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h i g h l i g h t s

• The ANNNI model displays a spectacular phase diagram with many modulated structures.
• We formulate an analog of the ANNNI model, with fully connected layers of spins.
• The wave number of the modulated phases gives rise to a devil’s staircase.
• We obtain the temperature dependence of the Hausdorff dimension of the staircases.
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a b s t r a c t

We investigate the phase diagram of a spin-1/2 Ising model on a cubic lattice, with
competing interactions between nearest and next-nearest neighbors along an axial
direction, and fully connected spins on the sites of each perpendicular layer. The problem
is formulated in terms of a set of noninteracting Ising chains in a position-dependent field.
At low temperatures, as in the standard mean-field version of the Axial-Next-Nearest-
Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases
that spring from amultiphase point of infinitely degenerate ground states. As temperature
increases, we confirm the existence of a branchingmechanism associatedwith the onset of
higher-order commensurate phases. We check that the ferromagnetic phase undergoes a
first-order transition to the modulated phases. Depending on a parameter of competition,
the wave number of the striped patterns locks in rational values, giving rise to a devil’s
staircase. We numerically calculate the Hausdorff dimension D0 associated with these
fractal structures, and show that D0 increases with temperature but seems to reach a
limiting value smaller than D0 = 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Axial-Next-Nearest-Neighbor Ising (ANNNI) model, which includes competing ferro and antiferromagnetic
interactions between pairs of spins along an axial direction, is known to display a spectacularly rich phase diagram, with
a host of modulated phases [1–4]. The ANNNI model is perhaps the simplest lattice statistical model to account for the
presence of spatially modulated phases in a large variety of physical systems [5,6].
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The energy of the ANNNI model on a simple cubic lattice may be written as

HANNNI = −
1
2


x,y,z


J0σx,y,zσx±1,y±1,z + J1σx,y,zσx,y,z±1 + J2σx,y,zσx,y,z±2


, (1)

where the sum is over all lattice sites, and σx,y,z = ±1 is a spin-1/2 variable at site (x, y, z). We assume ferromagnetic
interactions, J0 > 0, between nearest-neighbor sites on the x–y planes, and competing ferromagnetic, J1 > 0, and
antiferromagnetic, J2 < 0, interactions between nearest and next-nearest neighbors along the axial z direction. We then
introduce a parameter p = −J2/J1 > 0 to gauge the strength of the competitions, and look at the T–p phase diagram,
where T is the absolute temperature. At zero temperature, with p < 1/2, one easily shows that the ground state is a trivial
ferromagnet. For p > 1/2, however, the ground state displays a peculiar antiferromagnetic structure, which has been called
a ⟨2⟩ phase, with two planes of + spins followed by two planes of − spins, along the z direction. In the special (multiphase)
point p = 1/2, the ground state becomes infinitely degenerate, with the coexistence of a ferromagnetic phase, the antiphase
⟨2⟩, associated with a period of 4 lattice spacings along the z direction, and a multiplicity of modulated phases of larger
periods [7,8].

Several theoretical approaches have been used to account for the complex T–p phase diagram of the ANNNI model,
including careful layer-by-layer mean-field calculations [9–11], Monte Carlo simulations [7,12] and analyses of (exact)
low-temperature series expansions [7,8]. At finite temperature, all of these calculations indicate the springing from the
multiphase point of larger-period modulated phases. In particular, early mean-field calculations by Selke and Duxbury [11],
which are in asymptotic agreement with the analysis of the low-temperature series expansions, support the existence of a
branching process of ramification that explains the onset of newmodulated phases at higher temperatures.More recent self-
consistent [13,14] andMonte Carlo [15] calculationsmay differ in a number of details, but do confirm the general qualitative
features of the T–p phase diagrams.

