xi,k ⊗ xj,� + q−1xj,k ⊗ xi,� − qxi,� ⊗ xj,k,

(4.39)

which gives us
Sq(�u) � Cq [�u∗] (4.40)

with

Cq [�u∗] = C〈x〉/(xi,�xi,k − qxi,kxi,�, xj,kxi,k − qxi,kxj,k, xj,kxi,� − xi,�xj,k,

xj,�xi,k − xi,kxj,� − (q − q−1)xi,�xj,k; 1 ≤ i < j ≤ m, 1 ≤ k < � ≤ n).
(4.41)

In the previous discussion, we assumed that q is not a root of unity. However, the definition
of Sq(�u) makes sense for all q ∈ C

× satisfying q �= ±1. Moreover, since the two-sided ideal
Iq is a Uq(l)-submodule of T (�u), we obtain that also Sq(�u) is a Uq(l)-module for all q ∈ C

×
satisfying q �= ±1. The specialization q → 1 gives us Iq → I , hence Cq [�u∗] → C[�u∗]. Let
us note that the C-algebra Cq [�u∗] is usually called the coordinate algebra of the quantum
vector space �u∗ introduced in [22].

It follows immediately from Lemma 4.1 that the mapping (4.32) may be uniquely
extended to a C-algebra homomorphism

ψq : Cq [�u∗] → Uq(�u). (4.42)

Moreover, since the set

{Er1,1
n+1,1E

r1,2
n+1,2 · · ·Er1,n

n+1,n · · ·Erm,1
n+m,1 · · ·Erm,n

n+m,n; r ∈ Mm,n(N0)} (4.43)
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forms a basis of Uq(�u), we obtain that ψq is an isomorphism of C-algebras. Further, by the
formula (4.25) and the fact that ψq : Cq [�u∗] → Uq(�u) is an isomorphism of C-algebras, we
get that ψq is an isomorphism of Uq(l)-modules.

For an (m×n)-matrix r = (ri,j )1≤i≤m,1≤j≤n with nonnegative integer entries we denote
by xr an element of Cq [�u∗] defined by

xr = x
r1,1
1,1 x

r1,2
1,2 · · · xr1,n

1,n · · · xrm,1
m,1 · · · xrm,n

m,n (4.44)

and by Er an element of Uq(�u) defined by

Er = E
r1,1
n+1,1E

r1,2
n+1,2 · · ·Er1,n

n+1,n · · · Erm,1
n+m,1 · · ·Erm,n

n+m,n.

Since the C-algebra Cq [�u∗] has a basis {xr ; r ∈ Mm,n(N0)} we can find a family of iso-
morphisms ϕq : C[�u∗] → Cq [�u∗] of vector spaces such that ϕq → id for q → 1. Let us
define ϕq : C[�u∗] → Cq [�u∗] by

ϕq(xr) = xr (4.45)

for all r ∈ Mm,n(N0). Furthermore, we denote by 1i,j ∈ Mm,n(N0) the (m × n)-matrix
having 1 at the intersection of the i-th row and j -th column and 0 elsewhere. Then the
corresponding Uq(l)-module structure on C[�u∗] is given through the homomorphism

ρq : Uq(l) → A
q
�u∗ (4.46)

of associative C-algebras, where A
q
�u∗ is the quantum Weyl algebra of the vector space �u∗,

defined by

ρq(a) = ϕ−1
q ◦ τq(a) ◦ ϕq (4.47)

for all a ∈ Uq(l).
Let γi,j be the C-algebra automorphism of C[�u∗] given by γi,j : xk,� �→ qδikδj�xk,� and

∂i,j the corresponding twisted derivation of C[�u∗] relative to γi,j for 1 ≤ i ≤ m and
1 ≤ j ≤ n.

Theorem 4.1 We have

ρq(ei) = −
m∑

k=1

m∏

t=k

γt,iγ
−1
t,i+1xk,i+1∂k,i , ρq(fi) = −

m∑

k=1

xk,i∂k,i+1

k∏

t=1

γ −1
t,i γt,i+1,

ρq(ki) =
m∏

t=1

γ −1
t,i γt,i+1

(4.48)

for i = 1, 2, . . . , n − 1,

ρq(kn) =
n∏

t=1

γ −1
1,t

m∏

s=1

γ −1
s,n (4.49)

and

ρq(en+i ) =
n∑

k=1

xi,k∂i+1,k

n∏

t=k+1

γi,t γ
−1
i+1,t , ρq(fn+i ) =

n∑

k=1

k−1∏

t=1

γ −1
i,t γi+1,t xi+1,k∂i,k,

ρq(kn+i ) =
n∏

t=1

γi,t γ
−1
i+1,t

(4.50)

for i = 1, 2, . . . , m − 1.
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Proof The proof is a straightforward computation. Using (4.26) and (4.20) we have

