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Resumo

Neste trabalho estudamos a existéncia e unicidade de solugdes quase automorfas
para o problema de Cauchy abstrato

d
S+ fGu) = Au)+g(tw),  telnotal,
U, = ¢ €EB.
No sistema anterior, A é gerador infinitesimal de um semigrupo uniformemente

estével de operadores lineares limitados definido sobre um espago de Banach X; B
é um espaco de fase definido de maneira axiomética e f, g sdo fungées continuas.
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Abstract

This paper is concerned with the existence and uniqueness of almost automorphic
mild solutions to some classes of first-order partial neutral functional-differential
equations. Sufficient conditions for the existence and uniqueness of almost au-
tomorphic mild solutions to the above-mentioned equations are obtained. As an
application, a first-order boundary value problem arising in control of systems is
considered.

1 Introduction

Let (X, ]| - ||) be a Banach space. This paper deals with the existence and uniqueness of
almost automorphic mild solutions to the first-order abstract partial neutral functional-
differential equations of the form

L () + ftu)) = Au(t) +gltw), L€ [5,0+a) (1)

dt
u, = ¢E€DB, (2)

where A : D(A) € X — X is the infinitesimal generator of an uniformly exponentially
stable semigroup of linear operators on X, the history u, defined by u;(0) := u(t + ) for
each 6 € (—oo, 0], belongs to an abstract phase space B that is defined axiomatically, and
f, g are some continuous functions.

The existence of almost automorphic, asymptotically almost automorphic, almost pe-
riodic, asymptotically almost periodic, and pseudo almost periodic solutions is among
the most attractive topics in the qualitative theory of differential equations due to their
significance and applications in physical sciences.

The concept of almost automorphy which is the central issue in this paper was first
initiated by Bochner in his landmark paper [2]. Since then the theory of almost au-
tomorphic functions has found several developments and applications in the theory of
abstract differential equations, partial differential equations, functional-differential equa-
tions, integro-differential equations, and others. For more on these and related issues,



see, e.g., [3], [17], [18], [24], [25], and [26] and the references therein. To deal with de-
lay and related issues, it is more convenient to consider the so-called compact almost
automorphy [3, 13] rather than the classical almost automorphy [17].

Existence results related to almost periodic and asymptotically almost periodic solu-
tions to ordinary neutral differential equations and abstract partial neutral differential
equations have recently been established in [16, 19], and [11], respectively. A few in-
vestigations on the existence of almost automorphic solutions to functional-differential
equations with delay exist in the literature, see for instance [13] for abstract partial dif-
ferential equations, and [4] for ordinary neutral differential equations. The existence
of this type of solutions for abstract partial differential equations remains an untreated
topic in the literature and this is the main motivation of this paper. Note that neutral
differential equations arise in many areas and sub-areas of applied mathematics. For
these reasons, they have largely been studied during the last few decades. The litera-
ture related to ordinary neutral differential equations is very extensive, thus, we refer
to [6] only, which contains a comprehensive description of such equations. Similarly, for
more on partial neutral functional differential equations and related issues we refer to
Hale [7], Wu [21, 22, 23], and Adimy[1] for finite delay equations, and Herndndez and
Henriquez [8, 9] and Hernéndez [10] for unbounded delays.

In what follows we recall some definitions and notations that we need in the sequel.
From now on, A : D(A) C X — X denotes the infinitesimal generator of an uniformly
asymptotically stable semigroup of linear operators (7°(t)):>o on X and M, w are positive
constants such that ||T(¢)|| < Me " for each ¢ > 0.

To deal with almost automorphic solutions we will need to introduce some classical
notions. Throughout the rest of the paper, (Z, ||-||z), (W, || ||w) stand for abstract Banach
spaces. In addition to that C(R,Z) and BC(R,Z) denote respectively the collection of
continuous functions and the collection of bounded continuous functions from R into Z
equipped with the sup norm defined by ||u|o := sup ||u(t)||z. Similar definitions apply

teR

for both C(R x Z,W) and BC(R x Z,W).

