

1 **Optimization of composition and obtainment parameters of biocompatible nanoemulsions**
2 **intended for intraductal administration of piplartine (piperlongumine) and mammary**
3 **tissue targeting**

4 Vanessa F.M. Carvalho¹, Giovanna C. Salata¹, Jenyffer K. R. de Matos¹, Sandra Costa-
5 Fernandez¹, Marlus Chorilli², Alexandre A. Steiner³, Gabriel L. B. de Araujo⁴, Edilberto R.
6 Silveira⁵, Letícia V. Costa-Lotufo¹, Luciana B. Lopes^{1*}

7

8 ¹ Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São
9 Paulo, SP, Brazil

10 ² School of Pharmaceutical Sciences at Araraquara, São Paulo State University, Araraquara, SP,
11 Brazil

12 ³ Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São
13 Paulo, SP, Brazil

14 ⁴ School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil

15 ⁵ Department of Inorganic and Organic Chemistry, Federal University of Ceará, Fortaleza, CE,
16 Brazil

17

18

19 * to whom correspondence should be addressed:

20 Luciana B. Lopes, PhD

21 Department of Pharmacology, Institute of Biomedical Sciences

22 University of São Paulo

23 Av. Prof. Lineu Prestes 1524, São Paulo - SP, Brazil

24 lublopes@usp.br

25 phone: 55 11 30917232

26

27

28

29 **Abstract**

30 As a new strategy for treatment of ductal carcinoma *in situ*, biocompatible and
31 bioadhesive nanoemulsions for intraductal administration of the cytotoxic agent piplartine
32 (piperlongumine) were optimized in this study. To confer bioadhesive properties, the
33 nanoemulsion was modified with chitosan or hyaluronic acid. Tricaprylin was selected as the
34 nanoemulsion non-polar phase due to its ability to dissolve larger drug amounts compared to
35 isopropyl myristate and monocaprylin. Use of phosphatidylcholine as sole surfactant did not
36 result in a homogeneous nanoemulsion, while its association with polysorbate 80 and glycerol (in
37 a surfactant blend) led to the formation of nanoemulsions with droplet size of 76.5 ± 1.2 nm.
38 Heating the aqueous phase to 50°C enabled sonication time reduction from 20 to 10 min.
39 Inclusion of either chitosan or hyaluronic acid resulted in nanoemulsions with similar *in vitro*
40 bioadhesive potential, and comparable ability to prolong mammary tissue retention (to 120 h) *in*
41 *vivo* without causing undesirable histological alterations. Piplartine was stable in both
42 nanoemulsions for 60 days; however, the size of loaded NE-HA was maintained at a similar
43 range for longer periods of time, suggesting that this nanoemulsion may be a stronger candidate
44 for intraductal delivery.

45

46 **Key words:** nanoemulsion, bioadhesion, breast cancer, piplartine, intraductal delivery

47

48

49

50

51

52

INTRODUCTION

53 Ductal carcinoma *in situ* (DCIS) is a type of breast cancer characterized by cell
54 proliferation without evidence of invasion in the basal membrane and adjacent tissue (Fallowfield
55 and Francis, 2016). It accounts for approximately 20% of nonpalpable breast tumors diagnosed
56 with mammography (Sagara et al., 2015; Ward et al., 2015). Because of its heterogeneity, it is
57 estimated that 25-50% of the lesions may progress to invasive disease (Benson et al., 2016); thus,
58 DCIS management has traditionally followed the standard of care of invasive breast cancer:
59 surgical excision, radiation therapy and/or oral tamoxifen for estrogen-positive tumors (Groen et
60 al., 2017; Sagara et al., 2015). However, recent studies demonstrated that this standard of care
61 does not influence mortality related to subsequent invasive forms of the disease (Fallowfield and
62 Francis, 2016; Narod et al., 2015), emphasizing the need to consider biological markers and other
63 characteristics to diagnose low-risk lesions and enable the use of less aggressive treatment
64 approaches (Benson et al., 2016; Campbell et al., 2017; de Groot et al., 2016).

65 More recently, administration of cytotoxic drugs directly into the mammary ducts has
66 been described as a new option for local treatment and chemoprevention of precursor and atypical
67 lesions, DCIS, and as a neoadjuvant treatment option prior to surgery (Love et al., 2013; Murata
68 et al., 2006). Preclinical data have shown the feasibility of the intraductal route for administration
69 of chemotherapeutic agents such as paclitaxel and doxorubicin in rodents with significant
70 reduction of tumor development and incidence of systemic drug adverse effects in N-methyl-N-
71 nitrosourea-induced models, spontaneously arising Her2/neutransgenic mouse models and other
72 mammary tumor models (Gu et al., 2018; Murata et al., 2006; Okugawa et al., 2005; Stearns et
73 al., 2011). Intraductal administration has also been performed in clinical settings for drug delivery
74 (Love et al., 2013). For example, Stearns *et al.* were able to cannulate the most visible ductal
75 orifice in volunteers (Stearns et al., 2011). Mahoney *et al.* demonstrated the feasibility of
76 cannulating a specific DCIS-containing duct in women and instilling a cytotoxic agent before

77 breast cancer surgery (Mahoney et al., 2013). Carboplatin or pegylated liposomal doxorubicin
78 (PLD) was administered into five to eight ducts at three dose levels in women awaiting
79 mastectomy (Love et al., 2013). Intraductal administration was generally well tolerated with mild,
80 transient breast discomfort, and mean of pain ranging from 0.2 to 1.2 (on a 10-point scale) after
81 local application of lidocaine (Stearns et al., 2011; Zhang et al., 2014). Plasma drug levels were
82 lower than after intravenous administration, supporting the relevance of intraductal
83 administration for local treatment (Stearns et al., 2011).

84 Although intraductal administration has attracted interest, there is a need for specific
85 formulations designed for this route, characterized by biocompatibility and ability to prolong
86 drug retention in the mammary tissue. In a previous study, we have developed a nanoemulsion
87 using polysorbate 80 as sole surfactant, and demonstrated its feasibility for intraductal
88 administration (Migotto et al., 2018). Building upon our previous study, our first goal in this
89 study was to optimize the composition and production parameters of nanoemulsions for
90 intraductal delivery of the cytotoxic drug piplartine. Also known as piperlongumine, piplartine is
91 an alkaloid of *Piper* species that demonstrated cytotoxic and antiproliferative activity against
92 several tumor cell lines including prostate, colon, breast and melanoma (Bezerra et al., 2007;
93 Bezerra et al., 2008b; Kong et al., 2008; Raj et al., 2011; Tsai et al., 2005). Piplartine induces
94 DNA damage, leading to cell death by apoptosis and necrosis depending on concentration
95 (Bezerra et al., 2007), and G2/M cell cycle arrest followed by mitochondrial-dependent apoptosis
96 (Bezerra et al., 2013).

97 To optimize nanoemulsion composition and production parameters, we established ideal
98 formulation attributes (based on the administration route), identified factors that might influence
99 these attributes, and investigated the influence of each factor while keeping others constant. The
100 nanoemulsion attributes included (i) size \leq 100 nm at the time of obtainment to avoid any risk of
101 duct obstruction, which was defined based on ducts dimensions (0.5-2 mm), (ii) PDI $<$ 0.3 to

102 ensure low polydispersity and homogeneous size distribution, and (iii) bioadhesive properties,
103 obtained by nanocarrier modification with a cationic (chitosan) or anionic (hyaluronic acid)
104 polymer, enabling comparison of the influence of type and charge of the bioadhesive polymer
105 (Ferris-James et al., 2012; Loureiro et al., 2015; McClements, 2012; Migotto et al., 2018).
106 Chitosan has been described to adhere to mucous membranes mainly due to electrostatic
107 interactions with negatively charged surfaces (Mazzarino et al., 2012; Smart, 2005), while
108 hyaluronic acid is a major component of the extracellular matrix and major ligand of CD44 and
109 RHAMM receptors, which are overexpressed on a variety of tumor cell surfaces (including in the
110 breast) (Akima et al., 1996; Guter and Breunig, 2017).

111 Following optimization of the nanoemulsion composition and production parameters, our
112 second goal was to compare the characteristics and properties of selected nanoemulsions
113 modified with chitosan and hyaluronic acid. Characteristics and properties of interest that were
114 studied included irritation potential, rheological and bioadhesive properties, in addition to
115 stability, drug release, *in vivo* retention and local histological alterations.

116

117 MATERIAL AND METHODS

118 **Material**

119 Polysorbate 80, DMSO, low molecular weight chitosan (50,000-190,000 Da), hyaluronic
120 acid (130,000-150,000 Da), and propylene glycol were obtained from Sigma (St. Louis, MO,
121 USA). Glycerol was purchased from Synth (Diadema, SP, Brazil). Tricaprylin was kindly
122 supplied by Abitec Corporation (Janesville, WI, USA). Acetonitrile, ethanol and methanol were
123 purchased from Mallinckrodt Baker (Phillipsburg, NJ, USA). Soy phosphatidylcholine (PC) was
124 purchased from Avanti Polar Lipids (Alabaster, AL, USA). Ultra-pure water was used unless
125 stated in the individual methods. Piptartine was isolated from roots of *Piper tuberculatum*,
126 harvested from the Campus of Federal University of Ceará (Fortaleza, CE, Brazil; voucher

127 specimen #34736 deposited at Prisco Bezerra herbarium, Federal University of Ceará) and
128 characterized as previously described (Bezerra et al., 2007). Briefly, ground roots (420.0 g) were
129 macerated with petroleum/ethyl acetate (1:1, v/v) thrice for 24 h; the solvent was evaporated
130 under reduced pressure to yield a yellowish solid, and piplartine was crystallized with methanol.
131 Characterization was performed by 1D and 2D NMR analyses and melting point determination as
132 previously described (Bezerra et al., 2008a; Bezerra et al., 2008b).

133

134 **Methods**

135 ***1. Oil phase selection***

136 The oil phase of the nanoemulsion was selected based on piplartine solubility, which was
137 determined by adding 2-4 mg of the drug to 200 mg of tricaprylin, isopropyl myristate,
138 monocaprylin and tricaprylin:monoolein (3:1), followed by stirring for 2 hours at 25 ± 2 °C
139 (Fofaria et al., 2016; Qhattal et al., 2011). Our goal was to find oil phase components in which
140 piplartine could be dissolved in up to 0.5 h to avoid a lengthy nanoemulsion preparation process.
141 After bath sonication for 10 min (piplartine remains stable after sonication) (Carvalho et al.,
142 2019), samples were centrifuged at 2600xg for 10 min, and presence of sediment and/or drug
143 crystals were assessed by visual inspection and optical microscopy. Based on the absence of
144 sediment when piplartine was dissolved in tricaprylin at the highest concentration, this
145 triglyceride was selected as the oil phase. In addition to providing drug solubilization, another
146 advantage of tricaprylin is that it is considered safe for parenteral administration (Floyd, 1999).

147

148 ***2. Nanoemulsion development and optimization***

149 Soybean phosphatidylcholine (PC) was used as sole surfactant or partially replaced with
150 polysorbate 80 to obtain nanoemulsions. Glycerol was investigated as a co-surfactant due to its

151 ability to reduce the diameter of aggregates and promote homogeneous size distribution
152 (Carvalho et al., 2017b; Ochoa-Flores et al., 2017).

153 The PC, tricaprylin and water ratios necessary to obtain nanoemulsions were established
154 using previously described pseudo-ternary phase diagrams (Patel et al., 2006). The PC content
155 was set at < 20%, while the aqueous phase content was set at 60% or higher. For formulations
156 containing PC, polysorbate and glycerol as surfactant blend (at 3:1:0.5, w/w/w), pseudo-ternary
157 phase diagrams were obtained by mixing this blend with tricaprylin at 8:2 to 2:8 (w/w), followed
158 by titration with water at 10-20% increments. The relationship between phase behavior and
159 composition was demonstrated in a phase diagram (**Supplementary Figure 1**). Because they
160 enabled the obtainment of milky and dispersed systems, surfactant blend:oil phase ratios of 2:1
161 and 1:1 (m/m), and aqueous phase content over 60% were selected.

162 To obtain nanoemulsions, the oil phase (tricaprylin) was combined with the surfactant
163 blend prior to aqueous phase addition, which was composed of a PBS solution containing
164 poloxamer, chitosan or hyaluronic acid. Because chitosan dissolves at pH<5, an aqueous solution
165 of chitosan in water acidified to pH=4.5 was prepared, and added to PBS for a final concentration
166 of 1%. The system was homogenized by vortex mixing (30 s), followed by sonication for 5-20
167 min with pulses of 58 s every 30 s in ice bath using 40% maximum amplitude (VCX500, Sonics,
168 Newtown, CT, USA) (Migotto et al., 2018).

169 To optimize nanoemulsion production, variations were introduced to this protocol, and
170 four sets of experiments were conducted as described below. Three to four batches of each
171 formulation were produced for comparison of size and zeta potential.

172

173 **2.1. Influence of surfactant composition and aqueous phase content:** the surfactant (PC or
174 PC:polysorbate 80:glycerol at 3:1:0.5, w/w/w) was mixed with tricaprylin at 1:1 or 2:1 (w/w),

175 followed by addition of PBS as aqueous phase at 66-80%, homogenization by vortex-mixing and
176 sonication for 20 min.

177

178 **2.2. Influence of poloxamer 407:** because poloxamer has been described to aid emulsification,
179 improve droplet size distribution and provide steric stability (Loureiro et al., 2015; Mistry et al.,
180 2012), the influence of its concentration on nanoemulsion characteristics was assessed. The
181 surfactant blend (PC:polysorbate 80:glycerol, 3:1:0.5, w/w/w) was combined with tricaprylin at
182 1:1 (w/w), followed by addition of PBS (80%) containing poloxamer 407 to yield final
183 concentrations of 0-0.5% (w/w); the system was subsequently subjected to homogenization and
184 sonication for 20 min.

185

186 **2.3. Influence of aqueous phase temperature and bioadhesive polymer addition on sonication**
187 **time:** the surfactant blend (PC:polysorbate 80:glycerol, 3:1:0.5, w/w/w) was combined with
188 tricaprylin at 1:1 (w/w), followed by addition of PBS containing chitosan (1%) or hyaluronic acid
189 (1%) as aqueous phase (80%). The aqueous phase was either used at room temperature
190 (maintained at 25 °C by air conditioning) or heated (50 °C in water bath) prior to addition to the
191 surfactant:oil phase mixture and sonication for 5-20 min. Selected nanoemulsions modified with
192 hyaluronic acid and chitosan will be referred to as NE-HA and NE-Q, respectively.

193

194 **2.4. Influence of cetylpyridinium chloride on nanoemulsion charge:** because nanocarrier charge
195 affects interaction and drug penetration into other tissues, with a positive charge favoring
196 interaction with biological barriers (Pepe et al., 2013), we also attempted to produce a cationic
197 hyaluronic acid-modified nanoemulsion by including cetylpiridinium chloride as a co-surfactant.
198 This approach derived from previous studies that employed small amounts of positively charged
199 amphiphilic molecules to ensure the interaction of the interface with the negatively charged

200 hyaluronate (Pereira et al., 2016). Tricaprylin was combined with the surfactant blend containing
201 cetylpyridinium chloride (to obtain final concentrations in the nanoemulsion of 0.1-0.5%)
202 followed by addition of 80% aqueous phase containing hyaluronic acid (1%, heated at 50 °C).
203 The mixtures were homogenized by vortex mixing (30 s) followed by sonication for 10 min (as
204 defined in experiment 2.3). The nanoemulsion modified with cetylpyridinium chloride will be
205 referred to as NE-CET.

