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Abstract

Biclustering algorithms have become popular tools for gene expression data anal-
ysis. They can identify local patterns defined by subsets of genes and subsets of
samples, which cannot be detected by traditional clustering algorithms. In spite
of being useful, biclustering is an NP-hard problem. Therefore, the majority of
biclustering algorithms look for biclusters optimizing a pre-established coher-
ence measure. Many heuristics and validation measures have been proposed for
biclustering over the last 20 years. However, there is a lack of an extensive com-
parison of bicluster coherence measures on practical scenarios. To deal with this
lack, this paper experimentally analyzes 17 bicluster coherence measures and ex-
ternal measures calculated from information obtained in the gene ontologies. In
this analysis, results were produced by 10 algorithms from the literature in 19
gene expression datasets. According to the experimental results, a few pairs
of strongly correlated coherence measures could be identified, which suggests
redundancy. Moreover, the pairs of strongly correlated measures might change
when dealing with normalized or non-normalized data and biclusters enriched
by different ontologies. Finally, there was no clear relation between coherence
measures and assessment using information from gene ontology.
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1. Introduction

High-throughput technologies, such as microarrays [I], allow researchers to
monitor the behavior of thousands of genes under specific biological samples.
Normally, the samples correspond to different points in a time series, differ-
ent types of tissues, different environmental conditions, different organs and/or
different individuals [2].

Gene expression data analysis studies investigate the behavior of thousands
of genes from an organism under multiple biological samples. Their results and
conclusions can support a better understanding of gene functions, biological
processes, effects of treatments, among others [3| 4]. For such, these studies use a
data matrix representation, which is obtained by concatenating the results from
multiple high-throughput experiments. In such a matrix, each row corresponds
to a gene, each column corresponds to a sample and each element quantifies the
expression level of a gene in a specific sample [2] [5].

Traditional clustering algorithms are often used to analyze gene expression
data. They allow researchers to improve their understanding of the functions
of the genes from an organism. However, some studies argue that a biological
process may be active only under subsets of genes and subsets of samples [6, 2} [7],
which characterizes clusters in subspaces of the original dataset. Besides, some
genes or samples may not take part in any cluster at all. Thus, a traditional
clustering method may not be able to answer some important research questions.

Biclustering overcomes the previously discussed clustering limitations. It
looks for local patterns, called biclusters, comprising subsets of genes and subsets
of samples, which are usually obfuscated by the high dimensionality of a dataset.
Additionaly, biclustering may allow the presence of overlapped biclusters and
unclustered genes or samples.

Although biclustering has proved its importance, the size of its search space
is in the order of 2N*tM for N genes and M samples, which characterizes an

NP-hard problem [6l [4] 2] [5]. Therefore, many algorithms are based on the op-


http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.asoc.2019.105688

30

35

40

45

50

55

(©2019. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

The final form of this manuscript was published in the Applied Soft Computing
journal by Elsevier: https://doi.org/10.1016/j.asoc.2019.105688.

timization of a bicluster coherence measure through (meta-)heuristics, in order
to produce approximate results in an acceptable amount of time.

The selection or proposal of an appropriate coherence measure is crucial
in the development of a biclustering algorithm [7]. Each measure can detect a
particular set of patterns and it is the main component that guides the algorithm
search for a good solution.

Since 2000, many biclustering algorithms and coherence measures have been
proposed in the literature. At the same time, extensive surveys [2], &, @, [10]
and studies for the comparison of algorithms were carried out [I1], [12] 13} [14]
15]. However, few studies have investigated the behaviors of different coherence
measures and to what extent they agree with the external biological information
available.

In a preliminary study [16], we investigated the correlations of 15 biclustering
coherence measures for results generated by 9 biclustering algorithms in 19 gene
expression datasets. For such, we considered two experimental scenarios on
normalized data to analyze relations between coherence criteria and biological
significance of biclusters. The present study extends this work, presenting the

following contributions:

e Analysis of correlations between 17 coherence measures for results ob-
tained by 10 biclustering algorithms in the 19 gene expression datasets,
to present evidence able to reduce the use of redundant measures during

evaluation;

e Evaluation of results for 16 different experimental scenarios, which en-
compass normalized and non-normalized data, separate and aggregated
analyses with the available ontologies. Then, we have more evidence to
assess if the performances of coherence measures agree with those achieved

by evaluation using external knowledge; and

e Computational complexity analyses of the measures, which are usually not

provided in their original studies, and were only provided in the supple-
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mentary material of [I6]. These analyses are important for applications

where a large number of biclusters needs to be assessed.

This paper is organized as follows. Section [2] presents the main related
works found by the authors. Section |3| introduces the coherence and external
measures, biclustering algorithms and the gene expression datasets selected for
this study. Section [] presents the experiments carried out and discusses their

results. Finally, Section [f] presents the main conclusions from this study.

2. Related work

There are several studies which propose new biclustering algorithms and/or
coherence measures. However, there is a lack of extensive comparisons between
distinct measures on the results of different algorithms. For instance, few related
studies discuss how biclustering coherence measures relate to each other.