τq(ei)(x
r ) = −q−1 ∑m

k=1
∑rk,i

j=1 q
∑m

t=k(rt,i−rt,i+1)−j x
r1,1
1,1 · · · xj−1

k,i xk,i+1x
rk,i−j

k,i · · · xrm,n
m,n

= −q−1 ∑m
k=1

∑rk,i

j=1 q
∑m

t=k(rt,i−rt,i+1)+rk,i−2j x
r1,1
1,1 · · · xrk,i−1

k,i x
rk,i+1+1
k,i+1 · · · xrm,n

m,n

= − ∑m
k=1 q

∑m
t=k(rt,i−rt,i+1)−2[rk,i]q x

r1,1
1,1 · · · xrk,i−1

k,i x
rk,i+1+1
k,i+1 · · · xrm,n

m,n ,

τq(fi)(x
r ) = −q

∑m
k=1

∑rk,i+1
j=1 q

∑k
t=1(rt,i+1−rt,i )−j x

r1,1
1,1 · · · xrk,i+1−j

k,i+1 xk,ix
j−1
k,i+1 · · · xrm,n

m,n

= −q
∑m

k=1
∑rk,i+1

j=1 q
∑k

t=1(rt,i+1−rt,i )+rk,i+1−2j x
r1,1
1,1 · · · xrk,i+1

k,i x
rk,i+1−1
k,i+1 · · · xrm,n

m,n

= − ∑m
k=1 q

∑k
t=1(rt,i+1−rt,i )[rk,i+1]q x

r1,1
1,1 · · · xrk,i+1

k,i x
rk,i+1−1
k,i+1 · · · xrm,n

m,n

and

τq(ki)(x
r ) = q

∑m
t=1(rt,i+1−rt,i )xr

for all r ∈ Mm,n(N0) and i = 1, 2, . . . , n − 1, which gives us (4.48). Analogously, from
(4.28) and (4.22) we obtain

τq(en+i )(x
r ) =

n∑

k=1

ri+1,k∑

j=1

q− ∑n
t=k+1 ri+1,k−j+1 x

r1,1
1,1 · · · xri+1,k−j

i+1,k xi,kx
j−1
i+1,k · · · xrm,n

m,n

=
n∑

k=1

ri+1,k∑

j=1

q
∑n

t=k+1(ri,k−ri+1,k)+ri+1,k−2j+1 x
r1,1
1,1 · · · xri,k+1

i,k · · · xri+1,k−1
i+1,k · · · xrm,n

m,n

=
n∑

k=1

q
∑n

t=k+1(ri,k−ri+1,k)[ri+1,k]q x
r1,1
1,1 · · · xri,k+1

i,k · · · xri+1,k−1
i+1,k · · · xrm,n

m,n ,

τq(fn+i )(x
r ) =

n∑

k=1

ri,k∑

j=1

q− ∑k−1
t=1 ri,t−j+1 x

r1,1
1,1 · · · xj−1

i,k xi+1,kx
ri,k−j

i,k · · · xrm,n
m,n

=
n∑

k=1

ri,k∑

j=1

q
∑k−1

t=1 (ri+1,t−ri,t )+ri,k−2j+1 x
r1,1
1,1 · · · xri,k−1

i,k · · · xri+1,k+1
i+1,k · · · xrm,n

m,n

=
n∑

k=1

q
∑k−1

t=1 (ri+1,t−ri,t )[ri,k]q x
r1,1
1,1 · · · xri,k−1

i,k · · · xri+1,k+1
i+1,k · · · xrm,n

m,n

and

τq(kn+i )(x
r ) = q

∑n
t=1(ri,t−ri+1,t )xr

for all r ∈ Mm,n(N0) and i = 1, 2, . . . , m − 1, which implies (4.50). Finally, using (4.27)
and (4.21) we get

τq(kn)(x
r ) = q− ∑n

t=1 r1,t−∑m
s=1 rs,nxr

for all r ∈ Mm,n(N0), which finishes the proof.

Lemma 4.3 We have

ρq(Ej,i) = −
∑

1≤k1≤···≤ks≤m

(q−1 − q)τ(k1,...,ks )−1xk1,iθk1,...,ks ∂ks ,j

s∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

(4.51)
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for 1 ≤ i < j ≤ n, where s = j − i, τ(k1, . . . , ks) is the number of distinct integers in the
s-tuple (k1, k2, . . . , ks),

θk1,...,ks = βk1βk2 · · · βks−1 (4.52)

with βkt = ∂kt ,i+t xkt+1,i+t if kt �= kt+1 and βkt = γ −1
kt ,i+t if kt = kt+1.