206

207 ***3.1. Characterization and evaluation of selected nanoemulsion properties***

208 Size and zeta potential were determined using Zetasizer NanoZS90 equipment (Malvern,
209 UK) after nanoemulsion dilution with water at 1:100 (w/w). Size and zeta potential of samples
210 from different batches (3-4) were measured within 20 min from obtainment.

211

212 ***3.2. Rheological behavior***

213 The influence of the bioadhesive polymer to the nanoemulsion rheological behavior and
214 viscosity was evaluated using a R/S Plus controlled stress rheometer with RC75-1 cone
215 (Brookfield Engineering laboratories, Middleboro, MA), and a bath circulator for temperature
216 control, set at 25°C under shear rate control conditions within the range 1–500 s⁻¹ (Carvalho et
217 al., 2017a). Rheograms of shear stress were recorded against shear rate, and the data fitted to
218 Power Law model according to the following equation: $\tau = K g^n$, where τ is the shear stress, g is
219 the rate of shear, K is the consistency index and n is the flow index parameter, used to classify the
220 rheological behavior. According to n , fluids were classified as Newtonian when $n = 1$, whereas n
221 > 1 or $n < 1$ indicates shear-thickening or shear-thinning, respectively (Hosmer et al., 2013).

222

223 ***3.3. Morphological characterization***

224 The structure and morphological aspect of selected nanoemulsions was assessed using
225 transmission electron microscopy (TEM; FEI Tecnai G20 20 XTWIN, France) at an acceleration
226 voltage of 100 kV. A 2% solution of phosphotungstic acid (PTA) was prepared and adjusted to
227 pH 7.4 using a sodium hydroxide solution. To 1 mL of a nanoemulsion suspension, 1 mL of PTA
228 was added, and the sample was adsorbed onto carbon film on 300 mesh copper grids and dried at
229 room temperature prior to microscopic analysis.

230

231 ***3.4. DSC analysis and glass transition temperature***

232 To learn more about the interaction of chitosan and hyaluronic acid with the
233 nanoemulsion, the glass transition temperature and thermal behavior of NEQ and NEHA were
234 assessed by differential scanning calorimetry (DSC) using a Discovery DSC 2500 (TA
235 Instruments, New Castle, DE) equipped with a RCS90 cooling system. NE without bioadhesive
236 polymers was used for comparison. Samples of 8-10 mg were placed in Tzero[®] aluminum pans
237 (TA Instruments, New Castle, DE, USA), hermetically sealed, equilibrated at 20 °C, and
238 submitted to measurements in two steps: cooling from 20 to - 80 °C at 10 °C/min, and heating to
239 40 °C at 20 °C/min. Nitrogen was used as a purge gas (25 mL/min) and an empty pan was used as
240 a reference. Data collection and determination of thermal properties were performed using the
241 TRIOS Software v4.5.0 (TA Instruments, New Castle, DE).

242

243 ***4. Irritation potential***

244 To investigate the relationship between nanoemulsion composition and irritation potential,
245 Hen's Egg Test—Chorioallantoic Membrane (HET-CAM) was used following previously
246 published guidelines and studies (ECVAM DB-ALM, INVITOX protocol 96) (Contri et al.,
247 2016; McKenzie et al., 2015; Migotto et al., 2018). The protocol was conducted in accordance
248 with the guidelines from the Brazilian Council for Control of Animal Experimentation

249 (CONCEA), and approved by the Animal Care and Use Committee (IACUC) at the Institute of
250 Biomedical Sciences of the University of São Paulo (protocol number 70/2016, São Paulo,
251 Brazil). Fertilized chicken eggs (obtained from Sabor Natural, São Paulo, SP, Brazil) were
252 incubated for 9 days at 37°C and 55% humidity (Premium Ecologica incubators, Belo Horizonte,
253 MG, Brazil) with automatic rotation every 2 h. The chorioallantoic membrane was exposed and
254 treated for 5 min with selected nanoemulsions, saline (negative control) and NaOH (0.1M,
255 positive control); they were photodocumented (Nikon, SMZ 1500, Tokyo, Japan) before, during
256 and after treatment. Each treatment was performed in 5-6 eggs, and a score was calculated using
257 the following equation as previously described (Mojeiko et al., 2019).

$$II = ((301-h)/300) \times 5 + ((301-l)/300) \times 7 + ((301-c)/300) \times 9$$

258 where h, l and c are the time (in seconds) of the beginning of hemorrhage, lysis or coagulation.
259 The following classification was used: $II < 0.9$: non-irritant; $1 < II < 4.9$: slight irritation; $5.0 < II$
260 < 8.9 : moderate irritation; $9.0 < II < 21$: severe irritation (Luepke, 1985).

262

263 ***5. In vitro bioadhesion assessment***

264 To compare the impact of chitosan and hyaluronic acid on the bioadhesive properties of
265 the nanoemulsion, we assessed interactions between the nanoemulsions and the subcutaneous
266 tissue of porcine ear skin (as model for the mammary tissue) using TA-XTplus texture analyzer
267 (Stable Micro Systems, Surrey, UK). We acknowledge the differences between the subcutaneous
268 and mammary tissues, but use of porcine skin allowed us to comply with the Institutional Animal
269 Care and Use (IACUC) 3Rs guidelines since it is commercially available and considered exempt
270 from IACUC review and approval. Fresh porcine ear skin was obtained from a local
271 slaughterhouse, and the skin from the outer side of the ear was removed with a scalpel and
272 scissors while keeping the subcutaneous tissue attached to the skin (Lopes et al., 2009; Thomas et
273 al., 2014). Skin sections were frozen at -80°C until the day of the experiment.

274 For assessment of bioadhesion potential, the skin was attached to the lower end of a
275 cylindrical probe (diameter 10 mm) with a rubber ring (Bento da Silva et al., 2017), with the
276 subcutaneous tissue facing outside (for contact with formulations) to mimic the mammary tissue.
277 The probe was lowered at constant speed (1 mm/s) to make contact with the surface of the
278 nanoemulsions (NE-HA and NE-Q). The skin and the sample were kept in contact for 60 s
279 without any force applied, after which the probe rose at a constant speed (0.5 mm/s) until the
280 contact between the surfaces was broken. The bioadhesive force of the formulations was
281 measured as the maximum detachment force or the resistance to the withdrawal of the probe. The
282 experiment was repeated 6 times for each sample. Because of the low viscosity and high aqueous
283 content of the nanoemulsions, the force necessary to detach water was measured for comparison.

284

285 ***6. In vivo intraductal administration, mammary tissue targeting and histological assessment***

286 This experiment aimed at comparing the (i) localization of a fluorescent marker in the
287 mammary tissue mediated by intraductal and systemic (i.p.) administration of nanoemulsions, (ii)
288 influence of the type and charge of the bioadhesive polymer on the nanoemulsion ability to
289 prolong mammary tissue, and (iii) nanoemulsion advantage over a simple solution. NE-Q and
290 NE-HA containing Alexa Fluor 647 (0.05%, w/w) as a fluorescent marker were prepared by
291 dilution in the aqueous phase prior to nanoemulsion sonication and formation. Following
292 intraductal or intraperitoneal (i.p.) administration, whole body animal imaging was used to track
293 fluorescence distribution. To ensure that fluorescence was related to Alexa fluor presence in the
294 tissue, unloaded nanoemulsions were administered as controls.

295 Female Wistar rats from the Facility for SPF rat production at the Institute of Biomedical
296 Sciences - Animal Facility Network at University of São Paulo - were housed in the Animal
297 Facility of the Department of Pharmacology with free access to food and water until they reached
298 250 ± 20 g. The animal room was kept under a 12:12 h light–dark cycle (lights on at 7:00 am),

299 and temperature was maintained between 22-23°C. The protocol was conducted in accordance
300 with guidelines issued by the Brazilian Council for Control of Animal Experimentation
301 (CONCEA), and approved by the Animal Care and Use Committee of the Institute of Biomedical
302 Sciences at University of São Paulo (protocol number 69/2016, São Paulo, Brazil).

303 Briefly, rats were anaesthetized with isoflurane (5% for induction and 2.5% for
304 maintenance, Cristalia, Itapira, Brazil), and abdominal hair was removed using a depilatory cream
305 (Migotto et al., 2018). Twenty four hours after hair removal, animals were divided in 7 groups
306 based on the treatment they were going to receive: intraductal (i) saline, (ii) unloaded NE-Q, (iii)
307 unloaded NE-HA, (iv) Alexa fluor solution (PBS:propylene glycol, 1:1), (v) Alexa fluor-loaded
308 NE-Q, or (vi) Alexa fluor-loaded NE-HA, and intrerinoteal (i.p.) (vii) Alexa-fluor loaded NE-HA
309 (4 animals/group were used, with the exception of group vii that contained 3 animals).

310 The treatments were delivered under anesthesia with isoflurane as follows. First, the
311 nipples were gently rubbed with alcohol to reveal the duct orifice (Chun et al., 2012; Krause et
312 al., 2013). Three pairs of nipples were selected according to their ease of access, and under a
313 dissection microscope, 10 µL of the drug solution or the nanoemulsions was injected into the
314 orifice using a 33 G needle attached to a Hamilton syringe (Hamilton, Bonaduz, Switzerland).
315 Saline was administered as a control formulation to assess mammary tissue damage.

316 Distribution of Alexa fluor was monitored for 1-120 h using a whole body bioimaging
317 system (IVIS Spectrum System, Perkin-Elmer Life Sciences, Waltham, MA, USA). The
318 following instrument settings were fixed for comparison among groups: exposure time= 5 s,
319 binning factor= 8, excitation/emission= 465/540 nm.

320 To assess histological changes induced by the formulations, mammary glands from
321 animals treated with unloaded nanoemulsions or saline were excised 120 h post-injection, fixed in
322 10% buffered neutral formaldehyde and processed for inclusion in paraffin (Murata et al., 2006).
323 Histological sections of 5 µm were obtained, and stained with hematoxylin/eosin prior to

324 microscopic analyses. Presence of tissue edema, infiltration of inflammatory cells and changes in
325 the morphology of ducts and lobular units were investigated to assess formulation-induced
326 histological alterations (Chun et al., 2012).

327

328 **7. Incorporation of piplartine and *in vitro* release**

329 Piplartine was dissolved in the surfactant-oil phase mixture to obtain a final concentration
330 of 1% (w/w) prior to addition of the aqueous phase. This concentration was 2-fold smaller than
331 the maximum amount that could be dissolved, suggesting that drug concentration in the
332 nanocarrier would be below saturation, and avoiding the influence of formulation saturation and
333 supersaturation on drug release (Brewster et al., 2008; Land et al., 2006).

334 The *in vitro* release of piplartine was evaluated using Franz diffusion cells and phosphate-
335 buffered receptor phase (100 mM, pH 7.2) containing 20% ethanol under constant stirring (350
336 rpm) at 37.0 ± 0.5 ° C (Cichewicz et al., 2013). Ethanol was added to aid drug solubility
337 (Carvalho et al., 2019; Hosmer et al., 2013). Other receptor phase additives were tested, such as
338 poloxamer 407 (1%), polysorbate 80 (1%) or BRIJ 97 (1%), but ethanol addition led to a more
339 pronounced increase (at least 1.7-fold) in drug solubility. Previous studies have employed ethanol
340 at higher percentages to overcome the low aqueous solubility of lipophilic drugs, and a
341 comparison of its content (38 or 76%) revealed that it exerted no significant influence on the
342 release rate (Rege et al., 1998; Solomon et al., 2012). The stirring speed was selected based on
343 preliminary experiments that compared drug release from NE-HA when the receptor phase was
344 stirred at 200 or 350 rpm. A similar cumulative drug release at 16 h was observed at 200 and 350
345 rpm; however a 350 rpm speed was selected, as higher speeds are recommended in experiments
346 employing Franz diffusion cells (Praca et al., 2018). Similar observations were reported in
347 clomipramine release studies comparing receptor phase stirring at 200 and 400 rpm (Richter et
348 al., 1969).

349 A cellulose membrane (1000 Da cut, Sigma, St. Louis, MO) was placed between the
350 recipient and donor compartments and 100 μ L of the nanoemulsion was added in the donor
351 compartment. The receptor phase (300 μ L) was collected at 1, 2, 4, 6, 8 and 16 h post-
352 application, and the same volume was replaced. The 16 h time point was selected as the latest
353 because drug concentration in the receptor phase reached 80% of its solubility; thus, we
354 acknowledge that sink condition was not maintained during the whole experiment, but as stated
355 earlier, the most pronounced increase in drug solubility was obtained with ethanol. To
356 demonstrate that diffusion of free piperazine across the dialysis membrane is not a rate-limiting
357 step, a drug solution in propylene glycol was used as a control formulation. The experiment was
358 interrupted at 6 h because drug concentration in the receptor phase reached 80% of its solubility.

359 Piperazine in the receptor phase was quantified by HPLC as described in section 9.
360 Interference of formulation components in the analytical method was assessed by adding
361 unloaded formulations to the donor compartment of diffusion cells and assaying the receptor
362 phase after 24 h; since no interference was detected at this late time point (which would enable
363 diffusion of larger amounts of components and facilitate their detection), we assumed the same
364 for earlier time points. To estimate the cumulative drug release, the amount of drug collected at
365 earlier time points were added to the observed (or measured) drug amount in the receptor phase at
366 a given time point as follows:

367
$$C_{t_n} = C_n + C_w,$$

368 where C_{t_n} is the corrected drug amount at a given time n , C_n is the observed drug amount in the
369 receptor phase at a given time n , and C_w is the sum of all drug amounts withdrawn (i.e., collected
370 at earlier time points). To calculate percentages, the total amount of drug added to the donor
371 compartment was set as 100%. The release kinetics was determined by plotting cumulative drug
372 release against time (for zero order kinetics), square root of time (for pseudo-first order kinetics)

373 and the log of remaining drug against time (for first order kinetics), and coefficients of
374 determination were obtained (Ng et al., 2017; Phelps et al., 2011).

375

376 **8. Stability study of nanoemulsions**

377 The chemical and physical stability of unloaded and piplartine-loaded NE-HA and NE-Q
378 were studied by macroscopic and microscopic observation taking into consideration phase
379 separation, creaming, droplet agglomeration or sedimentation, and analysis of particle size,
380 polydispersity index, zeta potential and piplartine content.

381 In a conical tube, 0.5 g of the unloaded or piplartine-loaded NE-HA and NE-Q (1% w/w)
382 prepared in triplicate were stored at room temperature (maintained at 25°C with air conditioning)
383 for 60 days. Formulation evaluation was performed at days 0 (immediately after production), 7,
384 14, 30, 45, and 60. Size and zeta potential were determined as described in *item 3.1*. Microscopic
385 examination was conducted under halogen and polarized light (Leica, Wetzlar, Germany) to
386 investigate the presence of drug crystals, agglomeration and phase transformation since PC and
387 polysorbate 80 form liquid crystalline phases, which display specific textures under polarized
388 light.

