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GLOBAL EXISTENCE OF PERIODIC TRAVELLING WAVES 

OF AN INFINITE NON-LINEARLY SUPPORTED BEAM 

I. CONTINUOUS MODEL 

STANISLAV FURfA AND PAOLO PICCIONE 

ABSTRACT. The paper deals with problems of existence of periodic trav­

elling wave solutions with non-small amplitudes of a PDE describing 

oscillations of an infinite beam, which lies on a non-linearly elastic sup­

port. Such solutions are in fact critical points of a functional on a suit­

able functional space. By means of a minimax variational technique, the 

authors found a domain in the parameter space for which there exist 

periodic travelling -ves of a certain fixed period E. 

1. INTRODUCTION 

Motions of an infinite bea.m lying on a dense support obeying a non-linear 

deformation Jaw can be described by means of the following PDE 

a2 y a4y a2 y 2 

(LI) &t,2 + 8z4 + A 8z2 + k y- py3 = 0. 

Here parameter A is responsible for pre-stress effects and k2, fJ describe prop­

erties of the support. If fJ is positive than the support is called softening 

and it is called hardening otherwise. The problem of existence of travelling 

waves of different shapes for equation (I.I) was posed by a weB-known spe­

cialist in non-linear mechanics, Professor of the University Colleage of London 

J .M.T.Thompson and up to now has been considered only from the local point 

of view in papers (1, 2]. In Part II of this paper we will show how one can 

obtain the above equation (1.1) as a limit of a chain of ODEs describing os­

cillations of material particles connected by means of elastic springs. Here we 

will not pay special attention to a physical model directly resulting in (1.1). 

The usual substitution y(z, t) == u(z - vt) gives us travelling wave solutions 
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2 STANISLAV FUfil'A AND PAOLO PICCIONE 

of equation (1.1), where 11 is a prescribed speed of the wave. The function u obtained obeys a simple ODE of 4th order 
d4u d2u 2 3 {1.2) ds4 + (j ds2 + k u - {Ju = 0, 

where a new parameter (J' == A + v2
, not necessarily positive, is introduced. We will search for periodic travelling waves, i.a. for smooth E- periodic so­lutions u(s), u(s+E) = u(s) of equation (1.2) with a certain prescribed period :E. After scaling the independent variable and parameters of the problem, we can look for only 21r-periodic solutions of (1.2). 

Any 2,r-periodic function can be developed into Fourier series 
00 

u(s) = ~o + I; (a,. cos ns + lTn sin ns) . 
n=O 

It is obvious that if fJ > 0, {1.2) has evident constant solutions 
k u:1:=±.,;p. 

Further, (1.2) is invariant under translations s M s+S and if u(s) is a desired solution, then u(s+S) is also a desired solution. So, it would be reasonable to fix the nodes of the wave in the .s-space. That equation is also invariant under mirror-symmetry reflections u M -u and s 1-t -s which makes it possible to consider either even or odd solutions. That is why to avoid constant solutions and those obtained by means of all the above transforms, we will deal only with solutions which can be developed into a. Fourier series with respect to sinusoidal harmonics 

{1.3) 
00 

u(s) = I: Un sin ns 
n=l 

In [2] the authors investigated local behaviour of periodic travelling waves and showed that all the periodic waves bifurcating from the trivial solution u(s) = 0 can be obtained by means of a spatial shift from those which can be developed into the Fourier series (1.3). 
It is easy to show that equation (1.2) admits a variational formulation. Indeed, since u(O) = u(1r) ::;:: u"(O) = u"(,r) = 0, classical solutions of (1.2) are critical points of the functional 

(1.4) I[u] = ½ 1o• ( u"
2 

- uu'
2 

+ 12u2 
- iu4

) ds ➔ extr. 
It is worth noting that critical points of J(u] appear symmetrically: if ii is a critical point, then -u is also a critical point. 

-• 
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The main result can be formulated as follows. 

Theorem 1. For a softening support (/3 > 0) the functional J[u] has an 

infinite number of critical points which are classical solutions of (1.2) and can 

be developed into the Fourier series {1.3) for any values of parameters tr, k, /3. 

If the support is hardening (/3 < 0) then the functional J[uJ has at least N 

'symmetric' critical points for any fixed k, /3 if q > n2 +k2 /n2, n = 1, 2, ... , N. 