The first study of biclustering in the context of gene expression data can
be found in [6]. The well-known Mean Squared Residue (MSR) coherence mea-
sure and an algorithm for its optimization were proposed. According to the
experimental results obtained, the biclustering paradigm used affects the gene
expression data analysis. This study became the main benchmark adopted when
developing new bicluster coherence measures and algorithms.

In [I7], the authors formally analyze the MSR measure, showing its limita-
tion for identifying scaling patterns in biclusters, due to its high dependence on
the variances of scaling factors. Other studies, such as [I8] [19] 20, 2], 22 23], [24],
introduced bicluster coherence measures able to overcome the limitations of
MSR on certain types of patterns. The improvements obtained were shown in
the performance on synthetic and/or real data.

In [25], the authors proposed a coherence measure and an internal bicluster-
ing evaluation index. They also discussed the main advantages and disadvan-
tages when using relative, internal and external measures. The authors tested
their proposals on synthetic datasets for the task of hyperparameter selection

for two biclustering algorithms.
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A new measure, the Minimal Mean Squared Error (MMSE), to detect linear
patterns in biclusters, was proposed in [26]. The authors compared MMSE with
five measures from the literature. They also adapted the algorithm proposed in
[6] to optimize the new measure and performed experiments on synthetic and
real datasets. This modified algorithm was compared with 6 biclustering and
2 clustering algorithms from the literature. According to the authors, the new
measure and algorithm detected patterns not usually found by other measures
and algorithms.

A large number of coherence measures, 14 altogether, were discussed in [7].
From these 14 measures, 13 were tested on synthetic datasets and on 4 real
datasets. In the experiments with synthetic datasets, to assess these coherence
measures when the biclusters do not follow perfect patterns, they were tested on
3 types of bicluster patterns subject to different noise levels. In the experiments
with real datasets, the measures were applied to biclusters found by an evo-
lutionary algorithm previously proposed. However, as this algorithm includes
one of the investigated measures in its fitness function, there is a bias in the
experimental results. Afterwards, the coherence measures were compared to
values obtained from external biological information. According to the authors,
the correlation between their results and the biological measures according to
a normalized Mutual Information (MI) score showed a relation between many
coherence measures with the biological information.

This paper goes one step forward in the previous analysis by comparing a
larger number of 17 biclustering measures in a larger number of datasets (19).
Besides, in order to reduce algorithmic bias, each measure was evaluated using 10
biclustering algorithms. In order to reduce dependence on estimation algorithms
or on data binning to calculate MI for continuous variables, the Pearson and
Spearman correlations were used. Additionally, the Wilcoxon signed-rank test
was applied to the results to assess any evidence of differences between the

results from the two correlation measures.
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3. Methods

This section has a description of the main methods used. For such, it is
organized as follows. In Section we discuss the types of numeric bicluster
patterns. In Section we present the coherence measures investigated. In
Section [3.3] we describe the 10 algorithms used in the experiments. In Section
we present the 19 datasets selected. In Section we discuss the external
evaluation using GO ontologies and the quantities calculated from them. In
Section [3.6] we detail our experimental methodology. Finally, in Section [3.7] we

describe the hyperparameter settings used for the algorithms.

3.1. Bicluster patterns

Let X = (R,C) be a gene expression matrix, where R is a set of N rows
(genes) and C is a set of M columns (samples). A bicluster corresponds to a
submatrix B = (I,J), I C R, J C C, which presents some patterns between
its values. Several numeric patterns have been described in the literature. The

most general among them are [10]:

o Shifting pattern, where each bicluster element b;; can be defined by a
constant /typical value 7; for the i*" row added to an adjustment factor

B; for the j** column. Thus, b;; = m; + B;.

e Scaling pattern, where each bicluster element b;; is described by the con-
stant/typical value m; for the i*" row multiplied by an adjustment factor

a; for the jth column. Thus, b;; = m ;.

o Shifting-scaling pattern, where the bicluster presents both patterns simul-
taneously. Each bicluster element b;; is obtained by multiplying m; by «;
and adding the result to 3;. Thus, b;; = ma; + B;. Note that shifting
and scaling biclusters are special cases of shifting-scaling patterns when

aj =1and 8; =0 V) € J, respectively.

From the aforementioned patterns, some specific patterns that are also widely

referenced in the literature can be extracted, such as [2]:
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e (Constant pattern, where all of the bicluster elements are equal to the same

constant value . Thus, m; = pVie l, oy =1and 5; =0Vj € J.

e Constant row pattern, where the elements of each row of the bicluster are
equal to the same constant value, which can be different from one row to

another. Thus, o; =1 and 8; =0 Vj € J.

e (Constant column pattern, where the elements of each column of the bi-
cluster are equal to the same constant value, which can be different from

one column to another. Thus, m; =1 Vi € I.

It must be mentioned that, in real gene expression data, the expression values
may be obfuscated by the presence of noise. Therefore, one cannot expect the
biclusters to always present the perfect patterns previously described. Thus, for
each element z;; of the original data matrix X, there is generally an unknown 7;;
value associated to it, which represents its amount of noise [2]. This motivates
the use of coherence measures, which quantify the extent of agreement between

a noisy bicluster and a desired ideal pattern.