Proof We prove the statement by induction on j − i. The case j − i = 1 follows from
Theorem 4.1. Further, for s = j − i > 1 we have ρq(Ej,i) = ρq(Ej,j−1)ρq(Ej−1,i ) −
q−1ρq(Ej−1,i )ρq(Ej,j−1). By induction assumption we have

ρq(Ej,j−1) = −
m∑

k=1

xk,j−1∂k,j

k∏

t=1

γt,j γ
−1
t,j−1

and

ρq(Ej−1,i ) = −
∑

1≤k1≤···≤ks−1≤m

(q−1−q)τ
′−1xk1,iθk1,...,ks−1∂ks−1,j−1

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1,

where τ ′ = τ(k1, . . . , ks−1) for greater clarity, which gives us

ρq(Ej,i) =
m∑

k=1

∑

1≤k1≤···≤ks−1≤m

(q−1 − q)τ(k1,...,ks−1)−1ρq(Ej,i)k,k1,...,ks−1 ,

where ρq(Ej,i)k,k1,...,ks−1 denotes the expression

xk,j−1∂k,j

k∏

t=1

γt,j γ
−1
t,j−1xk1,iθk1,...,ks−1∂ks−1,j−1

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

−q−1xk1,iθk1,...,ks−1∂ks−1,j−1

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1xk,j−1∂k,j

k∏

t=1

γt,j γ
−1
t,j−1

for 1 ≤ k1 ≤ · · · ≤ ks−1 ≤ m and k = 1, 2, . . . , m.
If k < ks−1, we have ρq(Ej,i)k,k1,...,ks−1 = 0. For k = ks−1 we may write

ρq(Ej,i )k,k1,...,ks−1 = qxk1,i θk1,...,ks−1xks−1,j−1∂ks−1,j−1∂ks−1,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

ks−1∏

t=1

γt,j γ
−1
t,j−1

−xk1,i θk1,...,ks−1∂ks−1,j−1xks−1,j−1∂ks−1,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

ks−1∏

t=1

γt,j γ
−1
t,j−1

= −xk1,i θk1,...,ks−1γ
−1
ks−1,j−1∂ks−1,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

ks−1∏

t=1

γt,j γ
−1
t,j−1

= −xk1,i θk1,...,ks−1,ks−1∂ks−1,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

ks−1∏

t=1

γt,j γ
−1
t,j−1,



V. Futorny et al.

where the second equality follows from ∂i,j xi,j − qxi,j ∂i,j = γ −1
i,j . Finally, if k > ks−1, we

obtain

ρq(Ej,i )k,k1,...,ks−1 =qxk1,i θk1,...,ks−1∂ks−1,j−1xk,j−1∂k,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

k∏

t=1

γt,j γ
−1
t,j−1

−q−1xk1,iθk1,...,ks−1∂ks−1,j−1xk,j−1∂k,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

k∏

t=1

γt,j γ
−1
t,j−1

= (q−q−1)xk1,i θk1,...,ks−1∂ks−1,j−1xk,j−1∂k,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

k∏

t=1

γt,j γ
−1
t,j−1

= (q − q−1)xk1,i θk1,...,ks−1,k∂k,j

s−1∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1

k∏

t=1

γt,j γ
−1
t,j−1.

Therefore, we have

ρq(Ej,i) =
m∑

k=ks−1

∑

1≤k1≤···≤ks−1≤m

(q−1 − q)τ(k1,...,ks−1)−1ρq(Ej,i)k,k1,...,ks−1

= −
∑

1≤k1≤···≤ks≤m

(q−1 − q)τ(k1,...,ks )−1xk1,iθk1,...,ks ∂ks ,j

s∏

a=1

ka∏

t=1

γt,i+aγ
−1
t,i+a−1,

which gives the required statement.

Now, let (σq, V ) be a Uq(p)-module. Then we can identify Uq(�u) ⊗CV with Cq [�u∗] ⊗C

V and obtain a Uq(g)-module structure on Cq [�u∗] ⊗CV . Further, using the isomorphism
ϕq : C[�u∗] → Cq [�u∗] of vector spaces, we can transfer the Uq(g)-module structure even on
C[�u∗] ⊗CV .

