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Abstract

While heterogeneous architectures are increasing popular with High Performance
Computing systems, their effectiveness depends on how efficient the scheduler is at
allocating workloads onto appropriate computing devices and how communication
and computation can be overlapped. With different types of resources integrated
into one system, the complexity of the scheduler correspondingly increases.
Moreover, for applications with varying problem sizes on different heterogeneous
resources, the optimal scheduling approach may vary accordingly. Thus, we
introduce a Profile-based Al-assisted Dynamic Scheduling approach to dynamically
and adaptively adjust workloads and efficiently utilize heterogeneous resources. It
combines online scheduling, application profile information, hardware mathemati-
cal modeling and offline machine learning estimation modeling to implement
automatic application-device-specific scheduling for heterogeneous architectures. A
hardware mathematical model provides coarse-grain computing resource selection
while the profile information and offline machine learning model estimates the
performance of a fine-grain workload, and an online scheduling approach dynam-
ically and adaptively distributes the workload. Our scheduling approach is tested on
control-regular applications, 2D and 3D Stencil kernels (based on a Jacobi Algo-
rithm), and a data-irregular application, Sparse Matrix-Vector Multiplication, in an
event-driven runtime system. Experimental results show that PDAWL is either on-
par or far outperforms whichever yields the best results (CPU or GPU).
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1 Introduction and Motivation

Nowadays, most High-Performance Computing (HPC) platforms feature heteroge-
neous hardware resources such as CPUs, GPUs, FPGAs, etc. [25]. In the future, the
nodes of such platforms are expected to be even more heterogeneous. They will
feature side-by-side, fast and slow computing units mixed with accelerators, I/O
nodes, quantum technology [13], among others. Heterogeneous platforms must
offer the promise of both better energy efficiency and performance. However, this
comes at a high cost in terms of code development and resource management.

Parallel computing models and architectures have all increased in usage and
importance since their emergence. The heterogeneity of actual platforms compli-
cates the task of optimizing parallel computing programs if done by hand. This is a
strong motivation for the development of automated tools and techniques for
program optimization.

Indeed, even with successive generations of large-scale scientific HPC systems,
data generation has grown faster than compute capabilities, which means that
dealing with data-intensive applications has become a crucial challenge in scientific
domains [6]. The integration of data analytics, e.g., Machine Learning, and exascale
computing have been hailed as the fourth paradigm of science [33].

Meanwhile, whole sectors of scientific computing continue to rely on iterative
algorithms. In particular, Stencil-based computations are at the core of many
essential scientific applications: Stencils are used in image processing algorithms,
e.g., convolutions; partial differential equation solvers, Laplacian transforms, or
computational fluid dynamics [21], digital signal processing [15], linear alge-
bra [1], etc. More specifically, the Jacobi iterative method has been proposed to
solve sparse triangular systems arising from incomplete Cholesky precondition-
ing [39]. A diverse set of realistic symmetric positive definite test problems have
proved that Jacobi iterations are useful for an extensive range of problems [9].

Other kernels are also used in iterative algorithms, such as sparse matrix-vector
multiplications (SpMV). Unlike Stencil (regular computing per row/column), the
individual work-items of SpMV exhibits a different computational load profile since
the numbers of non-zero elements per row may vary significantly.

However, both Stencil and SpMV can be classified as co-running algorithms and
can be executed on heterogeneous systems. Co-running has been defined by Zhang
et al. [46] as follows: applications can be decomposed into multiple tasks and the
system allows these tasks to run on CPUs or general-purpose accelerators
simultaneously, e.g. GPU, to process different parts of the same input data. The
challenge lies in how multiple Stencil or SpMV tasks can be assigned to CPUs and
GPUs concurrently to increase performance.

Our research is based on the following observations: most work dealing with
accelerators—GPUs—has followed one of two paths: (1) most of the compute-
intensive parts of applications are fully offloaded to a GPU, or (2) the workload is
statically partitioned between CPUs and GPUs, with each partition running
independently. Some exceptions are listed in Sect. 5. This paper presents a novel
approach to the dynamic scheduling of tasks on heterogeneous systems. It is based
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on a profile-based Artificial Intelligence approach and explores parallelism on GPU-
based heterogeneous platforms.

The key contribution of our work is in providing a complete solution which
combines profile information, a hardware resource mathematical model, online
scheduling and offline machine learning to dynamically and adaptively distribute
tasks onto CPUs and/or GPU, and ultimately, increase performance and lower
energy consumption. Furthermore, we demonstrate how this solution can be utilized
for multiple applications running on different hardware platforms. Our Profile-based
Iterative Dynamic Adaptive WorkLoad Balance (PDAWL) approach for heteroge-
neous architectures has the following characteristics:

1. By leveraging an online scheduler, it can dynamically and adaptively adjust the
workload based on the (dynamic) run-time situation, (static) information about
the hardware platform, and a performance-workload estimation model (com-
munication vs. computation) provided by an offline machine learning approach.
Combining online and offline information improves flexibility and accuracy.

2. It follows an event-driven approach and employs multiple levels of granularity
for the synchronization to explore tasks parallelism and flexibility of
scheduling.

3. It employs a pure CPU and pure GPU machine learning estimation model to
predict the performance of the heterogeneous model.

4. It trains small workload tasks to predict the performance of middle or large
workload tasks.

5. It can be utilized to dynamically and adaptively schedule co-running
applications, such as Stencil (Jacobi algorithm) and SpMV discussed in this
paper, on heterogeneous platforms. Stencil has been selected for being a
representative of regular data processing, while SpMV corresponds to irregular
data processing.

6. It, and more specifically the Profile-based Machine learning (ML) estimation
model, provides optimization suggestions for specific applications on hetero-
geneous systems.

The rest of the paper is organized as follows: Sect. 2 reviews the main concepts of
this work; Sect. 3 describes our methodology; Sect. 4 focuses on our main
experimental results; in Sect. 5, we review the literature pertinent to our work and
related papers. Finally, Sect. 6 concludes this work and presents the planned future
work.

2 Background

To implement our profile-based dynamic and adaptive workload scheduling system
(PDAWL), we must leverage an efficient runtime system, presented in Sect. 2.1,
take advantage of the computing potential offered by heterogeneous hardware, and
in particular, GPUs, as described in Sect. 2.2, and explore the parallelism of
different types of applications based on hardware features, see Sect. 2.3.
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2.1 Codelet Model and Runtime System

The Codelet Model [48] is an event-driven execution model where a codelet is a
non-interruptible sequence of instructions that runs until completion. It is enabled
when all of its data dependencies are satisfied and ready when its resource
dependencies are also satisfied.

The Codelet Abstract Machine (CAM) describes the mechanism on which
codelets are allocated, stored, and scheduled. The CAM models an extensible,
scalable and hierarchical parallel many-core architecture with two types of units:
synchronization units (SUs), which perform resource management and scheduling,
and computation units (CUs), which carry out the computation. CUs and SUs are
grouped into several clusters where they can benefit from data locality.
DARTS [3, 37] is a runtime system implementing the CAM. It maps “abstract
cores,” CUs and SUs, to physical processing elements (PEs).'

We extended DARTS from the basic homogeneous system to a more general
heterogeneous many-core system. Heterogeneous DARTS specifies two types of
codelets: CPU_Codelets, and GPU_Codelets, which can run simultaneously.
CPU_Codelets are “regular” user-level data-driven tasks, destined to run on
general-purpose CPUs. GPU_Codelets, however, are meant to run on a GPU, and
as a result, must explicitly deal with not only computation but also data movement.

2.2 Heterogeneous Computing

In this work, we are considering CPU-GPU heterogeneous systems where GPU
devices are connected to a host machine via a PCI Express (PCle) bus. Host and
devices have different memory address spaces. Data must be explicitly transferred
between the memory pools. The execution flow of a heterogeneous application can
be divided into three key stages. First, the host transfers data to the memory of the
GPU; second, the main program executed on the CPU (the host) is responsible for
starting threads in the GPU (the device) and launching a function (the kernel).
Finally, the device sends results back to the host. Since communication is typically
expensive in such systems, the main goal is to minimize the effect of the CPU-GPU
communication overhead by fostering an overlap between communications and
computations.

