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Abstract 29	

 As a new strategy for treatment of ductal carcinoma in situ, biocompatible and 30	

bioadhesive nanoemulsions for intraductal administration of the cytotoxic agent piplartine 31	

(piperlongumine) were optimized in this study. To confer bioadhesive properties, the 32	

nanoemulsion was modified with chitosan or hyaluronic acid. Tricaprylin was selected as the 33	

nanoemulsion non-polar phase due to its ability to dissolve larger drug amounts compared to 34	

isopropyl myristate and monocaprylin. Use of phosphatidylcholine as sole surfactant did not 35	

result in a homogeneous nanoemulsion, while its association with polysorbate 80 and glycerol (in 36	

a surfactant blend) led to the formation of nanoemulsions with droplet size of 76.5 ± 1.2 nm. 37	

Heating the aqueous phase to 50°C enabled sonication time reduction from 20 to 10 min. 38	

Inclusion of either chitosan or hyaluronic acid resulted in nanoemulsions with similar in vitro 39	

bioadhesive potential, and comparable ability to prolong mammary tissue retention (to 120 h) in 40	

vivo without causing undesirable histological alterations. Piplartine was stable in both 41	

nanoemulsions for 60 days; however, the size of loaded NE-HA was maintained at a similar 42	

range for longer periods of time, suggesting that this nanoemulsion may be a stronger candidate 43	

for intraductal delivery. 44	
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INTRODUCTION 52	

Ductal carcinoma in situ (DCIS) is a type of breast cancer characterized by cell 53	

proliferation without evidence of invasion in the basal membrane and adjacent tissue (Fallowfield 54	

and Francis, 2016). It accounts for approximately 20% of nonpalpable breast tumors diagnosed 55	

with mammography (Sagara et al., 2015; Ward et al., 2015). Because of its heterogeneity, it is 56	

estimated that 25-50% of the lesions may progress to invasive disease (Benson et al., 2016); thus, 57	

DCIS management has traditionally followed the standard of care of invasive breast cancer: 58	

surgical excision, radiation therapy and/or oral tamoxifen for estrogen-positive tumors (Groen et 59	

al., 2017; Sagara et al., 2015). However, recent studies demonstrated that this standard of care 60	

does not influence mortality related to subsequent invasive forms of the disease (Fallowfield and 61	

Francis, 2016; Narod et al., 2015), emphasizing the need to consider biological markers and other 62	

characteristics to diagnose low-risk lesions and enable the use of less aggressive treatment 63	

approaches (Benson et al., 2016; Campbell et al., 2017; de Groot et al., 2016).  64	

More recently, administration of cytotoxic drugs directly into the mammary ducts has 65	

been described as a new option for local treatment and chemoprevention of precursor and atypical 66	

lesions, DCIS, and as a neoadjuvant treatment option prior to surgery (Love et al., 2013; Murata 67	

et al., 2006). Preclinical data have shown the feasibility of the intraductal route for administration 68	

of chemotherapeutic agents such as paclitaxel and doxorubicin in rodents with significant 69	

reduction of tumor development and incidence of systemic drug adverse effects in N-methyl-N-70	

nitrosourea-induced models, spontaneously arising Her2/neutransgenic mouse models and other 71	

mammary tumor models (Gu et al., 2018; Murata et al., 2006; Okugawa et al., 2005; Stearns et 72	

al., 2011). Intraductal administration has also been performed in clinical settings for drug delivery 73	

(Love et al., 2013). For example, Stearns et al. were able to cannulate the most visible ductal 74	

orifice in volunteers (Stearns et al., 2011). Mahoney et al. demonstrated the feasibility of 75	

cannulating a specific DCIS-containing duct in women and instilling a cytotoxic agent before 76	
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breast cancer surgery (Mahoney et al., 2013).	Carboplatin or pegylated liposomal doxorubicin 77	

(PLD) was administered into five to eight ducts at three dose levels in women awaiting 78	

mastectomy (Love et al., 2013).	Intraductal administration was generally well tolerated with mild, 79	

transient breast discomfort, and mean of pain ranging from 0.2 to 1.2 (on a 10-point scale) after 80	

local application of lidocaine (Stearns et al., 2011; Zhang et al., 2014). Plasma drug levels were 81	

lower than after intravenous administration, supporting the relevance of intraductal 82	

administration for local treatment (Stearns et al., 2011).  83	

Although intraductal administration has attracted interest, there is a need for specific 84	

formulations designed for this route, characterized by biocompatibility and ability to prolong 85	

drug retention in the mammary tissue. In a previous study, we have developed a nanoemulsion 86	

using polysorbate 80 as sole surfactant, and demonstrated its feasibility for intraductal 87	

administration (Migotto et al., 2018). Building upon our previous study, our first goal in this 88	

study was to optimize the composition and production parameters of nanoemulsions for 89	

intraductal delivery of the cytotoxic drug piplartine. Also known as piperlongumine, piplartine is 90	

an alkaloid of Piper species that demonstrated cytotoxic and antiproliferative activity against 91	

several tumor cell lines including prostate, colon, breast and melanoma (Bezerra et al., 2007; 92	

Bezerra et al., 2008b; Kong et al., 2008; Raj et al., 2011; Tsai et al., 2005). Piplartine induces 93	

DNA damage, leading to cell death by apoptosis and necrosis depending on concentration 94	

(Bezerra et al., 2007), and G2/M cell cycle arrest followed by mitochondrial-dependent apoptosis 95	

(Bezerra et al., 2013). 96	

 To optimize nanoemulsion composition and production parameters, we established ideal 97	

formulation attributes (based on the administration route), identified factors that might influence 98	

these attributes, and investigated the influence of each factor while keeping others constant. The 99	

nanoemulsion attributes included (i) size ≤ 100 nm at the time of obtainment to avoid any risk of 100	

duct obstruction, which was defined based on ducts dimensions (0.5-2 mm), (ii) PDI < 0.3 to 101	
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ensure low polydispersity and homogeneous size distribution, and (iii) bioadhesive properties, 102	

obtained by nanocarrier modification with a cationic (chitosan) or anionic (hyaluronic acid) 103	

polymer, enabling comparison of the influence of type and charge of the bioadhesive polymer 104	

(Ferris-James et al., 2012; Loureiro et al., 2015; McClements, 2012; Migotto et al., 2018). 105	

Chitosan has been described to adhere to mucous membranes mainly due to electrostatic 106	

interactions with negatively charged surfaces (Mazzarino et al., 2012; Smart, 2005), while 107	

hyaluronic acid is a major component of the extracellular matrix and major ligand of CD44 and 108	

RHAMM receptors, which are overexpressed on a variety of tumor cell surfaces (including in the 109	

breast) (Akima et al., 1996; Guter and Breunig, 2017).  110	

 Following optimization of the nanoemulsion composition and production parameters, our 111	

second goal was to compare the characteristics and properties of selected nanoemulsions 112	

modified with chitosan and hyaluronic acid. Characteristics and properties of interest that were 113	

studied included irritation potential, rheological and bioadhesive properties, in addition to 114	

stability, drug release, in vivo retention and local histological alterations.  115	

 116	

MATERIAL AND METHODS 117	

Material 118	

 Polysorbate 80, DMSO, low molecular weight chitosan (50,000-190,000 Da), hyaluronic 119	

acid (130,000-150,000 Da), and propylene glycol were obtained from Sigma (St. Louis, MO, 120	

USA). Glycerol was purchased from Synth (Diadema, SP, Brazil). Tricaprylin was kindly 121	

supplied by Abitec Corporation (Janesville, WI, USA). Acetonitrile, ethanol and methanol were 122	

purchased from Mallinckrodt Baker (Phillipsburg, NJ, USA). Soy phosphatidylcholine (PC) was 123	

purchased from Avanti Polar Lipids (Alabaster, AL, USA). Ultra-pure water was used unless 124	

stated in the individual methods. Piplartine was isolated from roots of Piper tuberculatum, 125	

harvested from the Campus of Federal University of Ceará (Fortaleza, CE, Brazil; voucher 126	
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specimen #34736 deposited at Prisco Bezerra herbarium, Federal University of Ceará) and 127	

characterized as previously described (Bezerra et al., 2007). Briefly, ground roots (420.0 g) were 128	

macerated with petroleum/ethyl acetate (1:1, v/v) thrice for 24 h; the solvent was evaporated 129	

under reduced pressure to yield a yellowish solid, and piplartine was crystallized with methanol. 130	