389 For quantification of piplartine, 10 µL of the samples were diluted in 1 mL of methanol
390 (to yield a theoretical drug concentration of 100 µg/mL) at days 0, 7, 30, 45 and 60, and the
391 samples were subjected to HPLC analysis as described in section 9 (Carvalho et al., 2019). To
392 express drug content as percentage, drug concentration at day 0 was considered 100%.

393

394 **9. HPLC analysis of piplartine**

395 Chromatographic analyzes were performed using a Shimadzu HPLC system equipped
396 with a pump (model LC-20AB), an autosampler (model SIL-20A), an UV detector (model SPD-
397 M20A) set at 325 nm, and the Class-VP software. Piplartine separation was performed in a

398 Phenomenex C18 (150 × 4.6 mm) column maintained at 25°C according to a previously
399 developed and validated method (Carvalho et al., 2019). Briefly, the mobile phase was composed
400 of 1:1 (v/v) acetonitrile:water (pH adjusted to 4.0 with 0.1% acetic acid) and used at a flow rate
401 of 0.9 mL/min. The calibration curve of piplartine was prepared in methanol, and demonstrated
402 linearity within the range 0.2 - 150 µg/mL. The amount injected into the column was 20 µL for
403 samples and calibration curve. For each experiment, new calibration curves were obtained.

404

405 **10. Statistical analyses**

406 The results are reported as means ± SD. Data were statistically analyzed using ANOVA
407 test followed by Tukey post-hoc test (GraphPad Prism software, Sand Diego, CA). Values were
408 considered significantly different when $p < 0.05$. ANOVA-based power analysis was conducted
409 to estimate sample size with power at 0.90 and alpha at 0.05 (Statistica software, Palo Alto, CA).

410

411 **RESULTS**

412

413 **1. Nanoemulsion development and optimization**

414 The first goal of the present study was to optimize the composition and production
415 parameters of nanoemulsions for intraductal delivery of piplartine. The influence of surfactant
416 composition, aqueous phase content and temperature, sonication time, poloxamer and
417 bioadhesive polymer addition on nanoemulsion formation and physicochemical characteristics
418 such as diameter, polydispersity and zeta potential are presented below.

419

420 **1.1. Influence of surfactant composition and aqueous phase content**

421 To assess the influence of surfactant and aqueous phase content, the dispersions were
422 sonicated for 20 min employing the aqueous phases at room temperature. Use of PC as sole

423 surfactant failed to form nanoemulsions; instead, viscous and turbid mixtures were obtained.
424 Inclusion of polysorbate 80 and glycerol in the surfactant blend resulted in a fluid, translucent and
425 opalescent dispersion, with particle diameter of 90.7 ± 1.0 nm and a slightly positive zeta
426 potential when the aqueous phase content was 75% (**Table 1**), but its PDI was above the upper
427 limit of the range considered acceptable for drug delivery systems (Danaei et al., 2018). A further
428 increase in the aqueous phase content to 80% produced a 1.5-fold reduction in PDI, while size
429 and zeta potential were not significantly altered. Because increases in aqueous content frequently
430 results in higher drug release rates, which affects bioavailability (Chang and Bodmeier, 1997;
431 Cichewicz et al., 2013), aqueous phase at 80% was selected for nanoemulsion preparation.

432 Increasing the surfactant:oil phase ratio to 2:1 (w/w) did not promote significant changes
433 on size, despite previous reports suggesting that increasing surfactant content decreased droplet
434 size (Lefebvre et al., 2017). Due to the risk of increasing formulation irritation often associated
435 with surfactant content increments (Pepe et al., 2013), the 1:1 ratio was selected.

436

437 *1.2. Influence of poloxamer 407*

438 Because poloxamer has been described to aid emulsification, decrease nanoemulsion droplet
439 size, improve size distribution and provide steric stabilization, the influence of its concentration
440 on nanoemulsion characteristics was assessed (Loureiro et al., 2015; Mistry et al., 2012).
441 Contrary to our expectations, poloxamer increases from 0 to 0.25 or 0.50% did not affect size or
442 PDI in a significant manner (**Table 2**). However, the nanoemulsion containing poloxamer at
443 0.50% transformed into a gel within 2 months at room temperature, leading to poloxamer
444 exclusion from the composition.

445

446 *1.3. Influence of aqueous phase temperature and bioadhesive polymer addition*

447 It has been generally advisable to limit the sonication time to reduce unanticipated sample
448 responses to the heat generated by the process and to avoid probe-derived titanium contamination
449 (Betts et al., 2013). Thus, the next step was to assess the influence of aqueous phase temperature
450 and type/charge of the bioadhesive polymer on the sonication time required to produce
451 nanoemulsions.

452 Nanoemulsions containing chitosan (NE-Q) or hyaluronic acid (NE-HA) were prepared by
453 adding the aqueous phase at room temperature (25 °C maintained with air conditioning) or heated
454 at 50°C, followed by sonication for 5-20 min. Sonication with the aqueous phase at room
455 temperature reduced NE-Q droplet size from ~500 nm (t=0) to 185 nm after 5 min, to ~120 nm
456 after 10 min, to ~78 nm after 15 min, and to ~74 nm after 20 min (**Supplementary Figure 2**).
457 Heating the aqueous phase (50°C) led to size reduction to ~74 nm after 10 min of sonication,
458 which represents a reduction of 1.7-fold compared to the non-heated aqueous phase ($p < 0.05$).
459 Subsequent sonication pulses did not produce further changes on size. For NE-HA, sonication for
460 5 min reduced droplet size by ~2.5-fold ($p < 0.05$) using the heated aqueous phase compared to
461 the non-heated system, but this difference disappeared after sonication for 10 min. PDI < 0.3 was
462 observed after 5 min of sonication regardless of the temperature of the aqueous phase. To reduce
463 sonication time but keep the same number of pulses for NE-Q and NE-HA, aqueous phase
464 heating to 50°C and sonication for 10 min (using pulses of 58 s on and 30 s off) were defined as
465 optimum parameters. The resulting zeta potential of NE-HA and NE-Q were -5.7 ± 1.7 mV and
466 $+11.3 \pm 3.2$ mV, respectively.

467

468 *1.4. Influence of cetylpyridinium chloride*

469 To confer a positive charge to NE-HA and take advantage of possible electrostatic
470 interactions between cationic nanocarriers and negatively charged epithelium surfaces,
471 cetylpyridinium chloride was included in the nanoemulsion. At 0.5%, but not at lower

472 concentrations, this surfactant led to zeta potential inversion and to the obtainment of a cationic
473 system (+11.3 mV, **Table 3**). Based on these results, cetylpyridinium chloride concentration was
474 set at 0.5% to produce NE-CET.

475

476 **2. Characterization and evaluation of selected nanoemulsion properties**

477 Having optimized nanoemulsion composition and sonication parameters, we proceeded to
478 characterize and compare the properties of selected formulations modified with chitosan and
479 hyaluronic acid. The influence of alginate, chitosan and cetylpyridinium chloride on
480 nanoemulsion stability, irritation potential, morphology, glass transition temperature, rheological
481 and bioadhesive properties are presented below.

482

483 *2.1. Stability:* unloaded NE-Q, NE-HA and NE-CET were preliminarily screened for stability at
484 room temperature. Among these nanoemulsions, NE-Q displayed the highest variation in size,
485 which increased~1.4-fold within 60 days (**Figure 1**). In spite of this increase, no signs of phase
486 separation, creaming and/or sedimentation were observed macroscopically or microscopically,
487 and PDI values did not increase beyond 0.3 throughout the study. No pronounced changes on size
488 or PDI were observed for NE-HA or NE-CET. However, NE-CET zeta potential value decreased
489 by 2-fold after 60 days compared to initial values.

490

491 *2.2. Irritation potential:* the ability of nanoemulsions to cause tissue irritation was compared
492 using HET-CAM. Initially employed to assess eye irritation, HET-CAM use has now been
493 expanded, and it currently finds applicability as an alternative method to the use of animals to
494 estimate irritation to the skin and other tissues (Eichenbaum et al., 2013; Mehling et al., 2007).
495 Application of saline (negative control) to healthy membranes produced no perceptible change
496 over the five-minute time window (**Figure 2**), while NAOH (0.1 M, positive control) caused

497 lysis, coagulation and severe hemorrhage, resulting in a score of 17.9 ± 0.6 , which classifies this
498 solution as severe irritant (Fangueiro et al., 2016; McKenzie et al., 2015). NE-Q and NE-HA
499 failed to produce any perceptible changes on the membrane (score < 0.9). Membrane treatment
500 with NE-CET resulted in hyperemia and several small points of hemorrhage, which are marked
501 with black arrows in **Figure 2**, resulting in an irritation score of 1.2 (slightly irritating).

502 Because NE-CET displayed a higher irritation score compared to the other
503 nanoemulsions, and its zeta potential decreased with time (which is a possible indicative of lower
504 stability) we opted to exclude NE-CET from further studies, and focused on the comparison of a
505 cationic (NE-Q) and an anionic (NE-HA) nanoemulsion.

506

507 *2.3. Morphological characterization:* analysis of NE-Q and NE-HA using transmission electron
508 microscopy demonstrated the presence of fairly spherical electron-dense structures with a
509 diameter of less than 100 nm (between 40 and 70 nm, **Figure 3A-B**). These results are consistent
510 with light scattering findings, which demonstrated droplets with average diameters of 58.4 and
511 74.1 nm for NE-HA and NE-Q, respectively (**Figure 1**, 0 days).

512

513 *2.4. DSC analysis:* this experiment was conducted to determine the glass transition temperature
514 (T_g') and gain more information regarding the interactions occurring within the nanoemulsion
515 upon addition of hyaluronic acid and chitosan. Addition of hyaluronic acid altered several
516 parameters of the DSC curve compared to NE without polymers. In the heating cycle, addition of
517 hyaluronic acid increased T_g' from -45 to -36 °C, the melting peak temperature (T_{peak}) from -0.8
518 to + 1.4 °C, and enthalpy of fusion (ΔH_{fus}) from 214.7 to 243.0 J/g (**Table 4, Supplementary**
519 **Figure 3**); increases in the enthalpy of crystallization (ΔH_{crys}) and exothermic freezing peak
520 temperature ($T_{peak-crys}$) were also observed in the freezing cycle. The opposite effect was observed
521 when chitosan was included: T_g' decreased to -60°C and ΔH_{fus} to 179.8 J/g. These results suggest

522 that the polymers affect differently the mobility of water at the vicinity of interfaces, leading to
523 opposing effects on ice formation and vitrification (Droste and Dibenedetto, 1969; Talik and
524 Hubicka, 2018). It is also noteworthy to mention that DSC curves of NE, NE-Q and NE-HA
525 showed a single and narrow exothermic event upon cooling, which is typical for monodispersed
526 O/W systems and congruent with the observed particle size distribution results (Clausse, 1998).

527

528 *2.5. Rheological behavior:* both nanoemulsions displayed Newtonian behavior independent on
529 the type of bioadhesive polymer as demonstrated by linear relationships between the rate of shear
530 and shear stress (**Supplementary Figure 4**), which resulted in flow index values in the range
531 0.95-0.99. The viscosity, calculated as the average of viscosity at individual values of shear rate,
532 was 0.014 ± 0.002 Pa.s for NE-Q and 0.008 ± 0.001 Pa.s for NE-HA demonstrating that, even
533 though the rheological behavior was similar, addition of chitosan promoted an 1.5-fold increase
534 in viscosity compared to hyaluronic acid.

535

536 *2.6. In vitro bioadhesive properties:* bioadhesive characteristics are important when prolonged
537 residence time is intended. Bioadhesive properties were evaluated by means of a tensile test, in
538 which the maximum force to detach the nanoemulsions from the subcutaneous tissue of skin
539 sections was determined. The force necessary to detach NE-Q and NE-HA was ~1.9- and 1.7-fold
540 higher, respectively, than that necessary to detach water ($p < 0.05$), suggesting a stronger
541 interaction between these formulations and the tissue (**Figure 3C**). The detachment forces for
542 NE-Q and NE-HA were not significantly different.

543

544 **3. In vivo intraductal administration, mammary tissue targeting and histological assessment**

545 Having demonstrated that NE-HA and NE-Q displayed *in vitro* bioadhesive properties and
546 low irritation potential, their *in vivo* ability to provide localization of Alexa fluor and induce
547 histological changes in the mammary tissue was compared.

548 **Figure 4A** depicts representative images of animals subjected to systemic or intraductal
549 administration of unloaded nanoemulsions, Alexa fluor-loaded NE-Q and NE-HA or Alexa fluor
550 solution. To ensure that fluorescence was related to the presence of Alexa fluor in the tissue,
551 unloaded nanoemulsions were administered, and no fluorescence was detected (treatment with
552 NE-HA is depicted, however, the same results were obtained for NE-Q).

553 Intraductal administration of Alexa Fluor solution led to fluorescent staining of the
554 mammary tissue at the day of the injection, but it disappeared within 24 h. Compared to the
555 solution, administration of Alexa Fluor-loaded nanoemulsions resulted in stronger fluorescent
556 staining of the mammary tissue up to 120 h. On the other hand, i.p. administration resulted in
557 fluorescent staining mainly in the abdominal cavity, which mostly disappeared after 24 h,
558 demonstrating the advantage of intraductal over systemic administration for mammary tissue
559 targeting.

560 These results can be better visualized in **Figure 4B**, which depicts a quantitative
561 comparison of the fluorescent staining in multiple animals subjected to the different treatments.
562 NE-Q and NE-HA administration resulted in comparable fluorescence intensity in the mammary
563 tissue and decay along 120 h, suggesting that tissue residence is not dependent on the type of
564 bioadhesive polymer and nanoemulsion charge. The nanoemulsion-mediated staining was
565 stronger at all time points assessed compared to Alexa fluor solution, suggesting that, even
566 though solution administration allowed mammary tissue localization, it resulted in a fast
567 elimination of the fluorescent compound.

568 Representative histological pictures of the mammary tissue of untreated (control) or
569 animals treated with saline, unloaded NE-Q or NE-HA are depicted in **Figure 5**. As previously

described, untreated animals display ducts formed by a layer of cuboidal epithelial cells embedded in stroma and surrounded by adipose tissue, often referred to as the fat pad (Masso-Welch et al., 2000). The mammary tissue of animals treated with saline, NE-Q and NE-HA displayed similar architecture compared to untreated animals. The absence of histological alterations (such as edema, infiltration of inflammatory cells and thickening of the ductal layer and lobular units) suggests tissue integrity.

576

577 **4. Stability and drug release**

578 Since NE-HA and NE-Q provided similar *in vivo* retention of Alexa fluor and induced no
579 perceptible histological alterations in the mammary tissue, piperazine was incorporated in these
580 formulations for comparisons of drug release and stability.

581 The maximum amount of piperazine that could be encapsulated in the nanoemulsions was
582 1% (w/w); larger amounts (2%) could be initially dissolved, but precipitation was observed
583 within 24 h. At this concentration, piperazine incorporation did not significantly ($p > 0.05$) affect
584 size, PDI or zeta potential (**Figure 6 A-C**, time=0 days, **Supplementary Table 1**).