The main result of the present article is an explicit realization of the induced Uq(g)-
module structure on C[�u∗] ⊗C V using quantum differential operators through the
homomorphism

πq,V : Uq(g) → A
q
�u∗ ⊗C End V (4.53)

of C-algebras defined by

((ψq ◦ ϕq) ⊗ idV )(πq,V (a)(xr ⊗ v)) = a(Er ⊗ v) (4.54)

for all r ∈ Mm,n(N0) and v ∈ V . This is the content of the following theorem. Let us recall
that C[�u∗] has a canonical structure of an A

q
�u∗ -module.

Since the C-algebra isomorphism ψq : Cq [�u∗] → Uq(�u) is a homomorphism of Uq(l)-
modules by construction of Cq [�u∗] and the vector space isomorphism ϕq : C[�u∗] → Cq [�u∗]
is a homomorphism of Uq(l)-modules by definition of the Uq(l)-module structure on C[�u∗],
the identification of Uq(�u)⊗CV with Cq [�u∗]⊗CV is also an isomorphism of Uq(l)-modules
and we obtain

πq,V (a) =
∑

ρq(a(1)) ⊗ σq(a(2)), (4.55)

where
�(a) =

∑
a(1) ⊗ a(2), (4.56)

for all a ∈ Uq(l). If V is the trivial Uq(p)-module, then we have πq,V (a) = ρq(a) for all
a ∈ Uq(l). In that case, we shall denote πq,V by ρq .
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Theorem 4.2 Let (σq, V ) be a Uq(p)-module. Then the induced Uq(sln+m(C))-module
structure on C[�u∗] ⊗CV is defined through the homomorphism

πq,V : Uq(sln+m(C)) → A
q
�u∗ ⊗C EndV (4.57)

of C-algebras by

πq,V (fi) = ρq(fi) ⊗ idV + ρq(ki) ⊗ σq(fi),

πq,V (ei) = ρq(ei) ⊗ σq(k−1
i ) + 1 ⊗ σq(ei),

πq,V (ki) = ρq(ki) ⊗ σq(ki)

(4.58)

for i = 1, 2, . . . , n − 1,

πq,V (fn+i ) = ρq(fn+i ) ⊗ idV + ρq(k−1
n+i ) ⊗ σq(fn+i ),

πq,V (en+i ) = ρq(en+i ) ⊗ σq(kn+i ) + 1 ⊗ σq(en+i ),

πq,V (kn+i ) = ρq(kn+i ) ⊗ σq(kn+i )

(4.59)

for i = 1, 2, . . . , m − 1, and

πq,V (fn) = x1,n

n−1∏

t=1

γ1,t ⊗ idV ,

πq,V (en) =
n−1∑

k=1

πq,V (En,kkn)

( k∏

t=1

γ1,t ∂1,k ⊗ idV

)
−

m∑

k=2

m∏

t=k

γt,n∂k,n ⊗ σq(k−1
n En+k,n+1)

−
m∑

k=1

k−1∏

t=1

γt,n

m∏

t=k+1

γ −1
t,n xk,n∂k,n∂1,n ⊗ σq(kn) + 1 ⊗ σq(en)

+
m∏

t=1

γt,n∂1,n ⊗ σq(kn) − σq(k−1
n )

q − q−1

πq,V (kn) = ρq(kn) ⊗ σq(kn),

(4.60)

where

πq,V (En,k) = ρq(En,k) ⊗ idV + ρq(Kk,n) ⊗ σq(En,k)

+(q − q−1)
∑

k<�<n

ρq(E�,kK�,n) ⊗ σq(En,�)

for k = 1, 2, . . . , n − 1.

Proof From the previous considerations we know that the action of the Levi quantum
subgroup Uq(l) on C[�u∗] ⊗CV is given through the homomorphism

πq,V : Uq(l) → A
q
�u∗ ⊗ End V

of C-algebras by the formula

πq,V (a) =
∑

ρq(a(1)) ⊗ σq(a(2)),

where �(a) = ∑
a(1) ⊗ a(2), for all a ∈ Uq(l). Hence, by using Theorem 4.1 we get the

corresponding expressions for all generators of Uq(g) except en and fn.
By Lemma 4.1 we have

En+1,nE
r = q

∑n−1
t=1 r1,t Er+11,n ,
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which together with (4.54) gives us

