

DEPARTAMENTO DE MATEMÁTICA APLICADA

Relatório Técnico

RT-MAP-8710

TOPICS ON HAMILTONIAN SYSTEMS

W.M. Oliva, J.C.F. de Oliveira and M.S.A. Castilla

Dedicated to Jack K. Hale on the occasion of his 60th birthday

DEZEMBRO 1987

TOPICS ON HAMILTONIAN SYSTEMS

by

W.M. Oliva, J.C.F. de Oliveira and M.S.A.C. Castille

**Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 20.570 (Agência Iguatemi)
São Paulo (SP) - Brasil**

Dedicated to Jack K. Hale on the occasion of his 60th birthday.

São Paulo

Dezembro / 1987

CONTENTS

§ 1 - Introduction to Hamiltonian Systems. The Theorem of Arnold and Liouville	1
§ 2 - Integrable Systems	9
§ 3 - Symplectic Actions of a Group. Moment map and Reduction of the Phase Space	23
§ 4 - Persistence of Tori. The Theorem K.A.M.(Kolmogorov, Arnold and Moser)	37
References	40

§ 1 - INTRODUCTION TO HAMILTONIAN SYSTEMS. THE THEOREM OF ANGOLD AND LIOUVILLE

Let $M = M^{2n}$ be an even dimensional differentiable manifold. A symplectic manifold is a pair (M, ω) , where ω is an alternate nondegenerate and closed 2-form on M . (We will assume enough differentiability).

If (M, ω) and (N, ν) are symplectic manifolds and $f : M \rightarrow N$ is a diffeomorphism such that $f^*\nu = \omega$, that is, f is a symplectic preserving diffeomorphism, f is said to be a canonical transformation.

Example 1.1: $M = \mathbb{R}^{2n} = \{(q, p)\}$ with the natural 2-form

$$\omega = dp_1 \wedge dq_1 + \dots + dp_n \wedge dq_n$$

Example 1.2: $M = T^*Q$, the cotangent bundle of any differentiable manifold Q , is a symplectic manifold. The 2-form ω will be, in this case, the derivative $d\theta$ of a 1-form θ described below. Let $\tau : T^*Q \rightarrow Q$ be the canonical projection and, for all $p_x \in T^*Q$, $v_{p_x} \in T_{p_x}(T^*Q)$ one defines

$$\theta(p_x)(v_{p_x}) = p_x(\tau(v_{p_x})).$$

Any local coordinate system $U(q_1, \dots, q_n)$ on Q induces naturally a system of coordinates $(\tau)^{-1}(U)(\tilde{q}, p)$, $\tilde{q}_i = q_i \circ \tau$, $i=1, \dots, n$. For these coordinates, $\theta = \sum_{i=1}^n p_i d\tilde{q}_i$ so that $\omega = d\theta = \sum_{i=1}^n dp_i \wedge d\tilde{q}_i$.

A smooth function $H : M \rightarrow \mathbb{R}$ defines a Hamiltonian vector field X_H on M by the formula

$$\omega(n, X_H) = dH(n)$$

for all vector fields n on M . X_H is well defined since ω is non-degenerate.

An important result of Darboux gives us local canonical coordinates for which ω has a useful expression:

Theorem 1.1: Let (M, ω) be a symplectic manifold. Every point $x \in M$ has a coordinate neighbourhood $U = U(q_1, \dots, q_n, p_1, \dots, p_n)$ such that

$$\omega|_U = dp_1 \wedge dq_1 + \dots + dp_n \wedge dq_n$$

(For a proof see [A], [A-M]).

Using these coordinates, called canonical coordinates, the local expression of the vector field X_H assumes the classical form:

$$q_i = \frac{\partial H}{\partial p_i}, \quad p_i = -\frac{\partial H}{\partial q_i}, \quad i=1, \dots, n.$$

Remarks: The following facts will be mentioned without proofs. For details, see [A], [A-M].

1 - Every symplectic manifold (M, ω) is orientable since it admits the following volume form

$$\Omega = \omega \wedge \dots \wedge \omega$$

2 - If ϕ_H^t denotes the one-parameter pseudogroup of local diffeomorphisms generated by x_H , then $(\phi_H^t)^* \omega = \omega$, i.e., the local flow ϕ_H^t preserves the symplectic structure. In particular, ϕ_H^t preserves the volume form Ω .