2. FUNCTIONAL SETTING 

Since we are interested only in solutions of the variational problem (1.4) 

and correspondingly of equation (1.2) which can be expanded into the Fourier 

series (1.3), we have to construct a suitable functional space which a desired 

solution belongs to. Let us consider a scale of Hilbert spaces H~[S1] with 

6 E R obtained by closing the space of functions from C00 [S1] which can be 

developed into the series (1.3) with respect to the norms associated with the 

following scalar products 

(2.1) 

00 

(u, v), = ~ n 211 tinvn, 

n=l 

where Un, Vn are the corresponding Fourier coefficients for a pair of functions 

u(s), v(s). 
It is not difficult to note that for positive integers 8 = m the norms gener­

ated by scalar products (2.1) can be rewritten as follows 

(2.2) ( 

00 ) 1/2 ,r 
1/2 

!lull,= ~n211 u~ = (¾ 1 (u<m>(s))2 ds) 

It is easy to see that for any positive integer even m and u E uns1] them-th 

derivative u<m) belongs to HL,,.[S1] and 

(2.3) 

In fact, we identify our spaces of functions with the spaces of sequences of 

their Fourier coefficients. We will use also spaces of odd functions on S1 

L0 ,q[S1] = H8[S1]nLq[S1], q ~ 2 with standard norms 

(2.4) ( 
f,r )1/q 

lllulllq = lo lu(sWds 

and Co[S1) = H8[S1J n C[S1] with the norm 

(2.5) lllullloo == sup lu(s){. 
(0,,r] 
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To proceed further, we need to use some properties of the spaces introduced. They are formulated in the following lemmas. Lemma 1. For any 81, 82 E R, 81 < 02, Ht[S1] <-+ Hi
1
[S1], where the sign <-+ means compact embedding, and for any u E Ht[S1] the following inequality holds 

llull,1 $ Hull,.• Lemma 2. For any IJ ER spaces H~[S1} and H~,[S1] are reciprocally con-jugate ((H~[S1Jr = H~,[S1
]). 

Lemma 3. For any (J 2: l and q 2: 2 the following embeddings take place L 0,q[S1) r....+ Hi[S1] and C0 (S1] c...+ HZ(S1]. There exist also positive constants C1,q and C,,00 such that for any u E H~[S1
] the following inequalities hold 

lllulllq $ c, ,qllull,' 
lllullloo $ c,,oollull,. Lemma 4. For any 8 2: 0 and q 2: 2 the following embeddings take place H~1 [S1] c...+ LO,q[S1] and H~8 [S1] r....+ C0 [S1). There exist also positive con­stants B-,,q and B-1,oo such that for any u E L0,q[S1] or u E C0 [S1] the following inequalities hold 

!lull-, $ B-,,qlllulllq, 
!lull_, $ B-1,oolllullloo• The statements of Lemmas I - 4 easily result from the Sobolev embedding theorems on a segment [3} (see also [41). We will look for critical points of the functional J[u] belonging to the space Hg(S1]. 

3. ANALYSIS OF CRITICAL POINTS 
To prove that the variational problem (1.4) possesses critical points dif­ferent from the trivial one u(s) = 0, we need to use some results related to minimax methods in critical point theory [5]. Theorem 2 (Generalized Mountain Pass Theorem). Let H be a real Banach_ space and I[uJ be a real functional from C1[H,R]. Let J[OJ == 0, u = 0 be a critical point, I be even (I[-u] = /[ul) satisfy the Palais-Smale condition. If additionally the foil owing two conditions hold: 
(i) the space H can be decomposed into a sum H = VEBX so that dim V < oo and there are two positive constants p and a such that for any u e8Bpnx 

J[uJ > o, 
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where Bp = {u EH : !lull$ p} is a centered closed ball in H of a 

radius p; 

(ii) for any finite-dimensional subspace ii C H there exists a positive 

constant R(ii) such that for any u E ii \ B R(H) 

I[u] $ 0, 

then the functional /[u] possesses an infinite number of distinct pairs of non­

trivial critical points. 

Minimax methods in the variational calculus is a powerful tool in situations 

when functionals are not bounded from below. For bounded functionals we 

can use another result which states the existence of nontrivial critical points 

and their multiplicity [5]. 