Taking into account the relevance of the ANNNI model, and some remaining questions about the T–p phase diagram in
the region of intermediate temperatures, in special the need of a better characterization of the devil’s staircase behavior
of the succession of commensurate modulated structures, we decided to revisit this problem and check some points. We
then consider the exact formulation of a special ANNNI model, with fully connected spins at each layer, which amounts to
solving the original problem in the layer-by-layermean-field approximationwith the addition of spin fluctuations along the
axial direction. In other words, we investigate the effects of the introduction of additional fluctuations in the old mean-field
calculations. This layered-connected ANNNI model, which we call LC-ANNNI, can also be obtained from the usual ANNNI
model Hamiltonian on a hypercubic lattice in the limit of infinite coordination of the spins on each layer. In this limit, we
assume a coordination q⊥ −→ ∞ within each layer, with pair interactions of the form J0/q⊥, and a fixed value of J0. Spin
variables on each layer are fully connected, but we preserve the short-range character of the competing interactions (and
correlations) along the z direction. The free energy of this special model can be written exactly, leading to equations of state
that can be numerically analyzed in great detail.

The layout of this paper is as follows. In Section 2 we define the LC-ANNNI model, write an exact expression for the
free energy, and establish the equations of state, which are amenable to a detailed numerical analysis. Also, we describe the
equivalent layer-by-layermean-field approximation for the analogousANNNImodel. A global T–pphase diagram is obtained
in Section 3, which also contains some comments on the previousmean-field results. Except for some expected quantitative
changes, due to taking into account additional axial fluctuations, we do agree with the mean-field calculations of Selke and
Duxbury [11], including the branching process, and the recovery of the asymptotic domain-wall analysis near themultiphase
point. We draw some graphs of the main wave number of the modulated structures as a function of p, for fixed values of T ,
and perform a detailed numerical analysis of the fractal character of these devil’s staircases. We obtain numerical values for
the Hausdorff dimension D0 < 1 of these fractal structures, and show that D0 increases with temperature, with a limiting
value D0 ≈ 0.8, which seems to be a common feature of several problems represented by area-preserving maps [16], and
does support the view that the commensurate modulated structures occupy most of the ordered region of the T–p phase
diagram. Some concluding remarks are presented in Section 4.

2. The LC-ANNNI model

The Hamiltonian of the analog of the ANNNI model with fully connected spins at each layer, which we call LC-ANNNI
model, is given by a sum of a long-range, mean-field term, Hlr, and a short-range term that includes the axial interactions,

H = Hlr + Hsr, (2)

with

Hlr = −

N
z=1

J0
2N2


x,y

σx,y,z

2

, (3)

and

Hsr = −


x,y,z


J1σx,y,zσx,y,z+1 + J2σx,y,zσx,y,z+2


, (4)
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where we assume that there are N sites along the sides of a cubic lattice. It should be remarked that Hsr includes the axial
short-range interactions, andHlr represents the long-range,mean-field, ferromagnetic interactions between all pairs of sites
on each plane perpendicular to the z direction. We then write the partition function,

Z =


{σx,y,z}

exp


z

βJ0
2N2


x,y

σx,y,z

2

− βHsr

 , (5)

where β = 1/kBT and the first sum is over all spin configurations.
Using a set of Gaussian identities,

+∞

−∞

exp

−x2 + 2ax

 dx
√

π
= exp


a2

, (6)

and discarding some irrelevant terms, it is straightforward to write the more convenient expression

Z =


dm1 . . .


dmN exp


−βN3φ


, (7)

where

φ =
J0
2N

N
z=1

m2
z −

1
βN

ln ZI ({mz}) , (8)

and ZI ({mz}) is the partition function of an Ising chain (with competing interactions) in the presence of site-dependent
effective fields, {J0mz},

ZI ({mz}) =


{σz }

exp


N

z=1

(βJ0mzσz + βJ1σzσz+1 + βJ2σzσz+2)


, (9)

where {σz = ±1}, for z = 1, 2, . . . ,N , is a short-hand notation for the spin variables

σx,y,z = ±1


.