3.2. Coherence measures

The use of coherence measures is an important step to evaluate a set of biclus-
ters that were produced by one or more biclustering algorithms. These measures
require only the data available and inspect the quality of the biclusters’ elements
regarding a set of predefined patterns. By using different measures, the results
can be assessed from different perspectives and, as a consequence, cover different
aspects of the data based on distinct approaches, such as: the variability of the
bicluster’s values (Variance-based), correlations among genes or biological sam-
ples (Correlation-based), and correspondence of the bicluster’s elements with a
general tendency pattern that models their behavior (Standardization-based).

In this section, we introduce the coherence measures investigated in this
paper. They are the same measures investigated in [7] and four additional mea-
sures which, to the best of our knowledge, have not been previously investigated

in related studies: three were the main contributions of the bicluster evaluation
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work in [25] that assesses constant patterns, constant row patterns and con-
stant column patterns; the fourth, proposed in [26], can capture shifting-scaling
biclusters that, although is the most general bicluster model discussed in the
literature, is the hardest one to deal with and only few measures are able to
properly evaluate it.

Next, we present the measures, organized in the following categories, ac-
cording to the similarities of their approaches: Variance-based (Section ,
Correlation-based (Section[3.2.2) and Standardization-based (Section[3.2.3)). We
also provide the time complexity analyses for the measures, which are usually
not provided in their original publications. In Table[l] we present a summary of
the measures: range of values, objectives (i.e., if a measure must be maximized

or minimized) and time complexity.

3.2.1. Variance-based measures

The measures from this category evaluate the coherence of the values of a
bicluster regarding their expected values predicted using quantities, such as the
bicluster mean or the bicluster row and column means. In this paper, b;s, br;
and bry stand for the mean of the i*” row, the mean of the j** column and
the mean of all elements of a bicluster B, respectively. These measures are

presented next.

1. Variance (VAR) [27] is used to detect constant patterns:

1171

VAR(B) = 3> (bij — brs). (1)

i=1 j=1
Clearly, the smaller the value, the closer a bicluster is to a constant pat-

tern.

Time complexity analysis. The calculation of bry costs O(|I]|J]). The sum
of the squared terms also costs O(|I||J|). Overall, the time complexity of
VAR is O(/I||J])-

2. Mean Squared Residue (MSR) [6] is based on the shifting bicluster model,

and produces smaller values for biclusters that agree more with this model.
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MSR is defined as:

11 1J]
1
MSR(B) = ] Z Z(bij —big —brj +brs)*. (2)

i=1 j=1

Time complexity analysis. The calculations of b;; Vi € I, br;Vj € J and

brs require O(|I]|J|) steps. The sum of all squared terms also requires
O(|I]]J]) steps. Overall, the time complexity of MSR is O(|I||J]).

3. Mean Absolute Residue (MAR) [28] is also based on the shifting bicluster

model. The only difference between MAR and MSR is that MAR takes

the absolute difference between the bicluster elements and their expected

values predicted by the row, column and bicluster means. It is defined as:

|| |J]
1
MAR(B):WZZ|bij*bi(]*bIj+b1J‘- (3)

i=1 j=1

Time complexity analysis. MAR has the same time of complexity of MSR,
which is O(|I]|J]).

4. Relevance Index (RI) [29] identifies the constant columns pattern based

on the local and global variances of the columns in the bicluster. It is

formulated as: "
J

RI(B) =Y R, (4)
j=1

where )
o7,

o7; is the variance of the j column of B and o7 is the variance of the

jt column of the full dataset.

Time complexity analysis. The calculation of each o7; costs O(|I]). The
calculation of each o7 costs O(N). Therefore, any R; requires O(|I]) +
O(N) = O(N) steps. Since B has |J| columns, the complexity of RI is

O(N |J])-
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5. Constancy by rows (C,) [25] quantifies the agreement of a bicluster with

the constant row pattern:

=1 |1 Bl

cr<B>=ﬁ 3% S - b2 (6)

i=1 k=i+1 \ j=1
Time complezity analysis. The sum of the squared terms costs O(]J]). In
a bicluster, there is a total of (|I| (|| —1))/2 = O(|I|?) pairs of rows.
Overall, C, runs in O(|I|?|J]).
6. Constancy by columns (C,) [25] expresses the extent to which the values
of a bicluster present a constant column pattern. It is the transposed

version of C,..

Time complexity analysis. Since C. is the transposed version of C,., its
time complexity is O(|I]|J]?).

7. Overall Constancy (OC) [25] minimizes its value when evaluating constant
biclusters. For such, it integrates the constancy by rows and the constancy

by columns formulae:

_ ICw(B) +]J|Ce(B)
]+ 1]

OC(B) (7

Time complezity analysis. Since it requires the calculation of C, and C,,
OC runs in O(max(|I|? |J], |I||J]|?)).
8. Scaling Mean Squared Residue (SMSR) [21] is a modification of the MSR

measure that is able to detect scaling biclusters:

1] |J]
1 (biybrj —bijbry)?