Theorem 3 (Generalized Clark's Theorem). Let I[u] be as above and addi­

tionally bounded from below . Suppose that 

(iii) there is a set K C H homeomorphic to a finite-dimensional sphere 

sN-l by an odd map, and 

sup J[u] < 0, 
ueK 

then the functional /[u] possesses at least N distinct pairs of nontrivial critical 

points. 

We will apply those general results to the variational problem (1.4). Let 

us consider some important properties of the functional /[uJ required in the 

above theorems. Obviously, /(OJ = 0 and the functional / is even. 

Lemma 5. IE C1 [Hg[S1],R] 

Proof. The functional I can be rewritten in the foUowing simple form I = 

[(l) + 1<2>, where 

1<1>[u] = ; (!lull~ - o-llullf + k2 llulli) , Ji2>[u] = -¾lllulllt 

Due to Lemmas I and 3 we have two chains of compact inclusions: 

Hg[S1 ] '--+ HUS1] Y Hg[S1
] = L0 •

2[S1] 

and ug[s11 '--+ H~[s11 y L0,4[Sl] . 

That means that the functional / is well defined on Hg[S1]. Let us now 

calculate the Gateaux derivative of the functional J(l), v"!7"",. 1<1>[u] = u1v + 

uu" + k2 u. Since for any h E ug[S1] 

jJC 1>[u + h] - 1<1>[u] - v::eak 1<1>[u]h j = 0, 
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the quadratic functional J(l) is Frechet differentiable and its strong derivative Vuf(l) coincides with the Gateaux derivative. Moreover, using properties of spaces H~[S1], it is easy to prove that for any fixed u E Hg[S1], the element VuJ<1>[u] E H~2 (S1]. Below we show that the strong derivative is bounded for any fixed u in the sense of H~ 2[S1]. Thus, as a linear opera.tor VuI<1>[u] E L [Hg[S1], R]. Here it is worth reminding that H~ 2(S1] = (Hg{S1])* in accordance with Lemma 2. Further, let us prove the continuity of V ul<1>[u] with respect to u as an operator function from Hg[S1
] to H~2{S1]. Indeed, let h E Hg[S1

) and let 
00 

h(s) = L hn sin ns 
n=l be its Fourier expansion. We need to consider the difference between two operators 

Then 

( 

oo 
) 1/2 IIVuf(l)[u + h] - VufC1>[uJll-2 = ~ n-4 (n4 

- un2 + k2
) 2h; = 

(.t n• ( I - :. + :: )' h! r 2 

$ (I+ !al +k2
)1ihll2-

Hence, V .,J<1>[u] is continuous. 
The Gateaux derivative of J(2) is obviously equal to -Pu3 . Then for any h E Hg[S1] 

IJC2)[u + hJ - J(2)[u] - v:1eak 1(2)[u]h l = 
'!' 11.- (6u

2
h

2 + 4uh
3 + h4

) dsl 5 
1!1 ( 61.-u2h2ds+41w lullhl3ds + 1" h4ds) $ 

I.Bl ( (l" ) 112 (l" ) 112 (l... ) 11• (l" )3/4 4 6 u4ds h4 ds + 4 u4ds h4ds + 0 0 0 0 1 .. h4ds) = 1!1 (6lllullli lllhllli + 4lllulll4 lllhlll! + lllhllll) 5 
1!1 c{ .. ( 6llull~ + 4llull2 llhlb + llhll~) llhll~ = o (llhll~) 
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for any fixed u E Hg[S1
] as 1lhll2 ---+ 0. Here we used the Holder inequality 

and the embedding properties from Lemma 3. 

Thus, the functional 1(2
) is Frechet differentiable and its strong derivative 

coincides with the weak one. Obviously, the element VuJ<2>[u) belongs to the 

conjugate space H~2 (S1). Further we need to estimate the remainder 

V ufC2>[u + h] - V uf(2
) [u) = -,0(3u2 + 3uh + h2 )h. 

Using Lemmas 3 and 4, we arrive at the following chain of inequalities 

!IV uI<2>[u + h] - V uI<2)[u]11_2 5 B-2,oolllVuf(2>[u + h] - 'v uf(2>[u]lll00 ~ 

B-2,ool.BI (3lllu2hllloo + 3llluh21lloo + lllh3 /l/oo) $ 

B-2,ool.BI (3Ulul/1!, lllhllloo + 3lllullloo lllhlll!, + lllhlll~) $ 

B-2,ool.BIC2,oo (3llull~ + 3llull2llhl12 + llhll~) llhll2 := 0 (llhll2) 

for any fixed u E Hg[S1] as llhll2 ➔ 0. 

