


GLOBAL EXISTENCE OF PERIODIC TRAVELLING WAVES
OF AN INFINITE NON-LINEARLY SUPPORTED BEAM
1. CONTINUOUS MODEL

STANISLAV FURTA AND PAOLO PICCIONE

AnsSTRACT. The paper deals with problems of existence of periodic trav-
elling wave solutions with non-small amplitudes of 2 PDE describing
oscillations of an infinite beam, which lies on a non-linearly elastic sup-
port. Such solutions are in fact critical points of a functional on a suit-
able functional space. By means of 2 minimax variational technique, the
authors found a domain in the parameter space for which there exist

periodic travelling waves of a certain fixed period T.

1. INTRODUCTION

Motions of an infinite beam lying on a dense support obeying a non-linear
deformation law can be described by means of the following PDE
2y &y, 0y . _
1.1) 6t2+6z4+’\63:2+k y— By’ =0.
Here parameter A is responsible for pre-stress effects and k2, B describe prop-
erties of the support. If B is positive than the support is called softening
and it is called hardening otherwise. The problem of existence of travelling
waves of different shapes for equation (1.1) was posed by a well-known spe-
cialist in non-linear mechanics, Professor of the University Colleage of London
] .M.T.Thompson and up to now has been considered only from the local point
of view in papers [1, 2]. In Part II of this paper we will show how one can
obtain the above equation (1.1) as a limit of a chain of ODEs describing os-
cillations of material particles connected by means of elastic springs. Here we
will not pay special attention to a physical model directly resulting in (1.1).
The usual substitution y(z,t) = u(z — vt) gives us travelling wave solutions
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of equation (1.1), where v is a prescribed speed of the wave. The function u
obtained obeys a simple ODE of 4th order
du  d%y

(1.2) HF+0’?3—.‘,-+k2u-— u3=0,

where a new parameter o = A + v?, not necessarily positive, is introduced.
We will search for periodic travelling waves, i.a. for smooth 5 periodic so-
lutions u(s), u(s+X) = u(s) of equation (1.2) with a certain prescribed period
L. After scaling the independent variable and parameters of the problem, we
can look for only 27-periodic solutions of (1.2).
Any 2n-periodic function can be developed into Fourier series

00
u(s) = %+Z(a,,cosns+bnsinns) .

n=0
It is obvious that if 8 > 0, ( 1.2) has evident constant solutions

k
u4. =iﬁ

Further, (1.2) is invariant under translations s =+ s+5 and if u(s) is a desired
solution, then u(s+.S) is also a desired solution. So, it would be reasonable to
fix the nodes of the wave in the s-space. That equation is also invariant under
mirror-symmetry reflections u — —u and 8+ —s which makes it possible to
consider either even or odd solutions, That is why to avoid constant solutions

oo
(1.3) u(s) = Z Uy, 8in ng
n=1
In 2] the authors investigated local behaviour of periodic travelling waves
and showed that all the periodic waves bifurcating from the trivial solution
u(s) = 0 can be obtained by means of a spatial shift from those which can be
developed into the Fourier series (1.3).
It is easy to show that equation (1.2) admits a variational formulation.
Indeed, since u(0) = u(x) = u”(0) = u”(r) = 0, classical solutions of (1.2)
are critical points of the functional

x
(1.4) Ifu) = %/ (u”2 —ou’ + k2u? — gu“) ds — extr.
0

It is worth noting that critical points of I[u] appear symmetrically: if ¢ is
a critical point, then —4 is also a critical point.
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The main result can be formulated as follows.
Theorem 1. For a sofiening support (B > 0) the functional 1 [u] has an
infinite number of critical points which are classical solutions of (1.2) and can
be developed into the Fourier series (1.3) for any values of parameters o, k, B.
If the support is hardening (8 < 0) then the functional I[u] has at least N
'symmetric’ critical points for any fized k, B ifo > nZ+k?/n? n=12,.,N.