SMSR(B) = ﬁE § g2 b27 . (8)

[[|J] = 4 7 07

i=1 j=1 ? J

As in MSR, smaller values indicate biclusters that better suit the desired

model.

Time complexity analysis. SMSR requires the same quantities as MSR
and MAR (b;;Vi € I, by;Vj € J and byy) to determine the differences
among the values of the bicluster elements and their expected values.

Therefore, the complexity of SMSR is O(|I||.J]).
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9. Minimal Mean Squared Error (MMSE) [26] is based on the shifting, scaling
and shifting-scaling models. Its authors argue that it is better suited than
previous measures, such as MSR and SMSR, to identify negative correlated
linear patterns. This measure is formally expressed as:

11 1]
MMSE(B) = 7 D i = Amax(DDT) |, (9)

i=1 j=1
where d;; = b;; — b7, D is the matrix containing all d;; elements, and
Amax(DD7T) is the eigenvalue of DD with maximum absolute value.
The time complexity of MMSE is O(min(|I|,|J|) |I||J|). The complete

analysis is provided in the original paper.

3.2.2. Correlation-based measures

These measures assess the similarity between gene/sample behaviors, instead
of the magnitudes or deviations among their values [7]. For such, they use either
the Pearson or the Spearman correlation to measure gene/sample similarities.
In this paper, the former is denoted as r(-,-) while the latter is represented as
p(+,-). In addition, the i*" row and the j** column of B are denoted as b;, and

b.j, respectively. These measures are detailed next.

1. Average Correlation (AC) [23] was proposed to detect shifting, scaling and
shifting-scaling biclusters by calculating the average Pearson correlation
between its rows:

=1 |1

AC(B) = =y 30 D i) (10)

i=1 k=i+1
Time complexity analysis. The calculation of each (b, b ) costs O(|J]).
There are |I| (|[I|—1) /2 = O(|I|?) pairs of rows in B. Overall, AC requires
O(|I|*|J]) steps.
2. Sub-matriz Correlation Score (SCS) [30] was proposed to detect shifting
or scaling patterns. It takes into account correlations between rows and

between columns. The ideal bicluster would present strong correlations
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on both dimensions. SCS is formally defined as:
SCS(B) = min{S,ow(B), Sco1(B)}, (11)

where

1]
B = i *9 * 12
Srow( ) 'L:{I:nn,\ﬂ { Z |T bz bk } ( )

[7]
Scol(B):]:m. |J|{ *]a *l } (13)

Time complexity analysis. The calculation of each r(b;.,brs) and each
240 7(bsj, bur) costs O(]J|) and O(|I]), respectively. The calculations of all Syow
values and all S.o values require O(|I|? |.J|) and O(|I||J|?) steps, respec-

tively. Overall, the time complexity of SCS is O(max(|I|?|J],|I]|J]?)).
3. Awverage Correlation Value (ACV) [20] was designed to identify shifting or
scaling models. For such, it gives higher values for biclusters containing

rows or columns presenting a strong average Pearson correlation value:

-1 1|
ACV(B) = {III S DD Ir(bie i)l

1=1 k=i+1

[J]-1 |J]| (14)
|J| |J‘—1 Z Z |7' *7 *l
Jj=1 l=7+1

Time complexity analysis. The average absolute correlation among the

rows of B requires O(|I|?|J|) steps. The average absolute correlation

225 between the columns of B costs O(|I||J|?). Therefore, ACV runs in
Omax(|1]2 |J1, 1] |J2)).

4. Average Spearman’s Rho (ASR) [31] was proposed to overcome any sen-

sitivity of the ACV measure due to using the Pearson correlation. It is

formulated as:
[I]-1 |1
ASR(B )_max{I T > D plbie i),
| | ‘ ‘_ 1=1 k=i+1
[J]=1 |J|

[J1(J1 1) \Jl—l 2, 2 bt

=1 l=5+1
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Time complexity analysis. The Spearman coefficient measures the correla-
tion between the ranks of the elements of two vectors. For such, it requires
a sorting step, which can be performed in O(nlogn) for n elements. Thus,
each p(bi«, b ) and each p(b.;, byy) cost O(]J|log |J|) and O(|I|log|I|), re-
spectively. The first argument of max runs in O(|]?|.J|log|J|). The latter
argument of max requires O(|J|?|I|log|I|) steps. Overall, ASR runs in
Omax(|1[? ] log |J], |72 1] og | 1])).

5. Spearman’s Biclustering Measure (SBM) [24] was introduced to detect
shifting or scaling patterns by calculating the average Spearman correla-
tion coefficient between the rows and columns of a bicluster and weighting

their influences in the final result. Formally, this measure is defined as:

SBM(B) = ¢(B) w(B) p1(B) ps(B), (16)
where
9 l7]=1 |1
pr(B) = T ; k:Zm |9(bi, b, (17)
9 [J]—1 | J]
pa(B) = D] ;1 l:]ZH |p(bsj; bl (18)

¥(B) and w(B) are hyperparameters that refer to the importance of the
rows and the columns of a bicluster. Their values are set by the user. In
this paper, we used w(B) = 1 and

1, if |J] > 9,

J

U otherwise,
which are the default values used by the original authors.
Time complezity analysis. SBM is calculated in constant time after p;(B)

and py(B) are obtained. Therefore, SBM has the same time complexity
of ASR: O(max(|I|?|J|log|J|,|J|?|I|log|I])).

