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Abstract

Biclustering algorithms have become popular tools for gene expression data anal-

ysis. They can identify local patterns defined by subsets of genes and subsets of

samples, which cannot be detected by traditional clustering algorithms. In spite

of being useful, biclustering is an NP-hard problem. Therefore, the majority of

biclustering algorithms look for biclusters optimizing a pre-established coher-

ence measure. Many heuristics and validation measures have been proposed for

biclustering over the last 20 years. However, there is a lack of an extensive com-

parison of bicluster coherence measures on practical scenarios. To deal with this

lack, this paper experimentally analyzes 17 bicluster coherence measures and ex-

ternal measures calculated from information obtained in the gene ontologies. In

this analysis, results were produced by 10 algorithms from the literature in 19

gene expression datasets. According to the experimental results, a few pairs

of strongly correlated coherence measures could be identified, which suggests

redundancy. Moreover, the pairs of strongly correlated measures might change

when dealing with normalized or non-normalized data and biclusters enriched

by different ontologies. Finally, there was no clear relation between coherence

measures and assessment using information from gene ontology.
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1. Introduction

High-throughput technologies, such as microarrays [1], allow researchers to

monitor the behavior of thousands of genes under specific biological samples.

Normally, the samples correspond to different points in a time series, differ-

ent types of tissues, different environmental conditions, different organs and/or5

different individuals [2].

Gene expression data analysis studies investigate the behavior of thousands

of genes from an organism under multiple biological samples. Their results and

conclusions can support a better understanding of gene functions, biological

processes, effects of treatments, among others [3, 4]. For such, these studies use a10

data matrix representation, which is obtained by concatenating the results from

multiple high-throughput experiments. In such a matrix, each row corresponds

to a gene, each column corresponds to a sample and each element quantifies the

expression level of a gene in a specific sample [2, 5].

Traditional clustering algorithms are often used to analyze gene expression15

data. They allow researchers to improve their understanding of the functions

of the genes from an organism. However, some studies argue that a biological

process may be active only under subsets of genes and subsets of samples [6, 2, 7],

which characterizes clusters in subspaces of the original dataset. Besides, some

genes or samples may not take part in any cluster at all. Thus, a traditional20

clustering method may not be able to answer some important research questions.

Biclustering overcomes the previously discussed clustering limitations. It

looks for local patterns, called biclusters, comprising subsets of genes and subsets

of samples, which are usually obfuscated by the high dimensionality of a dataset.

Additionaly, biclustering may allow the presence of overlapped biclusters and25

unclustered genes or samples.

Although biclustering has proved its importance, the size of its search space

is in the order of 2N+M for N genes and M samples, which characterizes an

NP-hard problem [6, 4, 2, 5]. Therefore, many algorithms are based on the op-
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timization of a bicluster coherence measure through (meta-)heuristics, in order30

to produce approximate results in an acceptable amount of time.

The selection or proposal of an appropriate coherence measure is crucial

in the development of a biclustering algorithm [7]. Each measure can detect a

particular set of patterns and it is the main component that guides the algorithm

search for a good solution.35

Since 2000, many biclustering algorithms and coherence measures have been

proposed in the literature. At the same time, extensive surveys [2, 8, 9, 10]

and studies for the comparison of algorithms were carried out [11, 12, 13, 14,

15]. However, few studies have investigated the behaviors of different coherence

measures and to what extent they agree with the external biological information40

available.

In a preliminary study [16], we investigated the correlations of 15 biclustering

coherence measures for results generated by 9 biclustering algorithms in 19 gene

expression datasets. For such, we considered two experimental scenarios on

normalized data to analyze relations between coherence criteria and biological45

significance of biclusters. The present study extends this work, presenting the

following contributions:

• Analysis of correlations between 17 coherence measures for results ob-

tained by 10 biclustering algorithms in the 19 gene expression datasets,

to present evidence able to reduce the use of redundant measures during50

evaluation;

• Evaluation of results for 16 different experimental scenarios, which en-

compass normalized and non-normalized data, separate and aggregated

analyses with the available ontologies. Then, we have more evidence to

assess if the performances of coherence measures agree with those achieved55

by evaluation using external knowledge; and

• Computational complexity analyses of the measures, which are usually not

provided in their original studies, and were only provided in the supple-
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mentary material of [16]. These analyses are important for applications

where a large number of biclusters needs to be assessed.60

This paper is organized as follows. Section 2 presents the main related

works found by the authors. Section 3 introduces the coherence and external

measures, biclustering algorithms and the gene expression datasets selected for

this study. Section 4 presents the experiments carried out and discusses their

results. Finally, Section 5 presents the main conclusions from this study.65

2. Related work

There are several studies which propose new biclustering algorithms and/or

coherence measures. However, there is a lack of extensive comparisons between

distinct measures on the results of different algorithms. For instance, few related

studies discuss how biclustering coherence measures relate to each other.70

The first study of biclustering in the context of gene expression data can

be found in [6]. The well-known Mean Squared Residue (MSR) coherence mea-

sure and an algorithm for its optimization were proposed. According to the

experimental results obtained, the biclustering paradigm used affects the gene

expression data analysis. This study became the main benchmark adopted when75

developing new bicluster coherence measures and algorithms.

In [17], the authors formally analyze the MSR measure, showing its limita-

tion for identifying scaling patterns in biclusters, due to its high dependence on

the variances of scaling factors. Other studies, such as [18, 19, 20, 21, 22, 23, 24],

introduced bicluster coherence measures able to overcome the limitations of80

MSR on certain types of patterns. The improvements obtained were shown in

the performance on synthetic and/or real data.