To perform calculations in the ordered regions of the phase diagram, it is convenient to use a transfer matrix technique
and write

φ =
J0
2N

N
z=1

m2
z −

1
βN

ln


Tr

N
z=1

Vz


, (10)

where the 4 × 4 matrix Vz is given by

Vz =


yz 0 0 0
0 yz 0 0
0 0 y−1

z 0
0 0 0 y−1

z



x1x2 x−1

2 0 0
0 0 x−1

2 x−1
1 x2

0 0 x1x2 x−1
2

x−1
2 x−1

1 x2 0 0

 , (11)

with

x1 = exp(βJ1), x2 = exp(βJ2), yz = exp(βJ0mz). (12)

In the thermodynamic limit, N → ∞, the asymptotic form of the partition function comes from an application of Laplace’s
method.

Given a commensurate phase, the magnetization profile is repeated after a certain finite number n of layers. Therefore,
without any loss of generality, we consider N = nM in Eq. (10). In the thermodynamic limit, we then write the free energy
functional

φ =
J0
2n

n
z=1

m2
z −

1
βn

ln λ0, (13)

where λ0 is the maximum eigenvalue of the matrix

V =

n
z=1

Vz . (14)

The equilibrium magnetization pattern, {mz}, comes from the stationary conditions, ∂φ/∂mz = 0, which lead to a set of
nonlinear coupled equations,

mz =
⟨l0|V1V2 · · ·Vz−1SVzVz+1 · · ·Vn|r0⟩

λ0⟨l0|r0⟩
, (15)
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where |r0⟩ and |l0⟩ are the right and left eigenvectors of the transfer matrix V, corresponding to λ0, and the matrix S is given
by

S =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (16)

At fixed values of T and p, the stablemagnetization profile comes from the solution of Eq. (15) thatminimizes the free energy
functional φ, given by Eq. (13).

2.1. Equivalent mean-field approximation

Consider the Hamiltonian of the ANNNI model on a cubic lattice, given by Eq. (1). A mean-field solution for this problem
can be obtained from the variational inequality

G (H) ≤ G0 (H0) + ⟨H − H0⟩0 = Φ, (17)

where G (H) is the free energy of the system, G0 (H0) is the free energy of a system associated with a trial Hamiltonian H0,
and ⟨. . .⟩0 is an average value with respect to H0. In the usual layer-by-layer mean-field calculations [10], we use a free trial
Hamiltonian,

H0 = −


x,y,z

ηzσx,y,z, (18)

where {ηz} is a set of field (variational) parameters. It is easy to write Φ = Φ ({ηz}), and obtain the mean-field solutions by
minimizing this expression of Φ with respect to the field parameters.

In order to include fluctuations along the z direction, we consider another trial Hamiltonian,

H01 = −
1
2


x,y,z


J1σx,y,zσx,y,z±1 + J2σx,y,zσx,y,z±2


−


x,y,z

ηzσx,y,z, (19)

which corresponds to independent Ising chains along the z direction. For a cubic lattice, with N × N × N sites, it is easy to
show that

G01 = −
N2

β
ln Z01, (20)

with

Z01 =


{σz }

exp


N

z=1

[βJ1σzσz+1 + βJ2σzσz+2] +

N
z=1

βηzσz


, (21)

where σz is a short-hand notation for σx,y,z . We then have

Φ = −
1
β
N2 ln Z01 − N2

N
z=1

J0m2
z + N2

N
z=1

ηzmz, (22)

where

mz =

σx,y,z


0 =

1
β

∂

∂ηz
ln Z01. (23)

Note that mz depends on the set of field variables {ηz}. In other words, mz = mz ({ηz}). The minimization of Φ leads to the
condition ηz = J0mz , which should be inserted into Eq. (23) to produce a set of self-consistent equations for {mz}. With the
trivial correspondence J0 → J0/4 to account for the four-coordination of the spins on the x–y planes, these expressions lead
to the same results already obtained in this section for the LC-ANNNI model.