In [7], the Pearson correlation was also included in this category. However,

this measure can only be calculated between pairs of rows or pairs of columns and
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not for a whole bicluster. The authors did not mention how they summarized
all the Pearson correlation values for gene or sample pairs of a bicluster. The
most simple approach would be to return the average value. However, this is
exactly what the AC measure does. For this reason, the Pearson correlation

was not considered as a bicluster coherence measure by itself in this study.

3.2.8. Standardization-based measures
These coherence measures are based on standardization evaluation of the
bicluster’s rows/columns tendencies by scaling their values to make them com-
parable [7]. Thus, these measures are calculated on the standardized bicluster
B’, whose elements are defined as:
b=, (20)
where j; and o; are the mean and the standard deviation of the i** row (gene)

of B, respectively. These measures are detailed next.

1. Mazimal Standard Area (MSA) [19] defines a band for the set of columns
of a bicluster, which corresponds to the maximum and minimum values
of each column. The value of MSA is the total area of this band. This
measure, which has been applied to detect shifting or scaling bicluster
patterns, is defined as:

lJ]-1 B’ . B’ B’ . B’
max; —miny -+max;; — g,

MSA(B) = > 5 : (21)

=1

’ . / . . .
where maxf and mlnj3 correspond to the maximum and minimum values

of the jth column of B’, respectively.

Time complexity analysis. maxf/ and mim;3 " require O(|I]) steps. Since
we have |J| columns in the bicluster, MSA runs in O(|I||.J]).

2. Virtual Error (VE) [I8] calculates the difference between the bicluster
elements and a virtual row (gene) pattern that captures the general trend

of the bicluster values [7]. It is minimized when evaluating biclusters with
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shifting or scaling patterns. This measure is defined as:

1]

VE(B) = 7 30 I~ (22)

i=1 j=1

where p is the mean row vector of B, and p’ is its standardized version.

Time complexity analysis. p requires O(|I]|J|) steps to be calculated. The
standardization of B takes O(|I||.J]) steps. The standardization of p costs
O(]J]). The absolute differences between the elements of B’ and the ele-
ments of p’ require O(|I]|J]). Overall, VE runs in O(|I||J]).

3. Transposed Virtual Error (VEt) [22] is the VE measure applied in BT, Tt
is able to detect all the patterns identified by VE and also the shifting-

scaling pattern.

Time complexity analysis. VEt requires the same number of steps as VE:

o(171)-
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3.8. Algorithms

To investigate the behavior of the coherence measures, we selected 10 bi-
clustering algorithms often used in the literature, which have already been ex-
tensively studied and have free implementations which are publicly available.
These algorithms are based on different formulations and use diverse types of
heuristics (e.g., greedy, divide-and-conquer, exhaustive enumeration, etc.) to
deal with biclustering tasks. Hence, they are able to identify different types
of bicluster patterns and bicluster structures (e.g., exclusive row or column bi-
clusters, non-overlapping biclusters in checkerboard structures, arbitrarily posi-
tioned biclusters, etc.). Thus, they model different particularities of a dataset
and reduce the bias towards a specific coherence measure when evaluating the

identified biclusters. These algorithms are:

e Cheng and Church’s Algorithm (CCA) [6], which starts with the full data
matrix as a bicluster. Next, it iteratively prunes rows and columns out
of the bicluster, minimizing the MSR measure, until it satisfies a desired
threshold. As a last step, some rows or columns are added back to the

bicluster as long as they do not violate the MSR threshold.

o Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) [4], which
constructs a bipartite graph for the dataset, where one set of vertices
represents the genes and the other set corresponds to the samples. Next,
based on a likelihood model, it enumerates the most significant complete
bipartite subgraphs (bicliques). Each biclique corresponds to a bicluster

in the final solution.

e Order Preserving Sub-Matriz (OPSM) [32], which mines biclusters con-
taining columns that induce a permutation where the values of each row
strictly increases. The search procedure is performed by a greedy heuristic

guided by a probabilistic score.

e Spectral [33] which searches for constant biclusters organized in a checker-

board structure. For such, it applies the singular value decomposition to
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the input matrix. Then, it clusters rows and columns independently by
projecting them on their best partitioning eigenvectors and applying the

k-means algorithm.

o Plaid [34], which represents a set of biclusters as a sum of linear layers plus
an additional layer that models noise and background effects in the data.
The optimization problem consists of a sum of squared errors minimization
between the plaid model and the data, which is solved by a binary least

squares algorithm.