9. FUNCTIONAL SETTING

Since we are interested only in solutions of the variational problem (1.4)
and correspondingly of equation (1.2) which can be expanded into the Fourier
series (1.3), we have to construct a suitable functional space which a desired
solution belongs to. Let us consider a scale of Hilbert spaces HJ[S*] with
9 € R obtained by closing the space of functions from C*[S'] which can be
developed into the series (1.3) with respect to the norms associated with the
following scalar products

(2.1) (u, v)o = in“unv,,,

n=1
where un, Un are the corresponding Fourier coefficients for a pair of functions

u(s), v(s)-

It is not difficult to note that for positive integers & = m the norms gener-
ated by scalar products (2.1) can be rewritten as follows

o 1/2 x
(2.2) [lulle = (E nzauf,> = (%—/o (u("')(s))2 ds)ln.

n=1
It is easy to see that for any positive integer even m and u € HY[S!] the m-th
derivative u(™ belongs to HY_,.[S"] and

(2.3) ™ fo—m = Hlullo-

In fact, we identify our spaces of functions with the spaces of sequences of
their Fourier coefficients. We will use also spaces of odd functions on st
Lo4[s'] = HY[S'1N L2[S!], ¢ > 2 with standard norms

(2.4) = ([ lu(s)l"ds)”q

and Co[S'] = HY[S']N C[S$] with the norm
(2.5) Hullleo = sup fu(s)l-



4 STANISLAV FURTA AND PAOLO PICCIONE

To proceed further, we need to use Some properties of the spaces introduced,
They are formulated in the following lemmas.
Lemma 1. For any 61,0, € R, 4, < b2, HY [S'] < HP [S'), where the
$ign 5 means compact embedding, and for any u € Hy [SY] the Jollowing
snequality holds

”‘ll”g, < "u”h'

Lemma 2. Foranygc R spaces H{[S") and H?,[S"] are reciprocally con-
dugate ((HQ(S'))" = B0, [51)).
Lemma 3. For any @ > 1 and ¢ > 2 the Jollowing embeddings take place
L%9[S'] < HO[S!] and ColS') & HY[SY). There ezist also posttive constants
Co,q and Cp o, such that Jorenyue HJ[S"] the Jollowing inegualities hold

lllelllg < Co,glfulle,

lulllos < Co,colfuls.
Lemma 4. For any § > 0 and ¢ 2 2 the following embeddings take place
H?,[S!] & L[S and H?,[8] ColS?). There exist aiso positive con-
stants B_y,q and B_g ., such that Jor any u € LS oru € Co[S?] the
following inequalities hold

llull-s < B_q oljulll,,

lull-e < B-O.oo,”“moo-
The statements of Lemmas1 - 4 easily result from the Sobolev embedding
theorems on a segment [3] (see also {4]).
We will look for critical points of the functional J [u] belonging to the space
HY[S1].

3. ANALYSIS oF CRITICAL PoINTS

To prove that the variational problem (1.4) possesses critical points dif-
ferent from the trivial one u(s) = 0, we need to use some results related to
minimax methods in critica] point theory [5].

Theorem 2 (Generalized Mountain Pass Theorem). Let H be g reat Banach
space and I[u] be a real functional from C![H,R]. Let M0} =0, u=0beq
critical point, I be eyen (I[-u] =1 [u]) satisfy the Palats-Smale condition, If
additionally the Jollowing two conditions hold:
(i) the space H can be decomposed into a sum H = VX so that dimV <
oo and there are two positive constants p and « such that for any
v€EIB,NX
Ifu] > a,
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where B, = {u€H : lull < p} 15 @ centered closed ball in H of a
radius p; 5

(i1) for any ﬁnite-dimensional subspace H C H there exists a posilive
constant R(H) such that for any ¥ cH\B R(f)

Iu} €0,

then the functional I [u] possesses an infinite number of distinct pairs of non-
trivial critical points.