In [25], the authors proposed a coherence measure and an internal bicluster-

ing evaluation index. They also discussed the main advantages and disadvan-

tages when using relative, internal and external measures. The authors tested85

their proposals on synthetic datasets for the task of hyperparameter selection

for two biclustering algorithms.
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A new measure, the Minimal Mean Squared Error (MMSE), to detect linear

patterns in biclusters, was proposed in [26]. The authors compared MMSE with

five measures from the literature. They also adapted the algorithm proposed in90

[6] to optimize the new measure and performed experiments on synthetic and

real datasets. This modified algorithm was compared with 6 biclustering and

2 clustering algorithms from the literature. According to the authors, the new

measure and algorithm detected patterns not usually found by other measures

and algorithms.95

A large number of coherence measures, 14 altogether, were discussed in [7].

From these 14 measures, 13 were tested on synthetic datasets and on 4 real

datasets. In the experiments with synthetic datasets, to assess these coherence

measures when the biclusters do not follow perfect patterns, they were tested on

3 types of bicluster patterns subject to different noise levels. In the experiments100

with real datasets, the measures were applied to biclusters found by an evo-

lutionary algorithm previously proposed. However, as this algorithm includes

one of the investigated measures in its fitness function, there is a bias in the

experimental results. Afterwards, the coherence measures were compared to

values obtained from external biological information. According to the authors,105

the correlation between their results and the biological measures according to

a normalized Mutual Information (MI) score showed a relation between many

coherence measures with the biological information.

This paper goes one step forward in the previous analysis by comparing a

larger number of 17 biclustering measures in a larger number of datasets (19).110

Besides, in order to reduce algorithmic bias, each measure was evaluated using 10

biclustering algorithms. In order to reduce dependence on estimation algorithms

or on data binning to calculate MI for continuous variables, the Pearson and

Spearman correlations were used. Additionally, the Wilcoxon signed-rank test

was applied to the results to assess any evidence of differences between the115

results from the two correlation measures.
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3. Methods

This section has a description of the main methods used. For such, it is

organized as follows. In Section 3.1, we discuss the types of numeric bicluster

patterns. In Section 3.2, we present the coherence measures investigated. In120

Section 3.3, we describe the 10 algorithms used in the experiments. In Section

3.4, we present the 19 datasets selected. In Section 3.5, we discuss the external

evaluation using GO ontologies and the quantities calculated from them. In

Section 3.6, we detail our experimental methodology. Finally, in Section 3.7, we

describe the hyperparameter settings used for the algorithms.125

3.1. Bicluster patterns

Let X = (R,C) be a gene expression matrix, where R is a set of N rows

(genes) and C is a set of M columns (samples). A bicluster corresponds to a

submatrix B = (I, J), I ⊆ R, J ⊆ C, which presents some patterns between

its values. Several numeric patterns have been described in the literature. The130

most general among them are [10]:

• Shifting pattern, where each bicluster element bij can be defined by a

constant/typical value πi for the ith row added to an adjustment factor

βj for the jth column. Thus, bij = πi + βj .

• Scaling pattern, where each bicluster element bij is described by the con-135

stant/typical value πi for the ith row multiplied by an adjustment factor

αj for the jth column. Thus, bij = πiαj .

• Shifting-scaling pattern, where the bicluster presents both patterns simul-

taneously. Each bicluster element bij is obtained by multiplying πi by αj

and adding the result to βj . Thus, bij = πiαj + βj . Note that shifting140

and scaling biclusters are special cases of shifting-scaling patterns when

αj = 1 and βj = 0 ∀j ∈ J , respectively.

From the aforementioned patterns, some specific patterns that are also widely

referenced in the literature can be extracted, such as [2]:
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• Constant pattern, where all of the bicluster elements are equal to the same145

constant value µ. Thus, πi = µ ∀i ∈ I, αj = 1 and βj = 0 ∀j ∈ J .

• Constant row pattern, where the elements of each row of the bicluster are

equal to the same constant value, which can be different from one row to

another. Thus, αj = 1 and βj = 0 ∀j ∈ J .

• Constant column pattern, where the elements of each column of the bi-150

cluster are equal to the same constant value, which can be different from

one column to another. Thus, πi = 1 ∀i ∈ I.

It must be mentioned that, in real gene expression data, the expression values

may be obfuscated by the presence of noise. Therefore, one cannot expect the

biclusters to always present the perfect patterns previously described. Thus, for155

each element xij of the original data matrix X, there is generally an unknown ηij

value associated to it, which represents its amount of noise [2]. This motivates

the use of coherence measures, which quantify the extent of agreement between

a noisy bicluster and a desired ideal pattern.

3.2. Coherence measures160

The use of coherence measures is an important step to evaluate a set of biclus-

ters that were produced by one or more biclustering algorithms. These measures

require only the data available and inspect the quality of the biclusters’ elements

regarding a set of predefined patterns. By using different measures, the results

can be assessed from different perspectives and, as a consequence, cover different165

aspects of the data based on distinct approaches, such as: the variability of the

bicluster’s values (Variance-based), correlations among genes or biological sam-

ples (Correlation-based), and correspondence of the bicluster’s elements with a

general tendency pattern that models their behavior (Standardization-based).

In this section, we introduce the coherence measures investigated in this170

paper. They are the same measures investigated in [7] and four additional mea-

sures which, to the best of our knowledge, have not been previously investigated

in related studies: three were the main contributions of the bicluster evaluation
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work in [25] that assesses constant patterns, constant row patterns and con-

stant column patterns; the fourth, proposed in [26], can capture shifting-scaling175

biclusters that, although is the most general bicluster model discussed in the

literature, is the hardest one to deal with and only few measures are able to

properly evaluate it.