e Binary Inclusion Mazimal Biclustering Algorithm (Bimax) [11], which dis-
cretizes the input dataset into a binary matrix based on the threshold
(min(A) +max(A)) /2, where min(A) and max(A) indicate the maximum
and minimum values of the matrix. Next, it searches for upregulated
biclusters whose values are all equal to one, using an enumerative divide-

and-conquer approach.

e Bayesian Biclustering (BBC) [35], which assumes the plaid model for the
input dataset, but restricts the overlap between biclusters to occur only
in genes or only in samples. For the plaid model fitting, it uses a Gibbs

sampling procedure.

e Large Average Submatrices (LAS) [36], which assumes a Gaussian random
matrix as a null model for the data and searches for biclusters with average
values that significantly deviate from such a model. For such, it uses a
greedy procedure to optimize a Bonferroni-based significance score that

takes into account the size of a bicluster and its average value.

e Qualitative Biclustering (QUBIC) [37], which represents the data as a
graph, with genes as vertices, edge weights equal to the number of sam-
ples for which two genes are similar. The algorithm consists of a greedy
procedure that extracts biclusters that correspond to heavy subgraphs
where the genes present similar expression patterns in the same subset of

samples.
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340 e Factor Analysis for Bicluster Acquisition (FABIA) [38], which assumes a
sum of multiplicative layers for a dataset, where each layer represents a
different bicluster, plus a noise layer. To fit this model, FABIA uses an

expectation-maximization approach for likelihood maximization.

In Table we summarize the software packages used to implement the
us  algorithms used in the experiments of this paper. The algorithms are available in
R, Java, C and Python packages. In the experimental phase, we used biclustlib

[15], which is a Python library that provides wrappers for these implementations.

Table 2: Algorithms’ software packages.

Algorithm Language Availability

CCA R https://cran.r-project.org/web/packages/biclust/index.html
SAMBA Java http://acgt.cs.tau.ac.il/expander/
OPSM Java https://sop.tik.ee.ethz.ch/bicat/

Spectral Python https://scikit-learn.org/stable/

Plaid R https://cran.r-project.org/web/packages/biclust/index.html
Bimax R https://cran.r-project.org/web/packages/biclust/index.html
BBC C http://www.people.fas.harvard.edu/~junliu/BBC/

LAS Python https://github.com/padilha/biclustlib

QUBIC C https://github.com/maqin2001/qubic

FABIA Python https://github.com/bioinf-jku/pyfabia

8.4. Data Collection

The experiments were performed using 19 datasets associated with the Sac-

w0 charomyces cerevisiae organism, one of the organisms most comprehensively
studied in biology and, as a consequence, with extensive and high-quality Gene
Ontology information available [T1L [39]. This collection consists of the main
biclustering benchmarks of this organism available in the literature. They are

represented by dense real-valued data matrices obtained from time series mi-
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croarray experiments, including the datasets used in [6]E| and [ll}ﬂ included
in most biclustering studies, and the benchmark of 17 datasets introduced by
[40]E|, whose data were systematically collected from previous gene expression
data analyses studies [41 42| [43] and were already used in clustering [44] and
biclustering [15] analyses. The main aspects of these datasets are summarized

in Table Bl

Table 3: Gene expression datasets.

Name # of genes  # of samples Reference
Alpha factor 1099 18 [40]
Cde 15 1086 24 [A0]
Cde 28 1044 17 0]
Elutriation 935 14 [40]
1mM menadione 1050 9 [40]
1M sorbitol 1030 7 [40]
1.5mM diamide 1038 8 [40]
2.5mM DTT 991 8 [40]
Constant 32nM H202 976 10 [40]
Diauxic shift 1016 7 [40]
Complete DTT 962 7 [40]
Heat shock 1 988 8 [40]
Heat shock 2 999 7 [40]
Nitrogen depletion 1011 10 [40]
YPD 1 1011 12 0]
YPD 2 1022 10 [40]
Yeast sporulation 1171 7 [40]
S. cerevisiae 2993 173 [11
Tavazoie 2884 17 [6]

Thttp://arep.med.harvard.edu/biclustering/
%https://sop.tik.ee.ethz.ch/bimax/
Shttp://lapad-web.icmc.usp.br/repositories/ieee-tcbb-2013/index.html
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3.5. External Bicluster Evaluation Measures

For the external evaluation, we performed the gene enrichment analysis of
the biclusters found using the Gene Ontology (GO)E| [45] knowledge base, which
provides three ontologies: Biological Process, Molecular Function and Cellular
Component. Each ontology contains a structured general vocabulary comprising
”is-a” and ”part-of” relationships between its terms to describe the role of the
genes in an organism [46].

In this study, we performed four different analyses using the GO database:
(i) using all the three ontologies; (ii) using only the Biological Process ontol-
ogy; (iil) using only the Cellular Component ontology; and (iv) using only the
Molecular Function ontology. For each analysis, after identifying the GO terms
in each bicluster, the Fisher test was applied to assess the over-representation
of each term [4} 1T}, 37, [15]. In this study, a GO term was considered significant
in a bicluster if its p-value, after performing the Benjamini and Hochberg mul-
tiple test correction [47], was lower than 0.05 [13, [I5]. Three different measures
were extracted for each bicluster containing at least one significant term [7]: the
mean p-value, the best p-value and the number of significant terms. The exper-
iments investigated correlations of these quantities with the coherence measures

discussed in Section 3.2

3.6. Ezxperimental methodology

Briefly, the experimental methodology has 6 steps, which are illustrated in
Figure [I] We will now explain each step.