585 Changes in the physicochemical characteristics of piperazine-loaded NE-Q and NE-HA
586 were assessed for 60 days. No alterations, such as creaming, formation of aggregates or phase
587 separation, were observed macroscopically or under a light microscope, but NE-Q size increased
588 in a significant manner ($p < 0.05$) after 45 and 60 days (**Figure 6A**). Interestingly, this change
589 was preceded by an increase in PDI at 30 days (**Figure 6B**). No significant changes were
590 observed on zeta potential (**Figure 6C**).

591 Piperazine content after nanoemulsion sonication was ~100% of its initial content before
592 sonication. As can be observed in **Figure 6D**, it remained between 96 and 108% of the initial
593 content for 60 days, suggesting that piperazine is stable in both NE-Q and NE-HA.

594 Considering drug lipophilicity ($\log P = 2.37$) (Lee et al., 2018), we anticipated the
595 possibility of piperazine remaining associated with the formulation and having its cellular
596 cytotoxicity decreased. To assess drug release, *in vitro* studies were performed. Very similar
597 amounts of piperazine were released comparing the two nanoemulsions, and at the longest time
598 point studied (16 h), 29 – 34% of piperazine was released from NE-Q and NE-HA (**Figure 6E**).
599 Similar piperazine amounts were observed in the receptor phase after 6 h when a drug in solution
600 was employed, suggesting that drug diffusion across the membrane was not a rate-limiting step in
601 the release process. During the 16 h period, linear relationships were obtained when cumulative
602 drug release was plotted as a function of time ($r > 0.99$), suggesting zero-order kinetics, which is
603 in accordance with other studies (Migotto et al., 2018; Tayel et al., 2013; Zhang et al., 2013).

604

DISCUSSION

605

606
607 The first goal of this study was to optimize the composition and production parameters of
608 nanoemulsions for intraductal drug delivery. Although nanoemulsions are most often formed by
609 synthetic surfactants such as polysorbates, the desire to obtain formulations with improved
610 biocompatibility and free of synthetic ingredients has prompted studies for optimization using
611 phospholipids (Komaiko et al., 2016). Thus, we started this study assessing the possibility to
612 produce nanoemulsions using soy PC as sole surfactant. However, we did not succeed, and a
613 possible reason was the low phospholipid-oil phase ratio employed; ratios higher than 1:1 seem to
614 be necessary to reduce droplet size and form nanoemulsions (Komaiko et al., 2016). Combining
615 PC with polysorbate 80 and glycerol gave rise to nanoemulsions, which is consistent with their
616 ability to destabilize liquid crystalline phases and lamellas preferentially formed by PC, favoring
617 nano and microemulsions (Hoeller et al., 2009; Lopes et al., 2006; Patel et al., 2006). Besides
618 polysorbate and glycerol, other surfactants employed for nanoemulsion stabilization include

619 lauric arginate, deoxycholic acid and Cremophor EL (Ma et al., 2016; Musa et al., 2013; Vyas et
620 al., 2008).

621 The second factor assessed was aqueous phase temperature. It is well known that
622 temperature is important for emulsification, and aqueous and oil phase heating at 40–80°C aids
623 formation of coarse emulsions (Floyd, 1999). However, the effect of aqueous phase temperature
624 on nanoemulsion production has been less explored. An *et al.* (2014) reported droplet size
625 reduction when the aqueous phase temperature increased from 25 to 50 °C, an effect attributed to
626 viscosity reduction and increased surfactant aqueous solubility (An et al., 2014; Anton and
627 Vandamme, 2009; Lefebvre et al., 2017). In the present study, the nanoemulsion diameter
628 obtained upon 20 min of sonication was similar regardless of the temperature of the aqueous
629 phase, but this diameter was reached with a shorter sonication period (5-10 min) upon aqueous
630 phase heating. Considering that unanticipated sample responses to the generated heat and
631 titanium contamination from the probe increase with sonication time (Betts et al., 2013), aqueous
632 phase heating and sonication time reduction can improve sample quality.

633 Subsequently, the influence of two other surfactants on nanoemulsion characteristics was
634 assessed. Poloxamer 407 produces temperature-sensitive gels at concentrations varying from
635 1.5% to 30% (Giuliano et al., 2018), and although a concentration below this range was
636 employed, formulation gelling occurred after 2 months, leading to its exclusion from
637 nanoemulsion composition. Gelling might result from the interference of formulation components
638 on hydration of the PEO and PPO blocks, and consequently, on micellization as demonstrated
639 previously for salts and co-solvents (Bodratti and Alexandridis, 2018). Chitosan, for example, has
640 been described to reduce poloxamer critical micellization temperature (Ur-Rehman et al., 2011).
641 At 0.5%, cetylpyridinium chloride imparted a positive charge to the nanoemulsions but also
642 increased its irritation potential. This was not surprising as this concentration is higher than the
643 range used in products for oral hygiene (0.02-0.2%) and for nanocrystals aimed for safe ocular

644 drug delivery (0.01%) (Lin and Hemming, 1996; Romero et al., 2016). The risk of increasing
645 irritation to the mammary tissue led us to exclude NE-CET from further studies.

646 Having defined the process parameters and composition of nanoemulsions, the influence
647 of chitosan and hyaluronic acid on the characteristics and properties of nanoemulsions were
648 compared. Formation of nanocarriers composed of phospholipids and charged polysaccharides
649 involve attractive interactions of the polar headgroup of the amphiphilic lipid with the
650 polysaccharide, while its hydrophobic portions interact with the oil phase component (in this
651 case, tricaprylin) (Gerelli et al., 2008). Previous studies suggested formation of particles with a
652 polymer shell surrounding an oily core and/or multilayered structures with alternating layers of
653 phospholipids and hydrated polymer (Gerelli et al., 2008).

654 DSC analysis revealed that chitosan and hyaluronic acid had opposite effects on T_g' .
655 Defined as the temperature at which an amorphous material changes from a glassy, solid-like
656 state to a rubbery state upon heating, T_g' is important to predict interactions within the sample
657 and stability (Droste and Dibenedetto, 1969). The decrease in T_g' observed upon chitosan
658 addition suggests a stronger interaction of this polysaccharide with the aqueous phase compared
659 to hyaluronic acid, favoring the existence of the non-freezable water. Further findings also
660 support this fact: the high degree of supercooling of the NE-Q sample, represented by the lowest
661 $T_{peak-cryst}$ value, and a decrease in the enthalpy of fusion of ice when compared to NE (without
662 bioadhesive polymers) or NE-HA. The first indicates a slow nucleation and ice growth (Williams
663 and Polli, 1988). The second is an evidence of a proportional decrease of unbound water, i.e.
664 freezable water; by dividing ΔH_{fus} of each sample by the heat of fusion of pure ice (330 J/g)
665 (Samouillan et al., 2012), we estimated approximately 73.6% and 65.1% of freezable water
666 content for NE-HA and NE, respectively, against only 54.5% for NE-Q. This effect might result
667 from a chitosan-induced increase in viscosity, similarly to the effect previously described for β -
668 casein (Maher et al., 2011), and is in accordance with our rheology findings. In spite of the

669 viscosity difference, the *in vitro* bioadhesive property of the two nanoemulsions was similar,
670 suggesting that the type and charge of the polymer may not influence local residence.

671 Although bioadhesion can be influenced by viscosity, its mechanisms are complex and
672 variable, involving multiple stages that include contact, hydration, wetting and spreading, as well
673 as a consolidation stage, in which penetration of the polymer chains into the mucus layer and
674 bonding occurs (Machado et al., 2017). Positively charged chitosan are capable of forming
675 polyelectrolyte complexes with negatively charged mucus components, whereas formation of
676 hydrogen bonds has been suggested to contribute to bioadhesion of negatively charged hyaluronic
677 acid (Oh et al., 2015). Compared to other formulations described in the literature, our
678 nanoemulsions did not exhibit strong bioadhesiveness, which was expected based on their low
679 viscosity, high aqueous content and low concentration of the bioadhesive components (Bento da
680 Silva et al., 2017; Jin et al., 2016); however, compared to simple aqueous solutions, the higher
681 detachment force of NE-Q and NE-HA may be useful to increase residence time in the mammary
682 tissue.

683 *In vivo* results confirmed the ability of the nanoemulsions to extend retention compared to
684 a simple solution, and reinforced the similar profile of NE-Q and NE-HA. The rapid tissue
685 removal of Alexa fluor when administered intraductally as a solution is consistent with the small
686 $t_{1/2}$ (approximately 15 min) previously described for fluorescein administered through the same
687 route as a solution (Singh et al., 2012). The fact that NEQ and NEHA depicted similar mammary
688 tissue retention corroborates *in vitro* bioadhesion observations, and suggests that the *in vitro*
689 assay is useful for the screening of intraductal formulations. The type of polymer did not
690 influence the occurrence of irritation to the site of administration, as none of the nanoemulsions
691 promoted perceptible changes on the vasculature of CAM membranes or histological changes in
692 the mammary tissue. In addition to demonstrating that the nanoemulsions do not cause any
693 histological changes in the mammary tissue, this study provides further evidence of the

694 applicability of HET-CAM as an alternative method to assess irritation at the administration site
695 (Eichenbaum et al., 2013).

696 Piplartine was stable in both nanoemulsions for 60 days. However, although NE-Q did not
697 show macroscopic signs of coalescence, precipitation or phase separation, particle size increased
698 at 45 and 60 days. This increase might impact drug release and bioavailability as suggested by
699 previous studies that assessed the influence of size on drug transport across barriers; diazepam for
700 example, had its skin penetration increased upon droplet size reduction from the macro to the
701 nanorange (100-300 nm) (Schwarz et al., 1995; Zhou et al., 2009). Future studies will compare
702 the cytotoxicity and efficacy of these nanoemulsions in breast cancer models.

703

704 CONCLUSION

705

706 The impact of formulation components and production parameters on the obtainment of
707 nanoemulsions suitable for intraductal administration of piplartine were assessed. Combination of
708 PC, polysorbate 80 and glycerol as surfactant blend mixed at a 1:1 ratio with the oil phase
709 resulted in nanoemulsions with $d < 100$ nm. Aqueous phase content and temperature played
710 significant roles, with heating at 50°C enabling sonication time reduction. Bioadhesive properties
711 of NE-Q and NE-HA were similar as demonstrated *in vitro* by a similar detachment force from
712 the tissue, and *in vivo* by prolonging mammary tissue retention without causing tissue damage,
713 suggesting that the type and charge of bioadhesive polymer does not largely influence these
714 properties. These results demonstrate the potential of both NE-Q and NE-HA for intraductal
715 administration, but because the droplet size of piplartine-loaded NE-HA was maintained at a
716 similar range for longer periods of time, this nanoemulsion might be more promising.

717

718 ACKNOWLEDGEMENTS

719

720 The authors would like to thank Dr. Catherine Dreiza (Estrella Mountain Community
721 College, Phoenix, AZ) for language revision. This study was supported by São Paulo Research
722 Foundation (FAPESP, grant# 2013/16617-7, 2018/03418-0 and 2018/13877-1) and National
723 Council of Technological and Scientific Development (CNPq, grant# 443549/2014-1).
724 Fellowships from CNPQ (L.V. Costa-Lotufo), CAPES (finance code 001) and FAPESP
725 (2017/04174-4, 2017/23213-0, 2017/19059-6, 2018/18813-1) are greatly appreciated. Bioimaging
726 analysis was conducted at the CEFAP core facility (Institute of Biomedical Sciences, University
727 of São Paulo). This study was registered at SisGen under number A90EE5B.

728

729

REFERENCES

730

731 2007. Hen's egg test on the chorioallanthoic membrane (HET-CAM); INVITTOX n. 96.
732 Akima, K., Ito, H., Iwata, Y., Matsuo, K., Watari, N., Yanagi, M., Hagi, H., Oshima, K., Yagita, A., Atomi, Y.,
733 Tatekawa, I., 1996. Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis,
734 characterization and antitumor activity. *J Drug Target* 4, 1-8.
735 An, Y., Yan, X., Li, B., Li, Y., 2014. Microencapsulation of capsanthin by self-emulsifying nanoemulsions
736 and stability evaluation. *European Food Research and Technology* 239, 1077-1085.
737 Anton, N., Vandamme, T.F., 2009. The universality of low-energy nano-emulsification. *Int J Pharm* 377,
738 142-147.
739 Benson, J.R., Jatoi, I., Toi, M., 2016. Treatment of low-risk ductal carcinoma in situ: is nothing better than
740 something? *Lancet Oncol* 17, e442-e451.
741 Bento da Silva, P., Fioramonti Calixto, G.M., Oshiro Júnior, J.A., Bombardelli, R.L.Á., Fonseca-Santos, B.,
742 Rodero, C.F., Chorilli, M., 2017. Structural features and the anti-inflammatory effect of green tea extract-
743 loaded liquid crystalline systems intended for skin delivery. *Polymers* 9, 30.
744 Betts, J.N., Johnson, M.G., Rygiewicz, P.T., King, G.A., Andersen, C.P., 2013. Potential for metal
745 contamination by direct sonication of nanoparticle suspensions. *Environmental toxicology and chemistry*
746 32, 889-893.
747 Bezerra, D.P., de Castro, F.O., Alves, A.P., Pessoa, C., de Moraes, M.O., Silveira, E.R., Lima, M.A., Elmiro,
748 F.J., de Alencar, N.M., Mesquita, R.O., Lima, M.W., Costa-Lotufo, L.V., 2008a. In vitro and in vivo
749 antitumor effect of 5-FU combined with piperine. *Journal of applied toxicology : JAT* 28,
750 156-163.
751 Bezerra, D.P., Militao, G.C., de Castro, F.O., Pessoa, C., de Moraes, M.O., Silveira, E.R., Lima, M.A., Elmiro,
752 F.J., Costa-Lotufo, L.V., 2007. Piplartine induces inhibition of leukemia cell proliferation triggering both
753 apoptosis and necrosis pathways. *Toxicol In Vitro* 21, 1-8.
754 Bezerra, D.P., Moura, D.J., Rosa, R.M., de Vasconcellos, M.C., e Silva, A.C., de Moraes, M.O., Silveira, E.R.,
755 Lima, M.A., Henriques, J.A., Costa-Lotufo, L.V., Saffi, J., 2008b. Evaluation of the genotoxicity of
756 piplartine, an alkamide of *Piper tuberculatum*, in yeast and mammalian V79 cells. *Mutat Res* 652, 164-
757 174.