3. Analysis of the numerical results

3.1. Paramagnetic critical lines

It is easy to obtain an expression for the transition lines separating the paramagnetic and the ordered phases. Consider
an expansion of φ, given by Eq. (8), in terms of the effective magnetizations,

φ =
J0
2N

N
z=1

m2
z −

βJ20
2N


z,z′

⟨σzσz′⟩0 mzmz′ + · · · , (24)
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where ⟨σzσz′⟩0 is a zero-field pair correlation of an Ising chain,

⟨σzσz′⟩0 =
1

ZI({0})


{σz }

σzσz′ exp


N

z=1

(βJ1σzσz+1 + βJ2σzσz+2)


, (25)

which has been calculated by Stephenson [17].
The paramagnetic transition lines come from

1 = βJ0χ0 (qmax) , (26)

where

χ0(q) =


h

⟨σzσz+h⟩0 exp (−iqh) =
A + B cos q

C + D cos q + E cos2 q
, (27)

and the coefficients A to E are real functions of βJ1 and βJ2, which have been explicitly obtained by Stephenson [18,19]. We
can use these expressions, with J0 = 4J1 = 4J > 0, to draw the paramagnetic lines, given by Eq. (26), and to locate the
Lifshitz point in a phase diagram in terms of kBT/J and the parameter p, and then compare with the well-known results
from the old layer-by-layer mean-field approximations. Due to the inclusion of extra fluctuations along the axial direction,
it is not surprising that the critical temperature is smaller than the old mean-field values (and closer to high-temperature
series and Monte Carlo results [2]). For instance, in Fig. 1, with J1 = J0, the Lifshitz point is located at pLP = 0.28172 . . . ,
which is larger than the well-knownmean-field value, 1/4, and at the temperature kBTLP/J = 1.79152 . . . , which is smaller
than the mean-field temperature, 2.5. Also, note that Monte Carlo results, for a typical choice of the interaction parameters,
locate the Lifshitz point at a slightly larger value than pLP = 1/4. Similar results have already been obtained in previous
calculations for the ANNNI model, which were, however, limited to the analysis of the paramagnetic border [20,19].

3.2. Phase diagrams

The mean-field equations (15) were solved numerically using quadruple precision. All integer values of n should be
considered to obtain the modulated structures that minimize the free energy functional (13). However, since this is not
feasible, earlier calculations were limited to a relatively small set of modulated phases (with n . 20) [9,10]. A real advance
in these calculations has been achieved by Selke and Duxbury [11,2], with the proposal of a structure combination branching
mechanism to explain the onset of different commensurate phases at increasing temperatures. According to thismechanism,
at T > 0, the boundaries between two adjacent modulated phases, which we call A and B, will become unstable against a
new intervening phase AB. For example, using the standard notation for the modulated phases of the ANNNI model [2],
consider the ordered structures (i) A = ⟨3⟩, which consists of three planes of (predominantly) + spins followed by three
planes of − spins, in a periodic pattern along the axial direction, and (ii) B = ⟨32⟩, which consists of three planes of + spins,
followed by two planes of − spins. These phases will become unstable against the new intervening phase AB = ⟨332⟩. In
more general terms, given the phases A =


32j−1


and B =


32j

, with j = 1, 2, 3, . . . , we have the new intervening phase

AB = ⟨32j−132j
⟩.

In Fig. 1, we show themain commensurate structures in the T–p phase diagram,with J0 = J1 = J > 0, and p = −J2/J . We
have four large regions: paramagnetic, ferromagnetic (ferro), the antiphase ⟨2⟩, and the large region ofmodulated structures.
According to the expectations, the paramagnetic critical border meets tangentially the first-order ferro-modulated border
at the Lifshitz point (LP). As the temperature increases, we checked that long-period structures become stable in smaller
regions of this phase diagram. We recall that the notation ⟨3⟩ means that there are 3 planes of + spins followed by 3 planes
of − spins along the axial direction. Although we use a different temperature scale, the general qualitative topology of this
phase diagram is the same as obtained in the earlier mean-field calculations. Modulated phases ⟨2⟩, ⟨3⟩, ⟨4⟩, and ⟨32⟩ still
occupy large portions of the modulated region.