Characterization was performed by 1D and 2D NMR analyses and melting point determination as 131	

previously described (Bezerra et al., 2008a; Bezerra et al., 2008b). 132	

 133	

Methods 134	

1. Oil phase selection 135	

 The oil phase of the nanoemulsion was selected based on piplartine solubility, which was 136	

determined by adding 2-4 mg of the drug to 200 mg of tricaprylin, isopropyl myristate, 137	

monocaprylin and tricaprylin:monoolein (3:1), followed by stirring for 2 hours at 25 ± 2 °C 138	

(Fofaria et al., 2016; Qhattal et al., 2011). Our goal was to find oil phase components in which 139	

piplartine could be dissolved in up to 0.5 h to avoid a lengthy nanoemulsion preparation process. 140	

After bath sonication for 10 min (piplartine remains stable after sonication) (Carvalho et al., 141	

2019), samples were centrifuged at 2600xg for 10 min, and presence of sediment and/or drug 142	

crystals were assessed by visual inspection and optical microscopy. Based on the absence of 143	

sediment when piplartine was dissolved in tricaprylin at the highest concentration, this 144	

triglyceride was selected as the oil phase. In addition to providing drug solubilization, another 145	

advantage of tricaprylin is that it is considered safe for parenteral administration (Floyd, 1999). 146	

 147	

2. Nanoemulsion development and optimization 148	

 Soybean phosphatidylcholine (PC) was used as sole surfactant or partially replaced with 149	

polysorbate 80 to obtain nanoemulsions. Glycerol was investigated as a co-surfactant due to its 150	
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ability to reduce the diameter of aggregates and promote homogeneous size distribution 151	

(Carvalho et al., 2017b; Ochoa-Flores et al., 2017).  152	

 The PC, tricaprylin and water ratios necessary to obtain nanoemulsions were established 153	

using previously described pseudo-ternary phase diagrams (Patel et al., 2006). The PC content 154	

was set at < 20%, while the aqueous phase content was set at 60% or higher. For formulations 155	

containing PC, polysorbate and glycerol as surfactant blend (at 3:1:0.5, w/w/w), pseudo-ternary 156	

phase diagrams were obtained by mixing this blend with tricapylin at 8:2 to 2:8 (w/w), followed 157	

by titration with water at 10-20% increments. The relationship between phase behavior and 158	

composition was demonstrated in a phase diagram (Supplementary Figure 1).  Because they 159	

enabled the obtainment of milky and dispersed systems, surfactant blend:oil phase ratios of 2:1 160	

and 1:1 (m/m), and aqueous phase content over 60% were selected.  161	

 To obtain nanoemulsions, the oil phase (tricaprylin) was combined with the surfactant 162	

blend prior to aqueous phase addition, which was composed of a PBS solution containing 163	

poloxamer, chitosan or hyaluronic acid. Because chitosan dissolves at pH<5, an aqueous solution 164	

of chitosan in water acidified to pH=4.5 was prepared, and added to PBS for a final concentration 165	

of 1%. The system was homogenized by vortex mixing (30 s), followed by sonication for 5-20 166	

min with pulses of 58 s every 30 s in ice bath using 40% maximum amplitude (VCX500, Sonics, 167	

Newtown, CT, USA) (Migotto et al., 2018).  168	

 To optimize nanoemulsion production, variations were introduced to this protocol, and 169	

four sets of experiments were conducted as described below. Three to four batches of each 170	

formulation were produced for comparison of size and zeta potential. 171	

 172	

2.1. Influence of surfactant composition and aqueous phase content: the surfactant (PC or 173	

PC:polysorbate 80:glycerol at 3:1:0.5, w/w/w) was mixed with tricaprylin at 1:1 or 2:1 (w/w), 174	
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followed by addition of PBS as aqueous phase at 66-80%, homogenization by vortex-mixing and 175	

sonication for 20 min.  176	

 177	

2.2. Influence of poloxamer 407: because poloxamer has been described to aid emulsification, 178	

improve droplet size distribution and provide steric stability (Loureiro et al., 2015; Mistry et al., 179	

2012), the influence of its concentration on nanoemulsion characteristics was assessed. The 180	

surfactant blend (PC:polysorbate 80:glycerol, 3:1:0.5, w/w/w) was combined with tricaprylin at 181	

1:1 (w/w), followed by addition of PBS (80%) containing poloxamer 407 to yield final 182	

concentrations of 0-0.5% (w/w); the system was subsequently subjected to homogenization and 183	

sonication for 20 min. 184	

 185	

2.3. Influence of aqueous phase temperature and bioadhesive polymer addition on sonication 186	

time: the surfactant blend (PC:polysorbate 80:glycerol, 3:1:0.5, w/w/w) was combined with 187	

tricaprylin at 1:1 (w/w), followed by addition of PBS containing chitosan (1%) or hyaluronic acid 188	

(1%) as aqueous phase (80%). The aqueous phase was either used at room temperature 189	

(maintained at 25 °C by air conditioning) or heated (50 °C in water bath) prior to addition to the 190	

surfactant:oil phase mixture and sonication for 5-20 min. Selected nanoemulsions modified with 191	

hyaluronic acid and chitosan will be referred to as NE-HA and NE-Q, respectively. 192	

 193	

2.4. Influence of cetylpyridinium chloride on nanoemulsion charge: because nanocarrier charge 194	

affects interaction and drug penetration into other tissues, with a positive charge favoring 195	

interaction with biological barriers (Pepe et al., 2013), we also attempted to produce a cationic 196	

hyaluronic acid-modified nanoemulsion by including cetylpiridinium chloride as a co-surfactant. 197	

This approach derived from previous studies that employed small amounts of positively charged 198	

amphiphilic molecules to ensure the interaction of the interface with the negatively charged 199	
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hyaluronate (Pereira et al., 2016). Tricaprylin was combined with the surfactant blend containing 200	

cetylpyridinium chloride (to obtain final concentrations in the nanoemulsion of 0.1-0.5%) 201	

followed by addition of 80% aqueous phase containing hyaluronic acid (1%, heated at 50 °C). 202	

The mixtures were homogenized by vortex mixing (30 s) followed by sonication for 10 min (as 203	

defined in experiment 2.3). The nanoemulsion modified with cetylpyridinium chloride will be 204	

referred to as NE-CET. 205	

 206	

3.1. Characterization and evaluation of selected nanoemulsion properties  207	

 Size and zeta potential were determined using Zetasizer NanoZS90 equipment (Malvern, 208	

UK) after nanoemulsion dilution with water at 1:100 (w/w). Size and zeta potential of samples 209	

from different batches (3-4) were measured within 20 min from obtainment. 210	

 211	

3.2. Rheological behavior 212	

        The influence of the bioadhesive polymer to the nanoemulsion rheological behavior and 213	

viscosity was evaluated using a R/S Plus controlled stress rheometer with RC75-1 cone 214	

(Brookfield Engineering laboratories, Middleboro, MA), and a bath circulator for temperature 215	

control, set at 25°C under shear rate control conditions within the range 1–500 s−1 (Carvalho et 216	

al., 2017a). Rheograms of shear stress were recorded against shear rate, and the data fitted to 217	

Power Law model according to the following equation: τ = K gn , where τ is the shear stress, g is 218	

the rate of shear, K is the consistency index and n is the flow index parameter, used to classify the 219	

rheological behavior. According to n, fluids were classified as Newtonian when n = 1, whereas n 220	

> 1 or n < 1 indicates shear-thickening or shear-thinning, respectively (Hosmer et al., 2013). 221	