2.2.1 Heterogeneous Hardware Communication

Lee et al. [23] analyze a set of important high throughput computing kernels on
both CPUs and GPUs. They show the differences of optimization features
contributing to performance improvement on these architectures. The paper
concluded that CPUs can have comparable performance to GPUs if the application’s
code is properly optimized (e.g., loops are tiled, skewed, etc.). Further, GPUs and
CPUs are bridged by a PCle bus, allowing high-throughput communications
between the host’s global memory and the accelerator’s local memory. Hence the

! PEs can be either physical or logical cores, e.g., hardware threads in an SMT architecture.
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Fig. 1 Concurrent streams overlap data transfer (Color figure online)

PCle bandwidth is always a crucial performance bottleneck ripe for improvement.
Nvidia provides ways to use page-locked host memory to lower data transfer
latency [31]. However, performance may be degraded if the allocated pinned
memory is too large. Moreover, PCle congestion behavior varies significantly
depending on the conflicts created by communication. Martinasso et al. have
explored the impact of the PCle topology, a significant parameter affecting the
available bandwidth [29].

This work focuses only on a single GPU per machine, leaving any PCle topology
aspects to future work.

2.2.2 Concurrent Streams on GPUs

CUDA provides stream-based constructs since version 7. This functionality allows
the programmer to schedule multiple computing kernels concurrently. It lets the
accelerator efficiently overlap computation and communication with the host.

Figure 1 illustrates the CUDA streaming model. We compare the sequential
computation of two different kernels with their respective data transfers: one single
stream vzs. three different kernels with their respective data transfers using three
streams.

2.3 Data-Regular and Data-Irregular Computations in Heterogeneous
Platforms

In co-running applications, the workloads can be decomposed into multiple tasks
and run on different Processing Elements (PEs for both CPUs and GPU). Typically,
GPUs run regular computations very efficiently, but perform poorly with irregular

2 The second method is only possible in GPUs with at least two copy engines, one for host-to-device
transfers and another for device-to-host transfers. If four copy engines are involved, stream0 and stream1
can be run parallel.
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computations [10]. CPUs perform reasonably well for both, provided SIMD
instructions and thread parallelism are correctly exploited. For applications
containing both data-regular and data irregular computations, it will be preferable
to split regular and irregular computing and run them on suitable PEs: allocate the
regular parts to the GPU and the irregular/regular part to the CPU. More discussion
related to regular/irregular computing can be found in the discussion of SpMV
(Sects. 4.1.2 and 4.3 ).

3 Methodology

In this section, we start by providing the context of the problem, then describe our
scheduling approach for heterogeneous architectures. The latter is described in two
parts: DAWL, an adaptive workload scheduling approach; and PDAWL, which
builds on top of DAWL by combining a profile-based machine learning estimation
model with DAWL. DAWL is based on an online scheduling approach using a
hardware resource model, and follows a rather coarse-grain approach; PDAWL
builds on top of DAWL to allow for automatic fine-grain resource scheduling with
hardware-specific considerations to deliver higher performance.

3.1 Problem Analysis

In heterogeneous systems, accelerator devices® (e.g., GPUs) and hosts (i.e., CPUs)
play different roles: the accelerator is often seen as the “main computational
power” of a compute node; and the host as either the “control unit” handling I/O
communications and tasks scheduling, or as the “processing unit” responding to
parallel computing requests. Currently, most systems work either by fully offloading
the workload to accelerators or by statically partitioning the workload between host
and accelerators, and running these partitions independently (more details can be
found in Sect. 5). However, these two approaches used to statically partition
workloads may cause multiple issues, e.g., synchronization and waiting times, low
resource utilization efc., at run time, which will incur a dramatic drop in
performance, and increase the total power consumption [14].

Several strategies have been proposed to overcome these issues: the first is to
build mathematical models that can estimate the execution time of tasks on different
computing resources and then statically allocate the corresponding workload onto
hosts and accelerators. However, multiple issues are in the way: (1) building an
accurate estimation model needs to consider both hardware devices and application
features, while the growing variety of hardware devices and their combinations
tremendously increases the difficulty. (2) It will be highly difficult to build such a
model for current high-performance hardware components, such as memory
hierarchy, prefetch mechanisms, Direct Memory Access (DMA), PCle [2], [41],
etc.; (3) any change in the hardware configuration may cause great performance
variations, hence requiring the model to be rebuilt. (4) The complexity and

3 In this paper, we use interchangeably the terms “device” or “accelerator.”
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fallibility of building a mathematical data transfer model of CUDA concurrent
streams [41] widely increases with the introduction of emerging hardware, the
synchronization method between host and device, efc. (5) A static model cannot
capture runtime situations, which is another important factor that affects the
accuracy of the performance estimation model. (6) Such a model may work well for
coarse-grain workload partitioning, but may not be useful for fine-grain workload
partitioning, which plays a pivotal role in attaining high performance on a
heterogeneous system.

The second approach employs dynamic workload partitioning, which theoreti-
cally can dynamically allocate workloads onto both accelerators and host at runtime.
However, synchronization and waiting time issues still occur if: (1) the synchro-
nization and partitioning mechanisms are not matched; (2) the partitioning is not
suitable for available computing resources; (3) the communication costs between
accelerator and host or among accelerators are too high; (4) we must run different
types of application (memory-intensive vs. compute-intensive) onto the different
hardware configuration, as described in the paragraph describing hardware resource
modeling, with unsuitable partitioning; (5) the granularity (coarse vs. fine grain) of
the workload partitioning may be unsuitable; ezc.

To solve the issues we just listed when modeling resources and scheduling work
dynamically, the application behavior on both the host and accelerator must be
carefully analyzed [14, 17, 31, 47]. We propose our approach, DAWL, as well as an
optimized version, PDAWL, which will accommodate the features of both the
application and the hardware resources to ensure that an application can run
efficiently on heterogeneous systems. A dynamic adaptive workload (DAWL)
scheduler follows an adaptive and dynamic workload partitioning approach, based
on a coarse-grain model (see Sect. 3.2), while PDAWL follows a profile-based,
event-driven, dynamic workload partition approach to explore fine-grain task
parallelism and to maximize the throughput between resources. We evaluate our
approach on different heterogeneous platforms using two co-running applications,
Stencil and SpMV. In general, Stencil represents data regular computations, while
SpMV stands as a good exemplar for data-irregular computations.

3.2 Hardware Resource Baseline, Limitations and Usage

As we discussed in Sect. 3.1, mathematical models can yield useful information for
coarse-grain task scheduling. Our DAWL approach employs them to select
suitable computing resources: pure CPU (i.e., where only the host (CPUs) is
contributing to the computation), pure GPU (i.e., where only the accelerator is
contributing to the overall computation: the host only handles data movement and in
general I/O communications) or CPU-GPU co-running (i.e., both the host and the
accelerator(s) are contributing to the overall computation), to run different workload
sizes. Coarse-grain workload partition means the workload is split into big chunks,
such as big rows/columns chunks. It is totally different with the fine-grain workload
partition (see Sects. 4.1.1 and 4.1.2).
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3.2.1 Hardware Baseline Modeling

In this section, we present a baseline communication model, which is kept simple—
no communication-computation overlap—on purpose. Equation 1 models the GPU
execution time consisting of two types of costs: communication and computa-
tion.memcpyy_,, (resp. memcpyp,,,) denotes communications from the host (resp.
the accelerator) to the accelerator (resp. the host), to load the initial data (resp. to
store the results back into the host), Compute;, is the time required to process a
given workload on the accelerator, and NumThreadsp is the number of available
processing elements.

Compute,,

_ 1
NumThreadsp +MeMepY (1)

GPU poder = memcpyy _.p +
Equation 2 models the CPUs execution time. Compute, and NumThreadsy are the
overall computation time on a general-purpose processing element on the host and
the number of available processing elements on the host, respectively.