Next, we present the measures, organized in the following categories, ac-

cording to the similarities of their approaches: Variance-based (Section 3.2.1),180

Correlation-based (Section 3.2.2) and Standardization-based (Section 3.2.3). We

also provide the time complexity analyses for the measures, which are usually

not provided in their original publications. In Table 1, we present a summary of

the measures: range of values, objectives (i.e., if a measure must be maximized

or minimized) and time complexity.185

3.2.1. Variance-based measures

The measures from this category evaluate the coherence of the values of a

bicluster regarding their expected values predicted using quantities, such as the

bicluster mean or the bicluster row and column means. In this paper, biJ , bIj

and bIJ stand for the mean of the ith row, the mean of the jth column and190

the mean of all elements of a bicluster B, respectively. These measures are

presented next.

1. Variance (VAR) [27] is used to detect constant patterns:

VAR(B) =

|I|∑
i=1

|J|∑
j=1

(bij − bIJ)2. (1)

Clearly, the smaller the value, the closer a bicluster is to a constant pat-

tern.

Time complexity analysis. The calculation of bIJ costs O(|I||J |). The sum195

of the squared terms also costs O(|I||J |). Overall, the time complexity of

VAR is O(|I||J |).

2. Mean Squared Residue (MSR) [6] is based on the shifting bicluster model,

and produces smaller values for biclusters that agree more with this model.
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MSR is defined as:

MSR(B) =
1

|I||J |

|I|∑
i=1

|J|∑
j=1

(bij − biJ − bIj + bIJ)2. (2)

Time complexity analysis. The calculations of biJ ∀i ∈ I, bIj ∀j ∈ J and

bIJ require O(|I||J |) steps. The sum of all squared terms also requires

O(|I||J |) steps. Overall, the time complexity of MSR is O(|I||J |).200

3. Mean Absolute Residue (MAR) [28] is also based on the shifting bicluster

model. The only difference between MAR and MSR is that MAR takes

the absolute difference between the bicluster elements and their expected

values predicted by the row, column and bicluster means. It is defined as:

MAR(B) =
1

|I||J |

|I|∑
i=1

|J|∑
j=1

|bij − biJ − bIj + bIJ |. (3)

Time complexity analysis. MAR has the same time of complexity of MSR,

which is O(|I||J |).

4. Relevance Index (RI) [29] identifies the constant columns pattern based

on the local and global variances of the columns in the bicluster. It is

formulated as:

RI(B) =

|J|∑
j=1

Rj , (4)

where

Rj = 1−
σ2
Ij

σ2
j

, (5)

σ2
Ij is the variance of the jth column of B and σ2

j is the variance of the

jth column of the full dataset.

Time complexity analysis. The calculation of each σ2
Ij costs O(|I|). The205

calculation of each σ2
j costs O(N). Therefore, any Rj requires O(|I|) +

O(N) = O(N) steps. Since B has |J | columns, the complexity of RI is

O(N |J |).
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5. Constancy by rows (Cr) [25] quantifies the agreement of a bicluster with

the constant row pattern:

Cr(B) =
1

|I|

|I|−1∑
i=1

|I|∑
k=i+1

√√√√ |J|∑
j=1

(bij − bkj)2. (6)

Time complexity analysis. The sum of the squared terms costs O(|J |). In

a bicluster, there is a total of (|I| (|I| − 1)) / 2 = O(|I|2) pairs of rows.210

Overall, Cr runs in O(|I|2|J |).

6. Constancy by columns (Cc) [25] expresses the extent to which the values

of a bicluster present a constant column pattern. It is the transposed

version of Cr.

Time complexity analysis. Since Cc is the transposed version of Cr, its215

time complexity is O(|I||J |2).

7. Overall Constancy (OC) [25] minimizes its value when evaluating constant

biclusters. For such, it integrates the constancy by rows and the constancy

by columns formulae:

OC(B) =
|I|Cr(B) + |J |Cc(B)

|I|+ |J |
. (7)

Time complexity analysis. Since it requires the calculation of Cr and Cc,

OC runs in O(max(|I|2 |J |, |I| |J |2)).

8. Scaling Mean Squared Residue (SMSR) [21] is a modification of the MSR

measure that is able to detect scaling biclusters:

SMSR(B) =
1

|I||J |

|I|∑
i=1

|J|∑
j=1

(biJ bIj − bij bIJ)2

b2iJ b
2
Ij

. (8)

As in MSR, smaller values indicate biclusters that better suit the desired

model.220

Time complexity analysis. SMSR requires the same quantities as MSR

and MAR (biJ ∀i ∈ I, bIj ∀j ∈ J and bIJ) to determine the differences

among the values of the bicluster elements and their expected values.

Therefore, the complexity of SMSR is O(|I||J |).
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9. Minimal Mean Squared Error (MMSE) [26] is based on the shifting, scaling

and shifting-scaling models. Its authors argue that it is better suited than

previous measures, such as MSR and SMSR, to identify negative correlated

linear patterns. This measure is formally expressed as:

MMSE(B) =
1

|I||J |

[ |I|∑
i=1

|J|∑
j=1

d2ij − λmax(DDT )

]
, (9)

where dij = bij − biJ , D is the matrix containing all dij elements, and225

λmax(DDT ) is the eigenvalue of DDT with maximum absolute value.

The time complexity of MMSE is O(min(|I|, |J |) |I||J |). The complete

analysis is provided in the original paper.

3.2.2. Correlation-based measures

These measures assess the similarity between gene/sample behaviors, instead230

of the magnitudes or deviations among their values [7]. For such, they use either

the Pearson or the Spearman correlation to measure gene/sample similarities.

In this paper, the former is denoted as r(·, ·) while the latter is represented as

ρ(·, ·). In addition, the ith row and the jth column of B are denoted as bi∗ and

b∗j , respectively. These measures are detailed next.235

1. Average Correlation (AC) [23] was proposed to detect shifting, scaling and

shifting-scaling biclusters by calculating the average Pearson correlation

between its rows:

AC(B) =
2

|I|(|I| − 1)

|I|−1∑
i=1

|I|∑
k=i+1

r(bi∗, bk∗). (10)

Time complexity analysis. The calculation of each r(bi∗, bk∗) costs O(|J |).