 222	

3.3. Morphological characterization  223	
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The structure and morphological aspect of selected nanoemulsions was assessed using 224	

transmission electron microscopy (TEM; FEI Tecnai G20 20 XTWIN, France) at an acceleration 225	

voltage of 100 kV. A 2% solution of phosphotungstic acid (PTA) was prepared and adjusted to 226	

pH 7.4 using a sodium hydroxide solution. To 1 mL of a nanoemulsion suspension, 1 mL of PTA 227	

was added, and the sample was adsorbed onto carbon film on 300 mesh copper grids and dried at 228	

room temperature prior to microscopic analysis.  229	

 230	

3.4. DSC analysis and glass transition temperature 231	

 To learn more about the interaction of chitosan and hyaluronic acid with the 232	

nanoemulsion, the glass transition temperature and thermal behavior of NEQ and NEHA were 233	

assessed by differential scanning calorimetry (DSC) using a Discovery DSC 2500 (TA 234	

Instruments, New Castle, DE) equipped with a RCS90 cooling system. NE without bioadhesive 235	

polymers was used for comparison. Samples of 8-10 mg were placed in Tzero® aluminum pans 236	

(TA Instruments, New Castle, DE, USA), hermetically sealed, equilibrated at 20 °C, and 237	

submitted to measurements in two steps: cooling from 20 to - 80 °C at 10 °C/min, and heating to 238	

40 °C at 20 °C/min. Nitrogen was used as a purge gas (25 mL/min) and an empty pan was used as 239	

a reference. Data collection and determination of thermal properties were performed using the 240	

TRIOS Software v4.5.0 (TA Instruments, New Castle, DE). 241	

 242	

4. Irritation potential 243	

 To investigate the relationship between nanoemulsion composition and irritation potential, 244	

Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) was used following previously 245	

published guidelines and studies (ECVAM DB-ALM, INVITOX protocol 96) (Contri et al., 246	

2016; McKenzie et al., 2015; Migotto et al., 2018). The protocol was conducted in accordance 247	

with the guidelines from the Brazilian Council for Control of Animal Experimentation 248	



	 11	

(CONCEA), and approved by the Animal Care and Use Committee (IACUC) at the Institute of 249	

Biomedical Sciences of the University of São Paulo (protocol number 70/2016, São Paulo, 250	

Brazil). Fertilized chicken eggs (obtained from Sabor Natural, São Paulo, SP, Brazil) were 251	

incubated for 9 days at 37°C and 55% humidity (Premium Ecologica incubators, Belo Horizonte, 252	

MG, Brazil) with automatic rotation every 2 h. The chorioallantoic membrane was exposed and 253	

treated for 5 min with selected nanoemulsions, saline (negative control) and NaOH (0.1M, 254	

positive control); they were photodocumentated (Nikon, SMZ 1500, Tokyo, Japan) before, during 255	

and after treatment. Each treatment was performed in 5-6 eggs, and a score was calculated using 256	

the following equation as previously described (Mojeiko et al., 2019). 257	

II= ((301-h)/300)x5 + ((301-l)/300)x7 + ((301-c)/300)x9             258	

where h, l and c are the time (in seconds) of the beginning of hemorrhage, lysis or coagulation. 259	

The following classification was used: II< 0.9: non-irritant; 1 < II < 4.9: slight irritation; 5.0 < II 260	

< 8.9: moderate irritation; 9.0 < II < 21: severe irritation (Luepke, 1985). 261	

 262	

5. In vitro bioadhesion assessment 263	

To compare the impact of chitosan and hyaluronic acid on the bioadhesive properties of 264	

the nanoemulsion, we assessed interactions between the nanoemulsions and the subcutaneous 265	

tissue of porcine ear skin (as model for the mammary tissue) using TA-XTplus texture analyzer 266	

(Stable Micro Systems, Surrey, UK). We acknowledge the differences between the subcutaneous 267	

and mammary tissues, but use of porcine skin allowed us to comply with the Institutional Animal 268	

Care and Use (IACUC) 3Rs guidelines since it is commercially available and considered exempt 269	

from IACUC review and approval. Fresh porcine ear skin was obtained from a local 270	

slaughterhouse, and the skin from the outer side of the ear was removed with a scalpel and 271	

scissors while keeping the subcutaneous tissue attached to the skin (Lopes et al., 2009; Thomas et 272	

al., 2014). Skin sections were frozen at −80°C until the day of the experiment.   273	
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For assessment of bioadhesion potential, the skin was attached to the lower end of a 274	

cylindrical probe (diameter 10 mm) with a rubber ring (Bento da Silva et al., 2017), with the 275	

subcutaneous tissue facing outside (for contact with formulations) to mimic the mammary tissue. 276	

The probe was lowered at constant speed (1 mm/s) to make contact with the surface of the 277	

nanoemulsions (NE-HA and NE-Q). The skin and the sample were kept in contact for 60 s 278	

without any force applied, after which the probe rose at a constant speed (0.5 mm/s) until the 279	

contact between the surfaces was broken. The bioadhesive force of the formulations was 280	

measured as the maximum detachment force or the resistance to the withdrawal of the probe. The 281	

experiment was repeated 6 times for each sample. Because of the low viscosity and high aqueous 282	

content of the nanoemulsions, the force necessary to detach water was measured for comparison. 283	

 284	

6. In vivo intraductal administration, mammary tissue targeting and histological assessment 285	

 This experiment aimed at comparing the (i) localization of a fluorescent marker in the 286	

mammary tissue mediated by intraductal and systemic (i.p.) administration of nanoemulsions, (ii) 287	

influence of the type and charge of the bioadhesive polymer on the nanoemulsion ability to 288	

prolong mammary tissue, and (iii) nanoemulsion advantage over a simple solution. NE-Q and 289	

NE-HA containing Alexa Fluor 647 (0.05%, w/w) as a fluorescent marker were prepared by 290	

dilution in the aqueous phase prior to nanoemulsion sonication and formation. Following 291	

intraductal or intraperitoneal (i.p.) administration, whole body animal imaging was used to track 292	

fluorescence distribution. To ensure that fluorescence was related to Alexa fluor presence in the 293	

tissue, unloaded nanoemulsions were administered as controls.  294	

 Female Wistar rats from the Facility for SPF rat production at the Institute of Biomedical 295	

Sciences - Animal Facility Network at University of São Paulo - were housed in the Animal 296	

Facility of the Department of Pharmacology with free access to food and water until they reached 297	

250 ± 20 g. The animal room was kept under a 12:12 h light–dark cycle (lights on at 7:00 am), 298	
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and temperature was maintained between 22-23°C. The protocol was conducted in accordance 299	

with guidelines issued by the Brazilian Council for Control of Animal Experimentation 300	

(CONCEA), and approved by the Animal Care and Use Committee of the Institute of Biomedical 301	

Sciences at University of São Paulo (protocol number 69/2016, São Paulo, Brazil).  302	

 Briefly, rats were anaesthetized with isoflurane (5% for induction and 2.5% for 303	

maintenance, Cristalia, Itapira, Brazil), and abdominal hair was removed using a depilatory cream 304	

(Migotto et al., 2018). Twenty four hours after hair removal, animals were divided in 7 groups 305	

based on the treatment they were going to receive: intraductal (i) saline, (ii) unloaded NE-Q, (iii) 306	

unloaded NE-HA, (iv) Alexa fluor solution (PBS:propylene glycol, 1:1), (v) Alexa fluor-loaded 307	

NE-Q, or (vi) Alexa fluor-loaded NE-HA, and intrerinoteal (i.p.) (vii) Alexa-fluor loaded NE-HA 308	

(4 animals/group were used, with the exception of group vii that contained 3 animals). 309	

 The treatments were delivered under anesthesia with isoflurane as follows. First, the 310	

nipples were gently rubbed with alcohol to reveal the duct orifice (Chun et al., 2012; Krause et 311	

al., 2013). Three pairs of nipples were selected according to their ease of access, and under a 312	

dissection microscope, 10 µL of the drug solution or the nanoemulsions was injected into the 313	

orifice using a 33 G needle attached to a Hamilton syringe (Hamilton, Bonaduz, Switzerland). 314	