Computey

CPUnodel = ————
del NumThreadsy

(2)
Equation 3 computes r, the ratio between GPU,,iy. and CPU, . (these last two
parameters are computed in Egs. 1 and 2 respectively). r is a “hardware resource
fitness” indicator of which part of the system should be favored. If r > 1, then the
workload will execute much faster if it is on an accelerator. Hence, most if not all of
the computation will be carried on the GPU. On the contrary, if r < 1, then the
amount of data transfers is saturating the PCle bus when running it on a GPU or the
computing is not suitable for GPU processing, and in general, the overall compu-
tation is much faster using general-purpose processing elements. When r =~ 1, task
scheduling must enable co-running, so that both the host and the accelerator are
allocated their fair share of the work in order to complete the computation as fast as
possible.

o CPUmodel

= —__model 3
' GPUmodel ( )

3.2.2 Limitations and Usage

Section 2.2 shows that, due to the various DMA engines available on modern GPUs,
as well as the Stream technique in CUDA, it is possible to overlap communi-
cations and computations. Furthermore, it is quite hard to accurately estimate GPU
computation times since the GPU utilization rate depends on factors associated with
the GPU hardware and software architecture, such as the multi-level computing
(thread) hierarchy, the GPU inner scheduler for tasks allocation on Streaming
Multiprocessors (SMs), efc. Considering all the above factors, Eq. 1 is a worst-case
view of a single GPU’s performance. Conversely, it guarantees performance will be
maximal if GPU,,. is “small enough” (see below).
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Equation 2 is also rather naive: while data transfers with the DRAM are not
negligible, they take orders of magnitude less time than data transfers on a PCle bus,
which cannot be neglected. Moreover, HPC processors embed very efficient and
aggressive data prefetching mechanisms, which tend to fully hide DRAM transfer
latencies—especially in the case of consecutive reads or writes. However, the risk
for cache conflicts in multicore systems (e.g., false sharing) may cause significant
drops in performance. Equation 2 is utilized to estimate the average performance of
multi-threaded computing.

In DAWL, Eq. 3 is employed to estimate the initial workload on computing
resources, CPUs and/or GPUs. At runtime, to allocate suitable workloads on the
(different) computing resources, all three equations and real-time execution
recording history, including the size of the workload and the corresponding
execution time, efc., should act in concert. The real-time recording history as an
optimization factor can help increase the accuracy of the naive mathematical model
to some extent (more details can be found in Sect. 3.3.)

3.3 The Dynamic Adaptive WorkLoad (DAWL) Scheduler

The Dynamic Adaptive Work-Load (DAWL) Scheduler is an online scheduler
where the workload distribution is based on a computation-communication model
(Egs. 1, 2, and 3) and runtime situation (the real-time execution recording history).
It was created to decide what tasks should be scheduled and where to schedule the
workload (i.e., host or device) to minimize the load imbalance between
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Fig. 2 The dynamic adaptive work-load scheduling algorithm (DAWL). Mathematical model (MM)
occurs in DAWL’s steps 1, 3, and 4. The dashed frame MM in step 4 stands for the optimized MM (Color
figure online)
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heterogeneous processing elements. It consists of seven main steps, illustrated in
Fig. 2. We detail each step below.

1.

Set up the initial workload on the Processing Elements (PEs), namely CPUs
and/or GPU. PEs can be given different amounts of work based on their
modeled “throughput” (see Egs. 1-3).

Configure PEs based on step 1. This configuration includes the number of CPUs
which will be put to work, whether the GPU will also be used, what portion of
the available space in the shared memory (for the host) and global memory (for
the accelerator) must be allocated, the number of streams on the GPU, among
other things.

Simultaneously run tasks on both CPUs and GPUs, and time each run for their
specific workloads. The current execution information will be recorded as
follows:

e For CPUs the number of running threads, the workload and corresponding
execution time on the single thread, and total workloads and total execution
time on all the threads.

o For GPUs the amount of data transfer between host and device, the
corresponding data transfer time, number of concurrent streams (if
applicable), the number of thread blocks used and the corresponding
computing time.*

Iteratively and adaptively adjust the workload based on the current run time
situation and mathematical model; this entails several sub-steps:

— Update recording history once the current allocated workload on the PE is
finished, the current execution information will be updated into the
recording history. If there are duplicates, the average execution time will
be recorded.

— Check the status of other PEs (running or waiting) as well as the
corresponding recording history to estimate the completion time of other
PE(s).

— Optimize model The optimized mathematical model combines the original
model (MM) with the history timing measurements. The new estimated
execution time formula will be Time,,,, = o - Timeyy, + f - Timey,;;, where
o+ f =1 and the value of o will decrease with the number of iterations,
while f is just the opposite as it will increase with the number of iterations.
The other PEs status is also considered to allocate suitable sizes of workload
on current PEs.

— Allocate workload on currently available PEs based on collected informa-
tion and our optimized model in addition to the size of the allocated
workload, the number of threads (for CPU) and the number of concurrent
streams (for the GPU) may also be adjusted.

4 The information of concurrent stream and thread blocks are only for reference, as it cannot be
efficiently utilized by the coarse-grain baseline model.
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— Repeat the whole procedure until the remaining workload is within 10% of
the total workload this 10% of the workload (remaining workload) is for the
last step load balance optimization which is a fine-grain task scheduling
approach and to guarantee there is no busy waiting at least for the last 10%
of the total workload.

5. Schedule the last 10% of the total workload Calculate the value of ratio, where
ratio = CPU,,,/(CPU,,, + GPU,,,). CPU,,, and GPU,,, are the amount of all
work finished on CPUs and GPU, respectively. The corresponding GPU ratio is
obtained using the same method. The CPUs or the GPU only take |ratio x
remaining workload | amount of work. The remaining workload is dynamically
allocated to whichever (set of) PE(s) is available after early completion. Note:
this is an application-based optimization.

6. Evaluate the load-balance metrics collected during the time step execution, in
particular, the execution time. Adjust (coarsen) the task granularity based on
available PEs and the metrics.

7. Free all resources PEs and memory.

3.4 Profile-Based Machine Learning Estimation Model

We have developed an optimized version of DAWL (PDAWL). PDAWL is a
Profile-based Dynamic Adaptive Workload balance (PDAWL) which combines
Machine Learning algorithms with runtime profiler information to solve the issues
raised by the coarse-grain baseline mathematical model. The PDAWL framework
consists of two components, illustrated in Fig. 3. On the left side of this figure, we
can see our DAWL approach and the ML process on the right side.

Here, DAWL is responsible for online scheduling, while the ML model is in
charge of providing performance estimation information. DAWL compares the
baseline model with the performance estimation of the ML techniques. The ML
component creates a performance prediction distribution for fine-grain workload
using run time profiler information. Once the ML-based model is built, it is utilized
in DAWL to replace and/or cooperate with the baseline model and then follow the
DAWL online scheduling strategies (see Sect. 3.3.)

A known weakness of offline ML models is that they cannot be adjusted once the
training process has completed [36]. With PDAWL, it is possible to compensate this
weakness and provide guidance to an online scheduler even with changes in
software or hardware. A combination of offline ML-based models with online
schedulers is required when dealing with real-time constraints. If there are no real-
time constraints, then online ML methods, e.g., a stochastic gradient algorithm, may
be used instead of offline methods.

As shown in Fig. 3, the heterogeneous ML model is built in two steps: first, CPU
and GPU ML models are built separately; second, they are combined to predict how
much workload to schedule in each type of PE(CPUs and GPU), building a
heterogeneous ML model. We used Oprofile [24] and Nvprof [31] to collect
runtine profile information from CPU and GPU executions. This data was used as
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input features for GPU and GPU ML models. Below, we describe in detail the steps
to create the heterogeneous ML model:

1. Collect information about the hardware of the host and devices. Table 1 and 2
list some of the parameters involved. In addition to these, we also include cache
hierarchy information, PCle data transfer rates, and the GPU parameters;
including the maximum number of concurrent streams,
dimension information, the shared memory size, among others.

2. Collect runtime profile information from the application. The CPU and GPU
ML models are used to predict the heterogeneous performance in a co-running

mode.

the

GPU thread

e (CPU Since collecting all the events provided by Oprofile [24] is extremely
time consuming, all the events are categorized into three groups: (1) cache
related events including cache hierarchy and cache misses events; (2) branch

Table 1 CPU hardware features of the experimental platforms

Machines/Param.