There are |I| (|I|−1) / 2 = O(|I|2) pairs of rows in B. Overall, AC requires

O(|I|2 |J |) steps.

2. Sub-matrix Correlation Score (SCS) [30] was proposed to detect shifting

or scaling patterns. It takes into account correlations between rows and

between columns. The ideal bicluster would present strong correlations
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on both dimensions. SCS is formally defined as:

SCS(B) = min{Srow(B), Scol(B)}, (11)

where

Srow(B) = min
i=1,··· ,|I|

{
1− 1

|I| − 1

|I|∑
k=1
k 6=i

|r(bi∗, bk∗)|

}
, (12)

Scol(B) = min
j=1,··· ,|J|

{
1− 1

|J | − 1

|J|∑
l=1
l 6=j

|r(b∗j , b∗l)|

}
. (13)

Time complexity analysis. The calculation of each r(bi∗, bk∗) and each

r(b∗j , b∗l) costs O(|J |) and O(|I|), respectively. The calculations of all Srow240

values and all Scol values require O(|I|2 |J |) and O(|I| |J |2) steps, respec-

tively. Overall, the time complexity of SCS is O(max(|I|2 |J |, |I| |J |2)).

3. Average Correlation Value (ACV) [20] was designed to identify shifting or

scaling models. For such, it gives higher values for biclusters containing

rows or columns presenting a strong average Pearson correlation value:

ACV(B) = max

{
2

|I|(|I| − 1)

|I|−1∑
i=1

|I|∑
k=i+1

|r(bi∗, bk∗)|,

2

|J |(|J | − 1)

|J|−1∑
j=1

|J|∑
l=j+1

|r(b∗j , b∗l)|

}
.

(14)

Time complexity analysis. The average absolute correlation among the

rows of B requires O(|I|2 |J |) steps. The average absolute correlation

between the columns of B costs O(|I| |J |2). Therefore, ACV runs in245

O(max(|I|2 |J |, |I| |J |2)).

4. Average Spearman’s Rho (ASR) [31] was proposed to overcome any sen-

sitivity of the ACV measure due to using the Pearson correlation. It is

formulated as:

ASR(B) = max

{
2

|I|(|I| − 1)

|I|−1∑
i=1

|I|∑
k=i+1

ρ(bi∗, bk∗),

2

|J |(|J | − 1)

|J|−1∑
j=1

|J|∑
l=j+1

ρ(b∗j , b∗l)

}
.

(15)
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Time complexity analysis. The Spearman coefficient measures the correla-

tion between the ranks of the elements of two vectors. For such, it requires

a sorting step, which can be performed in O(n log n) for n elements. Thus,

each ρ(bi∗, bk∗) and each ρ(b∗j , b∗l) cost O(|J | log |J |) and O(|I| log |I|), re-250

spectively. The first argument of max runs in O(|I|2|J | log |J |). The latter

argument of max requires O(|J |2 |I| log |I|) steps. Overall, ASR runs in

O(max(|I|2 |J | log |J |, |J |2 |I| log |I|)).

5. Spearman’s Biclustering Measure (SBM) [24] was introduced to detect

shifting or scaling patterns by calculating the average Spearman correla-

tion coefficient between the rows and columns of a bicluster and weighting

their influences in the final result. Formally, this measure is defined as:

SBM(B) = ψ(B) ω(B) ρ̄I(B) ρ̄J(B), (16)

where

ρ̄I(B) =
2

|I|(|I| − 1)

|I|−1∑
i=1

|I|∑
k=i+1

|ρ(bi∗, bk∗)|, (17)

ρ̄J(B) =
2

|J |(|J | − 1)

|J|−1∑
j=1

|J|∑
l=j+1

|ρ(b∗j , b∗l)|, (18)

ψ(B) and ω(B) are hyperparameters that refer to the importance of the

rows and the columns of a bicluster. Their values are set by the user. In

this paper, we used ω(B) = 1 and

ψ(B) =


1, if |J | > 9,

|J |
M
, otherwise,

(19)

which are the default values used by the original authors.

Time complexity analysis. SBM is calculated in constant time after ρ̄I(B)255

and ρ̄J(B) are obtained. Therefore, SBM has the same time complexity

of ASR: O(max(|I|2 |J | log |J |, |J |2 |I| log |I|)).

In [7], the Pearson correlation was also included in this category. However,

this measure can only be calculated between pairs of rows or pairs of columns and
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not for a whole bicluster. The authors did not mention how they summarized260

all the Pearson correlation values for gene or sample pairs of a bicluster. The

most simple approach would be to return the average value. However, this is

exactly what the AC measure does. For this reason, the Pearson correlation

was not considered as a bicluster coherence measure by itself in this study.

3.2.3. Standardization-based measures265

These coherence measures are based on standardization evaluation of the

bicluster’s rows/columns tendencies by scaling their values to make them com-

parable [7]. Thus, these measures are calculated on the standardized bicluster

B′, whose elements are defined as:

b′ij =
bij − µi

σi
, (20)

where µi and σi are the mean and the standard deviation of the ith row (gene)

of B, respectively. These measures are detailed next.

1. Maximal Standard Area (MSA) [19] defines a band for the set of columns

of a bicluster, which corresponds to the maximum and minimum values

of each column. The value of MSA is the total area of this band. This

measure, which has been applied to detect shifting or scaling bicluster

patterns, is defined as:

MSA(B) =

|J|−1∑
j=1

∣∣∣∣∣maxB′

j −minB′

j + maxB′

j+1−minB′

j+1

2

∣∣∣∣∣, (21)

where maxB′

j and minB′

j correspond to the maximum and minimum values

of the jth column of B′, respectively.