Saline was administered as a control formulation to assess mammary tissue damage.  315	

 Distribution of Alexa fluor was monitored for 1-120 h using a whole body bioimaging 316	

system (IVIS Spectrum System, Perkin-Elmer Life Sciences, Waltham, MA, USA). The 317	

following instrument settings were fixed for comparison among groups: exposure time= 5 s, 318	

binning factor= 8, excitation/emission= 465/540 nm.  319	

 To assess histological changes induced by the formulations, mammary glands from 320	

animals treated with unloaded nanoemulsions or saline were excised 120 h post-injection, fixed in 321	

10% buffered neutral formaldehyde and processed for inclusion in paraffin (Murata et al., 2006). 322	

Histological sections of 5 µm were obtained, and stained with hematoxylin/eosin prior to 323	
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microscopic analyses. Presence of tissue edema, infiltration of inflammatory cells and changes in 324	

the morphology of ducts and lobular units were investigated to assess formulation-induced 325	

histological alterations (Chun et al., 2012). 326	

 327	

7. Incorporation of piplartine and in vitro release 328	

 Piplartine was dissolved in the surfactant-oil phase mixture to obtain a final concentration 329	

of 1% (w/w) prior to addition of the aqueous phase. This concentration was 2-fold smaller than 330	

the maximum amount that could be dissolved, suggesting that drug concentration in the 331	

nanocarrier would be below saturation, and avoiding the influence of formulation saturation and 332	

supersaturation on drug release (Brewster et al., 2008; Land et al., 2006).	333	

	 The in vitro release of piplartine was evaluated using Franz diffusion cells and phosphate-334	

buffered receptor phase (100 mM, pH 7.2) containing 20% ethanol under constant stirring (350 335	

rpm) at 37.0 ± 0.5 ° C (Cichewicz et al., 2013). Ethanol was added to aid drug solubility 336	

(Carvalho et al., 2019; Hosmer et al., 2013). Other receptor phase additives were tested, such as 337	

poloxamer 407 (1%), polysorbate 80 (1%) or BRIJ 97 (1%), but ethanol addition led to a more 338	

pronounced increase (at least 1.7-fold) in drug solubility. Previous studies have employed ethanol 339	

at higher percentages to overcome the low aqueous solubility of lipophilic drugs, and a 340	

comparison of its content (38 or 76%) revealed that it exerted no significant influence on the 341	

release rate (Rege et al., 1998; Solomon et al., 2012).	The stirring speed was selected based on 342	

preliminary experiments that compared drug release from NE-HA when the receptor phase was 343	

stirred at 200 or 350 rpm. A similar cumulative drug release at 16 h was observed at 200 and 350 344	

rpm; however a 350 rpm speed was selected, as higher speeds are recommended in experiments 345	

employing Franz diffusion cells (Praca et al., 2018). Similar observations were reported in 346	

clomipramine release studies comparing receptor phase stirring at 200 and 400 rpm (Richter et 347	

al., 1969).		348	
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	 A cellulose membrane (1000 Da cut, Sigma, St. Louis, MO) was placed between the 349	

recipient and donor compartments and 100 µL of the nanoemulsion was added in the donor 350	

compartment. The receptor phase (300 µL) was collected at 1, 2, 4, 6, 8 and 16 h post-351	

application, and the same volume was replaced. The 16 h time point was selected as the latest 352	

because drug concentration in the receptor phase reached 80% of its solubility; thus, we 353	

acknowledge that sink condition was not maintained during the whole experiment, but as stated 354	

earlier, the most pronounced increase in drug solubility was obtained with ethanol. To 355	

demonstrate that diffusion of free piplartine across the dialysis membrane is not a rate-limiting 356	

step, a drug solution in propylene glycol was used as a control formulation. The experiment was 357	

interrupted at 6 h because drug concentration in the receptor phase reached 80% of its solubility. 358	

  Piplartine in the receptor phase was quantified by HPLC as described in section 9. 359	

Interference of formulation components in the analytical method was assessed by adding 360	

unloaded formulations to the donor compartment of diffusion cells and assaying the receptor 361	

phase after 24 h; since no interference was detected at this late time point (which would enable 362	

diffusion of larger amounts of components and facilitate their detection), we assumed the same 363	

for earlier time points. To estimate the cumulative drug release, the amount of drug collected at 364	

earlier time points were added to the observed (or measured) drug amount in the receptor phase at 365	

a given time point as follows: 366	

Ctn = Cn + Cw,  367	

where Ctn is the corrected drug amount at a given time n, Cn is the observed drug amount in the 368	

receptor phase at a given time n, and Cw is the sum of all drug amounts withdrawn (i.e., collected 369	

at earlier time points). To calculate percentages, the total amount of drug added to the donor 370	

compartment was set as 100%. The release kinetics was determined by plotting cumulative drug 371	

release against time (for zero order kinetics), square root of time (for pseudo-first order kinetics) 372	
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and the log of remaining drug against time (for first order kinetics), and coefficients of 373	

determination were obtained (Ng et al., 2017; Phelps et al., 2011). 374	

 375	

8. Stability study of nanoemulsions 376	

 The chemical and physical stability of unloaded and piplartine-loaded NE-HA and NE-Q 377	

were studied by macroscopic and microscopic observation taking into consideration phase 378	

separation, creaming, droplet agglomeration or sedimentation, and analysis of particle size, 379	

polydispersity index, zeta potential and piplartine content. 380	

 In a conical tube, 0.5 g of the unloaded or piplartine-loaded NE-HA and NE-Q (1% w/w) 381	

prepared in triplicate were stored at room temperature (maintained at 25°C with air conditioning) 382	

for 60 days. Formulation evaluation was performed at days 0 (immediately after production), 7, 383	

14, 30, 45, and 60. Size and zeta potential were determined as described in item 3.1. Microscopic 384	

examination was conducted under halogen and polarized light (Leica, Wetzlar, Germany) to 385	

investigate the presence of drug crystals, agglomeration and phase transformation since PC and 386	

polysorbate 80 form liquid crystalline phases, which display specific textures under polarized 387	

light. 388	

 For quantification of piplartine, 10 µL of the samples were diluted in 1 mL of methanol 389	

(to yield a theoretical drug concentration of 100 µg/mL) at days 0, 7, 30, 45 and 60, and the 390	

samples were subjected to HPLC analysis as described in section 9 (Carvalho et al., 2019). To 391	

express drug content as percentage, drug concentration at day 0 was considered 100%. 392	

   393	

9. HPLC analysis of piplartine  394	

Chromatographic analyzes were performed using a Shimadzu HPLC system equipped 395	

with a pump (model LC-20AB), an autosampler (model SIL-20A), an UV detector (model SPD-396	

M20A) set at 325 nm, and the Class-VP software. Piplartine separation was performed in a 397	
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Phenomenex C18 (150 × 4.6 mm) column maintained at 25°C according to a previously 398	

developed and validated method (Carvalho et al., 2019). Briefly, the mobile phase was composed 399	

of 1:1 (v/v) acetonitrile:water (pH adjusted to 4.0 with 0.1% acetic acid) and used at a flow rate 400	

of 0.9 mL/min. The calibration curve of piplartine was prepared in methanol, and demonstrated 401	

linearity within the range 0.2 - 150 µg/mL. The amount injected into the column was 20 µL for 402	

samples and calibration curve. For each experiment, new calibration curves were obtained. 403	

 404	

10. Statistical analyses 405	

The results are reported as means ± SD. Data were statistically analyzed using ANOVA 406	

test followed by Tukey post-hoc test (GraphPad Prism software, Sand Diego, CA). Values were 407	

considered significantly different when p < 0.05. ANOVA-based power analysis was conducted 408	

to estimate sample size with power at 0.90 and alpha at 0.05 (Statistica software, Palo Alto, CA). 409	