The last thing we need to finish the proof is to check whether the operator 

V ul[u] = u1v + <Ttl' + k2u - {3u3 

is continuous. But it is easy to see that the operator under consideration is 

bounded and consequently, it is continuous. Indeed, using the identity (2.3) 

and the embedding properties from Lemmas 3, 4, we obtain 

l/'vul[u]ll_2 $ 1lu1vll-2 + lul llu"ll-2 + k2 llull-2 + I.Bl llu3 ll-2 $ 

1lull2 + lul llullo + k2llull-2 + f .Bl llu3 ll-2 5 

llul12 + l<TI llul12 + k21lufl:z + B-2,21.81 lllu3 ttl2 = 
1lull2 + lul llull2 + k2llul12 + B-2,21.81 lllulll: $ 

llull2 + l<Tf llull2 + k2l1ull2 + B-2,2I.BIC:,6l1ull~­

Thus, the operator Vul[u] is bounded. D 

Let us pass to the most difficult stage of the proof of Theorem 1, i.e. we 

need to prove that the functional / satisfies the Palais-Smale condition. 

Lem.JD& 6. Any sequence {u(p)}~1 E Hg[S1J such that the sequence IJ[u(p))f 

is bounded while the sequence V ul[u(p)]-+ 0 asp-+ oo contains a convergent 

subsequence {u(p;)}~i-

Proo/. We can split the process of checking the Palais-Smale condition into 

two steps. 
Step 1. 

Lemma 7. Any sequence with the above properties is bounded in Hg[S1}. 
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Proof. Let {u(p}}~1 be such that IJ[u(,)11 < M for a certain M > 0. Obvi­
ously, /[u(p)] ~ M. 

We first concentrate on a more complicated case fJ > O. 
Since Vuifu(p)} ➔ 0 asp ➔ oo there is a number Po such that for any p > Po the norm /IV ,,J[u(p)J/1-2 < 1 and 

Iv ullu(p)}U(p) l ~ llu(p)/l2-

Consequently, 

V ,J[u(p)]U(p) ~ -lluCP)ll2-
For a fixedµ E (¼, ½) we have the following inequality 

M + µlluc,)ll2 ~ /[u(p)]- µVul[u(p))U<,) = 
(3.1} 

(~ -µ) 1" ((u~})2 
- O'(uc,,})2 + (uc,))2

) ds+ 

• 

fJ (µ - ¼) fo" (u(p)J"ds = 2 (½- µ) J(l>[u(p)] - 4 (µ - :D 1<2>[u(p)]· 

Lemma 8. There exist two constants 6 > 0, A ~ 0 such that for any u E H~[S1 J the following estimate holds 

(3.2) 1<1)[uJ ~ ½ (illull~ - Allullg). 
Proof- Let us consider an element u E Hg[S1] which can be expanded into the Fourier series (1.3). Then 

00 

[{I}[u] = i L (n4 - <Tn2 + k2) u!. 
n=l 

To have the desired estimate (3.2), we need to choose cf and A so that for any n the following inequality holds 

,r(n4 
- un 2 + k2) ~ 6n4 

- A. 
That means that the discriminant of the following quadratic trinomial 

(1r - J):1:2 - ,rO':i: + (k2 + ,r.6.) 
should be positive as o < ,r which immediately results in the inequality 

,..20'2 
0 < ,r - 4(d·2 + A)' 

• 

.. 
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By choosing A large enough, we can satisfy the above inequality. It is worth 

noticing that if lul < 2k, i.e. the speed of the wave does not exceed it.s critical 

value (see [1, 21), we can put A= 0. □ 

Hence, using inequality (3.2), we can rewrite (3.1) as follows 

M + µllu(p)l'2 2: (½- µ) (ollu(,)11~ - Alluc,)11~) 

(3.3) + /3 (µ - ¼) llluc,>111: 2: 

(½- µ) ollu(p)II~ + ay2 
- 2by, 

where the following notations are introduced 

Y = llluc,)lllt a= ,8 (µ - ¼) > 0, b = ½ (½- µ) ABl4 > 0. 