πq,V (En+1,n)(x
r ⊗ v) = q

∑n−1
t=1 r1,t xr+11,n ⊗ v =

(
x1,n

n−1∏

t=1

γ1,t ⊗ idV

)
(xr ⊗ v)

for all r ∈ Mm,n(N0) and v ∈ V . Further, using Lemma 4.1 we may write

[En,n+1, E
r1,1
n+1,1 · · ·Erm,n

n+m,n] = E
r1,1
n+1,1 · · · [En,n+1, E

r1,n

n+1,n] · · · Erm,n

n+m,n

+
n−1∑

k=1

E
r1,1
n+1,1 · · · [En,n+1, E

r1,k

n+1,k] · · · Erm,n

n+m,n

+
m∑

k=2

E
r1,1
n+1,1 · · · [En,n+1, E

rk,n

n+k,n] · · · Erm,n

n+m,n

= [r1,n]qEr−11,n
q− ∑m

t=1rt,n+1Kn,n+1 − q
∑m

t=1rt,n−1K−1
n,n+1

q − q−1

+
n−1∑

k=1

[r1,k]qq− ∑n
t=k+1r1,t−∑m

t=1rt,nEn,kE
r−11,kKn,n+1

−
m∑

k=2

q−2[rk,n]qq
∑m

t=krt,nEr−1k,nEn+k,n+1K
−1
n,n+1,

which together with (4.54) implies

πq,V (En,n+1)(x
r ⊗ v) = xr ⊗ σq(En,n+1)v

+[r1,n]qxr−11,n ⊗ q−∑m
t=1rt,n+1 σq(Kn,n+1) − q

∑m
t=1rt,n−1 σq(K−1

n,n+1)

q − q−1
v

+
n−1∑

k=1

[r1,k]qq−∑n
t=k+1r1,t−∑m

t=1rt,n πq,V (En,k)(x
r−11,k ⊗ σq(Kn,n+1)v)

−
m∑

k=2

q−2[rk,n]qq
∑m

t=krt,nxr−1k,n ⊗ σq(En+k,n+1K
−1
n,n+1)v

for all r ∈ Mm,n(N0) and v ∈ V . Furthermore, using

q− ∑m
t=1rt,n+1Kn,n+1 − q

∑m
t=1rt,n−1K−1

n,n+1

q − q−1
= q

∑m
t=1rt,n−1

Kn,n+1 − K−1
n,n+1

q − q−1

−q
∑m

t=1rt,n−1 − q− ∑m
t=1rt,n+1

q − q−1
Kn,n+1,
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we get

πq,V (En,n+1)(x
r ⊗ v) = xr ⊗ σq(En,n+1)v +

m∏

t=1

γt,n∂1,nx
r ⊗ σq(Kn,n+1) − σq(K−1

n,n+1)

q − q−1
v

−
∏m

t=1 γt,n − ∏m
t=1 γ −1

t,n

q − q−1
∂1,nx

r ⊗ σq(Kn,n+1)v

+
n−1∑

k=1

πq,V (En,k)

(
ρq(Kn,n+1)

k∏

t=1

γ1,t ∂1,kx
r ⊗ σq(Kn,n+1)v

)

−
m∑

k=2

m∏

t=k

γt,n∂k,nx
r ⊗ σq(K−1

n,n+1En+k,n+1)v

for all r ∈ Mm,n(N0) and v ∈ V . Finally, using the formula
∏m

t=1 γt,n − ∏m
t=1 γ −1

t,n

q − q−1
=

m∑

k=1

k−1∏

t=1

γt,n

m∏

t=k+1

γ −1
t,n xk,n∂k,n,

we obtain the required statement. Moreover, from Lemma 4.2 we have

πq,V (En,k) = ρq(En,k)⊗idV +ρq(Kk,n)⊗σq(En,k)+(q−q−1)
∑

k<�<n

ρq(E�,kK�,n)⊗σq(En,�)

for k = 1, 2, . . . , n − 1. This finishes the proof.

Theorem 4.2 together with Theorem 4.1 and Lemma 4.3 give us an explicit realiza-
tion of induced modules M

g
q,p(V ) � C[�u∗]⊗V̧ by quantum differential operators for any

Uq(p)-module V . In fact, we have a stronger result. As πq,V : Uq(g) → A
q
�u∗ ⊗C End V is a

homomorphism of associative C-algebras, we may take another Aq
�u∗ -module M instead of

C[�u∗] and we obtain a Uq(g)-module structure on M⊗CV through the homomorphism πq,V .
Moreover, since the classical limit of Aq

�u∗ via the specialization q → 1 is the Weyl algebra
A�u∗ , it would be interesting to consider such A

q
�u∗ -modules for M that the corresponding

Uq(g)-module M ⊗CV is a flat deformation of a twisted induced module.
A finite-dimensional module V over Uq(l) has the classical limit Ṽ over l. As it was

mentioned at the end of the previous section, extending properly V to a module over Uq(p)

we can guarantee that it still admits the classical limit and that Cq [�u∗] ⊗CV is a flat defor-
mation of a generalized Verma module for g. Moreover, from Theorem 4.2 we easily get the
classical limit by the specialization q → 1.
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