 410	

RESULTS 411	

  412	

1. Nanoemulsion development and optimization 413	

 The first goal of the present study was to optimize the composition and production 414	

parameters of nanoemulsions for intraductal delivery of piplartine. The influence of surfactant 415	

composition, aqueous phase content and temperature, sonication time, poloxamer and 416	

bioadhesive polymer addition on nanoemulsion formation and physicochemical characteristics 417	

such as diameter, polydispersity and zeta potential are presented below.   418	

 419	

1.1. Influence of surfactant composition and aqueous phase content 420	

 To assess the influence of surfactant and aqueous phase content, the dispersions were 421	

sonicated for 20 min employing the aqueous phases at room temperature. Use of PC as sole 422	
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surfactant failed to form nanoemulsions; instead, viscous and turbid mixtures were obtained. 423	

Inclusion of polysorbate 80 and glycerol in the surfactant blend resulted in a fluid, translucent and 424	

opalescent dispersion, with particle diameter of 90.7 ± 1.0 nm and a slightly positive zeta 425	

potential when the aqueous phase content was 75% (Table 1), but its PDI was above the upper 426	

limit of the range considered acceptable for drug delivery systems (Danaei et al., 2018). A further 427	

increase in the aqueous phase content to 80% produced a 1.5-fold reduction in PDI, while size 428	

and zeta potential were not significantly altered. Because increases in aqueous content frequently 429	

results in higher drug release rates, which affects bioavailability (Chang and Bodmeier, 1997; 430	

Cichewicz et al., 2013), aqueous phase at 80% was selected for nanoemulsion preparation.  431	

 Increasing the surfactant:oil phase ratio to 2:1 (w/w) did not promote significant changes 432	

on size, despite previous reports suggesting that increasing surfactant content decreased droplet 433	

size (Lefebvre et al., 2017). Due to the risk of increasing formulation irritation often associated 434	

with surfactant content increments (Pepe et al., 2013), the 1:1 ratio was selected. 435	

 436	

1.2. Influence of poloxamer 407  437	

Because poloxamer has been described to aid emulsification, decrease nanoemulsion droplet 438	

size, improve size distribution and provide steric stabilization, the influence of its concentration 439	

on nanoemulsion characteristics was assessed (Loureiro et al., 2015; Mistry et al., 2012). 440	

Contrary to our expectations, poloxamer increases from 0 to 0.25 or 0.50% did not affect size or 441	

PDI in a significant manner (Table 2). However, the nanoemulsion containing poloxamer at 442	

0.50% transformed into a gel within 2 months at room temperature, leading to poloxamer 443	

exclusion from the composition.  444	

 445	

1.3. Influence of aqueous phase temperature and bioadhesive polymer addition  446	
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It has been generally advisable to limit the sonication time to reduce unanticipated sample 447	

responses to the heat generated by the process and to avoid probe-derived titanium contamination 448	

(Betts et al., 2013). Thus, the next step was to assess the influence of aqueous phase temperature 449	

and type/charge of the bioadhesive polymer on the sonication time required to produce 450	

nanoemulsions.  451	

Nanoemulsions containing chitosan (NE-Q) or hyaluronic acid (NE-HA) were prepared by 452	

adding the aqueous phase at room temperature (25 °C maintained with air conditioning) or heated 453	

at 50°C, followed by sonication for 5-20 min. Sonication with the aqueous phase at room 454	

temperature reduced NE-Q droplet size from ~500 nm (t=0) to 185 nm after 5 min, to ~120 nm 455	

after 10 min, to ~78 nm after 15 min, and to ~74 nm after 20 min (Supplementary Figure 2). 456	

Heating the aqueous phase (50°C) led to size reduction to ~74 nm after 10 min of sonication, 457	

which represents a reduction of 1.7-fold compared to the non-heated aqueous phase (p < 0.05). 458	

Subsequent sonication pulses did not produce further changes on size. For NE-HA, sonication for 459	

5 min reduced droplet size by ~2.5-fold (p < 0.05) using the heated aqueous phase compared to 460	

the non-heated system, but this difference disappeared after sonication for 10 min. PDI < 0.3 was 461	

observed after 5 min of sonication regardless of the temperature of the aqueous phase. To reduce 462	

sonication time but keep the same number of pulses for NE-Q and NE-HA, aqueous phase 463	

heating to 50°C and sonication for 10 min (using pulses of 58 s on and 30 s off) were defined as 464	

optimum parameters. The resulting zeta potential of NE-HA and NE-Q were -5.7 ± 1.7 mV and 465	

+11.3 ± 3.2 mV, respectively. 466	

 467	

1.4. Influence of cetylpyridinium chloride  468	

 To confer a positive charge to NE-HA and take advantage of possible electrostatic 469	

interactions between cationic nanocarriers and negatively charged epithelium surfaces, 470	

cetylpyridinium chloride was included in the nanoemulsion. At 0.5%, but not at lower 471	
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concentrations, this surfactant led to zeta potential inversion and to the obtainment of a cationic 472	

system (+11.3 mV, Table 3). Based on these results, cetylpyridinium chloride concentration was 473	

set at 0.5% to produce NE-CET. 474	

 475	

2. Characterization and evaluation of selected nanoemulsion properties  476	

Having optimized nanoemulsion composition and sonication parameters, we proceeded to 477	

characterize and compare the properties of selected formulations modified with chitosan and 478	

hyaluronic acid. The influence of alginate, chitosan and cetylpyridinium chloride on 479	

nanoemulsion stability, irritation potential, morphology, glass transition temperature, rheological 480	

and bioadhesive properties are presented below.  481	

 482	

2.1. Stability: unloaded NE-Q, NE-HA and NE-CET were preliminarily screened for stability at 483	

room temperature. Among these nanoemulsions, NE-Q displayed the highest variation in size, 484	

which increased~1.4-fold within 60 days (Figure 1). In spite of this increase, no signs of phase 485	

separation, creaming and/or sedimentation were observed macroscopically or microscopically, 486	

and PDI values did not increase beyond 0.3 throughout the study. No pronounced changes on size 487	

or PDI were observed for NE-HA or NE-CET. However, NE-CET zeta potential value decreased 488	

by 2-fold after 60 days compared to initial values. 489	

 490	

2.2. Irritation potential: the ability of nanoemulsions to cause tissue irritation was compared 491	

using HET-CAM. Initially employed to assess eye irritation, HET-CAM use has now been 492	

expanded, and it currently finds applicability as an alternative method to the use of animals to 493	

estimate irritation to the skin and other tissues (Eichenbaum et al., 2013; Mehling et al., 2007). 494	

Application of saline (negative control) to healthy membranes produced no perceptible change 495	

over the five-minute time window (Figure 2), while NAOH (0.1 M, positive control) caused 496	
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lysis, coagulation and severe hemorrhage, resulting in a score of 17.9 ± 0.6, which classifies this 497	

solution as severe irritant (Fangueiro et al., 2016; McKenzie et al., 2015). NE-Q and NE-HA 498	

failed to produce any perceptible changes on the membrane (score < 0.9). Membrane treatment 499	

with NE-CET resulted in hyperemia and several small points of hemorrhage, which are marked 500	

with black arrows in Figure 2, resulting in an irritation score of 1.2 (slightly irritating).  501	

 Because NE-CET displayed a higher irritation score compared to the other 502	

nanoemulsions, and its zeta potential decreased with time (which is a possible indicative of lower 503	

stability) we opted to exclude NE-CET from further studies, and focused on the comparison of a 504	

cationic (NE-Q) and an anionic (NE-HA) nanoemulsion. 505	

 506	

2.3. Morphological characterization: analysis of NE-Q and NE-HA using transmission electron 507	

microscopy demonstrated the presence of fairly spherical electron-dense structures with a 508	

diameter of less than 100 nm (between 40 and 70 nm, Figure 3A-B). These results are consistent 509	

with light scattering findings, which demonstrated droplets with average diameters of 58.4 and 510	