3 - The Hamiltonian function H is constant along the trajectories of x_H , that is,

$$dH(x_H) = \omega(x_H, x_H) = 0.$$

This is the so called conservation of energy law.

4 - The Poisson bracket (H, G) of two C^∞ -functions H and G on (M, ω) is the C^∞ -function defined by

4

$$i(H, G) = \omega(x_G, x_H).$$

This operation turns $C^\infty(M)$ into a Lie algebra since the Jacobi identity

$$((F, G), H) + ((G, H), F) + ((H, F), G) = 0$$

holds true. Moreover, the map $H \mapsto x_H$ is a homomorphism of Lie algebras since $(H, G) \mapsto [x_H, x_G]$, where $[\cdot, \cdot]$ is the Lie-bracket for two vector fields on M . When $(H, G) = 0$ the functions H and G are said to be in involution and, since $[x_H, x_G] = 0$, x_H and x_G are commuting vector fields. This also means that the local flows ϕ_H^t and ϕ_G^s satisfies

$$\phi_H^t \circ \phi_G^s = \phi_G^s \circ \phi_H^t.$$

When ϕ_H^t is defined for all $t \in \mathbb{R}$, x_H is said to be complete.

Example 1.3: According to Newton's law, the motion of a particle under a time independent potential $V = V(x)$ is given by the second order equation $\ddot{x} = -\frac{\partial V}{\partial x}$, $x \in \mathbb{R}^n$, equivalent to $\dot{x} = y$, $\dot{y} = -\frac{\partial V}{\partial x}$, $(x, y) \in \mathbb{R}^{2n}$. This system is associated to the Hamiltonian function

$$H(x, y) = \frac{1}{2} |y|^2 + V(x).$$

The theorem of Arnold and Liouville

Let (M, ω) be a symplectic manifold and x_H be the Hamiltonian vector field corresponding to H . A smooth function $F: M \rightarrow \mathbb{R}$ is a first integral of x_H if F is constant along the trajectories of x_H , that is, $dF(x_H) = 0$. Since $(F, H) = \omega(x_H, x_F) = dF(x_H)$, one sees that F is a first integral of x_H if and only if F and H are in involution. The Jacobi identity shows that the set of all first integrals is a Lie subalgebra of $C^\infty(M)$.

Theorem 1.2: Let (M^{2n}, ω) be a symplectic manifold and F_1, \dots, F_n be functions in involution. Consider a connected component M_λ of the level set $\{x \in M^{2n} \mid F_i(x) = \lambda_i, i=1, \dots, n\}$ for $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$. Assume $dF_1(x), \dots, dF_n(x)$ are linearly independent for any $x \in M_\lambda$. Then:

- 1 - M_λ is a n -dimensional submanifold of M^{2n} invariant under the flows of the commuting vector fields x_{F_1}, \dots, x_{F_n} and $\omega(x_{F_i}, x_{F_j}) = 0$.
- 2 - If x_{F_1}, \dots, x_{F_n} are complete on M_λ this manifold is diffeomorphic to a product of \mathbb{R}^{n-k} by a torus T^k , for some integer k , $0 \leq k \leq n$. Furthermore, if M_λ is compact then M_λ is diffeomorphic to a torus $T^n = \{(\varphi_1, \dots, \varphi_n) \bmod 2\pi\}$.
- 3 - If M_λ is compact and under the same hypothesis in 2), the flow of the vector field x_H , for $H = F_1$, defines on M_λ quasiperiodic

motions $\varphi(t)$ given, in the angular coordinates $\varphi = (\varphi_1, \dots, \varphi_n)$
by

$$\frac{d\varphi}{dt} = v, \quad v = v(\lambda).$$

4 - Under the same hypothesis on M_λ in 3), it is possible to find functions I_1, \dots, I_n depending only on F_1, \dots, F_n , called action coordinates such that $(I_1, \dots, I_n, \varphi_1, \dots, \varphi_n)$ are canonical coordinates in a neighbourhood of M_λ and then x_H is given by:

$$\frac{dI}{dt} = 0 \quad \frac{d\varphi}{dt} = v(I),$$

so that $H = H(I)$ and $v(I) = \frac{\partial H}{\partial I}(I)$.