Time complexity analysis. maxB′

j and minB′

j require O(|I|) steps. Since270

we have |J | columns in the bicluster, MSA runs in O(|I| |J |).

2. Virtual Error (VE) [18] calculates the difference between the bicluster

elements and a virtual row (gene) pattern that captures the general trend

of the bicluster values [7]. It is minimized when evaluating biclusters with
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shifting or scaling patterns. This measure is defined as:

VE(B) =
1

|I||J |

|I|∑
i=1

|J|∑
j=1

|b′ij − p′j |, (22)

where p is the mean row vector of B, and p′ is its standardized version.

Time complexity analysis. p requires O(|I||J |) steps to be calculated. The

standardization of B takes O(|I||J |) steps. The standardization of p costs

O(|J |). The absolute differences between the elements of B′ and the ele-275

ments of p′ require O(|I||J |). Overall, VE runs in O(|I||J |).

3. Transposed Virtual Error (VEt) [22] is the VE measure applied in BT . It

is able to detect all the patterns identified by VE and also the shifting-

scaling pattern.

Time complexity analysis. VEt requires the same number of steps as VE:280

O(|I||J |).
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Table 1: Summary of the investigated measures.

Category Measure Reference Range Objective Time complexity

Variance-based

VAR [27] [0,∞) Min O(|I| |J |)

MSR [6] [0,∞) Min O(|I| |J |)

MAR [28] [0,∞) Min O(|I| |J |)

RI [29] (−∞, |J |] Max O(N |J |)

Cr [25] [0,∞) Min O(|I|2 |J |)

Cc [25] [0,∞) Min O(|I| |J |2)

OC [25] [0,∞) Min O(max(|I|2 |J |, |I| |J |2))

MMSE [26] [0,∞) Min O(min(|I|, |J |) |I| |J |)

SMSR [21] [0,∞) Min O(|I| |J |)

Correlation-based

AC [23] [−1, 1] Max O(|I|2 |J |)

SCS [30] [0, 1] Min O(max(|I|2 |J |, |I| |J |2))

ACV [20] [0, 1] Max O(max(|I|2 |J |, |I| |J |2))

ASR [31] [−1, 1] Max O(max(|I|2 |J | log |J |, |J |2 |I| log |I|))

SBM [24] [0,∞) Max O(max(|I|2 |J | log |J |, |J |2 |I| log |I|))

Standardization-based

MSA [19] [0,∞) Min O(|I| |J |)

VE [18] [0,∞) Min O(|I| |J |)

VEt [22] [0,∞) Min O(|I| |J |)
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3.3. Algorithms

To investigate the behavior of the coherence measures, we selected 10 bi-

clustering algorithms often used in the literature, which have already been ex-

tensively studied and have free implementations which are publicly available.285

These algorithms are based on different formulations and use diverse types of

heuristics (e.g., greedy, divide-and-conquer, exhaustive enumeration, etc.) to

deal with biclustering tasks. Hence, they are able to identify different types

of bicluster patterns and bicluster structures (e.g., exclusive row or column bi-

clusters, non-overlapping biclusters in checkerboard structures, arbitrarily posi-290

tioned biclusters, etc.). Thus, they model different particularities of a dataset

and reduce the bias towards a specific coherence measure when evaluating the

identified biclusters. These algorithms are:

• Cheng and Church’s Algorithm (CCA) [6], which starts with the full data

matrix as a bicluster. Next, it iteratively prunes rows and columns out295

of the bicluster, minimizing the MSR measure, until it satisfies a desired

threshold. As a last step, some rows or columns are added back to the

bicluster as long as they do not violate the MSR threshold.

• Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) [4], which

constructs a bipartite graph for the dataset, where one set of vertices300

represents the genes and the other set corresponds to the samples. Next,

based on a likelihood model, it enumerates the most significant complete

bipartite subgraphs (bicliques). Each biclique corresponds to a bicluster

in the final solution.

• Order Preserving Sub-Matrix (OPSM) [32], which mines biclusters con-305

taining columns that induce a permutation where the values of each row

strictly increases. The search procedure is performed by a greedy heuristic

guided by a probabilistic score.

• Spectral [33] which searches for constant biclusters organized in a checker-

board structure. For such, it applies the singular value decomposition to310
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the input matrix. Then, it clusters rows and columns independently by

projecting them on their best partitioning eigenvectors and applying the

k-means algorithm.

• Plaid [34], which represents a set of biclusters as a sum of linear layers plus

an additional layer that models noise and background effects in the data.315

The optimization problem consists of a sum of squared errors minimization

between the plaid model and the data, which is solved by a binary least

squares algorithm.

• Binary Inclusion Maximal Biclustering Algorithm (Bimax) [11], which dis-

cretizes the input dataset into a binary matrix based on the threshold320

(min(A) + max(A)) / 2, where min(A) and max(A) indicate the maximum

and minimum values of the matrix. Next, it searches for upregulated

biclusters whose values are all equal to one, using an enumerative divide-

and-conquer approach.

• Bayesian Biclustering (BBC) [35], which assumes the plaid model for the325

input dataset, but restricts the overlap between biclusters to occur only

in genes or only in samples. For the plaid model fitting, it uses a Gibbs

sampling procedure.

• Large Average Submatrices (LAS) [36], which assumes a Gaussian random

matrix as a null model for the data and searches for biclusters with average330

values that significantly deviate from such a model. For such, it uses a

greedy procedure to optimize a Bonferroni-based significance score that

takes into account the size of a bicluster and its average value.