Definition 1 A (strongly) continuous function F' defined from R into X is said to be al-

most automorphic if for every sequence of real numbers (s;,)nen, there exists a subsequence

(Sn)nen Of (8% )nen such that G(t) := lim F(t + s,) is well defined for each ¢t € R, and
n—oo

F(t) = lim G(t — sp) for each t € R.

The range of an almost automorphic function is relatively compact on X, therefore it
is bounded. We denote the space of almost automorphic functions F' : R — X by AA(X).
It is well-known that (AA(X), || - ls) is & Banach space, see, e.g., [17].

Definition 2 A continuous function F : R X Z — W is said to be almost automorphic in
t € R for each z € Z if for every sequence of real numbers (o,)n there exists a subsequence
(sn)n of (on)n such that

G(t,z) := lim F(t+ s,,2) in W

n—0oo

is well defined for each t € R and each z € Z and

F(t,u) = lim G(t — sn,2) in W

n—oo



for each t € R and for every z € Z. The collection of such functions will be denoted by
AA(Z,W).

Using [17, Theorem 2.2.6, p. 22] one easily obtains the following.

Theorem 1 Let ' : R x Z — W be an almost automorphic function in t € R for
each z € 7Z and assume that F satisfies a Lipschitz condition in z uniformly in t € R.
Let ¢ : R — Z be almost automorphic. Then the function ® : R — W defined by
®(t) = F(t,¢(t)) is almost automorphic.

In addition to the above-mentioned notions, the present setting requires the introduc-
tion of the concept of compact almost automorphy, see, e.g., [13].

Definition 3 A continuous function F : R — Z is said to be compact almost automorphic
if for every sequence of real numbers (o,)nen there ezists a subsequence (sp)nen C (Tn)nen
such that G(t) := hm F(t+ sn), and F(t) = hm G(t — sn) uniformly on compact subsets

of R. The collectzon of those functions will be denoted by AA(Z).

Let AP(Z) denote the space of almost periodic functions f : R — Z. It is well-known
that AP(Z), AA.(Z), and AA(Z) are closed subsets of (BC(R,Z), || - ||e) With

AP(Z) Cc AA.(Z) C AA(Z) C BC(R,Z).
In view of the above, the proof of the next lemma is straightforward.
Lemma 1 The space AA(Z) endowed with the sup norm is a Banach space.

Definition 4 A continuous function F' : R x Z — W, (t,u) — F(t,u) is said to be
compact almost automorphic in t € R, if for every sequence of real numbers (on)nen there
ezists a subsequence (sp)n C (0n)n such that

G(t,2z) := lim F(t+ sp,2), and F(t,z) = lim G(t —s,,2) n W,

n—oo n—oo

where the limits are uniform on compact subset of R, for each z € Z. The space of such
functions will be denoted by AA(Z,W).

In this work we will define the phase space B axiomatically, using ideas and notations
developed in [15]. More precisely, B will denote the vector space of functions defined
from (—o0,0] into X endowed with a seminorm denoted || - ||5 and such that the following
axioms hold:

A. If z: (—o00,0 + b) — X with b > 0, is continuous on [0, 0 + b) and z, € B, then for
each t € [0,0 + b) the following conditions hold:

(i) = isin B,
(i) =@l < H || z |5,
(iii) [lzlls < K(t —o)sup{llz(s)]| : 0 < s <t} + M(t = o)||z,]|3,



where H > 0 is a constant, and K, M : [0,00) — [1,00) are functions such that
K(-) and M(-) are respectively continuous and locally bounded, and H, K, M are
independent of x(-).

A1. If z(-) is a function as in (A), then x; is a B-valued continuous function on [g, o +b).
B. The space B is complete.

C,. If (¢™)nen is a sequence of continuous functions with compact support defined from
(—00,0] into X, which converges to ¢ uniformly on compact subsets of (—oo,0],
then ¢ € B and ||¢" — ¢|lzg = 0 as n — oo.