Proof. The statement 1) is an immediate consequence of the fact that λ is a regular value of the function

$(F_1, F_2, \dots, F_n) : M^{2n} \rightarrow \mathbb{R}^n$, and that F_1, \dots, F_n are in involution. To prove 2), note that the condition $(F_i, F_j) = 0$ implies $[x_{F_i}, x_{F_j}] = 0$, so, by completeness of x_{F_i} , their flows satisfy $\phi_i^t \circ \phi_j^s = \phi_j^s \circ \phi_i^t$, $t, s \in \mathbb{R}$, and one can define an action A of the Abelian additive group \mathbb{R}^n on M_λ in the following way

$$A((t_1, \dots, t_n), x) = \phi_1^{t_1} \circ \dots \circ \phi_n^{t_n}(x),$$

for all $x \in M_\lambda$ and all $(t_1, \dots, t_n) \in \mathbb{R}^n$. This action is transitive

on M_λ , that is M_λ is an orbit of \mathbb{R}^n under the action A . In fact, for a fixed $x \in M_\lambda$, the map

$$A_x : (t_1, \dots, t_n) \in \mathbb{R}^n \mapsto A((t_1, \dots, t_n), x) \in M_\lambda$$

is a local diffeomorphism since $dA_x \left(\frac{\partial}{\partial t_i} \Big|_{t=0} \right) = x_{F_i}(x)$ and the vectors $x_{F_i}(x)$, $i=1, \dots, n$, are linearly independent. The inverse function theorem implies that each orbit of \mathbb{R}^n in M_λ is open, and since M_λ is connected, the full orbit is M_λ . Let $x \in M_\lambda$ and $G = G_x = \{t = (t_1, \dots, t_n) \in \mathbb{R}^n \mid A(t, x) = x\}$ be the isotropy group at the point x . It can be easily shown that G does not depend on the choice of x and that G is a discrete subgroup of \mathbb{R}^n . Therefore, there exist k vectors $e_1, \dots, e_k \in G$ such that

$$G = \left\{ \sum_{i=1}^k m_i e_i \mid m_i \in \mathbb{Z}, i=1, \dots, k \right\}.$$

Since M_λ is diffeomorphic to the quotient \mathbb{R}^n/G , it follows that M_λ is diffeomorphic to $\mathbb{R}^{n-k} \times T^k$. The statement 2) is thus proved. Now, if M_λ is compact, it is clear that M_λ is diffeomorphic to a torus $T^n = \{(\varphi_1, \dots, \varphi_n) \bmod 2\pi\}$. The map $(\varphi_1, \dots, \varphi_n) \mapsto A\left(\sum_{i=1}^n \varphi_i e_i, x\right)$ is a diffeomorphism of the unit rectangle $0 < \varphi_i < 1$, $i=1, \dots, n$, into the torus M_λ ; these are the angular coordinates. In coordinates (t_1, \dots, t_n) the integral curve $\phi_1^t(x)$ of x_H through x is the line $t_2 = t_3 = \dots = t_n = 0$. Since the change of coordinates $t \mapsto \varphi$ is linear, then the integral curves of x_H , in angular co-

ordinates, are given by $\varphi(t) = vt + \varphi(0)$. To prove 4) one sees that the compactness of M_λ and the implicit function theorem imply that there exist a ball B in \mathbb{R}^n and a neighborhood W of M_λ , diffeomorphic to $T^n \times B$, such that $T^n \times \{0\}$ is the image of M_λ under this diffeomorphism. One sees that $(\varphi_1, \dots, \varphi_n, F_1, \dots, F_n)$ is a global system of coordinates for W under which X_H is given by

$$\frac{dF}{dt} = 0, \quad \frac{d\varphi}{dt} = v(F).$$

These coordinates may not be canonical; but, as can be seen in [A, pag 276], it is possible to find n other functions I_1, \dots, I_n , depending only on F_1, \dots, F_n , called the action coordinates such that $(I_1, \dots, I_n, \varphi_1, \dots, \varphi_n)$ is a global system of canonical coordinates for a neighborhood \tilde{W} of M_λ , diffeomorphic to $T^n \times \tilde{B}$, \tilde{B} a ball in \mathbb{R}^n , and M_λ is the image of $T^n \times \{0\}$ under this diffeomorphism. The system X_H in these coordinates (I, φ) is given by $\frac{dI}{dt} = 0, \frac{d\varphi}{dt} = v(I)$, so that, $H = H(I)$ and $v(I) = \frac{\partial H}{\partial I}(I)$.