Hardware environment

CPU parameters

Cores Clock (GHz) # Socket L3 size (MB) CPU mem (GB)
Machinel (K20) 32 2.6 2 20 64
Machine2 (K20) 40 3 2 25 256
Machine3 ( k40) 8 34 1 8 16
Machine4 (Titan) 12 34 1 12 31
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Table 2 GPU hardware features of the experimental platforms with PCle data transfer rate

Machines/Param. Hardware environment

GPU parameters PCle (GB/s)

# SM Clock (GHz) L2 size (MB) GPU mem (GB)

Machinel (K20) 13 0.71 1.25 4.8 6.1
Machine2 (K20) 13 0.71 1.25 4.8 6.1
Machine3 ( k40) 15 0.75 1.5 12 10.3
Machine4 (Titan) 14 0.88 1.5 6 11.5

related events; (3) all the other events. Based on the different applications,
event groups 1 or 2 or all 3 can be activated. In this paper, we sample event
groups 1 and 2.

e GPU Nvprof [31] provides many options to collect CUDA run time
information. For our experiments we used two different categories. (1)
gpu-trace and api-trace (faster, fewer events); (2) nvprof-
metrics API (time consuming, more events). Using category 1 or 2
depends on the time constraints and accuracy requirements. To reduce the
training time, we collect only category 1 of events.

3. Normalize the collected data since the collected data refers to many aspects
such as cache miss rate, execution time, number of threads, ..., we need to
change the numeric columns values to a standard scale without distorting the
differences in the ranges of values.

4. Clusters of features since a high number of features are collected using
Oprofile and Nvprof, a Hierarchical Agglomerative Clustering algorithm
(HAC) is utilized to group correlation similarity features and finally obtain a
reduced set of features. We tested sets of 4—12 features. First, a threshold is
established with the correlation coefficients between the target variable
(execution times) and the other features. Then, a dendrogram is built, using
the correlation distance between the final features to clustering them by
similarity.

5. We use the gathered information to build a profiler-based ML estimation model
for CPU and GPU workloads. The CPU model focuses mainly on performance
(execution time), resource utilization and cache issues; the GPU model mainly
focuses on data transfers, computations time and the overlapping between them.
Especially for GPU, unsuitable workload allocation and the number of
concurrent streams will affect the host-device (CPU-GPU) communication-
computation ratio to drop down the performance dramatically.

The ML models utilizes the collected runtime profiler information to help the
scheduler distribute fine-grain tasks and improve the total performance. More
details can be found in Sect. 4, where we show how the fine-grain tasks are

@ Springer



International Journal of Parallel Programming

allocated with the help of ML-based models using two applications as
examples. Below, we describe how to create profile-based ML estimation
models for CPU and GPU workloads:

e Run a set of ML methods such as linear regression, Support Vector Machine,
and random forest model with the grouped features. Specifically, the linear
regression model can be shown in two forms: y and log>(y). We use G to
stand for the two forms: G =y and G =log,(y)). G = > i, wii(x;).
Where ¢;(x) are functions from the set of x, X%, x°, x*, %, logy x, x - logy x,
Inx, x-Inx; x; are features from last cluster step. Since y is our target
variable, transformation is necessary for the logarithm version using 2¢. The
reason why we include the Logarithm function is to reduce the non-linearity
factors [4] and provide reasonable approximation with the target variable.
For the SVM model, we use polynomial and Gaussian kernels.

e Opverfitting we use 10-fold cross validation and L2 regularity to reduce the
overfitting problems.

o  Models evaluation to evaluate how well the model fits the data, a coefficient
of determination, R?, is used. It is defined as the percentage of the response

Explained variation _ . th
Total variation ™!
0% < R? < 100%. 0% indicates the model explains none of the variability of

the response data around its mean. In contrast, 100% says that the model
explains all the variability of the response data around its mean.

o ML estimation model building an estimation formula of the best matched
statistical model can be built to predict an applications performance on this
specific heterogeneous platform. The specific parameters used to construct
the formula are mentioned in Sect. 4.3.

variation that is explained by a linear model: R> =

6. Build a heterogeneous prediction model based on the pure CPU and GPU
model. The communication cost between CPUs and GPUs are included in the
GPU model. To improve the GPU utilization effectiveness, especially when the
workload memory footprint is much larger than the GPUs available global
memory, CUDAs concurrent streams are used on GPU, based on Egs. 1 and 3.

4 Algorithm Implementation and Experiment Results

This section starts by introducing our heterogeneous platform, then presents the two
target applications, Stencil and SpMV, as well as their optimized co-running
workload partition approaches, finally concludes with the performance analysis of
these two applications employing different scheduling algorithms: CPU-Seq,
GPU-only, DARTS-CPU, DARTS-GPU, DARTS-DAWL, DARTS-Static and
DARTS-PDAWL. Specifically, CPU-Seq distributes the whole workload onto one
single thread (CPU). It is used as the baseline. GPU-only distributes all the
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workload on GPU using static fine-grain scheduling approach. If the whole
workload is less than the available GPU memory, the single-stream approach is
employed. If the whole workload is march larger than the available GPU memory,
the concurrent stream approach is employed. DARTS-CPU,DARTS-GPU, DARTS-
DAWL, DARTS-static and DARTS-PDAWL are implemented on DARTS runtime
system, see Sect. 2.1. Specifically, DARTS-CPU distributes the whole workload
onto CPUs (threads) using static coarse-grain scheduling approach that the whole
workload is evenly partitioned and allocated on each thread. DARTS-CPU stands
for homogeneous multi-thread computing. DARTS-GPU distributes all the workload
onto GPU using static fine-grain scheduling approach. Different from GPU-only,
DARTS-GPU employs concurrent stream approach all the time. DARTS-DAWL
distributes the workload onto CPUs and/or GPU based on DAWL, see Sect. 3.3,
which is a coarse-grain dynamic task scheduling approach. DARTS-Static also
distributes workload onto CPUs and/or GPU, but it employs the coarse-grain static
partition workloads approahch. DARTS-PDAWL distributes workload onto CPUs
and/or GPU based on PDAWL, see Sect. 3.4, which is a profile-based fine-grain
dynamic task scheduling approach. Aiming at different applications, the scheduling
approaches mentioned above may vary. More details will be discussed in the
corresponding experiments.

4.1 Experimental Testbed

DARTS already yields high performance on single-node homogeneous many-core
systems [3, 18, 37]. As explained in Sect. 2.1, we modified DARTS to be
heterogeneous and make it GPU-aware,. It is capable of scheduling CPU_-
codelets and GPU_codelets simultaneously. We ran the experiments on four
heterogeneous systems, as shown in Tables 1 and 2. The software environment of
these machine is shown in Table 3. Stencil-based computations and Sparse Matrix-
Vector multiplication using the Compressed Row Format (SpMV-CSR) were
selected to evaluate our DAWL and PDAWL.

4.1.1 Target Application: Stencil Computation

To emphasize a worst-case scenario, we used the Stencil kernels described in [18],
without ghost cells, which enhances the need for synchronization. Specifically, we
focused on two kernels: a 5-point 2D and a 7-point 3D Stencil, using double

Table 3 Software environment

Machines/Param. Software environment

GCC CUDA
Machinel (K20) v6.2/v8.1 v8.0
Machine2 (K20) v4.8.5/v6.2 v8.0
Machine3 ( k40) v5.4 v9.0
Machine4 (Titan) v4.9.2 vo.1
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precision values. We fixed the number of time steps to 30, removing the
convergence test at the end of each time step for simplification and making it more
deterministic. Note that the CPU tasks and GPU tasks within one timestep were
independent and that a global barrier was inserted at the end of each iteration. We
repeated each experiment 20 times. There are no confidence intervals as the
standard deviations were small, the larger one being 5% and the average smaller
than 1%.

We follow two partitioning approaches: coarse-grain (DAWL) and fine-grain
(PDAWL) are implemented for Stencil computation. As mentioned in Sect. 3.2, the
naive mathematical model is utilized to provide coarse-grain workload partitioning
so the whole workload is split into large chunks of rows and/or columns, and then
distributed to processing elements. The fine-grain partitioning approach refers to
more parameters detailed below.