In the vicinity of the multiphase point, both the LC-ANNNI and the standard ANNNI models display the same qualitative
features. Simple periodic structures of the type


32j

still play a major role at low temperatures. In addition, the ⟨4⟩ phase

displays a range of stability between ⟨∞⟩ and ⟨3⟩. This behavior is consistent with the predictions of the domain-wall
analysis for sufficiently anisotropic cases [8].

In all of our calculations, we have fully confirmed the branching mechanism, which keeps working in the modulated
regions, as the temperature increases, and helps to drastically reduce the number of phases to be analyzed. Thewave number
of the newmodulated phase is in the interval between the wave numbers of the parent modulated phases, according to the
rule for the construction of a Farey tree. As the temperature increases, the wave numbers of the new modulated phases, in
units of 2π , will tend to cover all the rational numbers.

In Fig. 2,we drawa typical graph of thewave number ofmodulated phases versus temperature for a particular value of the
parameter of competition, p = 0.57 (and with J0 = J1 = J > 0). We have used the branching mechanism, with quadruple
precision, to draw this graph (and the graphs of the following figures). The simple periodic structures are associated with
wide plateaus of stability, and there are higher-order commensurate phases between the main commensurate structures.
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Fig. 1. Main commensurate phases in the global T–p phase diagram of the LC-ANNNI model (with J0 = J1 = J > 0, p = −J2/J1 > 0). The paramagnetic
border comes from Eq. (26). The Lifshitz point is located at pLP = 0.28172 . . . and kBTLP/J = 1.79152 . . . .

Fig. 2. Typical graph of the wave number of the main modulated phases versus temperature for p = 0.57 (with J0 = J1 = J > 0). Note the existence of
higher-order commensurate phases in the intervals between the plateaus.

In the immediate vicinity of the Lifshitz point, we can analytically show that the ferro-modulated border is discontinuous.
In order to further check the nature of this border, in Fig. 3 we draw a graph of the main wave number of the modulated
structures as a function of p, for fixed temperature kBT/J = 1.1 (with J0 = J1 = J > 0). We indicate the modulated phases
associated with the largest plateaus, ⟨3⟩, ⟨43⟩, and ⟨4⟩, and draw this graph to point out the discontinuous character of the
transition to the ferromagnetic phase (q = 0), which does agree with the old mean-field and domain-wall calculations (and
disagrees with the variational calculations of Gendiar and Nishino [14]).

3.3. Devil’s staircases

At fixed temperature, as we change the parameter p, the wave number locks in rational values, which gives rise to
a sequence of phase transitions. At intermediate temperatures, many distinct commensurate phases are locked in finite
regions of stability. For example, the simple periodic phases ⟨3n2⟩ and ⟨32n

⟩ lock in large intervals of the parameter p (see
Fig. 4). These results are in quantitative disagreementwith the claims of some recentMonte Carlo simulations for the ANNNI
model, which seem to support much narrower ranges of stability of the modulated structures [15]. In contrast, phases ⟨3⟩
and ⟨32⟩ are shown to occupy small regions in the phase diagram, as it has been obtained in these Monte Carlo simulations.

We now turn to the question of the fractal dimension of the q versus p graphs. We use a well-known box-counting
algorithm to estimate the fractal dimension of the set of points that remain in an interval of values of q if we subtract all
of the intervals corresponding to plateaus of the commensurate phases larger than a certain (limiting small) width. For
example, consider the plateaus in the graph of q versus p of Fig. 4, and look at the interval between qi = 0.5 and qf = 0.8.
Calculate the difference X (ϵ) between the width qf − qi and the sum of the intervals corresponding to the commensurate
phases with plateaus of widths larger than a certain length ϵ > 0. The slope of a log–log plot of X (ϵ) /ϵ versus 1/ϵ, in
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Fig. 3. Graph of the main wave number of the modulated structures as a function of p, for fixed temperature kBT/J = 1.1 (with J0 = J1 = J > 0).