§ 2 - INTEGRABLE SYSTEMS

In the present notes an integrable system will mean a Hamiltonian system defined on a symplectic manifold (M^{2n}, ω) which admits n first integrals F_1, \dots, F_n in involution and independent that is $dF_1(x), \dots, dF_n(x)$ are linearly independent at all $x \in M$.

It will be presented now some examples of integrable systems. The symplectic manifold will be \mathbb{R}^{2n} , or a proper open set of it, with the canonical 2-form, unless mention in contrary.

Example 2.1: Harmonic oscillators

The Hamiltonian function $H = \frac{1}{2} \sum_{i=1}^n \alpha_i (p_i^2 + q_i^2)$, $\alpha_i \in \mathbb{R}$, $i=1, \dots, n$, defines the differential equations

$$\dot{q}_i = \frac{\partial H}{\partial p_i} = \alpha_i p_i, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} = -\alpha_i q_i$$

which are equivalent to $\ddot{q}_i = -\alpha_i^2 q_i$, $i=1, \dots, n$. The functions $F_i = q_i^2 + p_i^2$, $i=1, \dots, n$, are first integrals independent and in involution.

Example 2.2:

Consider a Hamiltonian function H depending only on the

variables p_1, \dots, p_n , so that $\frac{\partial H}{\partial q_i} = 0$, $i=1, \dots, n$. The functions $F_i = p_i$, $i=1, \dots, n$, prove the integrability of the system.

Example 2.3: Toda lattice for finitely many points

Consider n points on the line with coordinates q_1, \dots, q_n , satisfying the differential equations

$$\ddot{q}_i = -\frac{\partial U}{\partial q_i}, \quad i=1, \dots, n,$$

where the potential is given by $U = \sum_{k=1}^{n-1} \exp(q_k - q_{k+1})$. The corresponding Hamiltonian system has Hamiltonian $H = \frac{1}{2}|p|^2 + U(q_1, \dots, q_n)$. The integrability was discovered by Henon and Flaschka ([H], [F]) using different methods; it will be presented here the approachs of Flaschka and Moser (see also [M-1], [M-2], [M-3]).

Flaschka constructed the tridiagonal matrices

$$L = \begin{bmatrix} b_1 & a_1 & & & \\ a_1 & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & a_{n-1} \\ & & a_{n-1} & b_n & \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & a_1 & & & \\ -a_1 & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & a_{n-1} \\ & & -a_{n-1} & 0 & \end{bmatrix}$$

and showed that the Hamiltonian system

$$\dot{q}_i = p_i, \dot{p}_i = -\frac{\partial U}{\partial q_i} = \exp(q_{i-1} - q_i) - \exp(q_i - q_{i+1}),$$

$i=1, \dots, n$ (here $q_0 = -\infty$ and $q_{n+1} = +\infty$), is equivalent to the system
 $L = \frac{d}{dt} L = [B, L] = BL - LB$, if one defines

$$2b_i = -p_i, \quad i=1, \dots, n, \text{ and}$$

$$2a_k = \exp \frac{1}{2}(q_k - q_{k+1}), \quad k=1, \dots, n-1.$$

The completeness of the Toda lattice system follows from the next lemma.

Lemma 2.1: If $U = U(q_1, \dots, q_n)$ is bounded below, the system

$\dot{q}_i = p_i, \dot{p}_i = -\frac{\partial U}{\partial q_i}, \quad i=1, \dots, n$, has all solutions defined on $-\infty < t < +\infty$.

Proof. By hypothesis, there exists a real constant b such that $U(q) \geq b$. Therefore

$$\frac{1}{2}|p|^2 \leq H(p(t), q(t)) - b.$$

Then, $|p(t)| \leq K = (H(p(0), q(0)) - b)^{1/2}$. If (m, M) is the maximal interval of definition of the solution $(p(t), q(t))$ and t_0 and t are in (m, M) , one has

$$|q(t)| \leq |q(t_0)| + \left| \int_{t_0}^t |p(\tau)| d\tau \right| \leq |q(t_0)| + K|t-t_0|.$$

If $M < +\infty$, one gets $|q(t)| \leq |q(t_0)| + K(M - t_0)$ so that $(p(t), q(t))$ remains in a compact subset of \mathbb{R}^{2n} for all $t \in [t_0, M]$, which is a contradiction. Therefore, $M = +\infty$. Analogously, one proves that $m = -\infty$. \square

It is well known that $L(t)$ has real simple eigenvalues since $L(t)$ is a Jacobi matrix. The next lemma proves that these eigenvalues do not depend on t .