To implement the fine-grain task distribution between CPUs and GPUs, our
approach consists of two steps: “Slicing” and “Tiling,” respectively. “Slicing,”
including 2D and 3D-Slicing, means that the workload is partitioned along one
dimension, as shown in Fig. 4. Within a slice, “Tiling” (i.e., L1-Tile (L1 cache) for
CPU tasks and Block-Tile for GPU tasks) can then be utilized. Figure 4 shows the
2D and 3D Stencil workload partitioning paradigm in the GPU/CPU co-running
situation. This paradigm also works for the pure CPU/GPU cases by removing the
GPU/CPU from the paradigm. In co-running situations, CPU and GPU “Slicing”
may meet at some point.

Correctness and performance are the two main targets for our fine-grain task
scheduling and distribution system. The workload allocation parameters should be
carefully chosen to avoid computing errors and to avoid dramatically performance
fluctuation/declining. In particular, the communication-computation ratio plays a
pivotal role for GPU tasks. The parameters affect the ratio, including the number of
concurrent streams, the workload (including transformation and computation) for
single stream, the size of a block tile, the number of thread block within one block,
the total number of thread block, the synchronization between streams, efc. The

cpu slice cpu slice_m 3D
5

2D N A .
Qe e P
CPU [cpu N A% e -
slice _til_eJ I] e ] ‘o3 e Ll;///
CPU |[cpu - GPU | GPU
slice m|tle [~ _____" _tile _|slice_n

GPU A Ge
"_________--_-_I___ Grulslice T/ f/@\s
GPU slice n  GpJslice

Fig. 4 GPU/CPU hybrid: stencil 2D/3D slicing and tiling
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model utilized in DAWL is a coarse-grain model which is incapable to provide
these fine-grain parameters. We instead employ an ML model in PDAWL to
automatically obtain the correctly matched parameters which can result in a near-
optimal compute-communication overlap and maximum both CPUs and GPU
utilization. As mentioned in Sect. 3, different systems architectures can yield
different parameters for our ML model.

Furthermore, the fine-grain task distribution helps us reduce the ML training
time. Combining “Slicing,” “Tiling,” and the concurrent streams approach can help
split the huge workload task into a set of small workload tasks. A small task, owning
the feature of fewer data transformation, which is one of the most time consuming
tasks, can converge to a near-optimal solution much faster. Since a very large
workload can be seen as the combination of small workloads, the ML model trained
by small tasks can be utilized to predict the performance of much larger ones on
GPUs.

Algorithm 1: Pseudo-code: Stencil (2D/3D) co-running approach

1 Function Stencil Main():

2 S0: init_system();

3 S1: parameters = Estimation_Func(); // MM/ML
a for it = 05t < total_Iteration;it + + do

5 S2: Stencil CPU(parameters);

6 S2’: Stencil_ GPU(parameters);

7 S3: Sync_All_Resources();

8 S4: parameters = Obtain_best_parameters(history);
9 end

10 Function Stencil CPE( *parameters):

11 S20: Sync_Remaining-WL();

12 do

13 S21: Run_CPE(parameters) ; //computing

14 S22: Update_Recording-History(parameters);

15 S23: ostatus = Check_OPE_Status(); //OPE

16 S24: Opt_Estimation_Func(history, ostatus, parameters); //MM/ML
17 S25: Sync_Remaining_WL();

18 while Remaining WL > Total W L * 10%
19 S26: Run_Remaining();

Algorithm 1 shows the Stencil pseudo-code co-running approach using DAWL
or PDAWL. It consists of two functions: Stencil_Main and Stencil_CPE. CPE
stands for the Current Processing Elements. OPE stands for the other Processing
Elements. If the code is currently run on CPUs, then the CPE stands for CPUs and
OPE stands for GPU, and vice-versa. We use one Stencil_CPFE function to stand for
two Stencil computations, respectively running on CPUs (Stencil_CPU, homoge-
neous multi-threads computing) and GPU (Stencil_GPU). DAWL and PDAWL
share the same framework,5 see Sect. 3.3, but employs a different performance
estimation model corresponding to pseudo-code labels S1 (original model) and S24
(optimization model). The performance estimation model provides the necessary

5 The pseudo-code mainly shows the DAWL components from item 3 to item 6.

@ Springer



International Journal of Parallel Programming

parameters to the Stencil_CPE function. For DAWL, the parameter set is simple
which includes the number of CPU threads, the workload (the Rows/Columns
number) for each CPU threads, the number of GPU concurrent streams and the GPU
workload in one round. For PDAWL, the parameter set is complicated which at least
includes the number of CPU threads, the number of GPU concurrent streams, the
“Slicing” and “ Tiling” size for CPU thread (the number and size of slice/L1-Tiles)
and GPU (the number and size of slice/block tiles, the number of thread block
within one tile, the total number of thread block). Label S2 (Stencil_CPU) and
S2’(Stencil_GPU) are run in parallel with (explicit and hidden) synchronization
operations. Label S21 (Run_CPE) is the Stencil computation following the
partitioning rules described in Fig. 4. The specific CPU multi-threads code can be
found in paper [18]. The GPU code is the concurrent stream version of the Stencil-
kernel code with the pipeline technique optimization. Label S22 (Update_Record-
ing_History) records and updates the CPE (history) information (see DAWL
item 3). Before starting the next computing task, it is necessary to check the OPE
status (Label S23, Check_OPE_Status), to estimate when the OPE computing will
be finished if the current status of OPE is running. With the history and the current
OPE status information, we can leverage the optimized estimation model (Label
S24,0pt_Estimation_func, DAWL item 4) to provide a new parameter set for the
next computing task. Label S26 (Run_Remaining) corresponds to the DAWL item 5
and the parallel computation is also involved in this step. When all the computations
within one iteration are finished, there is a an explicit synchronization operation
(label S3, Sync_All_Resources). It is prepared for the evaluation operation, Label
S4. Label S4 (Obtain_best_parameters) evaluates all the tasks running on different
PEs during this iteration, and then figure the best matched parameters set for PES
which can be utilized in the next iteration (corresponding to DAWL item 6).

4.1.2 Target Application: SpMV Computation

We used the SHOC benchmark suite’s implementation of SpMV-CSR (Scalar
version) [11] bluekernel functions, for both the CUDA and C++4 sequential
versions. We converted the sequential code to parallel code where every CPU’s
processing element (PE) can calculate one or multiple rows. One PE is in charge of
communication and synchronization between the host (CPU) and the accelerator/
device (GPU). For the CUDA code, we utilize the concurrent stream technique as an
optimization. Just as with Stencil, SpMV has also been implemented in two
versions: coarse-grain and fine-grain. The coarse-grain version is the parallel
version of SHOC SpMV-CSR mentioned above. The fine-grain version is similar to
Stencil, in that it involves fine-grain partitioning of the current/selected workload,
the number of GPU concurrent streams, GPU Block-Tile size, etc. Furthermore,
considering the features of the SpMV algorithm, the SpMV fine-grain approach
entails one more step called pre-processing; more detail can be found below.

The performance profile of sparse matrix-based computations vary widely
depending on the sparsity of its matrices’ rows. A row is either “sparser” (i.e., it
contains more zeros than non-zero values) or “denser” (if it conversely contains
more non-zero elements). The execution time of tasks on “sparser” and “denser”
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rows may vary enormously. If all the rows are evenly allocated on computing
resources (PEs), the execution time will depend on the heaviest task which is
allocated with the “densest” rows. Since the target application is a sparse matrix,
the majority of tasks are just waiting for the completion of the heaviest task. It
reduces the computation resource utilization and results in lower performance. We
propose to pre-process data at first: extract the “denser” rows as irregular
computation tasks. At this point, the majority of sparser rows that are left over can
be considered regular computing. Considering the features of CPUs and GPU, GPU
will be preferred to run regular computing tasks, while CPUs can run both regular
and irregular computing tasks. To split denser and sparser rows, we built up a SpMV
Co-running Model on SHOC SpMV-CSR. More specific steps are shown below:

1. Analyze and evaluate statistical information, as shown in Table 4, to estimate
the sparsity degree of the matrix. NNZ is the total number of non-zero elements.
u is the average number of non-zero elements per row. ¢ is the variance of the
number of non-zero elements per row. CV stands for coefficient of variation per
row. MAX: the maximum number of non-zero elements per row.