758 Bezerra, D.P., Pessoa, C., de Moraes, M.O., Saker-Neto, N., Silveira, E.R., Costa-Lotufo, L.V., 2013.
759 Overview of the therapeutic potential of piplartine (piperlongumine). *Eur J Pharm Sci* 48, 453-463.
760 Bodratti, A.M., Alexandridis, P., 2018. Formulation of Poloxamers for Drug Delivery. *Journal of functional*
761 *biomaterials* 9.
762 Brewster, M.E., Vandecruys, R., Verreck, G., Peeters, J., 2008. Supersaturating drug delivery systems:
763 effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of
764 supersaturated drug solutions. *Pharmazie* 63, 217-220.
765 Campbell, M.J., Baehner, F., O'Meara, T., Ojukwu, E., Han, B., Mukhtar, R., Tandon, V., Endicott, M., Zhu,
766 Z., Wong, J., Krings, G., Au, A., Gray, J.W., Esserman, L., 2017. Characterizing the immune
767 microenvironment in high-risk ductal carcinoma *in situ* of the breast. *Breast Cancer Res Treat* 161, 17-28.
768 Carvalho, V.F., de Lemos, D.P., Vieira, C.S., Migotto, A., Lopes, L.B., 2017a. Potential of Non-aqueous
769 Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin. *AAPS PharmSciTech* 18, 1739-
770 1749.
771 Carvalho, V.F.M., Giaccone, D.V., Costa-Lotufo, L.V., Silveira, E.R., Lopes, L.B., 2019. Development of a
772 method for quantitative determination of the cytotoxic agent piplartine (piperlongumine) in multiple
773 skin layers. *Biomed Chromatogr* 33, e4386.
774 Carvalho, V.F.M., Migotto, A., Giaccone, D.V., de Lemos, D.P., Zanoni, T.B., Maria-Engler, S.S., Costa-
775 Lotufo, L.V., Lopes, L.B., 2017b. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing
776 nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models.
777 *Eur J Pharm Sci* 109, 131-143.
778 Chang, C.M., Bodmeier, R., 1997. Swelling of and drug release from monoglyceride-based drug delivery
779 systems. *J Pharm Sci* 86, 747-752.
780 Chun, Y.S., Bisht, S., Chenna, V., Pramanik, D., Yoshida, T., Hong, S.M., de Wilde, R.F., Zhang, Z., Huso,
781 D.L., Zhao, M., Rudek, M.A., Stearns, V., Maitra, A., Sukumar, S., 2012. Intraductal administration of a
782 polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of
783 mammary tumors in a rodent chemical carcinogenesis model: Implications for breast cancer
784 chemoprevention in at-risk populations. *Carcinogenesis* 33, 2242-2249.
785 Cichewicz, A., Pacleb, C., Connors, A., Hass, M.A., Lopes, L.B., 2013. Cutaneous delivery of alpha-
786 tocopherol and lipoic acid using microemulsions: influence of composition and charge. *J Pharm*
787 *Pharmacol* 65, 817-826.
788 Clausse, D., 1998. Thermal behaviour of emulsions studied by differential scanning calorimetry. *Journal*
789 *of Thermal Analysis and Calorimetry* 51, 191-201.
790 Contri, R.V., Fiel, L.A., Alnasif, N., Pohlmann, A.R., Guterres, S.S., Schafer-Korting, M., 2016. Skin
791 penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a
792 chitosan gel used as vehicle. *Int J Pharm* 507, 12-20.
793 Danaei, M., Dehghankhod, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani,
794 S., Mozafari, M.R., 2018. Impact of Particle Size and Polydispersity Index on the Clinical Applications of
795 Lipidic Nanocarrier Systems. *Pharmaceutics* 10.
796 de Groot, J.S., Moelans, C.B., Elias, S.G., Jo Fackler, M., van Domselaar, R., Suijkerbuijk, K.P., Witkamp,
797 A.J., Sukumar, S., van Diest, P.J., van der Wall, E., 2016. DNA promoter hypermethylation in nipple fluid: a
798 potential tool for early breast cancer detection. *Oncotarget* 7, 24778-24791.
799 Droste, D.H., Dibenedetto, A.T., 1969. The glass transition temperature of filled polymers and its effect
800 on their physical properties. *Journal of Applied Polymer Science* 13, 2149-2168.
801 Eichenbaum, G., Zhou, J., De Smedt, A., De Jonghe, S., Looszova, A., Arien, T., Van Goethem, F., Vervoort,
802 I., Shukla, U., Lammens, L., 2013. Methods to evaluate and improve the injection site tolerability of
803 intravenous formulations prior to first-in-human testing. *J Pharmacol Toxicol Methods* 68, 394-406.
804 Fallowfield, L., Francis, A., 2016. Overtreatment of Low-Grade Ductal Carcinoma *In Situ*. *JAMA oncology*
805 2, 382-383.
806 Fangueiro, J.F., Calpena, A.C., Clares, B., Andreani, T., Egea, M.A., Veiga, F.J., Garcia, M.L., Silva, A.M.,
807 Souto, E.B., 2016. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid
808 nanoparticles (EGCG-LNs): *In vivo*, *In vitro* and *ex vivo* studies. *Int J Pharm* 502, 161-169.

809 Ferris-James, D.M., Iuanow, E., Mehta, T.S., Shaheen, R.M., Slanetz, P.J., 2012. Imaging approaches to
810 diagnosis and management of common ductal abnormalities. *Radiographics : a review publication of the*
811 *Radiological Society of North America, Inc* 32, 1009-1030.

812 Floyd, A.G., 1999. Top ten considerations in the development of parenteral emulsions. *Pharmaceutical*
813 *science & technology today* 4, 134-143.

814 Fofaria, N.M., Qhattal, H.S., Liu, X., Srivastava, S.K., 2016. Nanoemulsion formulations for anti-cancer
815 agent piplartine--Characterization, toxicological, pharmacokinetics and efficacy studies. *Int J Pharm* 498,
816 12-22.

817 Gerelli, Y., Barbieri, S., Di Bari, M.T., Deriu, A., Cantù, L., Brocca, P., Sonvico, F., Colombo, P., May, R.,
818 Motta, S., 2008. Structure of Self-Organized Multilayer Nanoparticles for Drug Delivery. *Langmuir* 24,
819 11378-11384.

820 Giuliano, E., Paolino, D., Fresta, M., Cosco, D., 2018. Mucosal Applications of Poloxamer 407-Based
821 Hydrogels: An Overview. *Pharmaceutics* 10.

822 Groen, E.J., Elshof, L.E., Visser, L.L., Rutgers, E.J., Winter-Warnars, H.A., Lips, E.H., Wesseling, J., 2017.
823 Finding the balance between over- and under-treatment of ductal carcinoma in situ (DCIS). *Breast*
824 (Edinburgh, Scotland) 31, 274-283.

825 Gu, Z., Al-Zubaydi, F., Adler, D., Li, S., Johnson, S., Prasad, P., Holloway, J., Szekely, Z., Love, S., Gao, D.,
826 Sinko, P.J., 2018. Evaluation of intraductal delivery of poly(ethylene glycol)-doxorubicin conjugate
827 nanocarriers for the treatment of ductal carcinoma in situ (DCIS)-like lesions in rats. *Journal of*
828 *interdisciplinary nanomedicine* 3, 146-159.

829 Guter, M., Breunig, M., 2017. Hyaluronan as a promising excipient for ocular drug delivery. *Eur J Pharm*
830 *Biopharm* 113, 34-49.

831 Hoeller, S., Sperger, A., Valenta, C., 2009. Lecithin based nanoemulsions: A comparative study of the
832 influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and
833 skin permeation. *Int J Pharm* 370, 181-186.

834 Hosmer, J.M., Steiner, A.A., Lopes, L.B., 2013. Lamellar liquid crystalline phases for cutaneous delivery of
835 Paclitaxel: impact of the monoglyceride. *Pharm Res* 30, 694-706.

836 Jin, S.G., Yousaf, A.M., Kim, K.S., Kim, D.W., Kim, D.S., Kim, J.K., Yong, C.S., Youn, Y.S., Kim, J.O., Choi,
837 H.G., 2016. Influence of hydrophilic polymers on functional properties and wound healing efficacy of
838 hydrocolloid based wound dressings. *Int J Pharm* 501, 160-166.

839 Komaiko, J., Sastrosubroto, A., McClements, D.J., 2016. Encapsulation of omega-3 fatty acids in
840 nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids.
841 *Food chemistry* 203, 331-339.

842 Kong, E.H., Kim, Y.J., Cho, H.J., Yu, S.N., Kim, K.Y., Chang, J.H., Ahn, S.C., 2008. Piplartine induces caspase-
843 mediated apoptosis in PC-3 human prostate cancer cells. *Oncol Rep* 20, 785-792.

844 Krause, S., Brock, A., Ingber, D.E., 2013. Intraductal injection for localized drug delivery to the mouse
845 mammary gland. *J Vis Exp*.

846 Land, L.M., Li, P., Bummer, P.M., 2006. Mass transport properties of progesterone and estradiol in model
847 microemulsion formulations. *Pharm Res* 23, 2482-2490.

848 Lee, H.L., Hwang, S.C., Nah, J.W., Kim, J., Cha, B., Kang, D.H., Jeong, Y.I., 2018. Redox- and pH-Responsive
849 Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to Inhibit Pulmonary Metastasis of
850 Colorectal Carcinoma Cells. *J Pharm Sci* 107, 2702-2712.

851 Lefebvre, G., Riou, J., Bastiat, G., Roger, E., Frombach, K., Gimel, J.C., Saulnier, P., Calvignac, B., 2017.
852 Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the
853 nanoemulsion's size and polydispersity. *Int J Pharm* 534, 220-228.

854 Lin, G.H., Hemming, M., 1996. Ocular and dermal irritation studies of some quaternary ammonium
855 compounds. *Food Chem Toxicol* 34, 177-182.

856 Lopes, L.B., Murphy, N., Nornoo, A., 2009. Enhancement of transdermal delivery of progesterone using
857 medium-chain mono and diglycerides as skin penetration enhancers. *Pharm Dev Technol* 14, 524-529.

858 Lopes, L.B., Scarpa, M.V., Pereira, N.L., de Oliveira, L.C., Oliveira, A.G., 2006. Interaction of sodium
859 diclofenac with freeze-dried soya phosphatidylcholine and unilamellar liposomes. *Rev. Bras. Cienc. Farm.*
860 42, 8.

861 Loureiro, A., Nogueira, E., Azoia, N.G., Sarria, M.P., Abreu, A.S., Shimanovich, U., Rollett, A., Harmark, J.,
862 Hebert, H., Guebitz, G., Bernardes, G.J., Preto, A., Gomes, A.C., Cavaco-Paulo, A., 2015. Size controlled
863 protein nanoemulsions for active targeting of folate receptor positive cells. *Colloids Surf B Biointerfaces*
864 135, 90-98.

865 Love, S.M., Zhang, W., Gordon, E.J., Rao, J., Yang, H., Li, J., Zhang, B., Wang, X., Chen, G., Zhang, B., 2013.
866 A feasibility study of the intraductal administration of chemotherapy. *Cancer prevention research* 6, 51-
867 58.

868 Luepke, N.P., 1985. Hen's egg chorioallantoic membrane test for irritation potential. *Food Chem Toxicol*
869 23, 287-291.

870 Ma, Q., Davidson, P.M., Zhong, Q., 2016. Nanoemulsions of thymol and eugenol co-emulsified by lauric
871 arginate and lecithin. *Food chemistry* 206, 167-173.

872 Machado, R.M., Palmeira-de-Oliveira, A., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, R., 2017. Vaginal
873 semisolid products: Technological performance considering physiologic parameters. *Eur J Pharm Sci* 109,
874 556-568.

875 Maher, P.G., Fenelon, M.A., Zhou, Y., Kamrul Haque, M., Roos, Y.H., 2011. Optimization of β -Casein
876 Stabilized Nanoemulsions Using Experimental Mixture Design. *Journal of Food Science* 76, C1108-C1117.

877 Mahoney, M.E., Gordon, E.J., Rao, J.Y., Jin, Y., Hylton, N., Love, S.M., 2013. Intraductal therapy of ductal
878 carcinoma in situ: a presurgery study. *Clinical breast cancer* 13, 280-286.

879 Masso-Welch, P.A., Darcy, K.M., Stangle-Castor, N.C., Ip, M.M., 2000. A developmental atlas of rat
880 mammary gland histology. *Journal of mammary gland biology and neoplasia* 5, 165-185.

881 Mazzarino, L., Travelet, C., Ortega-Murillo, S., Otsuka, I., Pignot-Paintrand, I., Lemos-Senna, E., Borsali, R.,
882 2012. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications.
883 *J Colloid Interface Sci* 370, 58-66.

884 McClements, D.J., 2012. Nanoemulsions versus microemulsions: terminology, differences, and
885 similarities. *Soft Matter* 8, 1719.

886 McKenzie, B., Kay, G., Matthews, K.H., Knott, R.M., Cairns, D., 2015. The hen's egg chorioallantoic
887 membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel:
888 Quantification using Photoshop(R) and ImageJ. *Int J Pharm* 490, 1-8.

889 Mehling, A., Kleber, M., Hensen, H., 2007. Comparative studies on the ocular and dermal irritation
890 potential of surfactants. *Food Chem Toxicol* 45, 747-758.

891 Migotto, A., Carvalho, V.F.M., Salata, G.C., da Silva, F.W.M., Yan, C.Y.I., Ishida, K., Costa-Lotufo, L.V.,
892 Steiner, A.A., Lopes, L.B., 2018. Multifunctional nanoemulsions for intraductal delivery as a new platform
893 for local treatment of breast cancer. *Drug Deliv* 25, 654-667.

894 Mistry, P.H., Mohapatra, S.K., Dash, A.K., 2012. Effect of high-pressure homogenization and stabilizers on
895 the physicochemical properties of curcumin-loaded glycerol monooleate/chitosan nanostructures.
896 *Nanomedicine (London, England)* 7, 1863-1876.

897 Mojeiko, G., de Brito, M., Salata, G.C., Lopes, L.B., 2019. Combination of microneedles and
898 microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of
899 breast cancer. *Int J Pharm* 560, 365-376.

900 Murata, S., Kominsky, S.L., Vali, M., Zhang, Z., Garrett-Mayer, E., Korz, D., Huso, D., Baker, S.D., Barber, J.,
901 Jaffee, E., Reilly, R.T., Sukumar, S., 2006. Ductal access for prevention and therapy of mammary tumors.
902 *Cancer Res* 66, 638-645.

903 Musa, S.H., Basri, M., Masoumi, H.R., Karjiban, R.A., Malek, E.A., Basri, H., Shamsuddin, A.F., 2013.
904 Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable
905 for meningitis treatment. *Colloids Surf B Biointerfaces* 112, 113-119.

906 Narod, S.A., Iqbal, J., Giannakeas, V., Sopik, V., Sun, P., 2015. Breast Cancer Mortality After a Diagnosis of
907 Ductal Carcinoma In Situ. *JAMA oncology* 1, 888-896.

908 Ng, W.Y., Migotto, A., Ferreira, T.S., Lopes, L.B., 2017. Monoolein-alginate beads as a platform to
909 promote adenosine cutaneous localization and wound healing. *International journal of biological
910 macromolecules* 102, 1104-1111.

911 Ochoa-Flores, A.A., Hernández-Becerra, J.A., Cavazos-Garduño, A., Soto-Rodríguez, I., Sanchez-Otero,
912 M.G., Vernon-Carter, E.J., García, H.S., 2017. Enhanced Bioavailability of Curcumin Nanoemulsions

913 Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids. *Curr Drug Deliv* 14, 377-
914 385.

915 Oh, S., Wilcox, M., Pearson, J.P., Borros, S., 2015. Optimal design for studying mucoadhesive polymers
916 interaction with gastric mucin using a quartz crystal microbalance with dissipation (QCM-D): Comparison
917 of two different mucin origins. *Eur J Pharm Biopharm* 96, 477-483.

918 Okugawa, H., Yamamoto, D., Uemura, Y., Sakaida, N., Tanano, A., Tanaka, K., Kamiyama, Y., 2005. Effect
919 of percutaneous paclitaxel exposure on the development of MNU-induced mammary carcinoma in female S-
920 D rats. *Breast Cancer Res Treat* 91, 29-34.