Given a dataset X;, two different scenarios were considered in step (1) before
applying any algorithm and coherence measure. In the first scenario, the features
(samples) of each dataset were standardized to zero mean and unit variance. In
the latter scenario, the algorithms and coherence measures were applied to the

original (non-normalized) data.

Ihttp://www.geneontology.org/
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Figure 1: Experimental methodology followed to obtain the results of the coherence and GO

measures.

In step (2), the selected algorithms were run on both versions of X;. Deter-
ministic and non deterministic algorithms were selected for this study. For each
dataset, the deterministic algorithms (SAMBA, OPSM, Bimax and QUBIC)
were run once, while the non deterministic algorithms (CCA, Spectral, Plaid,
BBC, LAS and FABIA) were run 30 times.

In step (3), the biclusterings found by each algorithm were compared with
the GO external evaluation. Four different scenarios were considered for the
GO evaluation, which are illustrated in step (4): (i) using all GO ontologies
(ALL); (ii) using only the Biological Process ontology (BP); (iii) using only the
Cellular Component ontology (CC); and (iv) using only the Molecular Function
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ontology (MF).

Given that 6 out of the 10 investigated algorithms are non deterministic,
a pre-established procedure was adopted to select which of their biclusterings
would be analyzed for each dataset. In step (5), two different approaches were
followed. The first, called ”count”, selects, for each dataset, the biclustering
solution that contains the median number of significant biclusters. The second,
called ”prop”, selects, for each dataset, the biclustering solution that contains
the median proportion of significant biclusters for the total number of biclusters
in the solutiorﬂ Both approaches do not discard empty biclustering solutions
to calculate the median.

Finally, in step (6), the 17 coherence measures from Section and the 3
GO measures from Section [3.5] are calculated for each bicluster containing at

least one significant GO term, according to the GO scenario being considered.

3.7. Hyperparameter values used for the algorithms

The hyperparameter values used in this study were usually based on the de-
fault settings used or recommended by the original authors of each algorithm.
However, to achieve results that best fit the investigated scenarios, they were
modified for some of the biclustering techniques. These modifications are ex-
plained next.

CCA requires a maximum MSR threshold § to produce biclusters. This
quantity is usually different from one dataset to another. In this paper, § =
(max(A4) — min(A))?/12 x 0.005 [48], where max(A) and min(A) indicate the
maximum and minimum values of a dataset, respectively. This setting provides
an approximation for the ¢ values considered in the original work of Cheng and
Church [6].

Before running its Gibbs sampling procedure, BBC normalizes the dataset.

The interquartile range normalization (IQRN) on the features proposed by its

5This approach is different than ”count” because it is not guaranteed that the heuristic

adopted by each algorithm will always return the same number of biclusters.
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original authors was not used here. Instead, we used the zero mean and unit
variance normalization for the scenario of normalized data, to be in accordance
with the other algorithms used in this study.

For the number of biclusters, 7 algorithms (CCA, Plaid, Bimax, BBC, LAS,
QUBIC and FABIA) were executed to search for 30 biclusters in each dataset.
Spectral was run to search for 15 gene clusters and 2 sample clusters. The other
algorithms (SAMBA and OPSM) do not receive the number of biclusters as a

hyperparameter. Thus, all biclusters returned by them were considered.

4. Results and discussion

Overall, we evaluated 16 different experimental scenarios, by combining: 2
versions of the datasets (normalized and non-normalized), 4 ontology analyses
(ALL, BP, CC and MF), and 2 approaches to select biclusterings generated
by non deterministic algorithms (”count” and ”prop”). For each scenario, the
biclusters found by all algorithms in all datasets were initially concatenated
in an array. Next, the Pearson and Spearman correlations were calculated for
the previously discussed coherence and external measures. The results are il-
lustrated as heatmaps in Figures [2| and |3] where each element corresponds to
the correlation value. To save space, only the correlations with the ”count”
approach, normalized data, and the three GO ontologies (ALL) are shown. The
other 15 scenarios achieved similar results in most cases, allowing us to draw
similar conclusions. Their respective figures are available in our supplementary
material®l Minor differences are discussed in the text.

According to Figures [2 and [3] the measures from the external evaluation
are not strongly correlated with any coherence criterion. These results were ob-
served for all investigated scenarios. Therefore, biclusters with high biological
significance from the GO point of view do not necessarily imply in good values

for the coherence measures. Thus, it may be feasible to recommend using mul-

Shttp://padilha.github.io/asoc—2019-suppl
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Figure 2: Results of the Pearson correlation using normalized data, all ontologies and the

”count” approach.

tiple bicluster coherence criteria to complement the GO analysis. As a result,
the biclusters will also be evaluated by a set of predefined patterns of interest
and one can carefully inspect the quality of their trends.