2. Build priority groups based on collected information (see Fig. 5). The highest
priority level contains the maximum non-zero number per row(s); the lowest
priority level contains the minimal non-zero number per row(s). On the same
level, group members have similar non-zero numbers so they can run in parallel.
To simplify the model, we statically set the ratio (30%) [19] as the threshold.
The top 30% maximum non-zero number per row(s) will be extracted from the
matrix and added to CPUs priority groups.

3. Run irregular and regular computations on CPUs and GPU, in parallel. CPUs
will proceed from the highest to the lowest priority level, and GPU will proceed
from the lowest priority level. Here, a concurrent stream approach is also
utilized in the GPU.

4. Synchronize when all the CPUs and GPU computations are finished.

Matrices Used for Our Experiments We used 50 sparse matrices from the

University of Florida Sparse Matrix Collection (UFSMC) [12] to train and 5
matrices (see Table 4) to evaluate our DAWL/PDAWL.

Table 4 Matrices for SpMV

Name Dimension (M) NNZ (M) u o cv MAX
circuithM 5.56 59.52 10.71 1356.62 126.68 1,290,501
eu-2005 0.86 19.24 22.30 29.33 1.32 6985
in-2004 1.38 16.92 12.23 37.23 3.04 7753
FullChip 2.99 26.62 8.91 1806.80 202.73 2,312,481
kmer_Ula 67.7 138.8 2.05 0.37 0.18 35

NNZ: total of non-zero elements
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Algorithm 2: Pseudo-code: SpMV co-running approach
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Function SpMV_Main():
S0: Spmv_Config_Info = Obtain_SpMV _Info();
S1: Priority_Group = Build_Priority_Group(Spmv_Config_Info); // pre-process
s2: parameters = Estimation_Func(Priority_Group); // MM/ML
S3: SpMV_CPU(parameters);
S3’: SpMV_GPU(parameters);
S4: Sync_All_Resources();
Function SpMV_CPE( *parameters):
do
S31: Run_CPE(parameters) ;
S32: Update_Recording_History(parameters);
S33: ostatus = Check_ OPE_Status(); //OPE
S34: Opt_Estimation_Func(history, ostatus, parameters); // MM/ML
while Remaining_-Rows > 0

Algorithm 2 shows the SpMV pseudo-code co-running approach using DAWL or
PDAWL. Just as with Stencil computing, it consists of two functions: SpMV_Main
and SpMV_CPE. SpMV_CPE stands for two parallel running functions, SpMV_CPU
and SpMV_GPU. Based on the features of SpMV, no iteration operation is involved
and no last step fine grain optimization (see DAWL item 5) is utilized. Label SO
(Obtain_SpMV_Info) is to obtain the configuration information of the current sparse
matrix and vector including the total number of rows and columns, the pointers to
the CSR format SpMV matrices and vector, NNZ, MAX, efc. listed in Table 4.
Label S1(Build_Priority_Group) is meant to build a priority group described in
SpMV Co-Running Model item 2 and Fig. 5. This is the pre-processing step whose
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purpose is to build two new matrices representing regular and irregular groups. The
performance estimation model is based on these new matrices. Label S3
(SpMV_CPU) and S3’(SpMV_GPU) are run in parallel on CPUs and GPU with
(explicit and hidden) synchronization operations. To avoid repetitions, we will not
describe the detail of the other functions since they are similar to those in the Stencil
pseudo-code.

4.1.3 Experiments Hardware Parameter Space Configuration

We used numactl to allocate memory in a round-robin fashion and avoid NUMA-
related issues.® All systems were configured so that only 2 GB were seen as
available by the runtime system, which has the effect of reducing the parameters
space to explore. Figure 6 shows the same “drop-off” trend when using a 4 GB
memory threshold which indicated that the artificial constraint we put on the GPU
DRAM capacity does not impact the overall methodology nor its results. The initial
workload is important for our workload distributed algorithm (DAWL) running in
the co-running mode, as shown Fig. 6. The suffixes, “—1” and “—2,” stand for
different initial workloads. Even though the final speedup will converge when the
total workload is large enough, during the whole process, especially in the first stage
of co-running, an unsuitable initial workload will cause performance fluctuations.

We used two different mapping policies to pin DARTS threads to physical
processing elements: spread and compact which roughly behave as OpenMP
4.5’s spread and close thread configuration on the target device. The spread
policy attempts to map DARTS threads to processing elements as far apart as
possible physically on the underlying hardware. On the contrary, compact
attempts to map DARTS threads as closely as possible on the available processing
elements.

4.2 DAWL: Performance Analysis

To comprehensively characterize DAWL, we performed a series of workload
performance analysis. We compared the DARTS-DAWL performance with GPU-
Only, CPU-Seq, DARTS-CPU, and DARTS-GPU (see Table 5 for details).
Figure 7 shows the experimental results’ that the Stencil kernels do not always
scale well over multiple cores and nodes. Considering the Stencil features, such as
data dependence , and the communication cost between CPUs/sockets, using more
computing resources will not guarantee higher performance. The memory/cache
conflicts and synchronization [18] issues incur quite a large overhead. Matched
workload and computing resources is what is essential to obtain high performance.

S This ensures a stable DRAM access latency, and thus allows us to remove one parameter from the
search space.

7 The four machines onto which we experimented behave similarly in that respect. Hence we only show
the machine 1 case.
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Fig. 6 Stencil 2D: speed up when GPU memory is 2 and 4 GB with different initial workload (GPU =
CPU): the performance vary with initial workload

Table 5 Stencil kernel implementation

Implementation Ilustration

CPU-Seq Sequential c++ code

GPU-Only CUDA code

DARTS-CPU Multi-threads c++ code

DARTS-GPU CUDA code on DARTS (concurrent streams)
DARTS-DAWL DAWL hybrid code on DARTS
DARTS-Static DAWL hybrid static partition code on DARTS

Figure 8 shows the speedup of different variants for the 2D Stencil.® Here,
DARTS-GPU uses concurrent streams at all times. Whereas, GPU-Only is slightly
optimized comparing to the traditional way. When the problem size is smaller than
the GPU memory capacity, we use the single-stream method to avoid superfluous
synchronizations between the host and device. We use concurrent streams when the
problem size is larger than the GPU’s memory capacity to overlap communication

8 The 2D and 3D cases behave similarly in that respect. Hence we only show the 2D case.
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Fig. 7 Stencil 2D: performance with a varying number of HW threads. Time in nanoseconds

and computation. For DARTS-DAWL, we tried different initial workloads and chose
the best set for CPUs and GPU.

Figure 8 verifies our baseline mathematical model. With 30 iterations constraints
on Stencil kernels, and when the workload’s memory footprint is smaller than the
available device memory, r > 1 as described in Eq. 3, and the application allocates
the full workload to the device to get maximum performance. When the memory
footprint is bigger than the available device memory, it is allocated to both the host
and the device. Considering the cost of communication and synchronization
between these two resource types, the total performance ultimately drops. The
speedup ratios are quite different on different systems, which is due to the
differences in hardware. e.g., the GPU of machine 3 is a Tesla-K40, which has a
higher clock and memory frequency than Tesla-K20.

DARTS-DAWL on machine 3 should run in pure GPU mode based on Egs. 1-3.
Here, DARTS-DAWL is hard coded to use the co-running mode to prove that our ML
approach can still improve performance even in the worst case.

4.3 Profile-Based Estimation Model, Analysis and Results
In this section, we first discuss why we employ the profile-based dynamic fine-grain
workload partition approach instead of the simple static fine-grain workload

partition approach for our experiments. Then, we analyze in detail the results of the
experiments related to the Profile-based Estimation Model.

4.3.1 Dynamic Versus Static Workload Partition

As we discussed in Sect. 4.2, the coarse-grain tasks scheduling approach used in
DAWL presents essential weaknesses. In Sects. 4.1.1 and 4.1.2, we list the benefits
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<«Fig. 8 Stencil 2D: speedup of the different versions
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Fig. 9 Stencil 2D: dynamic and static workload partitions onto CPUs and GPU. 24 means CPU workload
is 2000 x 2000, GPU workload is 4000 x 4000

of fine-grain task scheduling for the Stencil and SpMV applications. The next
question will be why we train the profile-based ML model to estimate the fine-grain
task performance and then dynamically and adaptively approach these tasks based
on the runtime situation? Why not just utilize a simple static fine-grain tasks
scheduling approach? Figure 9 provides the answers. It shows the dynamic and
static workload partitions onto the CPUs and GPU. The static fine-grain approach
can finally converge to an optimal state if the workload is large enough which
means it takes a long time to converge. Furthermore, the performance fluctuates
much during the whole process and it varies with different partitions size. On the
contrary, PDAWL , which employs a profile-based ML model and can dynamically
adjust the workload based on the runtime situation, always reaches the optimal
performance.