921 Patel, N., Schmid, U., Lawrence, M.J., 2006. Phospholipid-based microemulsions suitable for use in foods.
922 *J Agric Food Chem* 54, 7817-7824.

923 Pepe, D., McCall, M., Zheng, H., Lopes, L.B., 2013. Protein transduction domain-containing
924 microemulsions as cutaneous delivery systems for an anticancer agent. *J Pharm Sci* 102, 1476-1487.

925 Pereira, G.G., Detoni, C.B., Balducci, A.G., Rondelli, V., Colombo, P., Guterres, S.S., Sonvico, F., 2016.
926 Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the
927 management of skin wounds. *Eur J Pharm Sci* 83, 203-211.

928 Phelps, J., Bentley, M.V., Lopes, L.B., 2011. In situ gelling hexagonal phases for sustained release of an
929 anti-addiction drug. *Colloids Surf B Biointerfaces* 87, 391-398.

930 Praca, F.S.G., Medina, W.S.G., Eloy, J.O., Petrilli, R., Campos, P.M., Ascenso, A., Bentley, M., 2018.
931 Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin
932 models. *Eur J Pharm Sci* 111, 121-132.

933 Qhattal, H.S., Wang, S., Salihima, T., Srivastava, S.K., Liu, X., 2011. Nanoemulsions of cancer
934 chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability.
935 *J Agric Food Chem* 59, 12396-12404.

936 Raj, L., Ide, T., Gurkar, A.U., Foley, M., Schenone, M., Li, X., Tolliday, N.J., Golub, T.R., Carr, S.A., Shamji,
937 A.F., Stern, A.M., Mandinova, A., Schreiber, S.L., Lee, S.W., 2011. Selective killing of cancer cells by a
938 small molecule targeting the stress response to ROS. *Nature* 475, 231-234.

939 Rege, P.R., Vilivalam, V.D., Collins, C.C., 1998. Development in release testing of topical dosage forms:
940 use of the Enhancer Cell with automated sampling. *J Pharm Biomed Anal* 17, 1226-1233.

941 Richter, A., Myhre, B., Khanna, S.C., 1969. An automated apparatus for dissolution studies. *J Pharm
942 Pharmacol* 21, 409-414.

943 Romero, G.B., Keck, C.M., Muller, R.H., Bou-Chakra, N.A., 2016. Development of cationic nanocrystals for
944 ocular delivery. *Eur J Pharm Biopharm* 107, 215-222.

945 Sagara, Y., Mallory, M.A., Wong, S., Aydogan, F., DeSantis, S., Barry, W.T., Golshan, M., 2015. Survival
946 Benefit of Breast Surgery for Low-Grade Ductal Carcinoma In Situ: A Population-Based Cohort Study.
947 *JAMA surgery* 150, 739-745.

948 Samouillan, V., Merbahi, N., Yousfi, M., Gardou, J., Delaunay, F., Dandurand, J., Lacabanne, C., 2012.
949 Effect of Low-Temperature Plasma Jet on Thermal Stability and Physical Structure of Type I Collagen. *IEEE
950 Transactions on Plasma Science* 40, 1688-1695.

951 Schwarz, J., Weisspapir, M., Friedman, D., 1995. Enhanced transdermal delivery of diazepam by
952 submicron emulsion (SME) creams. *Pharm Res* 12, 687-692.

953 Singh, Y., Gao, D., Gu, Z., Li, S., Rivera, K.A., Stein, S., Love, S., Sinko, P.J., 2012. Influence of molecular size
954 on the retention of polymeric nanocarrier diagnostic agents in breast ducts. *Pharm Res* 29, 2377-2388.

955 Smart, J.D., 2005. The basics and underlying mechanisms of mucoadhesion. *Adv Drug Deliv Rev* 57, 1556-
956 1568.

957 Solomon, B., Sahle, F.F., Gebre-Mariam, T., Asres, K., Neubert, R.H., 2012. Microencapsulation of
958 citronella oil for mosquito-repellent application: formulation and in vitro permeation studies. *Eur J
959 Pharm Biopharm* 80, 61-66.

960 Stearns, V., Mori, T., Jacobs, L.K., Khouri, N.F., Gabrielson, E., Yoshida, T., Kominsky, S.L., Huso, D.L., Jeter,
961 S., Powers, P., Tarpinian, K., Brown, R.J., Lange, J.R., Rudek, M.A., Zhang, Z., Tsangaris, T.N., Sukumar, S.,
962 2011. Preclinical and clinical evaluation of intraductally administered agents in early breast cancer.
963 *Science translational medicine* 3, 106ra108.

964 Talik, P., Hubicka, U., 2018. The DSC approach to study non-freezing water contents of hydrated
965 hydroxypropylcellulose (HPC). *Journal of Thermal Analysis and Calorimetry* 132, 445-451.
966 Tayel, S.A., El-Nabarawi, M.A., Tadros, M.I., Abd-Elsalam, W.H., 2013. Promising ion-sensitive in situ
967 ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo
968 estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. *Int J*
969 *Pharm* 443, 293-305.
970 Thomas, S., Vieira, C.S., Hass, M.A., Lopes, L.B., 2014. Stability, cutaneous delivery, and antioxidant
971 potential of a lipoic acid and alpha-tocopherol codrug incorporated in microemulsions. *J Pharm Sci* 103,
972 2530-2538.
973 Tsai, I.L., Lee, F.P., Wu, C.C., Duh, C.Y., Ishikawa, T., Chen, J.J., Chen, Y.C., Seki, H., Chen, I.S., 2005. New
974 cytotoxic cyclobutanoid amides, a new furanoid lignan and anti-platelet aggregation constituents from
975 *Piper arborescens*. *Planta Med* 71, 535-542.
976 Ur-Rehman, T., Tavelin, S., Grobner, G., 2011. Chitosan in situ gelation for improved drug loading and
977 retention in poloxamer 407 gels. *Int J Pharm* 409, 19-29.
978 Vyas, T.K., Shahiwala, A., Amiji, M.M., 2008. Improved oral bioavailability and brain transport of
979 Saquinavir upon administration in novel nanoemulsion formulations. *Int J Pharm* 347, 93-101.
980 Ward, E.M., DeSantis, C.E., Lin, C.C., Kramer, J.L., Jemal, A., Kohler, B., Brawley, O.W., Gansler, T., 2015.
981 Cancer statistics: Breast cancer in situ. *CA: a cancer journal for clinicians* 65, 481-495.
982 Williams, N.A., Polli, G.P., 1988. Differential scanning calorimetric studies on frozen cephalosporin
983 solutions. *International Journal of Pharmaceutics* 44, 205-212.
984 Zhang, B., Love, S.M., Chen, G., Wang, J., Gao, J., Xu, X., Wang, Z., Wang, X., 2014. The safety parameters
985 of the study on intraductal cytotoxic agent delivery to the breast before mastectomy. *Chinese journal of*
986 *cancer research = Chung-kuo yen cheng yen chiu* 26, 579-587.
987 Zhang, X., Yi, Y., Qi, J., Lu, Y., Tian, Z., Xie, Y., Yuan, H., Wu, W., 2013. Controlled release of cyclosporine A
988 self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics
989 in dogs. *Int J Pharm* 452, 233-240.
990 Zhou, H., Yue, Y., Liu, G., Li, Y., Zhang, J., Gong, Q., Yan, Z., Duan, M., 2009. Preparation and
991 characterization of a lecithin nanoemulsion as a topical delivery system. *Nanoscale research letters* 5,
992 224-230.

993

994

995 **Figure captions**

996

997

998 **Figure 1.** Nanoemulsion stability as a function of time, assessed as alterations on size, PDI and
999 zeta potential of NE-Q, NE-HA and NE-CET.

1000

1001 **Figure 2.** Irritation potential of unloaded nanoemulsions evaluated as changes on CAM after
1002 exposure to the nanoemulsions, saline (negative control) or NaOH (0.1 M, positive control) for 5

1003 min. The black arrows depict areas of hemorrhage in the membrane treated with NE-CET. Scale
1004 bar= 1 mm.

1005

1006 **Figure 3.** Characterization of NE-Q and NE-HA morphology and properties. A: transmission
1007 electron microscopy of NE-Q, B: transmission electron microscopy of NE-HA, C: *in vitro*
1008 bioadhesive potential represented by the maximum (peak) force. **p < 0.01 compared to water.
1009 Scale bar= 100 nm.

1010

1011 **Figure 4.** *In vivo* mammary tissue targeting and retention of the fluorescent marker Alexa fluor
1012 administered in nanoemulsions or as a solution. A: whole animal images showing fluorescence
1013 staining after intraductal or intraperitoneal (i.p.) administration of the nanoemulsions or control
1014 solutions; B: mammary tissue fluorescence intensity decay as a function of time, N=3-4
1015 animals/group. ** p < 0.01 and * p < 0.05 compared to Alexa fluor solution, Scale bar= 1 mm.

1016

1017 **Figure 5.** Histological sections of mammary tissue of animals administered with saline, NE-Q
1018 or NE-HA in comparison with untreated animals. The images depict the integrity of ducts and
1019 absence of inflammatory cell infiltrates and edema, bar = 50 μ m.

1020

1021 **Figure 6.** Formulation stability and release of piplartine from NE-Q and NE-HA as a function of
1022 time. A-C: changes on size (A), PDI (B) and zeta potential (C) of piplartine-loaded
1023 nanoemulsions; D: changes on piplartine content in the nanoemulsions; E: cumulative piplartine
1024 release from nanoemulsions or a control solution as a function of time.

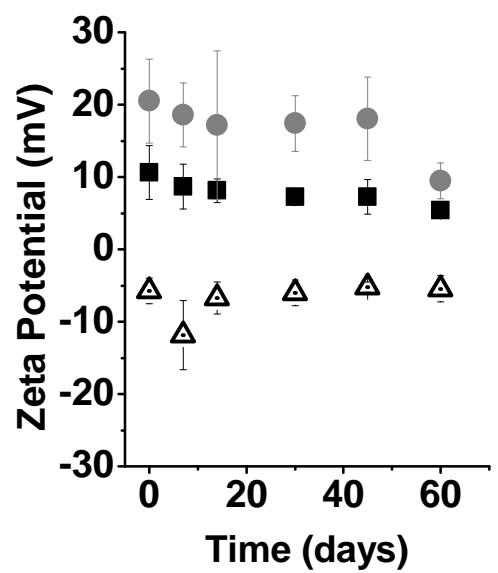
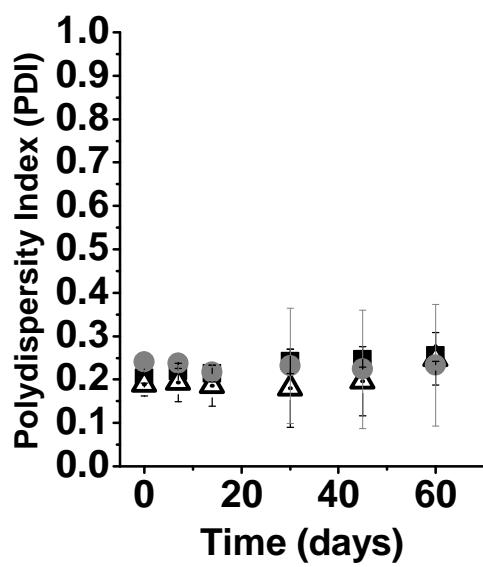
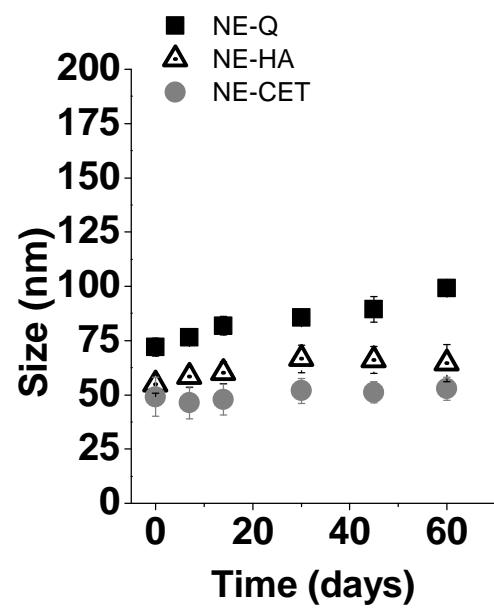