Lemma 2.2: For any solution $L(t)$ of $\dot{L} = [B, L]$, there exists an orthogonal matrix $Q(t)$ such that $L(t) = Q(t)^T L(0) Q(t)$ with $Q(t)$ given by $\dot{Q} = -QB$, $Q(0) = I$. So, the eigenvalues of $L(t)$ do not depend on t .

Proof. We have

$$\frac{d(Q^T Q)}{dt} = \dot{Q}^T Q + Q^T \dot{Q} = -QB^T Q - Q^T B^T Q$$

$$= -QB^T Q + QB^T Q = 0, \text{ since } B^T = -B.$$

Therefore, $Q(t)^T Q(t) = Q(0)^T Q(0) = I$.

Define $M(t) = Q(t)^T L(0) Q(t)$. It is easy to see that $M(t)$ sa-

tisfies $\dot{M} = [B, M]$ and $M(0) = L(0)$. By uniqueness of solution, it results $M(t) = L(t)$. Since $L(t)$ is similar to $L(0)$, it follows that the eigenvalues of $L(t)$ do not depend on time t . \square

The next lemma proves that, as t goes to $+\infty$ or $-\infty$, the matrix $L(t)$ tends to a diagonal matrix with distinct eigenvalues.

Lemma 2.3: The elements $a_1(t), \dots, a_{n-1}(t), b_1(t), \dots, b_n(t)$ are bounded functions., $\lim_{t \rightarrow \infty} a_k(t) = 0$ and $\lim_{t \rightarrow \infty} b_i(t) = b_i(+\infty)$.

Moreover $-\infty < b_n(+\infty) < \dots < b_1(+\infty) < +\infty$

and $-\infty < b_1(-\infty) < \dots < b_n(-\infty) < +\infty$.

Proof. By Lemma 2.2, $L(t) = {}^T Q(t) L(0) Q(t)$; then $|L(t)| \leq |L(0)|$ which implies that $a_k(t)$ and $b_i(t)$ are bounded functions. The differential equation $\dot{L} = [B, L]$ can be written as the system

$$\dot{a}_k = a_k(b_{k+1} - b_k), \quad \dot{b}_j = 2(a_j^2 - a_{j-1}^2),$$

$k=1, \dots, (n-1)$, $j=1, \dots, n$, (here $a_0 = a_n = 0$), which admits the first integral $H = 4 \sum_{k=1}^{n-1} a_k^2 + 2 \sum_{j=1}^n b_j^2$. The integrals $\int_{-\infty}^{+\infty} a_k^2(t) dt$, $k=1, \dots, n-1$, converge; this is true for $k=1$ and $k=n-1$, because

$$\int_{-T}^T (2a_1^2(t) + 2a_{n-1}^2(t)) dt = \int_{-T}^T (b_1(t) - b_n(t)) dt = (b_1(t) - b_n(t)) \Big|_{-T}^T$$

and the functions $b_j(t)$ are bounded. Analogously, using the equality

$$\int_{-T}^T (2a_1^2(t) - 2a_j^2(t) + 2a_{j-1}^2(t))dt = (b_1(t) - b_j(t)) \Big|_{-T}^T.$$

the argument follows by induction. The convergence of $\int_{-\infty}^{+\infty} a_k^2(t)dt$

assures that $\lim_{t \rightarrow \infty} a_k(t) = 0$; also, $b_j(t) = 2(a_j^2(t) - a_{j-1}^2(t))$ implies $\lim_{t \rightarrow \infty} b_j(t) = 0$.

Moreover,

$$b_j(T) - b_j(0) = \int_0^T 2(a_j^2(t) - a_{j-1}^2(t))dt.$$

so that

$$\lim_{t \rightarrow \infty} b_j(t) = 2 \int_0^{+\infty} (a_j^2(t) - a_{j-1}^2(t))dt + b_j(0)$$

and $\lim_{t \rightarrow -\infty} b_j(t) = -2 \int_{-\infty}^0 (a_j^2(t) - a_{j-1}^2(t))dt + b_j(0).$

