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1. Introduction

One of the fundamental symmetries of relativity is Lorentz Invariance (LI). In the last decades
there has been progress in testing deviations from LI. A unified theory of Quantum Mechanics,
that describes the universe at small scales, and General Relativity, that describes it at large scales,
is still unknown. Lorentz Invariance Violations (LIV) are expected to be observable, if any, at en-
ergies near the Planck scale (MPl ∼ 1.2× 1028 eV). If compared with the current maximal energy
attainable in accelerators, the observation of such phenomena requires particles to have 15 orders
of magnitude larger than the LHC center-of-mass energy.
High energy astrophysics provides opportunities to probe energies much larger than the accelera-
tor ones. In particular, in this work we study the interactions of Ultra-High-Energy Cosmic Rays
(UHECRs), meaning with that particles that hit the Earth’s atmosphere with energies above 1018

eV. Such particles are mainly expected to have extragalactic origin, since they arrive nearly isotrop-
ically to the Earth and the Galactic magnetic field would not be able to confine them. Moreover,
extragalactic sources as Active Galactic Nuclei or Gamma-Ray Bursts are considered as good can-
didates to accelerate particles to such extreme energies. UHECRs are expected to travel from their
sources through the extragalactic space and to interact with photon fields that fill it (Cosmic Mi-
crowave Background, CMB, and Extragalactic Background Light, EBL). These interactions, such
as the photo-pion production and the photo-disintegration in the case of UHECR nuclei, would
appear as low energy processes in the center of momentum. In contrast, in the laboratory frame
very large Lorentz factors can be reached and the Special Relativity can be tested. The possibility
of putting limits on LIV parameters with processes involving UHECRs was first discussed in [1].
Later on, the suppression of the flux at the highest energies was established and limits on LIV pa-
rameters were derived. As an example, parameter space studies were performed using the UHECR
spectrum and a pure proton composition [2, 3]. Motivated by experimental indications of chemical
composition of UHECRs heavier than protons, the modifications of LI in the propagation of nuclei
were studied for example in [4]. A detailed summary can be found in [5].
In this work LIVs are taken into account during the extragalactic propagation of UHECRs. A fit
of the UHECR spectrum [6] and composition data [7] is performed as done in [8] and the results
including the propagation in presence of LIV are discussed.

2. LIV and UHECR propagation

LI modifications can be implemented in many ways, with different consequences on physical
observables. A simple approach consists in proposing a modified dispersion relation for parti-
cles and keeping the usual conservation of energy and momentum. LIV will affect the dispersion
relation as

E2
i − p2

i = m2
i ⇒ µ

2
i (E, p,MPl)≈ m2

i +
N

∑
n=0

η
(n)
i

E2+n
i

Mn
Pl

(2.1)

where p = |−→p |, µ is a function of momenta and energy, and ηi, which can be either positive or
negative, parametrizes the strength of LIV for particle i. In the limit η

(n)
i = 0 the Lorentz invariant

dispersion relation is recovered. From Eq. 2.1 one can see that the LI correction becomes larger
than the mass of the particles if p≥ (m2

i Mn
Pl/|η

(n)
i |)1/(2+n).
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Figure 1: Attenuation length of protons interacting in the CMB at z = 0 as a function of the proton energy in
the laboratory frame, for the LI case (black line) and for different choices of the LIV coefficient δ for n = 0
[9].

The LIV parameter can be defined as

δ
(n)
i =

η
(n)
i

Mn
Pl

(2.2)

Here we adopt the LIV framework of [10], where a first order perturbation is considered. Since
we consider n = 0, the LIV parameter δi is dimensionless. It is interesting to notice that the LI
violating term can be translated in a shift of the mass of the particle and a shift of the velocity
from c = 1. Since different particles can have different maximum attainable velocities, these can
be different from c as well as different from each other. The LIV parameter can be directly related
to this difference [3].
We discuss first the photo-pion process. Soon after the discovery of the CMB it was realized that
interactions of protons with CMB photons would deplete the CR flux at the highest energies (“GZK
effect”) [11, 12]. A suppression of the flux at the highest energies was actually measured [13, 14].
However, its origin is still unknown, since this feature is sensitive to local deficit of sources and can
also be mimicked by acceleration cutoffs at the source. The inelasticity of the process, meaning how
much of the energy of the initial proton is carried away by the final pion, is modified introducing
LIV. The LIV affecting the photo-pion production gives the most important contribution to the
modification of the UHECR spectrum above the GZK energy. By considering modifications to the
maximum attainable velocity of the pion, the phase space allowed for the interaction is reduced
with respect to the LI case. This is due to the limits on the allowed range of the interaction angles
coming out from kinematics study [10]. The effect of different δ parameters on the attenuation
length of the protons in the CMB is shown in Fig. 1, where it is clear that changing the value of
δ , the energy at which the LIV becomes significant is lower [9]. As a consequence, the UHECR
spectrum is expected to exhibit a suppression near the GZK and to recover at higher energies.
Concerning the propagation of nuclei in the Universe, the energy losses for photo-pion production