• Qualitative Biclustering (QUBIC) [37], which represents the data as a

graph, with genes as vertices, edge weights equal to the number of sam-335

ples for which two genes are similar. The algorithm consists of a greedy

procedure that extracts biclusters that correspond to heavy subgraphs

where the genes present similar expression patterns in the same subset of

samples.
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• Factor Analysis for Bicluster Acquisition (FABIA) [38], which assumes a340

sum of multiplicative layers for a dataset, where each layer represents a

different bicluster, plus a noise layer. To fit this model, FABIA uses an

expectation-maximization approach for likelihood maximization.

In Table 2, we summarize the software packages used to implement the

algorithms used in the experiments of this paper. The algorithms are available in345

R, Java, C and Python packages. In the experimental phase, we used biclustlib

[15], which is a Python library that provides wrappers for these implementations.

Table 2: Algorithms’ software packages.

Algorithm Language Availability

CCA R https://cran.r-project.org/web/packages/biclust/index.html

SAMBA Java http://acgt.cs.tau.ac.il/expander/

OPSM Java https://sop.tik.ee.ethz.ch/bicat/

Spectral Python https://scikit-learn.org/stable/

Plaid R https://cran.r-project.org/web/packages/biclust/index.html

Bimax R https://cran.r-project.org/web/packages/biclust/index.html

BBC C http://www.people.fas.harvard.edu/~junliu/BBC/

LAS Python https://github.com/padilha/biclustlib

QUBIC C https://github.com/maqin2001/qubic

FABIA Python https://github.com/bioinf-jku/pyfabia

3.4. Data Collection

The experiments were performed using 19 datasets associated with the Sac-

charomyces cerevisiae organism, one of the organisms most comprehensively350

studied in biology and, as a consequence, with extensive and high-quality Gene

Ontology information available [11, 39]. This collection consists of the main

biclustering benchmarks of this organism available in the literature. They are

represented by dense real-valued data matrices obtained from time series mi-
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croarray experiments, including the datasets used in [6]1 and [11]2, included355

in most biclustering studies, and the benchmark of 17 datasets introduced by

[40]3, whose data were systematically collected from previous gene expression

data analyses studies [41, 42, 43] and were already used in clustering [44] and

biclustering [15] analyses. The main aspects of these datasets are summarized

in Table 3.360

Table 3: Gene expression datasets.

Name # of genes # of samples Reference

Alpha factor 1099 18 [40]

Cdc 15 1086 24 [40]

Cdc 28 1044 17 [40]

Elutriation 935 14 [40]

1mM menadione 1050 9 [40]

1M sorbitol 1030 7 [40]

1.5mM diamide 1038 8 [40]

2.5mM DTT 991 8 [40]

Constant 32nM H2O2 976 10 [40]

Diauxic shift 1016 7 [40]

Complete DTT 962 7 [40]

Heat shock 1 988 8 [40]

Heat shock 2 999 7 [40]

Nitrogen depletion 1011 10 [40]

YPD 1 1011 12 [40]

YPD 2 1022 10 [40]

Yeast sporulation 1171 7 [40]

S. cerevisiae 2993 173 [11]

Tavazoie 2884 17 [6]

1http://arep.med.harvard.edu/biclustering/
2https://sop.tik.ee.ethz.ch/bimax/
3http://lapad-web.icmc.usp.br/repositories/ieee-tcbb-2013/index.html
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3.5. External Bicluster Evaluation Measures

For the external evaluation, we performed the gene enrichment analysis of

the biclusters found using the Gene Ontology (GO)4 [45] knowledge base, which

provides three ontologies: Biological Process, Molecular Function and Cellular

Component. Each ontology contains a structured general vocabulary comprising365

”is-a” and ”part-of” relationships between its terms to describe the role of the

genes in an organism [46].

In this study, we performed four different analyses using the GO database:

(i) using all the three ontologies; (ii) using only the Biological Process ontol-

ogy; (iii) using only the Cellular Component ontology; and (iv) using only the370

Molecular Function ontology. For each analysis, after identifying the GO terms

in each bicluster, the Fisher test was applied to assess the over-representation

of each term [4, 11, 37, 15]. In this study, a GO term was considered significant

in a bicluster if its p-value, after performing the Benjamini and Hochberg mul-

tiple test correction [47], was lower than 0.05 [13, 15]. Three different measures375

were extracted for each bicluster containing at least one significant term [7]: the

mean p-value, the best p-value and the number of significant terms. The exper-

iments investigated correlations of these quantities with the coherence measures

discussed in Section 3.2.

3.6. Experimental methodology380

Briefly, the experimental methodology has 6 steps, which are illustrated in

Figure 1. We will now explain each step.

Given a dataset Xi, two different scenarios were considered in step (1) before

applying any algorithm and coherence measure. In the first scenario, the features

(samples) of each dataset were standardized to zero mean and unit variance. In385

the latter scenario, the algorithms and coherence measures were applied to the

original (non-normalized) data.

4http://www.geneontology.org/
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normalized Xi

non-normalized Xi

Alg1

Alg10

GO

ALL

BP
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Count

Prop

(1)

(2)

(3)

(4)

(5)

(6)

Xi
i = 1, ..., 19

Measure1

Measure17

Best P-value

Mean P-value

# Terms

Figure 1: Experimental methodology followed to obtain the results of the coherence and GO

measures.

In step (2), the selected algorithms were run on both versions of Xi. Deter-

ministic and non deterministic algorithms were selected for this study. For each

dataset, the deterministic algorithms (SAMBA, OPSM, Bimax and QUBIC)390

were run once, while the non deterministic algorithms (CCA, Spectral, Plaid,

BBC, LAS and FABIA) were run 30 times.

In step (3), the biclusterings found by each algorithm were compared with

the GO external evaluation. Four different scenarios were considered for the

GO evaluation, which are illustrated in step (4): (i) using all GO ontologies395

(ALL); (ii) using only the Biological Process ontology (BP); (iii) using only the

Cellular Component ontology (CC); and (iv) using only the Molecular Function
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ontology (MF).