Next, to prove that the diagonal elements of $L(\infty)$ are distinct, one uses the fact that the spectrum of $L(t)$ tends to the spectrum of $L(+\infty)$ as $t \rightarrow +\infty$ and the eigenvalues of $L(t)$ are distinct and do not depend on t . Finally, if $b_{k+1}(+\infty) - b_k(+\infty) > 0$ then $a_k(t) > 0$ for

all t big enough which contradicts the fact that $\lim_{t \rightarrow \infty} a_k(t) = 0$.
 Therefore one obtains

$$-\infty < b_n(+\infty) < \dots < b_1(+\infty) < +\infty$$

and analogously $-\infty < b_1(-\infty) < \dots < b_n(-\infty) < +\infty$. \square

The next theorem proves the integrability of the Toda lattice system. In order to do that, one considers the characteristic polynomial

$$\Delta_n(\lambda) = \lambda^n + I_1 \lambda^{n-1} + \dots + I_n$$

of $L(t)$, which does not depend on t ; hence I_1, \dots, I_n are first integrals.

Theorem 2.1: The integrals I_1, \dots, I_n are independent and in involution, so that the Toda lattice system is integrable.

Proof. Consider the matrices L and $M = \text{diag}(b_1, \dots, b_n)$. The first integrals $I_j = I_j(a_1, \dots, a_{n-1}, b_1, \dots, b_n)$, $j=1, \dots, n$, tend, in the C^1 -sense, to the symmetric functions $\sigma_1, \dots, \sigma_n$, $\sigma_j = \sigma_j(b_1, \dots, b_n)$, $j=1, \dots, n$, of the matrix M . In fact,

$$\frac{\partial I_j}{\partial a_i} \rightarrow 0 \text{ as } (a_1, \dots, a_{n-1}) \rightarrow 0.$$

The functions b_1, \dots, b_n are independent, i.e., db_1, \dots, db_n are linearly independent everywhere in the phase space. Also, the determinant of the coefficients of da_1, \dots, da_n with respect to db_1, \dots, db_n is equal to

$$\prod_{1 \leq i < j \leq n} (b_i - b_j)$$

which, by lemma 2.3, is strictly positive for t big enough. It follows now that dI_1, \dots, dI_n are linearly independent in a neighborhood of $(p_1(+\infty), \dots, p_n(+\infty))$, then everywhere in the phase space, since the flow of a vector field is a diffeomorphism. The functions $\sigma_1, \dots, \sigma_n$ as functions of p_1, \dots, p_n are in involution. Since I_1, \dots, I_n , as functions of p_1, \dots, p_n , q_1, \dots, q_n are first integrals of the original Hamiltonian system, then the Poisson bracket (I_i, I_j) is also an integral. But (I_i, I_j) tends to $(\sigma_i, \sigma_j) = 0$ along any solution, as $t \rightarrow +\infty$. Then, $(I_i, I_j) = 0$ everywhere. \square

Example 2.4: The n-particle system on the line, with the inverse square potential considered by Calogero and Marchioro.

Consider n particles on the line with coordinates q_1, \dots, q_n and define $U = \sum_{k < l} (q_k - q_l)^{-2}$, $k, l = 1, \dots, n$, as their potential, so that the equations of motion are given by

$$\ddot{q}_k = - \frac{\partial U}{\partial q_k} = 2 \sum_{j \neq k} (q_k - q_j)^{-3}, \quad k = 1, \dots, n.$$

As observed by Moser in [M-2], this system possesses n integrals, independent and in involution, which are polynomials in q_k and $(q_k - q_l)^{-2}$, a fact that can be derived below following the same lines as used for the Toda lattice system. As before, matrices L and B are introduced and the differential equation $\dot{L} = BL - LB$ is considered, which can be transformed in the above equations of motion. In order to do that, set

$$z_{kl} = \begin{cases} (q_k - q_l)^{-1} & \text{for } k \neq l \\ 0 & \text{for } k = l \end{cases}$$

and define the matrices

$$z_\alpha = (z_{kl}^\alpha) \quad \text{for } \alpha = 1, 2,$$

$$Y = \text{diag}(y_1, \dots, y_n),$$

$$D_\alpha = \text{diag}\left(\sum_{j=1}^n z_{kj}^\alpha\right) \quad \text{for } \alpha = 2, 3.$$