are shifted at energies ∼ A times higher than the threshold for protons. However, the excitation
of the giant dipole resonance (GDR) by photons of energy tens of MeV in the nucleus rest frame
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Figure 2: Left: Threshold energy in the nucleus rest frame for the photo-disintegration of nuclei as a
function of the initial nucleus energy in the laboratory frame, for δ = 10−22 [9]. Right: Mean free path for
the photo-disintegration of an silicon nucleus as a function of the energy in the laboratory frame, at z = 0.
The LI scenario (black line) is compared to the LIV scenarios with δ = 10−22 and δ = 10−23 for n = 0 [9].

causes the disintegration of the nucleus ejecting one or more nucleons and is responsible for the
steepening of the flux at the highest energies. The dispersion relation for nuclei can be written
assuming a superposition model for nuclei, i.e. considering them as the combination of A nucleons
of energy E/A. In this way, since we are dealing with the linear modifications n = 0, the LIV
parameter can be assumed as equal to the one for protons. The threshold energy of the photon in
the nucleus rest frame does not depend on the energy of the nucleus but only on its nuclear mass;
including LIV effects makes the dependence on the energy of the nucleus appear, as shown in Fig. 2
(right panel). The effect in the spectrum is expected to be similar to what happens to the proton
case in presence of LIV, since also in this case the mean free path departs from the LI case and
increases with energy, as shown in the right panel of Fig. 2 for silicon nuclei.
The discussed modifications to LI were included [9] in SimProp [15], a simulation code for the
propagation of UHECRs in the extragalactic space. The physical quantities used in the code to
take into account the EBL model and the photo-disintegration cross sections for this study are the
Gilmore EBL model [16] and the Puget-Stecker-Bredekamp (PSB) model [17, 18] respectively.

3. Fit results

A fit of the cosmic ray spectrum [6] and composition data [7] as measured by the Pierre
Auger Observatory is performed following the method described in [8]. The UHECR sources are
assumed to be identical and homogeneously distributed in a co-moving volume. The mass species
at the injection are: 1H, 4He, 14N and 28Si, being the inclusion of heavier masses not relevant for
improving the goodnees of fit, as found in [8]. The injection spectrum is taken as:

dNA

dE
= JA(E) = fAJ0

(
E

1018 eV

)−γ

× fcut(E,ZARcut), (3.1)
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γ log10(Rcut/V) H(%) He(%) N(%) Si(%) D(J) D(Xmax) D

LI, δ = 0 0.96 18.68 0. 67.3 28.1 4.6 13.3 161.1 174.4

LIV, δ = 5 ·10−24 0.91 18.65 0. 71.8 23.9 4.3 15.1 163.5 178.5

LIV δ = 1 ·10−23 0.91 18.65 0. 71.4 24.3 4.3 14.9 163.6 178.5

LIV δ = 1 ·10−22 0.94 18.65 0. 72.8 22.7 4.6 18.2 163.6 181.8

max LIV 0.95 18.40 62.3 32.2 5.4 0.08 27.3 162.0 189.3

Table 1: Best-fit parameters for the LI reference model in [8] and for the LIV cases with different δ values.
The maximal-LIV case is also reported. The fractions are defined at fixed energy (E = 1018 eV).

where fA is the fraction of the injected isotope over the total and is defined at fixed energy (E = 1018

eV). The cutoff function is:

fcut(E,ZARcut) =

1 (E < ZARcut)

exp
(

1− E
ZARcut

)
(E > ZARcut)

(3.2)

The parameters of the fit are the spectral index γ , the cutoff rigidity Rcut, the normalization of
the spectrum J0 and three of the fractions fA, the fourth being fixed by ∑A fA = 1.
For the spectrum we fit the surface detector (SD) event distribution using a forward-folding pro-
cedure. For the composition we fit the Xmax distribution adopting a Gumbel parametrization [19].
Both the spectrum and composition are fitted at energies log10(E/eV)> 18.7, i.e. above the ankle.
In the Auger data the energy spectrum and the Xmax distributions are independent measurements
and the model likelihood is therefore given by L = LJ ·LXmax . The goodness-of-fit is assessed with
a generalized χ2, (the deviance, D), defined as the negative log-likelihood ratio of a given model
and the saturated model that perfectly describes the data:

D = D(J)+D(Xmax) =−2ln L
Lsat =−2ln LJ

Lsat
J
−2ln LXmax

Lsat
Xmax

(3.3)

To account for the LIV effects in the propagation of protons and nuclei we use the modified version
[9] of SimProp, as earlier anticipated. The LIV parameter δ is considered to be the same in the
photo-pion and photo-disintegration process. The simulations are performed for different δ values
and the corresponding best-fit parameters are reported in Table 1, where the corresponding LI case
and the maximal-LIV cases are compared. The best-fit parameters are found to be very similar to
the LI case: the spectral index is hard and the rigidity cutoff is low, in order to reproduce the low
level of mixture of masses at each energy.
Since the effect of enhancing the LIV parameter is to increase the interaction length of the particles,
a way to investigate an extreme case is to switch off all the interactions with background photons
[20]. The maximal-LIV case is simulated with a simplified version of the propagation code, where
only the adiabatical energy losses due to the expansion of the Universe are taken into account. The
corresponding observables are shown in Fig. 3. The spectral index at the best fit is similar to the LI
and partial LIV cases. A remarkable difference is visible in the rigidity at the best fit: in this case
the rigidity has to be lower at the source with respect to the other case in order to compensate for
the absence of interactions that would lower it during propagation. Another substantial difference
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Figure 3: Top: simulated energy spectrum of UHECRs (multiplied by E3) at the top of the Earth’s atmo-
sphere, obtained with the best-fit parameters for the case with maximal-LIV. Spectra at Earth are grouped
according to the mass number as follows: A = 1 (red), 2 ≤ A ≤ 4 (grey), 5 ≤ A ≤ 22 (green), 23 ≤ A ≤ 28
(cyan), total (brown), compared to data from [6]. Bottom: average and standard deviation of the Xmax distri-
bution as predicted (assuming EPOS-LHC [21] for UHECR-air interactions) for the model versus pure (1H
(red), 4He (grey), 14N (green) and 56Fe (blue)) compositions, compared to data from [22]. Only the energy
range where the brown lines are solid is included in the fit.

is that in the LI or partial LIV cases the proton fraction at the source is almost negligible, while in
the maximal-LIV case protons must be present already at the source in order to compensate for the
absence of interactions.

4. Discussion and conclusions

In this work we use the interactions of UHECRs during their propagation from the sources
to the Earth in order to investigate the possible violations of LI. A combined fit of the spectrum
and composition data is used here for the first time for this purpose. In the LI case, it is shown
that a scenario including a hard spectral index and a low rigidity cutoff can describe the data [8].
As a consequence, at the energies corresponding to the rigidity cutoff found from the fit, the LI
corrections are not larger than the mass of the considered nuclei and the partial LIV cases are not
distinguishable from the LI case. This can be also shown in Fig. 4, where the positions of the
best-fit cases are found at very similar values (around γ ∼ 1).
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Figure 4: Position of the best-fit values as a function of the spectral index and rigidity cutoff, for the LI case
and some of the LIV cases, are reported in the lower-left part of the figure. The error bars are computed from
the interval D≤ Dmin +1. The local minima are reported in the upper-right part of the plot: in this case the
error bars are computed from the interval D≤ Dlocal

min +1.

Figure 5: Deviance D versus γ (left) and Rcut (right) for the LI and LIV cases.

We also find a local minimum region around γ ∼ 2 and log10(Rcut/V)∼ 20, as it is shown in Fig. 4.
At the energies corresponding to these values of the rigidity, we start to be sensitive to the modi-
fications to LI, mainly due to the survival of the light mass component up to the highest energies.
A trend towards higher rigidities and softer spectral indices is visible while increasing the value of
the LIV parameter. This is motivated by the fact that a larger δ implies that the interaction length
starts to increase at lower energies (see Fig. 2, right panel). As a result, the allowed rigidity cutoff
at the source is larger. However, by looking at Fig. 5, where the deviance versus the spectral index
and the rigidity cutoff is reported, it is clear that the significance of the local minimum is much
smaller with respect to the main one, making this trend not useful for drawing a conclusion about
the possibility of disfavoring a LIV parameter with the current measurements, which prefer a low-

7
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rigidity scenario.
We have also investigated an extreme case in which the interactions are switched off: this case
can be reported to modifications of LI having η < −2.5× 10−14 for n = 1 or η < −4× 10−7 for
n = 2, as studied in [20]. By comparing the values of the deviance at the minimum (see Table
1), the maximal-LIV case can be disfavored at more than the 3σ level. However, the absence of
the interactions makes the maximal-LIV case more sensitive to the initial conditions, namely the
number of injected species at the source and/or the choice for the functional shape of the cutoff at
the sources.
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