Given that 6 out of the 10 investigated algorithms are non deterministic,

a pre-established procedure was adopted to select which of their biclusterings400

would be analyzed for each dataset. In step (5), two different approaches were

followed. The first, called ”count”, selects, for each dataset, the biclustering

solution that contains the median number of significant biclusters. The second,

called ”prop”, selects, for each dataset, the biclustering solution that contains

the median proportion of significant biclusters for the total number of biclusters405

in the solution5. Both approaches do not discard empty biclustering solutions

to calculate the median.

Finally, in step (6), the 17 coherence measures from Section 3.2 and the 3

GO measures from Section 3.5 are calculated for each bicluster containing at

least one significant GO term, according to the GO scenario being considered.410

3.7. Hyperparameter values used for the algorithms

The hyperparameter values used in this study were usually based on the de-

fault settings used or recommended by the original authors of each algorithm.

However, to achieve results that best fit the investigated scenarios, they were

modified for some of the biclustering techniques. These modifications are ex-415

plained next.

CCA requires a maximum MSR threshold δ to produce biclusters. This

quantity is usually different from one dataset to another. In this paper, δ =

(max(A) −min(A))2/12 × 0.005 [48], where max(A) and min(A) indicate the

maximum and minimum values of a dataset, respectively. This setting provides420

an approximation for the δ values considered in the original work of Cheng and

Church [6].

Before running its Gibbs sampling procedure, BBC normalizes the dataset.

The interquartile range normalization (IQRN) on the features proposed by its

5This approach is different than ”count” because it is not guaranteed that the heuristic

adopted by each algorithm will always return the same number of biclusters.
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original authors was not used here. Instead, we used the zero mean and unit425

variance normalization for the scenario of normalized data, to be in accordance

with the other algorithms used in this study.

For the number of biclusters, 7 algorithms (CCA, Plaid, Bimax, BBC, LAS,

QUBIC and FABIA) were executed to search for 30 biclusters in each dataset.

Spectral was run to search for 15 gene clusters and 2 sample clusters. The other430

algorithms (SAMBA and OPSM) do not receive the number of biclusters as a

hyperparameter. Thus, all biclusters returned by them were considered.

4. Results and discussion

Overall, we evaluated 16 different experimental scenarios, by combining: 2

versions of the datasets (normalized and non-normalized), 4 ontology analyses435

(ALL, BP, CC and MF), and 2 approaches to select biclusterings generated

by non deterministic algorithms (”count” and ”prop”). For each scenario, the

biclusters found by all algorithms in all datasets were initially concatenated

in an array. Next, the Pearson and Spearman correlations were calculated for

the previously discussed coherence and external measures. The results are il-440

lustrated as heatmaps in Figures 2 and 3, where each element corresponds to

the correlation value. To save space, only the correlations with the ”count”

approach, normalized data, and the three GO ontologies (ALL) are shown. The

other 15 scenarios achieved similar results in most cases, allowing us to draw

similar conclusions. Their respective figures are available in our supplementary445

material6. Minor differences are discussed in the text.

According to Figures 2 and 3, the measures from the external evaluation

are not strongly correlated with any coherence criterion. These results were ob-

served for all investigated scenarios. Therefore, biclusters with high biological

significance from the GO point of view do not necessarily imply in good values450

for the coherence measures. Thus, it may be feasible to recommend using mul-

6http://padilha.github.io/asoc-2019-suppl

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.asoc.2019.105688
http://padilha.github.io/asoc-2019-suppl


©2019. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The final form of this manuscript was published in the Applied Soft Computing
journal by Elsevier: https://doi.org/10.1016/j.asoc.2019.105688.

AC AC
V

AS
R C
c C
r

M
AR

M
M

SE

M
SA

M
SR O

C R
I

SB
M

SC
S

SM
SR VA

R VE VE
t

M
ea

n 
P-

va
lu

e 
AL

L

Be
st

 P
-v

al
ue

 A
LL

# 
Te

rm
s 

AL
L

AC

ACV

ASR

Cc

Cr

MAR

MMSE

MSA

MSR

OC

RI

SBM

SCS

SMSR

VAR

VE

VEt

Mean P-value ALL

Best P-value ALL

# Terms ALL

0.17

0.55 0.55

-0.015 -0.47 -0.21

-0.21 -0.29 -0.18 0.67

-0.029 -0.5 -0.42 0.38 0.17

0.066 -0.51 -0.23 0.49 0.19 0.87

-0.087 -0.53 -0.24 0.91 0.63 0.28 0.37

0.0085 -0.41 -0.3 0.36 0.14 0.94 0.93 0.24

-0.21 -0.29 -0.18 0.67 1 0.17 0.19 0.63 0.14

0.081 -0.035 0.013 -0.099 0.043 -0.33 -0.46 0.11 -0.44 0.043

0.45 0.31 0.59 -0.13 -0.17 -0.34 -0.17 -0.13 -0.22 -0.17 0.019

-0.23 -0.98 -0.56 0.49 0.32 0.46 0.48 0.56 0.38 0.32 0.04 -0.32

0.0084 0.029 0.021 -0.0088 -0.012 -0.03 -0.013 -0.0087 -0.015 -0.012 -0.00056 0.0071 -0.026

-0.041 -0.35 -0.15 0.93 0.77 0.34 0.44 0.76 0.34 0.77 -0.22 -0.11 0.36 -0.0081

-0.96 -0.28 -0.52 0.049 0.25 0.076 -0.01 0.12 0.028 0.25 -0.075 -0.41 0.33 -0.031 0.074

0.25 -0.54 -0.45 0.34 0.057 0.62 0.51 0.29 0.49 0.057 0.063 -0.35 0.49 -0.03 0.22 -0.19

-0.062 -0.062 -0.078 0.015 -0.036 0.11 0.057 0.025 0.087 -0.036 -0.077 0.0074 0.058 -0.028 0.01 0.058 -0.02

0.043 -0.012 -0.018 -0.036 -0.092 0.06 0.023 -0.018 0.047 -0.092 -0.033 0.057 0.012 -0.011 -0.053 -0.04 0.0047 0.8

0.026 -0.091 0.025 0.28 0.3 0.015 0.083 0.21 0.039 0.3 0.074 -0.1 0.093 -0.018 0.29 -0.04 0.035 -0.21 -0.32

1.0

0.5

0.0

0.5

1.0

Figure 2: Results of the Pearson correlation using normalized data, all ontologies and the

”count” approach.

tiple bicluster coherence criteria to complement the GO analysis. As a result,

the biclusters will also be evaluated by a set of predefined patterns of interest

and one can carefully inspect the quality of their trends.