Remark 1 Throughout the rest of the paper, £ > 0 denotes a constant such that ||¢||s <
£. sup ||(8)] for every ¢ € BC((—00,0];X), see [15, Proposition 7.1.1].
<0

Definition 5 Let S(t) : B — B be the Cy-semigroup defined by S(t)p(0) = (0) on [—t,0]
and S(t)p(0) = (t + 6) on (—oo,—t]. The phase space B is called a fading memory if
|S(t)ells — 0 as t — oo for each p € B with ¢(0) = 0.

Remark 2 In this work we assume the ezistence of K > 0 such that max{K(t), M(t)} <
K for each t > 0. Observe that this condition is verified, for example, if B is a fading
memory, see, e.g., [15, Proposition 7.1.5] for details.

This paper is organized as follows: In Section 2 we study the existence of almost
automorphic solutions to the neutral system (1), and Section 3 is devoted to applications.

2 Existence Results

In this section we establish the existence of almost automorphic solutions to the neutral
system (1). For that, we first prove some preliminary technical Lemmas, which are needed
for the proof of our main result. From now on, Y denotes an arbitrary Banach space
continuously embedded into X. In this event, £(Y,X) and £(Y) stand respectively for
the class of bounded linear operators which go from Y into X and the class of bounded
linear operators from Y into itself.

Our setting requires the following assumption:

H, The function s — T(s)y belongs to C([0,00),Y) for each y € Y. Moreover, the
function s — AT(s) defined from (0, 00) into L£(Y,X) is strongly measurable, and
there exist a non-decreasing function H : [0,00) — [0,00) and é > 0 such that
e~%H(s) € L*([0,00)) with [|AT(s)||ccyx) < e ** H(s) for each s > 0.

Lemma 2 Let F € AA(Z,W) and let uw € AA(Z). Assume that there ezists a bounded
function Lp : R — [0,00) such that

IF(t,2) - Ft,w)lw < Le®lle—yl,, VEER, Yo,y eZ. (3)

Then, the W-valued function G defined by G(t) := F(t,u(t)) is in AA(W).



Proof: Let (s))nen be a sequence of real numbers. Now, fix a subsequence (Sn)nen Of
(8. )nen, G € BC(R x Z; W) and v € BC(R,Z) so that the pair G, (sn)nen is associated
with F as in Definition 4 and the pair v, (s, )nen is associated with u as in Definition 3.
Let K C R be an arbitrary compact and let € > 0. Since R(v) = {v(t) : t € R} is
relatively compact, there exist points z; € Z,¢ = 1,...n, such that for each ¢ € R one can
find i(t) € {1,....n} with
u(t) — zillz < €.

Let N. be a natural number such that ||F(s + s,, ;) — G(s,2;)||lw < €,Vs € K and

for all 1 = 1,...n, whenever n > N.. In view of the above, for each s € K, and n > N,

IF(t+ sn, ult + sn)) — G(t,0(8)) |lw
< |F(t+ sn,u(t + 50)) = F(E+ 50, 0())llw + |1 F(E+ 50, 0(8)) = F( + 8n, Tige)) 1w
HIF(t+ sny 2igry) = Gt zi)lw + |G (¢ i) — G, 0(8)) |Iw
S Lp(t + Sn)llu(t + Sn) — ’U(t)“z + LF(t + Sn)HU(t) - xi(t)”Z
+e + Lr(t)l|lziy — v(t)lz
which proves that the convergence is uniform on K.
Arguing as previously it follows that G(t— sy, u(t—s,))—F(t,u(t)) converges uniformly
to 0 on compact sets of R. This completes the proof. m

Lemma 3 Let u € AA(Y). Under assumption Hy, if w is the function defined by
t
w(t) == / AT (t — s)u(s)ds, Vte€R,

then w € AA.(X).