Fig. 4. Wave number versus p for kBT/J = 1.125. There is a cascade of phase transitions as the wave number q goes from 2π/6 (in the ⟨3⟩ phase) to 2π/4
(in the ⟨2⟩ phase). Many distinct commensurate modulated phases are stable. We show phases associated with plateaus of width 1p > 10−5 only.

the limit of small values of ϵ, gives the Hausdorff fractal dimension D0 associated with the (much smaller) plateaus of the
remaining set of phases. If D0 < 1, then the remaining (presumably incommensurate) phases occupy a fractal set (of zero
measure). This is the anticipated situation at intermediate temperatures, at least not so close to the paramagnetic transition.
If D0 < 1, then we say that we have a complete devil’s staircase.

In Fig. 5, we shownumerically obtained plots of log [X (ϵ) /ϵ] versus log [1/ϵ] for kBT/J = 1.1 (graphA) and kBT/J = 1.15
(graph B). From these straight lines, we obtain the Hausdorff dimensions, which are plotted in Fig. 6, for a few increasing
values of temperature, below the paramagnetic critical line. As D0 < 1, we have complete devil’s staircases (in other words,
at these temperatures, incommensurate phases occupy a region of fractalmeasure). Since these calculations aremuchharder
at higher temperatures, we can only claim that we have numerical evidence that D0 < 1 increases with temperature, and
seems to reach a value smaller than D0 ≈ 0.8, which is in agreement with numerical calculations for several mapping
problems [16].

4. Conclusions

We investigated the equilibrium behavior of a spin-1/2 Ising systemwith axial competing interactions between nearest
and next-nearest neighbors, and infinite-range interactions between spins on the sites of planes perpendicular to the axial
direction. This systemmay be regarded as obtained from a particular limit of infinite coordination of the layers of the ANNNI
model on a hypercubic lattice. The same results can also be obtained from a mean-field variational treatment of the ANNNI
model on a hypercubic lattice [10], if we use a trial Hamiltonian formed by a set of independent Ising chains, with next-
nearest-neighbor interactions, in a position-dependent field.

On the basis of an expression for the free energy, we perform numerical calculations to check the main features of the
phase diagram and themain spatially modulated phases. At low temperatures, in accordance with the domain-wall analysis
of the ANNNI model, the ferromagnetic and the ⟨2⟩ phases melt via a first-order transition into the modulated phases. At
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Fig. 5. Plots of log [X (ϵ) /ϵ] versus log [1/ϵ] for kBT/J = 1.1 (graph A) and kBT/J = 1.15 (graph B).

Fig. 6. Hausdorff fractal dimension D0 as function of temperature (kBT/J , with J0 = J). Note that D0 < 1 increases with temperature.

quite low temperatures, the ⟨4⟩ phase has a small range of stability, between the ferromagnetic and ⟨3⟩ phases, which
depends upon themodel parameters. Higher-order commensurate phases become stable with increasing temperatures. We
confirm the existence of a branching mechanism to stabilize long-period modulated structures at increasing temperatures
(note that we are assuming J0 = J1). In terms of either temperature or the parameter of competition, themain wave number
of themodulated phases divided by 2π locks at rational values.We draw some graphs of thesewave numbers as a function of
p, for fixed values of T , and perform a detailed numerical analysis of the fractal character of the associated devil’s staircases.
We calculate the Hausdorff dimensionD0 < 1 of these fractal structures, and show thatD0 increases with temperature, with
a limiting value D0 ≈ 0.8, which seems to be a common feature of several problems represented by area-preserving maps.
We support the picture that simple periodic phases play the main role in the ordered region of the T–p phase diagram.
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