Minimax methods in the variational calculus is a powerful tool in sitnations
when functionals are not bounded from below. For bounded functionals we
can use another result which states the existence of nontrivial critical points
and their multiplicity [5)-

Theorem 3 (Generalized Clark’s Theorem). Let [ [u] be as above and addi-
tionally bounded from below . Suppose that

(iii) there i3 @ set KCH homeomorphic to a ﬁnite—dimensional sphere

SN-1 by an odd map, and
sup I{u] <0,
ueK
then the functional I [u] possesses at least N distinct pairs of nontrivial critical
points.

We will apply those general results to the variational problem (1.4). Let
us consider some important properties of the functional Ifu] required in the
above theorems. Obviously, I{0] = 0 and the functional I is even.

Lemma 5. [ € C'[H}[S'], R]
Proof. The functional [ can be rewritten in the following simple form I=
IW 4 J?) where

1 g

1) = & (i - ol + FlE), 190 = gl

Due to Lemmas 1 and 3 we have two chains of compact inclusions:

HY[S1] <> HO[SY] = H3IS'] = L°7(S7)
and

HO[S!] < H[S'] < L[S

That means that the functional I is well defined on HJ[S']. Let us now

calculate the Gateaux derivative of the functional 1), yweak TN [u} = uV +
su” + k?u. Since for any h € H3({S*]

‘I(l)[u + ) — IO - v;':“'v(l)[u]h\ =0,
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the quadratic functional /(1) jg Frechet differentiable and its strong derivative
VI coincides with the Gateaux derivative. Moreover, using properties of
spaces HY[S"], it is easy to prove that for any fixed u € HJ[S?], the element
VD] e H?,[S"]. Below we show that the strong derivative is bounded for
any fixed u in the sense of H?,[S']. Thus, as a linear operator V, I(N[y] g
L [H3[S'], R]. Here it is worth reminding that HC,[S!] = (H3[S'])" in
accordance with Lemma 2. Further, let us prove the continuity of V, 7(})[u]
with respect to u as an operator function from H3(S"] to HO, [S']. Indeed,

let h € HJ[S] and let
00
h(s) = Z h, sin ns

n=1
be its Fourier expansion. We need to consider the difference between two

operators
V.,I(l)[u + ] - Vuf(l)[u] = RV +ah” + k2p.

Then
oo 1/2
IVaI®lu+ B] = Vo IO, = (E n~}(n? - on? 4 kz)”‘f-) =
n=1
- 4 A AN 2 v 2
d'n l-n‘—2+n—4 h; < (L+ 1o} + E2)|{hjf,.
n=1

Hence, V, I(D[y] is continuous,
The Gateaux derivative of 7(2) 1s obviously equal to —8u3. Then for any

h € HI[SY]
(1 4 b} — 1)y Ve IO ulh| =

'4‘;’ (/' (6u?h? + 4urd + h*) ds[ <
0
'g—' (6/: u"'lzz’a’.s+4/(;1r lul|h]Pds +/o'h4ds) <
1’? (6 (./0' u4ds) - (/o' h‘ds) 7 +4 (/: u‘ds) v (/01r h"ds) 3/4+
for h4d8) = 'Lj-, (SHIlIZ N1BHIZ + 4ffjulifs IMANZ + A1) <

2103 4 (ol + lalls 1+ 1452) gz = o (A1)
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for any fixed u € H3[S'] as [|hll2 — 0. Here we used the Holder inequality

and the embedding properties from Lemma 3.

Thus, the functional I (2) is Frechet differentiable and its strong derivative
coincides with the weak one. Obviously, the element VI (2)[u] belongs to the
conjugate space H2,[S']. Further we need to estimate the remainder

VoI D+ h) — VoI [u] = —(3u” + 3uh + h")h.