Proof: For a given sequence (0n)nen of real numbers, fix a subsequence (sn)nen, and
a continuous functions v € BC(R;Y) such that u(t + s,) converges to v(t) in Y, and
v(t — s,) converges to u(t) in Y, uniformly on compact sets of R. From the Bochner’s
criterion related to integrable functions and the estimate

IAT(t = s)u(s) ey = AT (E = s)lleevamlluls)lly
< eIH (- 5)luls)lly (4)

it follows that the function s — AT(t — s)u(s) is integrable over (—oo,t) for each ¢ € R.
Furthermore, since

t
w(t+sp) = / AT (t — s)u(s + sp)ds, teR, neN,

using the estimate (4) and the Lebesgue Dominated Convergence Theorem, it follows that
t

w(t + s,) converges to z(t) = / AT (t — s)u(s)ds for each t € R.

—oo
The remaining task is to prove that the convergence is uniform on all compact sets in
R. Let X C R be an arbitrary compact and let € > 0. Fix L > 0 and N, € N such that

K C [3£, £] with

/ e ®H(s)ds < ¢,

L

2

lu(s + sn) —v(s)lly < &, n> N, s€[-L,L]

5



Using the notation ||u|lyc = sup ||u(s)|ly, for each ¢t € K, one has:
seR

[w(t +sa) = 2()| < /_ IAT (¢ = 8)llcevmllw(s + sn) — v(s) | vds

(e o]

=J;
< / e I H (t — 8)||u(s + sn) — v(s)||vds

o

t
+ [ eI = 5)uls + o) — (5 s

L

< 2||u||y,oo/ e“ssH(s)ds-Fe/ e % H(s)ds
t+L 0

< QHUHY"X’ﬁ e"ssH(s)ds+z-:/ e S H(s)ds
z 0

2

o <2nu||v,oo+ / e-L‘SH(s)ds),
0

which proves that the convergence is uniform on K, by the fact that the last estimate is
independent of ¢ € K. Proceeding as previously, one can similarly prove that z(¢t — s,)
converges to w uniformly on compact sets in R. This completes the proof. m

Using the similar steps as in the proof of Lemma 3, one obtains the following:

Lemma 4 Let u € AA.(X). Under assumption Hy, if w is the function defined by

w(t) == /_t T(t — s)u(s)ds, VteR,

0]

then w € AA.(X).
To study the system (1) we need the following result:
Lemma 5 Ifu € AA.(X), then the function s — u, belongs to AA:(B).

Proof: For a given sequence (s, )nen of real numbers, fix a subsequence (s, )nen 0f (8], )nen
and a function v € BC (R, X) such that u(s+s,) — v(s) uniformly on compact subsets of
R. Since B satisfies axiom C,, from [15, Proposition 7.1.1], we infer that us4s, — vs in B
for each s € R. Let K C R be an arbitrary compact and let L > 0 such that K C [-L, L].
For € > 0, fix N 1 € N such that

lu(s + sn) —v(s)|| < e, s€[-L, L]
<

||u-L+51L —V-L ”

whenever n > N, 1.
In view of the above, for t € K and n > N, we get

luees, = vells < ML+ E)[u-rton = v-rlls + K(L+1) sup [[u(6 + sn) = v(8)]]
€|~L;

< 2Ke,



where /C is the constant appearing in Remark 2.

In view of the above, u4s, converges to v; uniformly on K. Similarly, one can prove
that v;_s, converges to u; uniformly on K. Thus, the function s — u, belongs to AA.(B).
]

The rest of this section is devoted to the existence of almost automorphic solutions to
the neutral system (1). For that, we require the following assumption:

H, The functions f : Rx X — Y,g : R x X — X are continuous, and there are
continuous and bounded functions L¢, L, : R — (0, 00) such that

Ift,z) = fFE&Ylly < Let). |z —yll,
lg(t,z) —g(t, )l < Lg(t) . lz—yll,

forallt e R, z,y € X.

We adopt the notion of mild solutions for (1)-(2) from the one given in [8].