4.3.2 Profile-Based Estimation Model

Section 3.4 shows how we used the performance of pure CPU/GPU versions to
predict co-running executions. Our training/validation/test sets are split between
CPU and GPU.

The “CPU set” is to build a CPU performance-resource estimation model which
can provide the “best” scheduler using minimum computing resources to obtain the
maximum performance (shortest execution time) for a specific workload. As
described in Sect. 4.1.3, combining spread and compact mapping policies, we
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run experiments with different active CPU threads number (e.g. 2, 4, 8, 16...) to
obtain the necessary run time information by using Oprofile [24]. Our experiments
(Fig. 7) show that when the CPU threads number reaches a given threshold,
increasing the number of threads does not improve performance—which is to be
expected because of memory conflicts. Furthermore, PDAWL utilizes this
information to provide an accurate prediction model even when e.g., some PEs
are suddenly turned off because of power issues.

The “GPU set” is used to build a GPU communication-computation overlap
model, to estimate data transfer and execution time. In particular, the right Block-
Tile size, the number of thread block, and the number of concurrent streams can
perfectly overlap communication and computation on a system; and yet, the overlap
ratio may be very low on other systems since the available SM, PCle throughput,
etc., are totally different. This is particularly true if the Block-Tile size is too small
to cover the CUDA runtime API launching time: there will be no overlap between
computation and communication. Too many concurrent streams will increase the
pressure on the scheduler, the pre/post-processing time and even increase the
amount of data transfers. nvprof [31] can be employed to obtain related
information. Specifically, the estimation model consists of: API launching, events,
metrics, data transfer between host and device and device computation parts. We
run the two versions of the GPU code, with/without a different number of
concurrent streams, combining with different Block-Tile size.

The information collected by the runtime system helps gather more than two
hundreds features for each type of device. Features are computation and
communication metrics and events. To obtain a reasonable group of features, a
correlation analysis and cluster algorithm, Hierarchical Agglomerative Clustering
algorithm (HAC), was employed. For instance, Fig. 10 shows one dendrogram
describing a matrix correlation of different GPU parameters and a grouping of the
set of features. rows and columns share the same variables. Each cell in the
table shows the correlation between two variables. In this figure, blue and red are
minimum and maximum correlations, respectively. First, features with a high
correlation with the execution time are selected. Second, selected features are
analyzed with a hierarchical clustering and different sets of features are created.

Figure 11 shows 5 clusters. If the height of the threshold is increased (see red
dash line), then fewer clusters are created. This means that the threshold (the red
dashed line) in the dendrogram determines the number of clusters.

From the other side, these grouped features obtained from the Hierarchical
Agglomerative Clustering algorithm (HAC) point to the most important aspects
which affect the performance of applications on the heterogeneous system. For
example, if the feature is related to the threads number (CPU) or global_store_-
transactions (GPU), then the application will be more sensitive to computation
(CPU) or the communication between host and GPU (GPU). Based on this
information, the grouped features can provide optimization suggestions for current
application optimization.

After the data is collected, various ML algorithms see Sect. 3.4, PDAWL item 5
are run and the one that fits the model best is selected.
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Fig. 10 Built dendrogram from a matrix correlation of the set of GPU features coming from nvprof
(Color figure online)
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Fig. 11 Dendrogram generated from a set of CPU features coming from OProfile. The numbers on the
x axis represent the features assigned by OProfile. The numbers on the y axis represent thresholds
(Color figure online)

Here, we use two simple linear regression functions as an example’ to explain
how ML algorithms were chosen (PDAWL item 5). If five features (x| to xs) are
selected by the HAC clustering algorithm (PDAWL item 4), the two possible linear
regression functions (which are randomly picked from our linear regression model
set) can be: 1. G = wy x (x1) +wa * (x1) 4+ w3 (x2) + wa * (x2)% +ws * (x3) +
We * (x3)2—|— wy * (x4) + wg * (x4)2 + wo * logr x5 + wig * (x5) x logoxs; 2. G =
wi o (x1) + wy * (xl)2 +ws * (x)+ Wy * (x2)2 + ws * (x3) + we * (X3>2 + wy *
(x4) + wg * (x4)2 + wg * x5 + wyo * loga x5; Then, traditional ML training and

° Here we randomly pick two from the whole linear regression model set as an example. May neither one
be the best fit function in the experiment.
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validation methods, such as the use of 10-fold cross validation and L2 regulation to
avoid overfitting, can be utilized on these two linear regression models to obtain the
optimum weights (w;). When the weights for each function are obtained, we transfer
G to y, since y is our target function, as we described in PDAWL item 5. The two
forms are G =y and G = log>(y). Then the transformation will be y = G and
y = 26. The reason why we include the logarithm function in our model is that
logarithmic scale function can reduce the non-linearity factors and provide
reasonable approximations [4]. R* is utilized to evaluate which is the best fit
function and will be selected as our finally performance estimation model. Beside
the accuracy, the computation complexity of the model is considered when chosen
as the best fit function. For example, if one of the linear model and SVM model
have similar R2, such that the difference is less than 0.01%, then the linear model
will be chosen at the end since the computation complexity of SVM is much higher
than that of the linear model.

In our experiments, when training/validation all of our linear models, Random
Forest and Support Vector Machine (SVM) models on four machines, we find that
the majority of the best matches both for Stencil and SpMV computation is given by
linear regression , and that its R? is 0.93 <R?<0.94. Linear regression is also
highly efficient for training and testing evaluations. In the future, more ML models
and approaches will be added to our experiments.

The Mean Absolute Percentage Error (MAPE) is utilized to measure the accuracy
of our prediction model. Table 6 shows the MAPE of the linear model for each
machine in the Stencil 3D experiments.

Figures 12 and 13 show the results for PDAWL. Compared to DARTS-CPU, the
number of PEs changes with runtime. Our scheduler can reach up to 6x speedups
compared to sequential runs, 1.6x speedup compared to the multiple core version,
and 4.8x speedup compared to the pure GPU version in the 2D Stencil. In the 3D
Stencil, DARTS-PDAWL reaches speedups up to 9x compared to the sequential
version, 1.8 against multi-cores, and 3.6 against a pure GPU version. Figures 12
and 13 that profiling does not always yield significant speedups. This is especially
true around drop points, i.e., unstable points which are affected by multiple co-
running hardware/software conflicts parameters, which our machine learning
estimation model did not take into consideration.

Figure 14 compares the SpMV of the five Matrices listed in Table 4 on Machine
1. DARTS-CPU (pure CPU) employs the coarse-grain task scheduling approach
which evenly distributes all rows onto multheeads (CPUs). DARTS-GPU (pure
GPU) employs the fine-grain task scheduling approach which evenly distributes all
rows onto thread blocks (GPUs). Considering the features of sparse matrices, the

Table 6 Stencil 3D: mean absolute percentage error of the performance prediction with linear regression
models for each machine