Defining $L = Y + iz_1$, $B = iD_2 - iz_2$, one sees that L is Hermitian, that is, $L = L^*$ (its conjugate transpose) and B is skew-Hermitian, that is, $B = -B^*$. The equations of motion in terms of the variables z_{kl} and $y_k = -\dot{q}_k$ can be written as

$$\dot{y}_k = -\ddot{q}_k = -2 \sum_{j=1}^n z_{kj}^3,$$

$$\dot{z}_{kl} = z_{kl}^2 (y_k - y_l), \quad k, l = 1, \dots, n.$$

This last system is redundant, since only the $(n-1)$ variables $z_{k,k+1}$ are independent, the other being determined by the relations $z_{kl}^{-1} = z_{kr}^{-1} + z_{rl}^{-1}$ if k, l, r distinct and $z_{kl} + z_{lk} = 0$. It is easy to check that

$$[B, L] = BL - LB = i[Y, Z_2] - [D_2, Z_1] + [Z_2, Z_1]$$

and a straightforward computation shows that $L = [B, L]$ leads to the equations of motion in the variables z_{kl} and y_k . This implies, by a similar argument used in the lemma 2.2, that the coefficients I_k of the characteristic polynomial

$$\det(\lambda I - L) = \lambda^n + I_1 \lambda^{n-1} + \dots + I_n$$

are integrals of the motion.

The next lemma proves that, as t goes to $+\infty$ or $-\infty$, that the matrix $L(t)$ tends to a real diagonal matrix with distinct eigenvalues. The proof is found in [M-2] and it is presented here for a sake of completeness.

Lemma 2.4: The elements $y_1(t), \dots, y_n(t)$ and $z_{kl}(t)$, $k, l = 1, \dots, n$, are bounded functions, $\lim_{t \rightarrow \pm\infty} y_k(t) = y_k(\pm\infty)$ exist, $\lim_{t \rightarrow \pm\infty} z_{kl}(t) = 0$. and $+\infty > y_1(+\infty) > \dots > y_n(+\infty) > -\infty$, $-\infty < y_1(-\infty) < \dots < y_n(-\infty) < +\infty$.

Proof. The matrix $L(t)$ is defined for all $t \in \mathbb{R}$ by Lemma 2.1. Moreover, $L(t)$ satisfies the equation $L(t) = Q^*L(0)Q$ where $Q(t)$ is an unitary matrix defined by $\dot{Q} = -QB$, $Q(0) = I$. Therefore, $L(t)$ and so its components are bounded functions of $t \in \mathbb{R}$. Without loss of generality, the particles can be labelled according to the order $q_1 < \dots < q_n$ at $t=0$ and then for all $t \in \mathbb{R}$, by the conservation of energy. The next step is to prove that there exist and are finite the limits $\lim_{t \rightarrow \pm\infty} \dot{q}_k(t)$, $k=1, \dots, n$. From the equations of motion it follows that for any $T > 0$ one has

$$\frac{1}{2}[\dot{q}_n - \dot{q}_1](T) - \frac{1}{2}[\dot{q}_n - \dot{q}_1](-T) = \int_T^T \left(\sum_{j < n} (q_n - q_j)^{-3} + \sum_{j > 1} (q_j - q_1)^{-3} \right) dt.$$

Since the left-hand side is bounded and the right-hand side is an increasing function of T , one sees that $\int_{-\infty}^{+\infty} (q_k - q_l)^{-3} dt < \infty$ for $k > l = 1$ and for $l < k = n$, and by induction for all pair (k, l) with $k > l$. From

$$\dot{q}_k(T) - \dot{q}_k(0) = 2 \sum_{j \neq k} \int_0^T (q_k - q_j)^{-3} dt$$

it follows that $\lim_{t \rightarrow \pm\infty} \dot{q}_k(t)$ exists and is finite. The limits of the velocities satisfy

$$\dot{q}_1(+\infty) \leq \dots \leq \dot{q}_n(+\infty) \quad \text{and}$$

$\dot{q}_1(-\infty) \geq \dots \geq \dot{q}_n(-\infty)$. In fact, if $f(t) = q_{k+1}(t) - q_k(t)$ and assuming, by contradiction, that