74.1 nm for NE-HA and NE-Q, respectively (Figure 1, 0 days).  511	

 512	

2.4. DSC analysis: this experiment was conducted to determine the glass transition temperature 513	

(Tg’) and gain more information regarding the interactions occurring within the nanoemulsion 514	

upon addition of hyaluronic acid and chitosan. Addition of hyaluronic acid altered several 515	

parameters of the DSC curve compared to NE without polymers. In the heating cycle, addition of 516	

hyaluronic acid increased Tg’ from -45 to -36 °C, the melting peak temperature (Tpeak) from -0.8 517	

to + 1.4 °C, and enthalpy of fusion (∆Hfus) from 214.7 to 243.0 J/g (Table 4, Supplementary 518	

Figure 3); increases in the enthalpy of crystallization (∆Hcrys) and exotermic freezing peak 519	

temperature (Tpeak-crys) were also observed in the freezing cycle. The opposite effect was observed 520	

when chitosan was included: Tg’ decreased to -60°C and ∆Hfus to 179.8 J/g. These results suggest 521	
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that the polymers affect differently the mobility of water at the vicinity of interfaces, leading to 522	

opposing effects on ice formation and vitrification (Droste and Dibenedetto, 1969; Talik and 523	

Hubicka, 2018). It is also noteworthy to mention that DSC curves of NE, NE-Q and NE-HA 524	

showed a single and narrow exothermic event upon cooling, which is typical for monodispersed 525	

O/W systems and congruent with the observed particle size distribution results (Clausse, 1998).  526	

 527	

2.5. Rheological behavior: both nanoemulsions displayed Newtonian behavior independent on 528	

the type of bioadhesive polymer as demonstrated by linear relationships between the rate of shear 529	

and shear stress (Supplementary Figure 4), which resulted in flow index values in the range 530	

0.95-0.99. The viscosity, calculated as the average of viscosity at individual values of shear rate, 531	

was 0.014 ± 0.002 Pa.s for NE-Q and 0.008 ± 0.001 Pa.s for NE-HA demonstrating that, even 532	

though the rheological behavior was similar, addition of chitosan promoted an 1.5-fold increase 533	

in viscosity compared to hyaluronic acid. 534	

  535	

2.6. In vitro bioadhesive properties: bioadhesive characteristics are important when prolonged 536	

residence time is intended. Bioadhesive properties were evaluated by means of a tensile test, in 537	

which the maximum force to detach the nanoemulsions from the subcutaneous tissue of skin 538	

sections was determined. The force necessary to detach NE-Q and NE-HA was ~1.9- and 1.7-fold 539	

higher, respectively, than that necessary to detach water (p < 0.05), suggesting a stronger 540	

interaction between these formulations and the tissue (Figure 3C). The detachment forces for 541	

NE-Q and NE-HA were not significantly different.  542	

 543	

3. In vivo intraductal administration, mammary tissue targeting and histological assessment 544	
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 Having demonstrated that NE-HA and NE-Q displayed in vitro bioadhesive properties and 545	

low irritation potential, their in vivo ability to provide localization of Alexa fluor and induce 546	

histological changes in the mammary tissue was compared. 547	

 Figure 4A depicts representative images of animals subjected to systemic or intraductal 548	

administration of unloaded nanoemulsions, Alexa fluor-loaded NE-Q and NE-HA or Alexa fluor 549	

solution. To ensure that fluorescence was related to the presence of Alexa fluor in the tissue, 550	

unloaded nanoemulsions were administered, and no fluorescence was detected (treatment with 551	

NE-HA is depicted, however, the same results were obtained for NE-Q). 552	

 Intraductal administration of Alexa Fluor solution led to fluorescent staining of the 553	

mammary tissue at the day of the injection, but it disappeared within 24 h. Compared to the 554	

solution, administration of Alexa Fluor-loaded nanoemulsions resulted in stronger fluorescent 555	

staining of the mammary tissue up to 120 h. On the other hand, i.p. administration resulted in 556	

fluorescent staining mainly in the abdominal cavity, which mostly disappeared after 24 h, 557	

demonstrating the advantage of intraductal over systemic administration for mammary tissue 558	

targeting.  559	

 These results can be better visualized in Figure 4B, which depicts a quantitative 560	

comparison of the fluorescent staining in multiple animals subjected to the different treatments. 561	

NE-Q and NE-HA administration resulted in comparable fluorescence intensity in the mammary 562	

tissue and decay along 120 h, suggesting that tissue residence is not dependent on the type of 563	

bioadhesive polymer and nanoemulsion charge. The nanoemulsion-mediated staining was 564	

stronger at all time points assessed compared to Alexa fluor solution, suggesting that, even 565	

though solution administration allowed mammary tissue localization, it resulted in a fast 566	

elimination of the fluorescent compound.  567	

 Representative histological pictures of the mammary tissue of untreated (control) or 568	

animals treated with saline, unloaded NE-Q or NE-HA are depicted in Figure 5. As previously 569	
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described, untreated animals display ducts formed by a layer of cuboidal epithelial cells 570	

embedded in stroma and surrounded by adipose tissue, often referred to as the fat pad (Masso-571	

Welch et al., 2000). The mammary tissue of animals treated with saline, NE-Q and NE-HA 572	

displayed similar architecture compared to untreated animals. The absence of histological 573	

alterations (such as edema, infiltration of inflammatory cells and thickening of the ductal layer 574	

and lobular units) suggests tissue integrity. 575	

 576	

4. Stability and drug release 577	

 Since NE-HA and NE-Q provided similar in vivo retention of Alexa fluor and induced no 578	

perceptible histological alterations in the mammary tissue, piplartine was incorporated in these 579	

formulations for comparisons of drug release and stability. 580	

 The maximum amount of piplartine that could be encapsulated in the nanoemulsions was 581	

1% (w/w); larger amounts (2%) could be initially dissolved, but precipitation was observed 582	

within 24 h. At this concentration, piplartine incorporation did not significantly (p > 0.05) affect 583	

size, PDI or zeta potential (Figure 6 A-C, time=0 days, Supplementary Table 1). 584	

 Changes in the physicochemical characteristics of piplartine-loaded NE-Q and NE-HA 585	

were assessed for 60 days. No alterations, such as creaming, formation of aggregates or phase 586	

separation, were observed macroscopically or under a light microscope, but NE-Q size increased 587	

in a significant manner  (p < 0.05) after 45 and 60 days (Figure 6A). Interestingly, this change 588	

was preceded by an increase in PDI at 30 days (Figure 6B). No significant changes were 589	

observed on zeta potential (Figure 6C). 590	

 Piplartine content after nanoemulsion sonication was ~100% of its initial content before 591	

sonication. As can be observed in Figure 6D, it remained between 96 and 108% of the initial 592	

content for 60 days, suggesting that piplartine is stable in both NE-Q and NE-HA.   593	
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 Considering drug lipophilicity (logP = 2.37) (Lee et al., 2018), we anticipated the 594	

possibility of piplartine remaining associated with the formulation and having its cellular 595	

cytotoxicity decreased. To assess drug release, in vitro studies were performed. Very similar 596	

amounts of piplartine were released comparing the two nanoemulsions, and at the longest time 597	

point studied (16 h), 29 – 34% of piplartine was released from NE-Q and NE-HA (Figure 6E). 598	

Similar piplartine amounts were observed in the receptor phase after 6 h when a drug in solution 599	

was employed, suggesting that drug diffusion across the membrane was not a rate-limiting step in 600	

the release process. During the 16 h period, linear relationships were obtained when cumulative 601	

drug release was plotted as a function of time (r > 0.99), suggesting zero-order kinetics, which is 602	

in accordance with other studies (Migotto et al., 2018; Tayel et al., 2013; Zhang et al., 2013).  603	

 604	

DISCUSSION 605	

 606	

 The first goal of this study was to optimize the composition and production parameters of 607	

nanoemulsions for intraductal drug delivery. Although nanoemulsions are most often formed by 608	

synthetic surfactants such as polysorbates, the desire to obtain formulations with improved 609	

biocompatibility and free of synthetic ingredients has prompted studies for optimization using 610	

phospholipids (Komaiko et al., 2016). Thus, we started this study assessing the possibility to 611	

produce nanoemulsions using soy PC as sole surfactant. However, we did not succeed, and a 612	

possible reason was the low phospholipid-oil phase ratio employed; ratios higher than 1:1 seem to 613	

be necessary to reduce droplet size and form nanoemulsions (Komaiko et al., 2016). Combining 614	