Definition 6 A continuous function u: [0,0 +a) — X, a > 0, is called a mild solution
for the neutral system (1)-(2) on [o,0 + a), if us € B for every s € R, the function
s — AT(t — s) f(s,us) is integrable on [0,t) for every o <t < o+ a, and

t

w(t) = T(t— o) (@(0) + F(o,9) = Flt,u) - / ATt~ 5) (s, us)ds

o

t
+/ T(t — s)g(s,us)ds, tE€ [o,0+a).

Remark 3 Let z € BC(R,X). Let us mention that the assumption on f is heavily linked
to the integrability of the function s — AT(t — s)f(s,xs). In general, except trivial cases,
the operator function t — AT(t) is not integrable over [0,a]. If L,K are the constants
appearing in Remarks 1, 2, and f satisfies assumption Ha, then from the Bochner’s
criterion for integrable functions and the estimate

| AT'(t — 5)f(s, ) |

Il

IAT(t = )l cevixy - £ (s, )l

e 2V H (¢ — 5)Ly(s) (M ()llwslls + K ()|l 0)
+e" I H(t — )| f(s, 0)|

e ?CIH(t — 5) [Ly(s)(L + 1)Kllzlloo + LF (s, 0)I],

IA

IA

it follows that s — AT(t — s)f(s,xs) is integrable over (—oo,t) for each t > 0. For
additional remarks related to this types of conditions in connection with partial neutral
differential equations, see, e.g., [1, 8, 9], in particular, [10].

Definition 7 A function u € AA.(X) is an almost automorphic mild solution to the
neutral system (1)-(2) provided that the function s — AT(t — s)f(s,us) is integrable on
(—o0,t) for each t € R and

i

u(t) = —f(t,w)— /_t AT(t — s)f(s,us)ds —+—/ T(t—s)g(s,us)ds, te€R.

—00



Theorem 2 Under assumptions Hy-Ha, there ezist a unique almost automorphic solu-
tion to (1)-(2) whenever

t ¢
8 = (Lf + sup/ e H(t — s)Ls(s)ds + Msup/ e‘“’(t‘s)Lg(s)ds> £<1,
teR J—co teR

where Ly = sup L¢(t) and L is the constant appearing in Remark 1.
teR

Proof: In AA.(X), define the operator I' : AA.(X) — C(R,X) by setting

t t
Tu(t) == = f(t,w) — / AT (t — 3)f(s,us)ds +/ T(t— s)g(s,us)ds, teR.
From previous assumptions one can easily see that I'u is well-defined and continuous.
Moreover, from Lemmas 2, 3, 4, and 5 we infer that I' maps AA.(X) into itself. Next, we
prove that T' is a strict contraction on AA.(X). Indeed, if £ is the constant appearing in
Remark 1, for u,v € AA.(X), we get

ITu(t) =Tv@®] < Lp(®)llue — vills + / Ly(s)e I H(t = s)llus — vs|lds

—00

t
M / UL (1)]|ug — vs| s

t
< (Lf + sup/ g o= s)Lf(s)ds> Lolu =)o

teR

t
+ <M sup/ e“”“‘”L_,,(s)ds) Lol = v

teR

0. |lv — v||co-

IN

The assertion is now a consequence of the classical Banach fixed-point principle.

3 Examples

In this section we provide with an example to illustrate our main result. For that, we first

introduce the related background.
Let X = (L2[0,7];|| - ||2). Define the linear operator A by:

D(A) ={ueX: v €X, u0)=u(r) =0}, and, Au:=u", Yu € D(A).