Figure 2

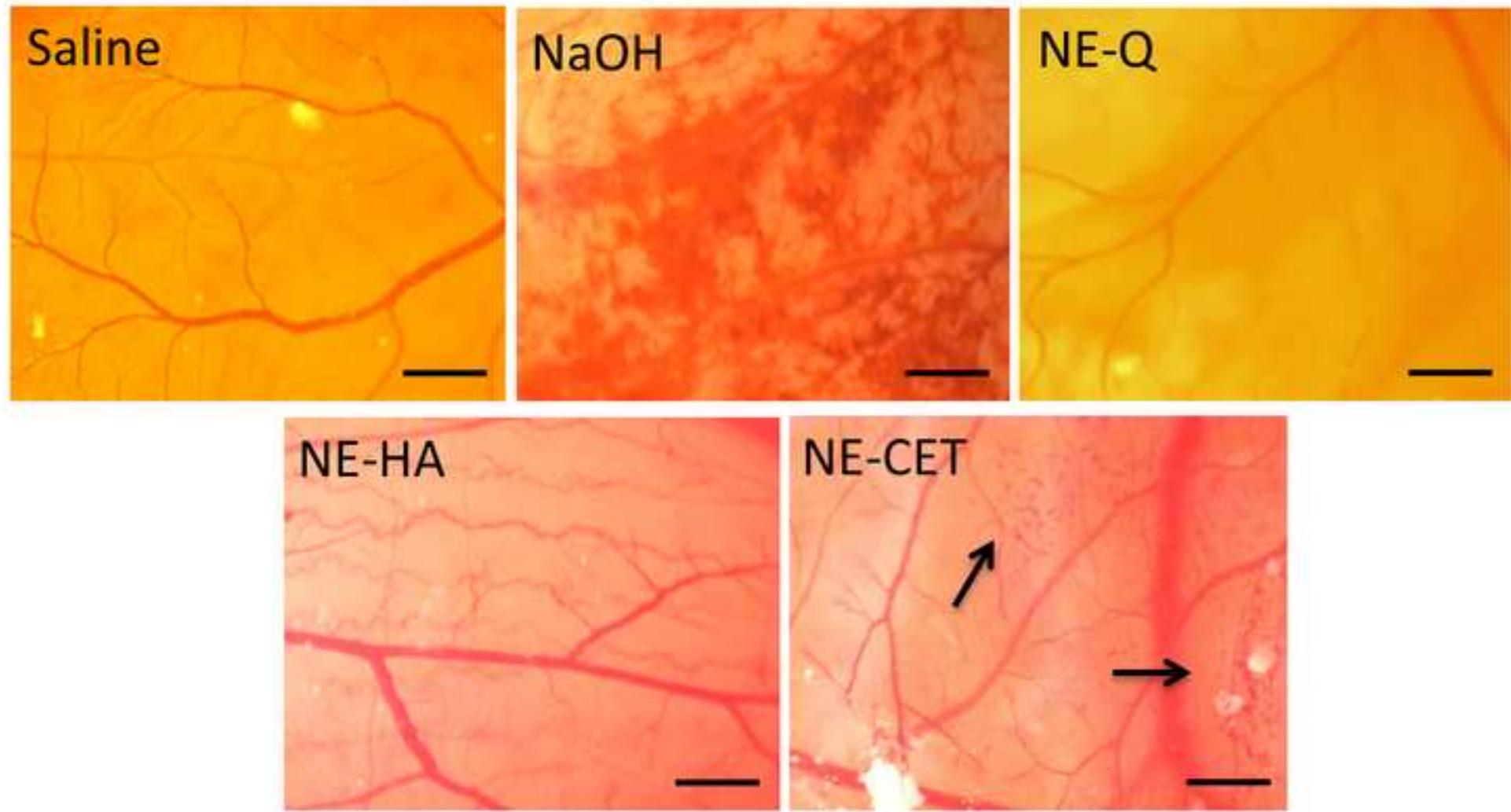


Figure 3

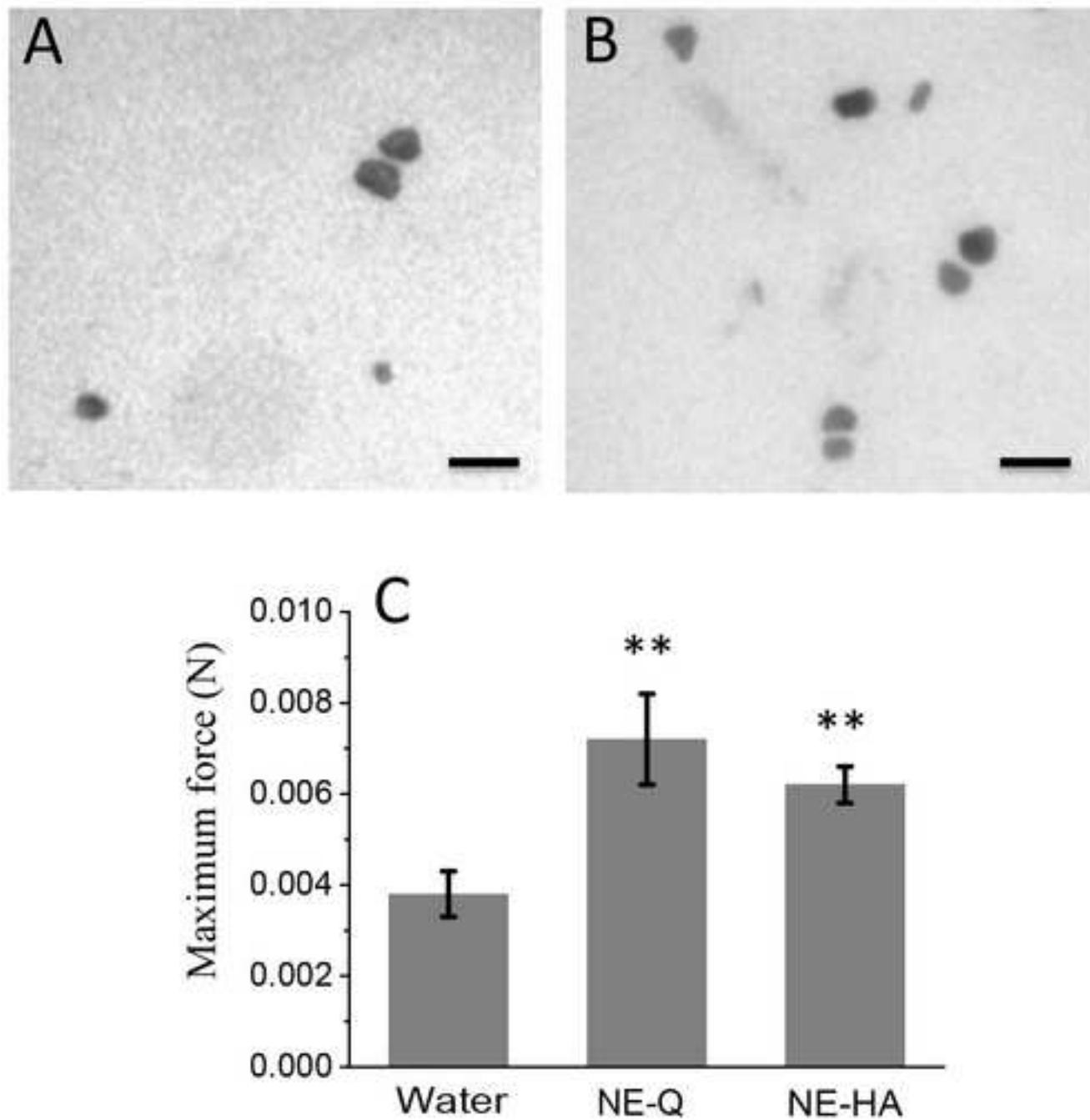
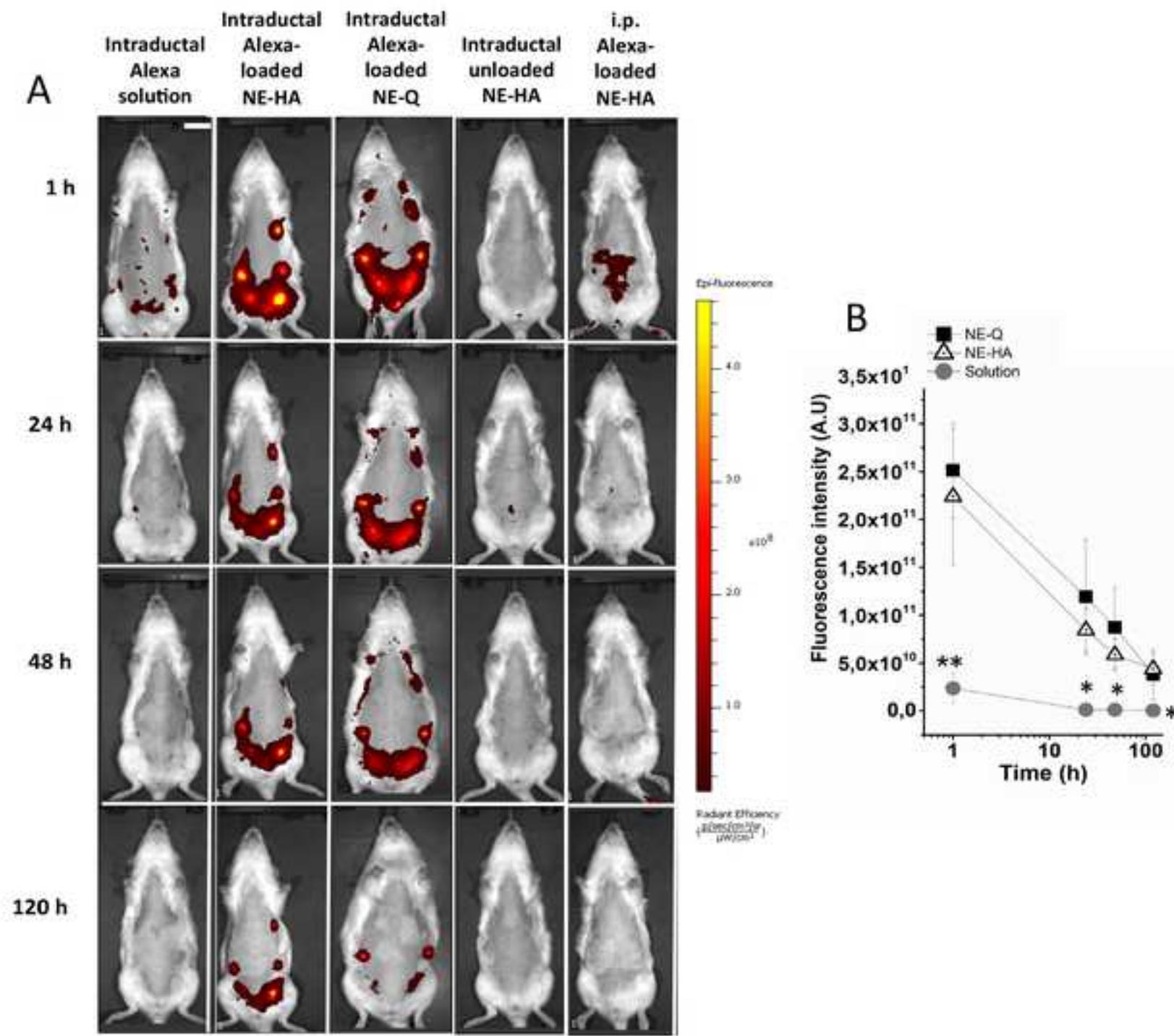
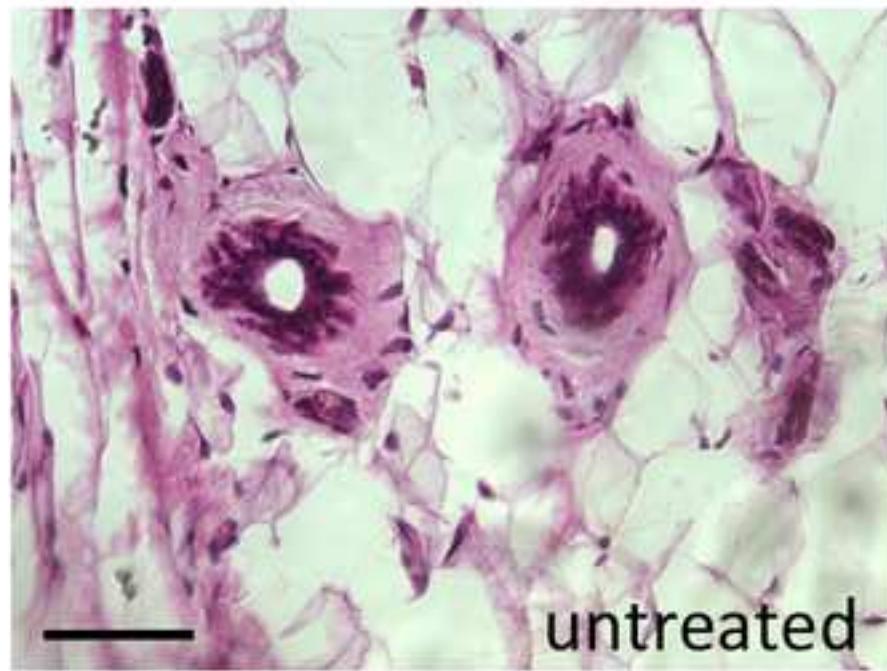
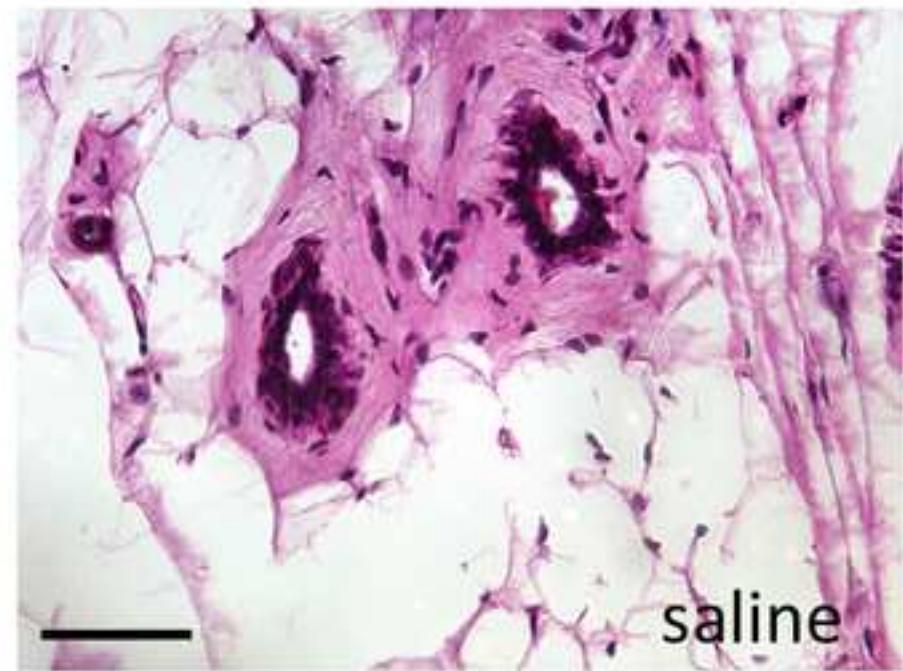
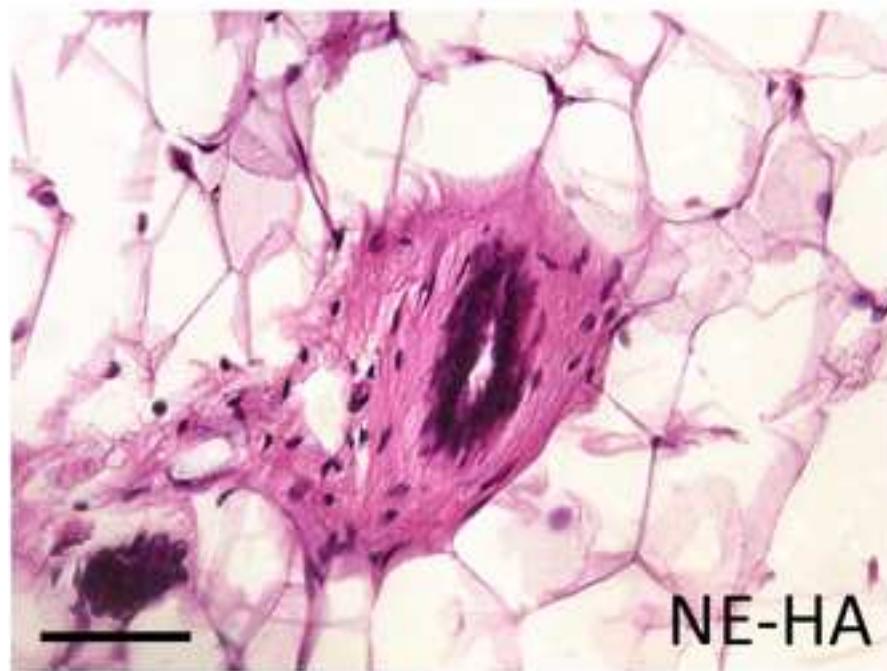
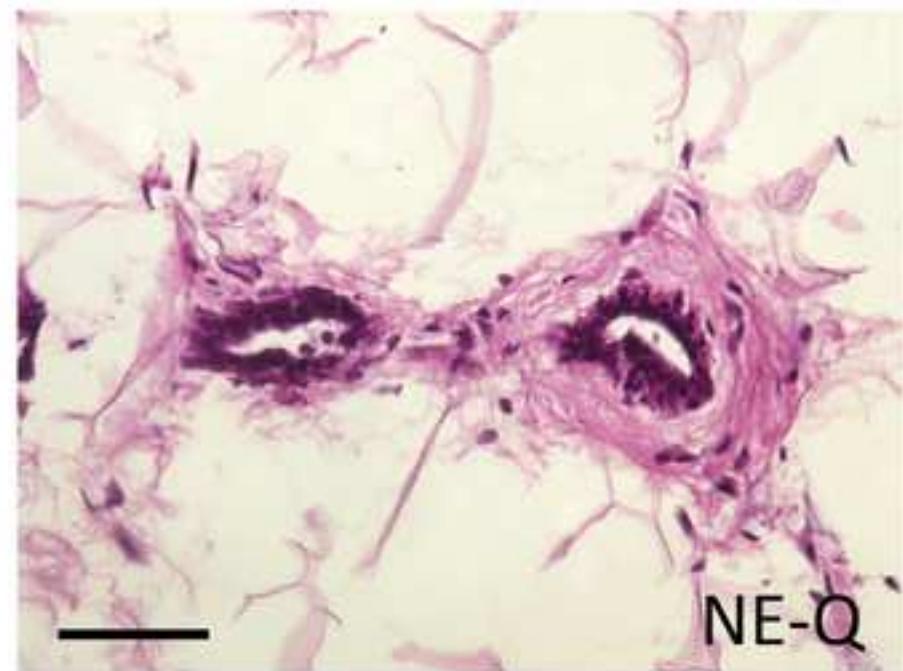