Here we also used the embedding H8[S1] ~ L0•4[S1J (Lemma 4). There is a 

certain positive constant c such that for any real y 

ay-2by~-c. 

For instance, we can choose c ~ b2 /a. Then (3.3) gives 

dz2 
- µz - / :'S 0, 

where 

z = lluc,)ll2, d = o (~ - µ) > 0, / = M + c > 0. 

Since z is non-negative, 0 :'S z 5 z+, where z+ is the positive root of the 

equation dz2 - µz -1 = 0. 

Thus, we have proved that the sequence {uc,)}~1 is bounded. 

The case p < 0 is much easier. Indeed, inequality /[uc,)] 5 Mand Lemma 

8 gives us 

(3.4) M 2'. ½ (ollull~ - Allull~) - illlulll: 2: ~llull~ + a1tr - 2biy, 

where y ' is as above and 

fJ 
~1 = -4 > o, 

By choosing c1 2: bVa1 , from (3.4) we obtain the final estimate 

2 2 ) 
lluc,)lb 5 -g(M + C1 • 

Thus, the sequence {u(,)}~1 is bounded. □ 
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Step f. 

Lemma 9. The sequence {u(p)};;1 has a convergent subsequence {u(p;)}_b:i· 
Proof. We have to start with some technicalities. Let us consider the dif­ferential operator D = i,. Obviously, operator D2 maps spaces uns1J in Ht2[S1J. 
Lemma 10. Operator D2 is invertible. 
Proof Via the relation (2.3) the operator D2 is an isometric one. Hence, it is invertible. 

D 
Of course, any iterations of D 2 are invertible in conesponding spaces. Be­low we will use operators v-2 and v-4 for which we can even give explicit expressions: 

(D-2u) (s) = ¼ ((s - ,r) 1o• uu(u)du + s !," (u- ,r)u(o-)do-,) 

(D-4 u) (s) = 
6
~ ( 1• su(s2 + u2 + 2,r2)u(u)du 

- 11' (1• u(u2 + 3s2)u(u)da + !," s(s2 + 3o-2)u(u)du)). 
It is worth noticing that the operators D-2 and v-4 treated as maps from H~[S1] into itself are compact because the embedding H~+mfS1) ~ Hi[S1} for positive m is compact. Since 

Vul[u(p)} = (u(p))IV + O' (u(p))" + k2u(p) -fJ (u(p))
3 ➔ 0, 

asp ➔ oo in the sense of H~2[S1], 

v-4'7 uf[t&(p)] = U(p) - V(p) ➔ 0 
in the sense of H~2 [S1}, where 

vCP> = -o-v- 2uCP> - k2 v-4"CP> + pv-4 
( uCP>) 3

• 
The sequences v-2u(p) and v-4 uc,,) are bounded in spaces ai[s11 and ai[S1] respectively and compact in Hg[S1]. Due to Lemma 4, (u(p))

3 
belongs at least to H&[S1] and bounded in that space. Consequently, v-4 (u(p))

3 
is bounded in H~[S1] and compact in Hg[S1]. Hence, the whole sequence {v(p)};;1 is compact and contains a subsequence { V(p;) }i=1 converging to an element v. E Hg[S1) as j ➔ oo. Therefore, u(p;) ➔ v. as j ➔ oo. 0 
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Thus, the functional J[u] satisfies the Palais-Smale condition. D 

Let us start now checking conditions of Theorems 2 and 3. First, we will 

prove that the condition ( i) holds. Indeed, let N be a non-negative integer 

number such that 

n4 -un2 +k2 $ 0, n = 1,2, ... ,N, n4 -un2 +k2 > 0, n = N + 1, N + 1, .... 

Let us decompose Hg[S1) as a direct sum Hg[S1] = V EB X, where 

V = span{sin s, sin 2s, ... , sin N s }, 

which can be trivial, of course. 

Lemma 11. There exists a positive constant 5 such that for any u EX the 

following estimate holds 

(3.5) 

Proof Let 
00 

u(s)= L tinsinns 

n=N+l 

be the Fourier expansion of a function u(s) from X. 

00 

J(l)[uJ = i- L (n4 
- un2 + k2

) u~. 

n=N+l 

We can take 

5 < ~ inf { 1 - ~ + k
2 

} 

2 n~N+i n2 n 4 

and obtain the desired estimate. 