PC with polysorbate 80 and glycerol gave rise to nanoemulsions, which is consistent with their 615	

ability to destabilize liquid crystalline phases and lamellas preferentially formed by PC, favoring 616	

nano and microemulsions (Hoeller et al., 2009; Lopes et al., 2006; Patel et al., 2006). Besides 617	

polysorbate and glycerol, other surfactants employed for nanoemulsion stabilization include 618	
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lauric arginate, deoxycholic acid and Cremophor EL (Ma et al., 2016; Musa et al., 2013; Vyas et 619	

al., 2008).  620	

 The second factor assessed was aqueous phase temperature. It is well known that 621	

temperature is important for emulsification, and aqueous and oil phase heating at 40–80°C aids 622	

formation of coarse emulsions (Floyd, 1999). However, the effect of aqueous phase temperature 623	

on nanoemulsion production has been less explored. An et al. (2014) reported droplet size 624	

reduction when the aqueous phase temperature increased from 25 to 50 °C, an effect attributed to 625	

viscosity reduction and increased surfactant aqueous solubility (An et al., 2014; Anton and 626	

Vandamme, 2009; Lefebvre et al., 2017). In the present study, the nanoemulsion diameter 627	

obtained upon 20 min of sonication was similar regardless of the temperature of the aqueous 628	

phase, but this diameter was reached with a shorter sonication period (5-10 min) upon aqueous 629	

phase heating. Considering that unanticipated sample responses to the generated heat and 630	

titanium contamination from the probe increase with sonication time	(Betts et al., 2013), aqueous 631	

phase heating and sonication time reduction can improve sample quality.  632	

 Subsequently, the influence of two other surfactants on nanoemulsion characteristics was 633	

assessed. Poloxamer 407 produces temperature-sensitive gels at concentrations varying from 634	

1.5% to 30% (Giuliano et al., 2018), and although a concentration below this range was 635	

employed, formulation gelling occurred after 2 months, leading to its exclusion from 636	

nanoemulsion composition. Gelling might result from the interference of formulation components 637	

on hydration of the PEO and PPO blocks, and consequently, on micellization as demonstrated 638	

previously for salts and co-solvents (Bodratti and Alexandridis, 2018). Chitosan, for example, has 639	

been described to reduce poloxamer critical micellization temperature (Ur-Rehman et al., 2011). 640	

At 0.5%, cetylpyridinium chloride imparted a positive charge to the nanoemulsions but also 641	

increased its irritation potential. This was not surprising as this concentration is higher than the 642	

range used in products for oral hygiene (0.02-0.2%) and for nanocrystals aimed for safe ocular 643	
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drug delivery (0.01%) (Lin and Hemming, 1996; Romero et al., 2016). The risk of increasing 644	

irritation to the mammary tissue led us to exclude NE-CET from further studies.  645	

 Having defined the process parameters and composition of nanoemulsions, the influence 646	

of chitosan and hyaluronic acid on the characteristics and properties of nanoemulsions were 647	

compared. Formation of nanocarriers composed of phospholipids and charged polysaccharides 648	

involve attractive interactions of the polar headgroup of the amphiphilic lipid with the 649	

polysaccharide, while its hydrophobic portions interact with the oil phase component (in this 650	

case, tricaprylin) (Gerelli et al., 2008). Previous studies suggested formation of particles with a 651	

polymer shell surrounding an oily core and/or multilayered structures with alternating layers of 652	

phospholipids and hydrated polymer (Gerelli et al., 2008).  653	

 DSC analysis revealed that chitosan and hyaluronic acid had opposite effects on Tg’. 654	

Defined as the temperature at which an amorphous material changes from a glassy, solid‐like 655	

state to a rubbery state upon heating, Tg’ is important to predict interactions within the sample 656	

and stability (Droste and Dibenedetto, 1969). The decrease in Tg’ observed upon chitosan 657	

addition suggests a stronger interaction of this polysaccharide with the aqueous phase compared 658	

to hyaluronic acid, favoring the existence of the non-freezable water. Further findings also 659	

support this fact: the high degree of supercooling of the NE-Q sample, represented by the lowest 660	

Tpeak-cryst value, and a decrease in the enthalpy of fusion of ice when compared to NE (without 661	

bioadhesive polymers) or NE-HA. The first indicates a slow nucleation and ice growth (Williams 662	

and Polli, 1988). The second is an evidence of a proportional decrease of unbound water, i.e. 663	

freezable water; by dividing ∆Hfus of each sample by the heat of fusion of pure ice (330 J/g) 664	

(Samouillan et al., 2012), we estimated approximately 73.6% and 65.1% of freezable water 665	

content for NE-HA and NE, respectively, against only 54.5% for NE-Q. This effect might result 666	

from a chitosan-induced increase in viscosity, similarly to the effect previously described for β-667	

casein (Maher et al., 2011), and is in accordance with our rheology findings. In spite of the 668	
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viscosity difference, the in vitro bioadhesive property of the two nanoemulsions was similar, 669	

suggesting that the type and charge of the polymer may not influence local residence. 670	

 Although bioadhesion can be influenced by viscosity, its mechanisms are complex and 671	

variable, involving multiple stages that include contact, hydration, wetting and spreading, as well 672	

as a consolidation stage, in which penetration of the polymer chains into the mucus layer and 673	

bonding occurs (Machado et al., 2017). Positively charged chitosan are capable of forming 674	

polyelectrolyte complexes with negatively charged mucus components, whereas formation of 675	

hydrogen bonds has been suggested to contribute to bioadhesion of negatively charged hyaluronic 676	

acid (Oh et al., 2015). Compared to other formulations described in the literature, our 677	

nanoemulsions did not exhibit strong bioadhesiveness, which was expected based on their low 678	

viscosity, high aqueous content and low concentration of the bioadhesive components (Bento da 679	

Silva et al., 2017; Jin et al., 2016); however, compared to simple aqueous solutions, the higher 680	

detachment force of NE-Q and NE-HA may be useful to increase residence time in the mammary 681	

tissue. 682	

 In vivo results confirmed the ability of the nanoemulsions to extend retention compared to 683	

a simple solution, and reinforced the similar profile of NE-Q and NE-HA. The rapid tissue 684	

removal of Alexa fluor when administered intraductally as a solution is consistent with the small 685	

t1/2 (approximately 15 min) previously described for fluorescein administered through the same 686	

route as a solution (Singh et al., 2012). The fact that NEQ and NEHA depicted similar mammary 687	

tissue retention corroborates in vitro bioadhesion observations, and suggests that the in vitro 688	

assay is useful for the screening of intraductal formulations. The type of polymer did not 689	

influence the occurrence of irritation to the site of administration, as none of the nanoemulsions 690	

promoted perceptible changes on the vasculature of CAM membranes or histological changes in 691	

the mammary tissue. In addition to demonstrating that the nanoemulsions do not cause any 692	

histological changes in the mammary tissue, this study provides further evidence of the 693	
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applicability of HET-CAM as an alternative method to assess irritation at the administration site 694	

(Eichenbaum et al., 2013). 695	

 Piplartine was stable in both nanoemulsions for 60 days. However, although NE-Q did not 696	

show macroscopic signs of coalescence, precipitation or phase separation, particle size increased 697	

at 45 and 60 days. This increase might impact drug release and bioavailability as suggested by 698	

previous studies that assessed the influence of size on drug transport across barriers; diazepam for 699	

example, had its skin penetration increased upon droplet size reduction from the macro to the 700	

nanorange (100-300 nm) (Schwarz et al., 1995; Zhou et al., 2009). Future studies will compare 701	

the cytotoxicity and efficacy of these nanoemulsions in breast cancer models. 702	