455 It can be seen that some coherence criteria presented similar behavior accord-
ing to the correlations. Measures that must be either maximized or minimized
were selected. Thus, the interest is in strong correlations that can be either pos-
itive or negative. From the results, a few pairs of strongly correlated measures,

with a correlation above 0.9 or below —0.9, can be extracted:

460 e (OC, C,), (SCS, ACV) and (VE, AC) for both correlation coefficients in

all experimental scenarios;
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Figure 3: Results of the Spearman correlation using normalized data, all ontologies and the

2]

”count” approach.

e (MSR, MAR) for Spearman in all scenarios and for Pearson in all scenarios
with normalized data and in the scenario with non-normalized data and

MF analysis;

465 e (VAR, C,) and (VAR, OC) for the Pearson coefficient in all scenarios using

non-normalized data;

e (VAR, C.) and (MSA, C.) for the Pearson coefficient in all scenarios with

normalized data; and
e (MSR, MMSE) for the Pearson correlation in all experimental scenarios.

470 It can be observed that the strong correlated pairs contain measures that
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detect similar patterns. To avoid using paired criteria in the same application,
since their results will be redundant, the one that is able to detect the most
general numeric patterns is recommended.

Some evidence can be found that data normalization may be determinant
in the behavior of some pairs of measures. This result was expected, since the
algorithms do not return the same biclustering solutions when dealing with non-
normalized or normalized data. Moreover, normalized data may alleviate the
influence of different feature scales or outliers in the behaviors of the measures.

In addition, the correlations between measures might be different when con-
sidering different ontology scenarios for the enrichment, as was observed for
(MSR, MAR) and the Pearson correlation.

Real applications may benefit from favouring measures with the lowest com-
putational complexities. Table [I| summarizes the investigated measures and
their computational complexities. Even if two coherence measures present lower
correlations (e.g., around 0.7 or 0.8), those with lower complexity should be pre-
ferred, especially if a large number of biclusters is evaluated. From this table,
the measures with the lowest complexities are: VAR, MSR, MAR, SMSR, MSA,
VE and VEt.

The difference between the results from the Pearson and Spearman corre-
lations, shown in Figure 4l were also analyzed. The difference observed was
low for many pairs, which indicates that the two correlations were compatible
in most cases. To statistically validate this finding, the Wilcoxon signed-rank
test was applied to the difference matrix. Under a significance level of 0.05 no
statistical evidence of difference was found, which supports the agreement of
the correlation matrices. We repeated the Wilcoxon signed-rank test on each
of the other 15 experimental scenarios. In all cases, we did not find statistical

evidence to reject the null hypothesis.
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Figure 4: Difference between Pearson and Spearman correlations.

5. Conclusions

This paper extended the work of [7] by investigating the behavior of 17 biclus-

soo  ter coherence measures. We applied them to the results of 10 well-established

biclustering algorithms. Our experiments were performed on a benchmark of 19
Saccharomyces cerevisiae time-course datasets.

The correlations among the coherence and the external GO criteria were an-

alyzed using the Pearson and Spearman coefficients. According to the analysis,

sos external GO evaluations did not agree with any coherence measure. These re-

sults suggest that a high GO significance does not automatically imply in good

evaluations with coherence criteria. Besides, GO information may be incom-

plete [25]. Thus, the use of bicluster coherence measures together with the GO
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analysis may be a better alternative to achieve more concrete conclusions.

These results conflict with those from [7], which claimed that the coher-
ence measures present some dependence with the external biological measures.
However, since this study employed 10 different algorithms, it reduced the bias
regarding the evolutionary algorithm used in [7].

Overall, we analyzed 16 different experimental scenarios, which included:
normalized and non-normalized data, evaluation using all GO ontologies, and
2 different approaches to select the results of non deterministic algorithms. We
observed that normalization and the GO validation approach may be deter-
minant, since some pairs of measures presented strong Pearson correlations in
scenarios using either normalized or non-normalized data and specific ontologies
for the enrichment.

In practical applications, the users of the measures must take into account
the types of correlations among measures that they want to avoid. For such,
we advise them to consider as similar only the pairs that presented a strong
correlation in all scenarios for the desired coefficient (Pearson or Spearman)
and data type (normalized or non-normalized).

This study also presented the time complexity analyses of the measures,
usually not provided in their original studies. In many applications, the time
complexities may be an important reason for choosing some measures rather
than others. Mainly when a large number of biclusters need to be evaluated
and/or the biclusters may be constituted by a large number of rows and columns,
measures with the lowest complexities may be preferred.

Finally, the choice of the most appropriate bicluster coherence measure must
also take into account the task to be solved. In a few practical scenarios, one
may favor particular types of patterns compared to others and/or may prioritize
measures with lower computational complexities. However, the use of hetero-
geneous measures allows the analysis of biclusters with different points of view.
According to the experimental results reported in this paper, it is possible to
avoid selecting a set of measures that present redundant behavior and may not

bring new insights to the analysis.
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