Using Lemmas 3 and 4, we arrive at the following chain of inequalities
VIO + b = VIOl 2 < Boaolll VulPfu+ b = Vul Dl <
B_,0018] (3lllu?Allloo + 3lltuHloo + [[1%le0) <
B_2,00181 (3ll1ullZ 111210 + 3ilulloo l112I1% + NAlNZ) <
B—3.00181C2,00 (3l1ult? + 3llull2llAllz + 1B113) l1Rllz = O (lIhll2)

for any fixed u € H3[S"] as ||A]]z — 0.
The last thing we need to finish the proof is to check whether the operator

VoI[u] = uV +ou” + Ky — pu®
is continuous. But it is easy to see that the operator under consideration is

bounded and consequently, it is continuous. Indeed, using the identity (2.3)
and the embedding properties from Lemmas 3, 4, we obtain

IVuTfulll-2 < Nu™ll-2 + lolllu”ll-2 + K llufl-2 + 1] e®ll-2 <
lullz + lo) lullo + K2flull2 + 1BHIw®l|—2 <
lluflz + lo] futlz + K2llullz + B-22181 u’llla =
llullz + lo| ullz + Kllullz + B-22181 llullls <
lullz + lot lullz + K2llulla + B-2.21B1C3 sllull::
Thus, the operator VyI[u] is bounded. 0

Let us pass to the most difficult stage of the proof of Theorem 1, ie. we
need to prove that the functional J satisfies the Palais-Smale condition.

Lemma 6. Any sequence {ugp)}pz: € HY[S'] such that the sequence Hupll
is bounded while the sequence VyI[up)] — 0 asp — 00 contains @ convergent

subsequence {u(p;)}i=1-
Proof. We can split the process of checking the Palais-Smale condition into
two steps.

Step 1.

Lemma 7. Any sequence with the above properties is bounded in HI[SY].
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Proof. Let {u(,)}52, be such that |7 [u@py))l < M for a certain M > 0. Obvi-

ously, Ifug)] < M.
We first concentrate on a more complicated case g>0.

Since VyI{ugp)] — 0 as p = oo there is a number po such that for any
P > po the norm ||V, Iug,lll-2 < 1 and

Va1 [upluge)| < llugelz-
Consequently,

Vullugylup) > ~llug)ls.
For a fixed u € (3, ) we have the following inequality

M + pllug)llz > Tug)] - pVa[ug)ug) =
(3.1)

(37#) [ (667 = ot + ) o
8 (ﬂ - :i.) /o'(u(p))‘ds =2 (% = #) 1(1)[,,(”] -4 (” _ i) I(z)[u(p)].

Lemma 8. There ezist two constants § > 0, A > 0 such that for any u €
HJ[S"] the following estimate holds

(32) 10> 2 (81l - AJull?)

Proof. Let us consider an element u € H[S!] which can be expanded into
the Fourier series (1.3). Then
(=]

IMu] = g—}: (n* —on? + k) u2.

n=1
To have the desired estimate (3.2), we need to choose § and A so that for any
n the following inequality holds

x(n* —on? + k%) > snt - A.

That means that the discriminant of the following quadratic trinomial
(r—8)2? — xoz + (k% + TA)

should be positive as § < = which immediately results in the inequality

w02

J<z—4————(ﬂ_k2+A).
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By choosing A large enough, we can satisfy the above inequality. It is worth
noticing that if [o] < 2k, i.e. the speed of the wave does not exceed its critical
value (see [1, 2]), we can put A = 0. O

Hence, using inequality (3.2), we can rewrite (3.1) as follows

M+ w2 (5= 1) @l - Al 1)
63) 48 (n= >

1
(5 - #) Sllugliz + oy — 2by,

where the following notations are introduced

1 1/1
v=lluglle, a=8(n-7)>0 =1 (3-4)am5>0

Here we also used the embedding HY[$!] — L%*[S"] (Lemma 4). There is a
certain positive constant ¢ such that for any real y

ay? — 2by > —c.