Machines #1 #2 #3 #4

MAPE 6.43% 7.41% 3.45% 1.68%
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<«Fig. 12 Stencil 2D: speedup when matrices are larger than 17K x 17K (PDAWL)
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Fig. 13 Stencil 3D: speedup (PDAWL)

non-zeros number per rows varies enormously. If the workload is split in rows, then
the execution time of each partition will varies greatly. The totally execution time
depends on the partition with the maximum total of non-zeros elements. Resource
under utilization issues exist in both DARTS-CPU and DARTS-GPU. Compared to
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DARTS-GPU, the performance of DARTS-CPU is much higher than that for the
DARTS-GPU. This is because CPUs are better at processing complex data structure
which is the feature SpMV-CSR format. DARTS-DAWL is not shown in the
figure since it overlaps with DARTS-CPU with very tiny differences which are not
large enough to be visible. So, DARTS-CPU also stands for DARTS-DAWL in this
figure. DARTS-PDAWL first transforms sparse matrices into dense matrices using
the approach described in Fig. 5, and then utilize the ML model to find the best
matched parameter set for both CPU and GPU to improve computing resource
utilization. DARTS-PDAWL executes up to 30.5x faster than the GPU version and
1.37x faster than the multi CPU version. The speedup depends on the degree of
sparsity in the tested matrices. As shown in Fig. 14, the speedup of DARTS-
PDAWL/DARTS-GPU of Fullchip and circuitSM are far larger than the others.
Furthermore, our optimized SpMV approach, mentioned in Sect. 4.1.2, can run in
parallel a regular computation group on GPU and an irregular one, and perhaps also
include part of a regular, computation group on the CPU. 30% of threshold is a
reasonable value [19] for an SpMV computation. Choosing a more suitable thresh-
old, using ML algorithms, in order to further to improve the performance of
DARTS-PDAWL for sparse matrices computing will be one of our future tasks.
To summarize, based on the experiment results analysis (both Stencil and
SpMV), PDAWL can adaptively schedule regular and irregular workloads based on
the system hardware architecture. The reasons why PDAWL outperforms pure
GPU, pure CPU and DAWL are that it can fully utilize the available computing
resources, can find the suitable synchronization way to guarantee that all the
resources are co-running all the time, and can run on different architectures without
considering the differences of hardware architecture, initial workload allocation and
workload update ratio. Furthermore, PDAWL can also obtain relatively high
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performance when tasks are forced to a (not best matched) computing resources (see
machine 3 in Figs. 8 and 12). Even though, when facing the totally new applications
and hardware environments, it may take times to re-training profile-based ML
estimation model, where the re-training time depends on the complexity of system
architectures and applications, PDAWL can still be used as a general approach for
co-running applications, such as linear algebra applications, to obtain a relatively
better performance during the test for different systems. Furthermore, since we have
collected the important features based on the HAC algorithm, if the changes of
hardware do not effect the important features, there is no need to re-training for the
same/similar applications.

5 Related Works

The main challenge of the load-balancing mechanism is to divide the workload into
processing units precisely. A simple heuristics division approach may result in
worse performance than a simple uniform division. Machine-learning-based
prediction mechanism or/and online profiling-based scheduling algorithms have
been deployed to determine the workload partitioning decision on many-core
homogeneous/heterogeneous systems.

Luk et al. [26] proposes an empirical adaptive mapping, a fully automatic
technique to map computations to processing elements on heterogeneous multipro-
cessors. Wang et al [42] utilizes an ML approach to decide whether to parallelize a
loop and how to schedule candidates on multi-core platforms. Memeti and Pllana
[30] combined optimization and machine learning to statically distribute work
between the host and device of heterogeneous computing systems to minimize the
overall application execution time. Belviranli [5] performs a dynamic load-
balancing algorithm (Heterogeneous Dynamic Self-Scheduler-HDSS) for heteroge-
neous GPU clusters. Teodoro [38] performs a performance variation-aware
scheduling technique along with an estimation optimization model to collabora-
tively use CPUs and GPUs on parallel systems. Sant’ Ana ef al. [34, 35] implement
two profile-based load-balancing algorithms named PLB-Hec and PLB-HAC for
data-parallel applications in heterogeneous CPU-GPU clusters. The ML approach is
utilized to predict the best distribution of data block size among different processing
units. Zhang et al. [46] performs a series of workload characterization analysis to
understand the co-running behaviors on integrated CPU/GPU architecture. The
main factors affecting the co-running performance: the architectural differences
between CPUs and GPUs and the limited shared memory bandwidth. Based on this
information, an ML model can be built to predict coarse-grain workload partitioning
on a co-running device before porting the program. Zhang et al. [45] proposes a
fine-grain workload reshaping approach which combines performance prediction,
from an ML model, and partitioning threshold, from an online-turning model, to
partition the workload between CPU and GPU on integrated architectures. When the
workload is lower than the threshold, it will be executed on GPUs; otherwise, CPUs
will be employed. Margiolas et al. [28] and Boyle er al. [32] focus on the
accelerator sharing control for multiple kernels and propose to use ML to determine
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whether to run OpenCL code on GPU or OpenMP code on multi-core CPUs. Wen
et al. [43] use ML to decide whether to merge or to separate multi-user OpenCL
tasks running the most suitable devices in CPU-GPU systems.

To avoid extensive offline ML training, Laleem et al. [20] presents an adaptive
online profiling based scheduling technique. Cho et al. [8] reshapes the workload
on CPU/GPU based on online profile information generated at runtime. Zhang et al.
As with [45], a threshold is employed by Cho ef al. [8].

Except for architectural differences, communication between CPUs, GPUs, and
the memory has a pivotal role. Chen et al. [7], Zhang et al. [46], Yang et al [44].
Van Craeynest et al. [40] and Garcia et al. [16] propose an analytical performance
model that includes PCle transfers and overlapping computation and communica-
tion. Lutz et al. [27] proposes PARTANS, an autotuning framework for CPUs and
GPUs to execute Stencil computations over two nodes with multiple GPUs. Data
transfer on the PCle bus plays a crucial role in determining the number of GPUs to
be utilized. To handle the communication-synchronization problem between CPUs
and GPUs, Lee et al. [22] proposes SKMD (Single Kernel Multiple devices) to
transparently orchestrate single kernel execution across asymmetric heterogeneous
devices regardless of memory access patterns.

Most of these are aimed at static, coarse-grain workload distribution, and loosely
synchronized parallel workloads where specific tasks are often run only a specific
type of processing element (e.g., CPU or GPU). Zhang et al. [45] works for fine-
grain partitioning, but employs an inherently rigid static workload partition.
Furthermore, the precision of the ML model determines the efficiency of the
workload partitioning approach. The hardware change during runtime may have a
catastrophic effect on the performance. At the same time, hardware changes during
runtime may happen frequently, and as much as half of the CPU cores may be
turned off because of power issues.

Our work focuses on dynamic, fine-grain workload distribution and tight
synchronization between CPUs and GPUs. To adapt to the real time hardware
situation, fully utilize the available computing resources and reduce the commu-
nication cost between CPUs and GPUs, we combine online scheduling and offline
machine learning.

6 Conclusions and Future Work

We have presented a profile-based Al-assisted dynamic scheduling approach for
heterogeneous architectures. To fully utilize the computing resources and improve
performance in the processing of scientific applications, we have focused on the
workload balance aspect. PDAWL, an iterative event-driven scheduling algorithm
has been designed to load balance better tasks in a heterogeneous system. It
leverages a naive hardware resources mathematical model, combining offline
profile-based machine learning and an online scheduling approach. Our model
determines how the workload should be allocated to the heterogeneous computing
resources. The profile-based Machine-Learning estimation model can help build an
estimation model in a heterogeneous resource context. It consists of a CPU model
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and a GPU model. We used ML to find the best workload-resource match to
improve the CPUs utilization rate, and the optimal estimation model to improve
GPU performance since building an accurate mathematical general-purpose GPU
performance model is nigh-impossible, as the search space is too large. Further-
more, the cluster algorithm (HAC) within the ML model can provide optimization
suggestions of the current application to improve the application performance on
heterogeneous systems. An online event-driven scheduling can make up for the
inflexibility of offline machine learning and increase accuracy of scheduling. Our
approach is suitable for a very dynamic hardware environments where the
computing resources can be turned off/on during run-time. Furthermore, our
approach can be used in the presence of huge workloads that exceed that capacity of
available device memory. The advantage of our approach is that the total machine
learning training time will not increase much since we train with small workloads to
predict the performance with very large workloads.

Two applications, Stencil and SpMV, have been chosen to evaluate our approach.
Experiments with Stencil 2D, Stencil 3D, and SpMV show that PDAWL yields
speedups up to 1.6x, 1.8x, and 1.37x for a multi-core baseline, 4.8, 3.6, and
30.5x for pure GPU execution.

Future work includes augmenting our model with power consumption parameters
to enrich PDAWL and determining the right trade-offs between performance and
power on heterogeneous architectures. Online learning algorithms, deep neural
networks and other Machine Learning algorithms will be integrated into PDAWL.
We will also employ meta-learning to reduce the training time when running our
PDAWL on other hardware environment configurations.
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