 703	

CONCLUSION 704	

 705	

 The impact of formulation components and production parameters on the obtainment of 706	

nanoemulsions suitable for intraductal administration of piplartine were assessed. Combination of 707	

PC, polysorbate 80 and glycerol as surfactant blend mixed at a 1:1 ratio with the oil phase 708	

resulted in nanoemulsions with d < 100 nm. Aqueous phase content and temperature played 709	

significant roles, with heating at 50°C enabling sonication time reduction. Bioadhesive properties 710	

of NE-Q and NE-HA were similar as demonstrated in vitro by a similar detachment force from 711	

the tissue, and in vivo by prolonging mammary tissue retention without causing tissue damage, 712	

suggesting that the type and charge of bioadhesive polymer does not largely influence these 713	

properties. These results demonstrate the potential of both NE-Q and NE-HA for intraductal 714	

administration, but because the droplet size of piplartine-loaded NE-HA was maintained at a 715	

similar range for longer periods of time, this nanoemulsion might be more promising.  716	
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 997	

Figure 1. Nanoemulsion stability as a function of time, assessed as alterations on size, PDI and 998	

zeta potential of NE-Q, NE-HA and NE-CET. 999	

 1000	

Figure 2. Irritation potential of unloaded nanoemulsions evaluated as changes on CAM after 1001	

exposure to the nanoemulsions, saline (negative control) or NaOH (0.1 M, positive control) for 5 1002	
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min.  The black arrows depict areas of hemorrhage in the membrane treated with NE-CET. Scale 1003	

bar= 1 mm. 1004	

 1005	

Figure 3. Characterization of NE-Q and NE-HA morphology and properties. A: transmission 1006	

electron microscopy of NE-Q, B: transmission electron microscopy of NE-HA, C: in vitro 1007	

bioadhesive potential represented by the maximum (peak) force. **p < 0.01 compared to water. 1008	

Scale bar= 100 nm. 1009	

 1010	

Figure 4. In vivo mammary tissue targeting and retention of the fluorescent marker Alexa fluor 1011	

administered in nanoemulsions or as a solution. A: whole animal images showing fluorescence 1012	

staining after intraductal or intraperitoneal (i.p.) administration of the nanoemulsions or control 1013	

solutions; B: mammary tissue fluorescence intensity decay as a function of time, N=3-4 1014	

animals/group. ** p < 0.01 and * p < 0.05 compared to Alexa fluor solution, Scale bar= 1 mm. 1015	

 1016	

Figure 5. Histological sections of mammary tissue of animals administered with saline, NE-Q 1017	

our NE-HA in comparison with untreated animals. The images depict the integrity of ducts and 1018	

absence of inflammatory cell infiltrates and edema, bar = 50 µm.  1019	

 1020	

Figure 6. Formulation stability and release of piplartine from NE-Q and NE-HA as a function of 1021	

time. A-C: changes on size (A), PDI (B) and zeta potential (C) of piplartine-loaded 1022	

nanoemulsions; D: changes on piplartine content in the nanoemulsions; E: cumulative piplartine 1023	

release from nanoemulsions or a control solution as a function of time.  1024	



0 2 0 4 0 6 00
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

0 2 0 4 0 6 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

0 2 0 4 0 6 0- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0

 N E - Q
 N E - H A
 N E - C E T
 

Siz
e (

nm
)

T i m e  ( d a y s )

Po
lyd

isp
ers

ity
 In

de
x (

PD
I)

T i m e  ( d a y s )

Ze
ta 

Po
ten

tia
l (m

V)

T i m e  ( d a y s )



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Table 1. Influence of surfactant and aqueous phase content on the physicochemical 

characteristics of nanoemulsions. The ratio of PC:polysorbate 80:glycerol was 3:1:0.5 

(w/w/w), and the aqueous phase was composed of PBS.  

 

Surfactant Surfactant:

oil phase 

(w/w) 

Aqueous 

phase (%) 

Size 

(nm) 

PDI Zeta 

potential 

(mV) 

PC 1:1 66 ----- ----- ----- 

PC:polysorbate 

80:glycerol  

1:1 66 ----- ----- ----- 

PC:polysorbate 

80:glycerol  

1:1 75 90.7  1.0 0.31  0.01 5.8  2.8 

PC:polysorbate 

80:glycerol # 

1:1 80 76.5  1.2 0.21  0.03 * 6.5  2.7 

PC:polysorbate 

80:glycerol  

2:1 80 73.1  3.3 0.18  0.05 * 6.9  3.0 

The symbol # denotes the selected compositon. * p < 0.05 compared to the formulation 

composed of surfactant (PC/polysorbate 80/glycerol):tricaprylin at 1:1 containing 75% of 

aqueous phase. Use of PC as sole surfactant or PC:polysorbate 80:glycerol with 66% of 

aqueous phase did not led to nanoemulsion formation. 

 

 

 

 

Table 2. Influence of poloxamer concentration on the physicochemical characteristics of 

nanoemulsions. 

 

Poloxamer 

(%, w/w) 

Size (nm) PDI Zeta potential 

(mV) 

0 76.5  1.2 0.21  0.03 7.6  2.7 

0.25 77.3  0.8 0.18  0.02 7.8  2.2 

0.50 101.3  2.4 0.21  0.01 7.1  0.6 
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Table 3. Influence of cetylpyridinium chloride concentration on the physicochemical 

characteristics of NE-HA. 

 

cetylpyridinium 

chloride (%, w/w) 

Size (nm) PDI Zeta potential 

(mV) 

0 66.7  1.5 0.17  0.04 -10.2  3.9 

0.01 51.2  1.04 0.22  0.01 -11.4  2.4 

0.05 74.4  1.09 0.25  0.01 -8.5  1.1 

0.25 45.1  0.14 0.25  0.01 -11.6  0.6 

0.50 49.5  0.25 0.22  0.01 +11.3  4.0 

 

 

 

Table 4. Influence of chitosan and hyaluronic acid addition on nanoemulsion thermal 

properties assessed by DSC. 

 

Sample Heating cycle Cooling cycle 

Tg´ (°C) Tonset-fus Tpeak-fus  ∆Hfus (J/g) ∆Hcrys (J/g) Tpeak-crys 

NE -45.0 -8.0 -0.8 214.7 185.0 -12.8 

NE-HA -36.0 -2.9 1.4 243.0 197.6 -12.5 

NE-Q -60.0 -9.6 -1.4 179.8 151.4 -20.8 

 
Tg´ = glass transition temperature; Tonset-fus = extrapolated onset-temperature of fusion; Tpeak-fus = 

endothermic fusion peak temperature;  ∆Hfus = enthalpy of fusion; ∆Hcrys = enthalpy of 

crystallization;  Tpeak-crys = exotermic crystallization peak temperature.  
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Supplementary Figures 
 
 
 

 
 
Supplementary Figure 1. Pseudo-ternary phase diagram depicting the relationship 

between composition and phase behavior of mixtures composed of surfactant 

(PC:polysorbate 80:glycerol at 3:1:0.5 m/m/m), oil (tricaprylin) and water. 
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Supplementary Figure 2. Influence of aqueous phase temperature and sonication time 

on the reduction and distribution of nanoemulsion size. A-B: NE-Q, C-D: NE-HA. At 

least three batches of each formulation were produced. 

 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 3. DSC curves of heating (A) and cooling (B) cycles for NE 

(blue), NE-Q (red) and NE-HA (green). 

 
 
 

 
 
 

 
Supplementary Figure 4. Rheological behavior of NE-Q (A) and NE-HA (B). 
 
 
 
 
 
 
 
 
 
 
 
 

Endo Endo 

 

 

A B 

A B 



Supplementary Table 1. Influence of piplartine incorporation on the physicochemical 
characteristics of nanoemulsions. Data obtained at the day of nanoemulsion preparation.  
 

Formulation Size (nm) PDI Zeta potential (mV) 
NC-HA  67.9 ± 0.8 0.22 ± 0.01 -21.2 ± 4.2 
NC-Q 70.3 ± 2.0 0.23 ± 0.04 +20.7 ± 3.7 

 
 