For instance, we can choose ¢ > b%/a. Then (3.3) gives
dz* —pz—f <0,

where

1
z = |lug)ll2: d=5(§— )>0, f=M+c>0.

Since z is non-negative, 0 < z < Z4, where z4 is the positive root of the
equation dz? — pz —f = 0.

Thus, we have proved that the sequence {u@ylpzy 18 bounded.

The case f < 0 is much easier. Indeed, inequality Ifu()] < M and Lemma

8 gives us

1 2 n B 4 8,2
(34 M2 (8l1ult? — Allullg) - Z|||“|||4 > ‘illullz +my® — 2hiy,
where y'is as above and

A
ay = —-ﬁ- >0, b= ZBSA > 0.
By choosing ¢1 > b2/ay, from (3.4) we obtain the final estimate
2
ez < E(M +e1)-

Thus, the sequence {u(p)}p=1 13 bounded.
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Step 2.
Lemma 9. The sequence {u(p)}52, has a convergent subsequence {u(, N )5%-

Proof. We have to start with some technicalities. Let us consider the dif-
ferential operator D ~ 4. Obviously, operator D? maps spaces H)[S!] in

ds
HJ_,[S"].
Lemma 10. Operator D? is invertible.

Proof. Via the relation (2.3) the operator D? is an isometric one. Hence, it
is invertible. 0

Of course, any iterations of D? are invertible in corresponding spaces. Be-
low we will use operators D=2 and D~* for which we can even give explicit

expressions:

D~2y) (s ——}- s—7 'a'ua'dcr+s 'a—ruada
D4 §) = ~—-1 tso 2+a'2+ 2)u(e)do

- ([: o(c?® + 35 u(o)do + [‘ s(s® + 30'2)u(a')da') ) .

It is worth noticing that the operators D~2 and D~* treated as maps from
HY[S"] into itself are compact because the embedding HJ_,,[S!] — HJ3[SY]
for positive m is compact. Since

v
Vullug)] = (u) ™ + 0 (uey)” + gy — B (ug)® =0,
a3 p ~+ oo in the sense of HY,[S1],
D“‘V.,I[u(,,)] = U(p) — vp) = 0
in the sense of H?,[S!], where
Yp) = —a’D"zu(P) - kzD‘4u(p) + 8D~ (u@,))s.

The sequences D=2y, and D~*%u(,) are bounded in spaces H{[S"] and HY[S!]
respectively and compact in HY[S']. Due to Lemma 4, (u(p))s belongs at least

to H}[S'] and bounded in that space. Consequently, D~4 (u(p))a o
in H3[S'] and compact in H3(S"]. Hence, the whole sequence {v(,;)}o2, is
compact and contains a subsequence { V(p; )};?‘;1 converging to an element v, €
HJ[S"] as j — co. Therefore, U(p.) —* Uy @S § — 0O. O



PERIODIC WAVES 11

Thus, the functional I[u] satisfies the Palais-Smale condition. O

Let us start now checking conditions of Theorems 2 and 3. First, we will
prove that the condition () holds. Indeed, let N be a non-negative integer
number such that

nt—on?+k*<0,n=12,.,N, i —on?4+k?>0,n=N+1,N+1,....
Let us decompose H3[S'] as a direct sum HI[S'] = V& X, where
V = span{sin s,sin2s, ...,sin Ns},

which can be trivial, of course.

Lemma 11. There erists a positive constant § such that for any u € X the
following estimate holds

]
(3-5) O[] > 5llulfz-
Proof. Let
u(s) = Z U, sinns

n=N+1

be the Fourier expansion of a function u(s) from X.