In accordance with Lemma 3 

(3.6) 

D 

Let llull2 = p for a certain small p. Then using the inequalities (3.5) and (3.6), 

we obtain 

[ J 2 (5 I.Bl~ 2) 
I u ~ a = p 2 - 4 2 ,-tP , 

which is, of course, positive for any p small enough. 
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Let" us now prove that for any fixed k, <T and /3 > 0 the condition ( ii) of Theorem 2 holds. Indeed, let H be a finite-dimensional subspace of H~(S1]. Then it can be represented as follows 

ii= {u : u(s) = t u11 • sin n,,s, I $ n1 $ ... $ nq} . 
q=l 

Let us consider the following set 

8B1 nii = {u: I: n:u!. = 1}. 
q=I 

Evidently, 

H \ BR = { u = rv, R $ r < oo, v E 8B1 n H} , 
and 

l(u] = r 21<1>fv] + r 4 J<2>[v]. 
In fact, J(1>[v}, 1<2>[v] are continuous functions of coefficients u,. 1 , ••• , Uno and 8B1 n ii is compact as a closed and bounded set in a finite-dimensional space. Let us introduce the following notations 

1!1> = min_ 1<1>[v], 1!2> = min_ 1<2>[vJ. OB1nH aB,nH 
Thus, 

(3.7) 

Since 1<2>[v] < 0 on 8B1 nii if /3 > 0, then 1i2> < 0. In principle, 1!1> may have both signs. If 1i1> is non-positive then we can put R(H) = 0. Otherwise, we can take 

R(H) = 
In this case, it immediately follows from (3.7) that 

J[u] $ 0, 
which means that the condition (ii) of Theorem 2 holds. Thus, all the conditions of Theorem 2 hold and the functional /[u] possesses an infinite number of critical points for any values of parameters <T, k, /3 if /3 > 0. 
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It is easy to prove that for fJ < 0 the functional /[u] is bounded from below. 

Indeed, by arguing as in Lemma 7, we can obtain inequality like (3.4): 

6 
(3.8) l[u] 2: 2llull~ + a1lllul11:- 2b1lllulllt 

the estimate (3.8) obtained results in the following inequality 

I[u] ~ -c1, 

where c1 2: bifa1, which means that I[u] is bounded from below. 

Now we need to check the condition ( iii) of Theorem 3. If u > n2 + 

k2/n2 , n = 1,2, ... ,N, then 

n4 
- un2 + k2 < 0, n = 1, 2, ... , N. 

We will denote an N-dimensional subspace of Hg[S1] spanned on functions 

{sins,sin2s, ... ,sinNs} as W. Let K = 8Br n W for a certain small r > 

0. It is easy to see that K can be obtained from the unit sphere 5N- t by 

contractions in basis directions. Then we can mirror-symmetrically map the 

sphere into itself. The composition of those two maps will be odd. Let us put 

6_ = -- sup 1 - - + - > 0. 1r { u k2} 
2 nS.N n 2 n 4 

Then for any u E K 
1<1>[u] ~ -cLr2 . 

By using the embedding properties from Lemma 3, we obtain the following 

estimate 
J<2>[u] < I.Blc4 r4. 

- 4 2,4 

Hence, for a small but fixed r > 0 we have I[u) < 0 and 

sup I(u] < 0, 
uEK 

since K is a compact set. 

Thus, the condition ( iii) of Theorem 3 is satisfied and for a hardening 

support (fJ < 0) the functional J[u} has at least N distinct pairs of critical 

points in Hg[S1) for any values of parameters k, .Band u > n 2 + k2 Jn2 , n = 
1,2, ... ,N. 

To finish up the proof of Theorem 1, we need to show that the obtained 

critical points correspond to classical solutions of (1.2). Let u E Hg[S1 ] be 

a critical point of the functional J[u}, then (1.2) holds in a weak sense, i.a. 

in the sense of the space H~2 [S1]. By applying the operator v-4, we obtain 

that u must satisfy the following integral equation in the space Hg[S1]: 

(3.9) 
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Obviously, if u E Hg[S1], then D- 2u E H~[S1), D- 4u E Hg[S1] and at least D-4u3 E H~[S1], which means that the above solution is classical. Evidently, we can show that u even belongs to C 00[S1J. 
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