It can be seen that some coherence criteria presented similar behavior accord-455

ing to the correlations. Measures that must be either maximized or minimized

were selected. Thus, the interest is in strong correlations that can be either pos-

itive or negative. From the results, a few pairs of strongly correlated measures,

with a correlation above 0.9 or below −0.9, can be extracted:

• (OC, Cr), (SCS, ACV) and (VE, AC) for both correlation coefficients in460

all experimental scenarios;
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Figure 3: Results of the Spearman correlation using normalized data, all ontologies and the

”count” approach.

• (MSR, MAR) for Spearman in all scenarios and for Pearson in all scenarios

with normalized data and in the scenario with non-normalized data and

MF analysis;

• (VAR, Cr) and (VAR, OC) for the Pearson coefficient in all scenarios using465

non-normalized data;

• (VAR, Cc) and (MSA, Cc) for the Pearson coefficient in all scenarios with

normalized data; and

• (MSR, MMSE) for the Pearson correlation in all experimental scenarios.

It can be observed that the strong correlated pairs contain measures that470
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detect similar patterns. To avoid using paired criteria in the same application,

since their results will be redundant, the one that is able to detect the most

general numeric patterns is recommended.

Some evidence can be found that data normalization may be determinant

in the behavior of some pairs of measures. This result was expected, since the475

algorithms do not return the same biclustering solutions when dealing with non-

normalized or normalized data. Moreover, normalized data may alleviate the

influence of different feature scales or outliers in the behaviors of the measures.

In addition, the correlations between measures might be different when con-

sidering different ontology scenarios for the enrichment, as was observed for480

(MSR, MAR) and the Pearson correlation.

Real applications may benefit from favouring measures with the lowest com-

putational complexities. Table 1 summarizes the investigated measures and

their computational complexities. Even if two coherence measures present lower

correlations (e.g., around 0.7 or 0.8), those with lower complexity should be pre-485

ferred, especially if a large number of biclusters is evaluated. From this table,

the measures with the lowest complexities are: VAR, MSR, MAR, SMSR, MSA,

VE and VEt.

The difference between the results from the Pearson and Spearman corre-

lations, shown in Figure 4, were also analyzed. The difference observed was490

low for many pairs, which indicates that the two correlations were compatible

in most cases. To statistically validate this finding, the Wilcoxon signed-rank

test was applied to the difference matrix. Under a significance level of 0.05 no

statistical evidence of difference was found, which supports the agreement of

the correlation matrices. We repeated the Wilcoxon signed-rank test on each495

of the other 15 experimental scenarios. In all cases, we did not find statistical

evidence to reject the null hypothesis.
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Figure 4: Difference between Pearson and Spearman correlations.

5. Conclusions

This paper extended the work of [7] by investigating the behavior of 17 biclus-

ter coherence measures. We applied them to the results of 10 well-established500

biclustering algorithms. Our experiments were performed on a benchmark of 19

Saccharomyces cerevisiae time-course datasets.

The correlations among the coherence and the external GO criteria were an-

alyzed using the Pearson and Spearman coefficients. According to the analysis,

external GO evaluations did not agree with any coherence measure. These re-505

sults suggest that a high GO significance does not automatically imply in good

evaluations with coherence criteria. Besides, GO information may be incom-

plete [25]. Thus, the use of bicluster coherence measures together with the GO
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analysis may be a better alternative to achieve more concrete conclusions.

These results conflict with those from [7], which claimed that the coher-510

ence measures present some dependence with the external biological measures.

However, since this study employed 10 different algorithms, it reduced the bias

regarding the evolutionary algorithm used in [7].

Overall, we analyzed 16 different experimental scenarios, which included:

normalized and non-normalized data, evaluation using all GO ontologies, and515

2 different approaches to select the results of non deterministic algorithms. We

observed that normalization and the GO validation approach may be deter-

minant, since some pairs of measures presented strong Pearson correlations in

scenarios using either normalized or non-normalized data and specific ontologies

for the enrichment.520

In practical applications, the users of the measures must take into account

the types of correlations among measures that they want to avoid. For such,

we advise them to consider as similar only the pairs that presented a strong

correlation in all scenarios for the desired coefficient (Pearson or Spearman)

and data type (normalized or non-normalized).525

This study also presented the time complexity analyses of the measures,

usually not provided in their original studies. In many applications, the time

complexities may be an important reason for choosing some measures rather

than others. Mainly when a large number of biclusters need to be evaluated

and/or the biclusters may be constituted by a large number of rows and columns,530

measures with the lowest complexities may be preferred.

Finally, the choice of the most appropriate bicluster coherence measure must

also take into account the task to be solved. In a few practical scenarios, one

may favor particular types of patterns compared to others and/or may prioritize

measures with lower computational complexities. However, the use of hetero-535

geneous measures allows the analysis of biclusters with different points of view.

According to the experimental results reported in this paper, it is possible to

avoid selecting a set of measures that present redundant behavior and may not

bring new insights to the analysis.
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