[==]
QI 12’- Y (nt—on® +E)up.

n=N+1
We can take
. c kK
s < §n>Nf+1{1— ;2'4- ;}
and obtain the desired estimate. O

In accordance with Lemma 3
(3.6) mM——ﬂHM>—Eb&WW

Let J|ulls = pfora certain small p. Then using the inequalities (3.5) and (3.6),

we obtain
My >a=/’ (g-iﬂ ,w).

which is, of course, positive for any p small enough.
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Let us now prove that for any fixed k, o and 8 > 0 the conditjon (i) of
Theorem 2 holds. Indeed, let H be a finite-dimensional subspace of H3[S!].
Then it can be represented as follows

~

Q
H= {u D u(s) = Zun,sinnqs, I<nm<..< nq} ]
9=1
Let us consider the following set
u Q
0B;NH = {u E Zn;u;‘:' =1;.
g=1
Evidently,
ﬁ\BR= {u:rv, R<r<oo, v € 8B, nﬁ},
and
I[u] = P2 IW[y] + 1@y,
In fact, I™M[v], I®[v] are continuous functions of coefficients up,, ..., un, and

OB1NH is compact as a closed and bounded set in a finite-dimensional space.
Let us introduce the following notations

Y= min IM[y), 1@ = min_ [y},
#B,ni #BnH

Thus,
3.7) Ifu] < r? (I.(.l) + r21.(2)) .

Since I®[v] < 0 on 9B, NH if 8 > 0, then 1? < In principle, I{*) may
have both signs. If 1{!) is non-positive then we can put R(f-i) = 0. Otherwise,

we can take
~ e
R(H) = -Ifz) .

In this case, it immediately follows from (3.7) that
v <o,

which means that the condition (#7) of Theorem 2 holds.
Thus, all the conditions of Theorem 2 hold and the functional 1 {u] possesses
an infinite number of critical points for any values of parameters o, k, 8 if

B>0.
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It is easy to prove that for 8 <0 the functional J[u] is bounded from below.
Indeed, by arguing as in Lemma 7, we can obtain inequality like (3.4):

(38 1) > Sl + alluli - 2l

the estimate (3.8) obtained results in the following inequality
I[u] > —c1,

where ¢; > b%/ay, which means that I[u] is bounded from below.

Now we need to check the condition (#i) of Theorem 3. If o > n? +
k?/n?, n=1,2,..,N,then

nt—-on2+ki<0,n=12.,N.

We will denote an N-dimensional subspace of HY[S"] spanned on functions
{sin s,sin2s, ..,sinNs} as W. Let K = 8B, N'W for a certain small r >
0. It is easy to see that K can be obtained from the unit sphere SN-1 by
contractions in basis directions. Then we can mirror-symmetrically map the
sphere into itself. The composition of those two maps will be odd. Let us put

o k?

5_:——sup{1—;'2'+-n—4}>0.

Then for any u € K

I(l)[u] < —é_r2.
By using the embedding properties from Lemma 3, we obtain the following
estimate

1) < log o
Hence, for a small but fixed r > 0 we have I[u] < 0 and

sup I[u] <0,
veK

since K is a compact set.

Thus, the condition (iii) of Theorem 3 is satisfied and for a hardening
support (8 < 0) the functional I[u] has at least N distinct pairs of critical
points in H3[S!] for any values of parameters k,f and o > n? 4+ k%/n? n=
1,2,..,N. :

To finish up the proof of Theorem 1, we need to show that the obtained
critical points correspond to classical solutions of (1.2). Let u € HY[S'] be
a critical point of the functional 1 [u}, then (1.2) holds in a weak sense, 1.a.
in the sense of the space H?,[S']. By applying the operator D~*, we obtain
that u must satisfy the following integral equation in the space HI[S):

(3.9) u=—oD 2u— kKD *u+ BD~ %3,
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Obviously, if u € H[S!], then D~2y ¢ HJ[S"), D~*u € HY[S"] and at least
D~*u® € HY[S"], which means that the above solution is classical. Evidently,
we can show that u even belongs to C>=[Ss1).
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