Figure 4


Figure 5


untreated

saline

NE-HA

NE-Q

Figure 6

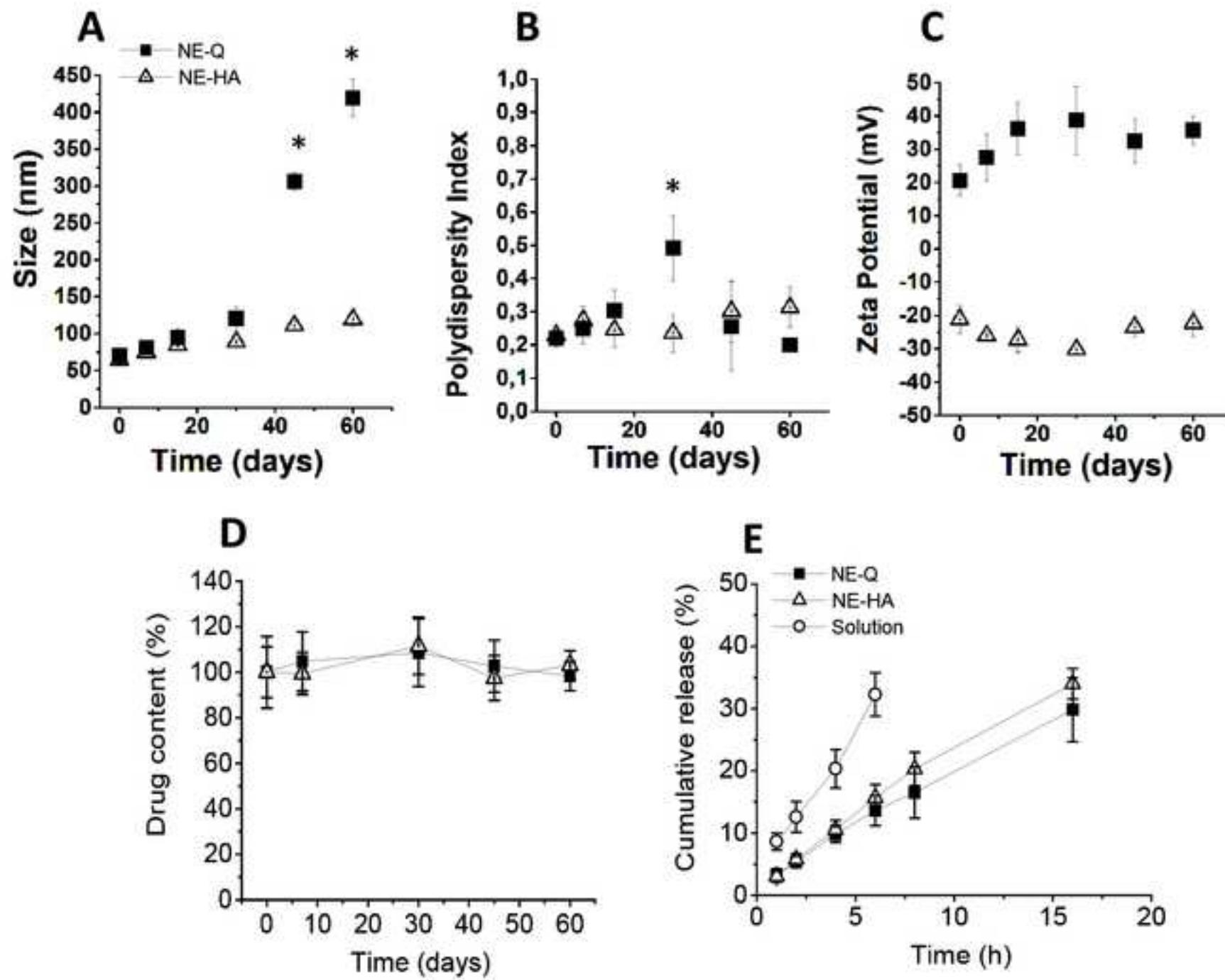


Table 1. Influence of surfactant and aqueous phase content on the physicochemical characteristics of nanoemulsions. The ratio of PC:polysorbate 80:glycerol was 3:1:0.5 (w/w/w), and the aqueous phase was composed of PBS.

Surfactant	Surfactant: oil phase (w/w)	Aqueous phase (%)	Size (nm)	PDI	Zeta potential (mV)
PC	1:1	66	-----	-----	-----
PC:polysorbate 80:glycerol	1:1	66	-----	-----	-----
PC:polysorbate 80:glycerol	1:1	75	90.7 ± 1.0	0.31 ± 0.01	5.8 ± 2.8
PC:polysorbate 80:glycerol #	1:1	80	76.5 ± 1.2	0.21 ± 0.03 *	6.5 ± 2.7
PC:polysorbate 80:glycerol	2:1	80	73.1 ± 3.3	0.18 ± 0.05 *	6.9 ± 3.0

The symbol # denotes the selected composition. * $p < 0.05$ compared to the formulation composed of surfactant (PC/polysorbate 80/glycerol):tricaprylin at 1:1 containing 75% of aqueous phase. Use of PC as sole surfactant or PC:polysorbate 80:glycerol with 66% of aqueous phase did not lead to nanoemulsion formation.

Table 2. Influence of poloxamer concentration on the physicochemical characteristics of nanoemulsions.

Poloxamer (%, w/w)	Size (nm)	PDI	Zeta potential (mV)
0	76.5 ± 1.2	0.21 ± 0.03	7.6 ± 2.7
0.25	77.3 ± 0.8	0.18 ± 0.02	7.8 ± 2.2
0.50	101.3 ± 2.4	0.21 ± 0.01	7.1 ± 0.6

Table 3. Influence of cetylpyridinium chloride concentration on the physicochemical characteristics of NE-HA.

cetylpyridinium chloride (% , w/w)	Size (nm)	PDI	Zeta potential (mV)
0	66.7 ± 1.5	0.17 ± 0.04	-10.2 ± 3.9
0.01	51.2 ± 1.04	0.22 ± 0.01	-11.4 ± 2.4
0.05	74.4 ± 1.09	0.25 ± 0.01	-8.5 ± 1.1
0.25	45.1 ± 0.14	0.25 ± 0.01	-11.6 ± 0.6
0.50	49.5 ± 0.25	0.22 ± 0.01	+11.3 ± 4.0

Table 4. Influence of chitosan and hyaluronic acid addition on nanoemulsion thermal properties assessed by DSC.

Sample	Heating cycle				Cooling cycle	
	T _{g'} (°C)	T _{onset-fus}	T _{peak-fus}	ΔH _{fus} (J/g)	ΔH _{crys} (J/g)	T _{peak-crys}
NE	-45.0	-8.0	-0.8	214.7	185.0	-12.8
NE-HA	-36.0	-2.9	1.4	243.0	197.6	-12.5
NE-Q	-60.0	-9.6	-1.4	179.8	151.4	-20.8

T_{g'} = glass transition temperature; T_{onset-fus} = extrapolated onset-temperature of fusion; T_{peak-fus} = endothermic fusion peak temperature; ΔH_{fus} = enthalpy of fusion; ΔH_{crys} = enthalpy of crystallization; T_{peak-crys} = exothermic crystallization peak temperature.

Supplementary Material

[Click here to download Supplementary Material: Supplementary Figure.docx](#)

Credit author statement

Carvalho: conceptualization, investigation, methodology, writing- original draft

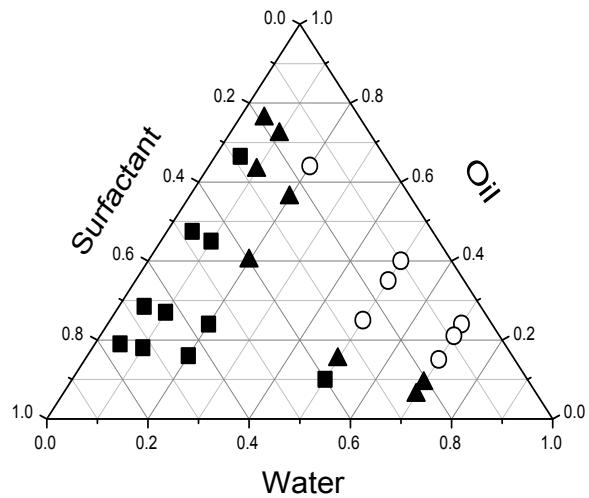
Salata: investigation, validation

Costa-Fernandez: investigation

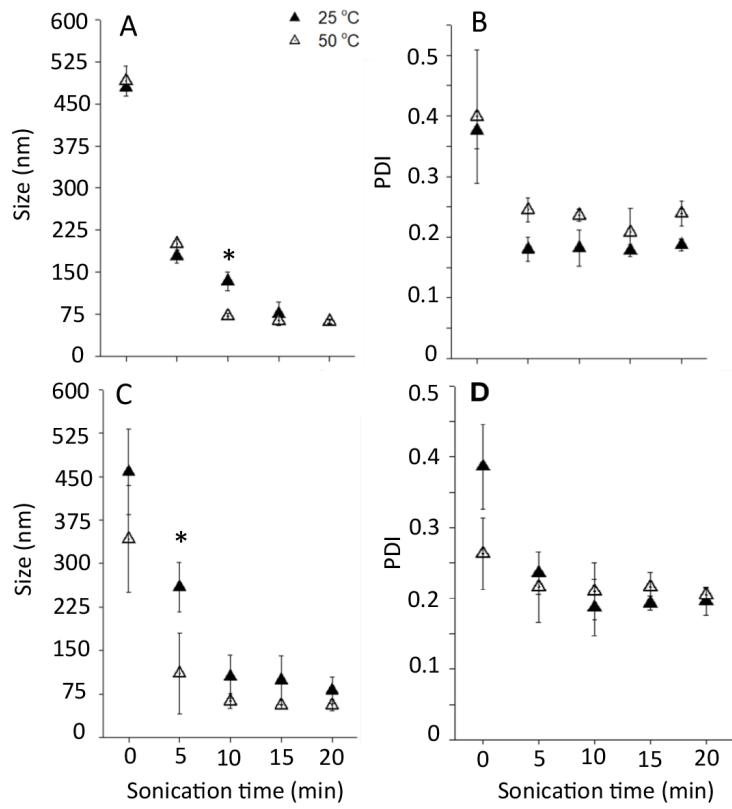
Matos: investigation, validation

Chorilli: resources, methodology, writing – review and editing

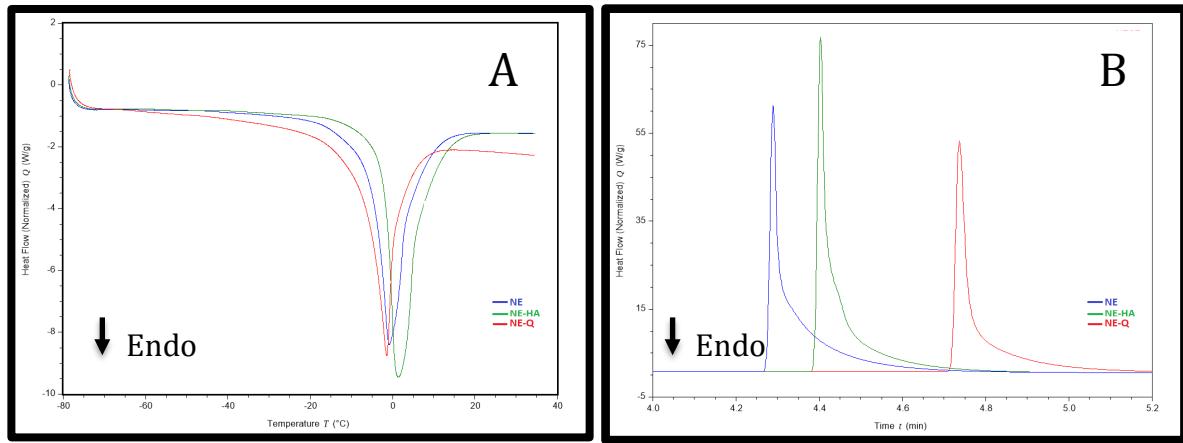
Araújo: formal analysis, resources, methodology, writing – review and editing

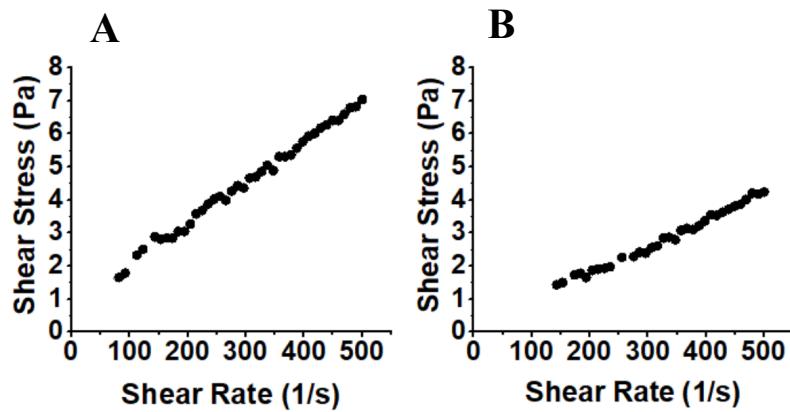

Steiner: funding acquisition, methodology, formal analysis, writing – review and editing

Silveira: methodology, investigation


Costa-Lotufo: conceptualization, writing – review and editing

Lopes: conceptualization, supervision, funding acquisition, formal analysis, methodology, writing- original draft, review and editing.


Supplementary Figures


Supplementary Figure 1. Pseudo-ternary phase diagram depicting the relationship between composition and phase behavior of mixtures composed of surfactant (PC:polysorbate 80:glycerol at 3:1:0.5 m/m/m), oil (tricaprylin) and water.

Supplementary Figure 2. Influence of aqueous phase temperature and sonication time on the reduction and distribution of nanoemulsion size. A-B: NE-Q, C-D: NE-HA. At least three batches of each formulation were produced.

Supplementary Figure 3. DSC curves of heating (A) and cooling (B) cycles for NE (blue), NE-Q (red) and NE-HA (green).

Supplementary Figure 4. Rheological behavior of NE-Q (A) and NE-HA (B).

Supplementary Table 1. Influence of piplartine incorporation on the physicochemical characteristics of nanoemulsions. Data obtained at the day of nanoemulsion preparation.

Formulation	Size (nm)	PDI	Zeta potential (mV)
NC-HA	67.9 ± 0.8	0.22 ± 0.01	-21.2 ± 4.2
NC-Q	70.3 ± 2.0	0.23 ± 0.04	+20.7 ± 3.7