It is well known that A is the infinitesimal generator of an analytic semigroup (7'(t)):>0
on X. Furthermore, A has a discrete spectrum with eigenvalues of the form —n? n € N,
whose corresponding (normalized) eigenfunctions are given by: z,(£) := ﬂ sin(n). In
addition, the following properties hold:

(a) {zn:n € N} is an orthonormal basis for X;

[e9]
(b) Forue X, T(t Ze (U, 24) 2, and Au = — Zn U, Zn)2n, Yu € D(A);

n=1 n=1



(c) It is possible to define the fractional power (—A)%, 0 < a < 1 of A, as a closed
linear operator over its domain D((—A)%). More precisely, the operator (—A)® :

D((=A)*) € X — X is explicitly given by (—A)%u = Zn%(u,zn)zn, for all u €

n=1

D((~A)*), where D((—A)%) = {u(") € X: > n**(u, )2, € X};

n=1

(e) If X, denotes the space D((—A)*) endowed with the graph norm || - |4, then X, is

a Banach space. Moreover, X, — Xj is continuous for 0 < 8 < a < 1 and there

ae—éat

for t > 0.

exist some constants Cy,d, > 0 such that | T(t) || x. x) <

For the phase space, we choose the space B = C, x LP(p,X), r >0, 1< p < oo.
We next follow the terminology of [15], where g is replaced by p to avoid confusions with
the function g that we previously considered. Briefly, this means that p: (oo, —r) — R
is a positive (Lebesgue) integrable function and that there exists a nonnegative locally
bounded function v on (—oo,0] such that p(€ + 6) < v(€)p(8), for all £ < 0 and 0 €
(=00, =) \ Ng¢, where N C (—o0,—r) is a set whose Lebesgue measure equal to zero.
The space C, x LP(p,X) denotes the collection of functions ¢ : (—o00,0] — X such that
¢(+) is continuous on [—r,0], (Lebesgue) measurable and p||¢||? is (Lebesgue) integrable
on (—oo, —T).

The seminorm on B is defined by

-r 1/p
lells= sup 1o@le-+ (| sOlooNRs)

€|-r, oo

In what follows we assume that p(-) is a continuous function satisfying assumptions
(g-5)-(g-7) of [15, Theorem 1.3.8]. Under the previous assumptions, B is a fading memory
space, which satisfies the axioms A, A1,B and C2, see [15, Theorem 1.3.8] and [15,
Example 7.1.8] for details.

Throughout the rest of this this section, we suppose that r = 0, p = 2, and use the

notations of Remarks 1 and 2.
Consider the first-order boundary value problem

2

oo+ [ [ oo et smands] = Fu©) + alou(t o

+/_ a(s)u(t +s,&)ds, ()

(o0]

u(t,0) = wu(t,m) =0, (6)

for (¢,€) € R x [0, 7].

Let us mention that equations of type (5)-(6) arise for instance in control of systems
described by abstract retarded functional-differential equations with feedback control gov-
erned by proportional integro-differential law, see [8, Examples 4.2] for details.

In addition to the above-mentioned assumptions, we suppose that a, ag, a; are contin-
uous functions and that the following conditions hold:



(i) The functions b(-) b(r,m,¢), i = 1,2 are ( Lebesgue ) measurable, b(r,n,7) = 0,

o
? ac-z
b(r,n, 0) = 0 for every (7,7), and

N .—max{/ / / <B(’ (Tn()>2dnd7dg:i=0,1}<oo;

O 2%(s)  \?
(ii) The function a(:) is continuous and L = ( / ) ds) < 0.
oo Ps

Define f, g : R x B — X by setting

0 T
FEw)E) = / / b(s, 7, £)(s, m)dnds
JLD)E) = an()wlE) + / a(s)b(s, €)ds

—0o0

In view of the above, it is clear that the system (5)-(6) can be rewritten as an abstract
system of the form (1). By a straightforward estimation that uses (i) one can show that
f has values in Y = [D(—A)2] and that f(t,-) : B — X1 is a bounded linear operator
with || f(¢,°) v < /N for each t € R. Furthermore, for all t € R, g(¢, ) is a bounded
linear operator on X with || g(¢,-) ||< L. The next result is a straightforward consequence
of Theorem 2.

Proposition 1 Under previous assumptions, the system (5)-(6) has a unique almost au-
tomorphic solution whenever © = /N, <1 + ZC% + 5[1) +L<1.
2
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