$\lim_{t \rightarrow +\infty} \dot{f}(t) = b < 0$, one sees that $f(t) - f(t_0) < \frac{b}{2}(t - t_0)$ for all t and t_0 sufficiently big, $t > t_0$, which implies that $f(t) = q_{k+1}(t) - q_k(t)$ is negative for t big enough, in contradiction with the fact that $q_{k+1} > q_k$. The above inequalities for the limit velocities are, in fact, strict inequalities. To prove this, let $\varphi(t) = q_n - q_1 > 0$. Then $\frac{1}{2} \ddot{\varphi}(t) \geq 2(q_n - q_1)^{-3} > 0$, so that $\dot{\varphi}$ is increasing and $\dot{\varphi}(+\infty) = \dot{q}_n(+\infty) - \dot{q}_1(+\infty) \geq 0$. If, by contradiction, $\dot{\varphi}(+\infty) = 0$, then $\dot{\varphi}(t) < 0$ for all $t \in \mathbb{R}$ so that $\varphi(t)$ is a decreasing positive function; therefore $\varphi(t)$ is bounded. But, then, $\frac{1}{2} \ddot{\varphi}(t) \geq (\max \varphi)^{-3} > 0$; hence integrating twice one gets

$$\varphi(t) \geq \varphi(0) + \dot{\varphi}(0)t + (\max \varphi)^{-3} \frac{t^2}{2}$$

which shows that $\varphi(t)$ is unbounded, which is a contradiction. Therefore, $\dot{q}_n(+\infty) > \dot{q}_1(+\infty)$. This and the inequalities $\dot{q}_1(+\infty) \leq \dots \leq \dot{q}_n(+\infty)$ imply the existence of an s such that $\dot{q}_s(+\infty) < \dot{q}_{s+1}(+\infty)$. It will be shown now that $\dot{q}_1(+\infty) < \dot{q}_s(+\infty)$. First of all, observe that, setting $a = \dot{q}_{s+1}(+\infty) - \dot{q}_s(+\infty)$, then

$$\frac{a(t-t_0)}{2} \leq \left(q_{s+1}(t) - q_s(t) \right) - \left(q_{s+1}(t_0) - q_s(t_0) \right) \leq \frac{3a(t-t_0)}{2}$$

for all t and t_0 big enough. Therefore, for $j > s$:

$$q_j - q_s = (q_j - q_{j-1}) + \dots + (q_{s+1} - q_s) \geq q_{s+1} - q_s$$

implies that

$$0 \leq (q_j - q_s)^{-1} \leq (q_{s+1} - q_s)^{-1} = O(t^{-1}).$$

Now, $\frac{1}{2} \frac{d^2}{dt^2} (q_s - q_1) = \sum_{j < s} (q_s - q_j)^{-3} - O(t^{-3}) + \sum_{j > 1} (q_j - q_1)^{-3}$
 $\geq 2(q_s - q_1)^{-3} - O(t^{-3}).$ Calling $\psi(t) = q_s - q_1 + \frac{A}{t}$, A being a positive constant, one verifies that

$$\ddot{\psi}(t) = \ddot{q}_s - \ddot{q}_1 + \frac{2A}{t^3} \geq 4(q_s - q_1)^{-3} + \frac{2A}{t^3} - O(t^{-3}),$$

so that

$\ddot{\psi} \geq 4(q_s - q_1)^{-3} > 0$ if t is big enough and A is chosen suitably. Thus $\dot{\psi}$ is increasing and $\dot{\psi}(+\infty) > 0$ since $\dot{\psi}(+\infty) = 0$ leads to a contradiction. Since $\dot{\psi}(+\infty) = \dot{q}_s(+\infty) - \dot{q}_1(+\infty)$ it follows that $\dot{q}_1(+\infty) < \dot{q}_s(+\infty)$. Analogously, one proves that $\dot{q}_{s+1}(+\infty) < \dot{q}_n(+\infty)$ and, by induction,

$$-\infty < \dot{q}_1(+\infty) < \dots < \dot{q}_n(+\infty) < +\infty,$$

and, analogously,

$$+\infty > \dot{q}_1(-\infty) > \dots > \dot{q}_n(-\infty) > -\infty.$$

Finally, since $z_{kl} = (q_k - q_l)^{-1} = O(t^{-1})$ as $|t| \rightarrow +\infty$, one obtains

$$\lim_{t \rightarrow \pm\infty} z_{kl}(t) = 0.$$

The next theorem proves the integrability of the mechanical system with the potential considered by Calogero and Marchioro.

Theorem 2.2: The Hamiltonian system

$$\dot{q}_k = p_k, \quad \dot{p}_k = -\frac{\partial U}{\partial q_k}, \quad k=1, \dots, n,$$

where $U = \sum_{k < l} (q_k - q_l)^{-2}$, is an integrable system.

Proof. Using Lemma 2.4 and following the same ideas as in Theorem 2.1, one can prove that the integrals I_1, \dots, I_n are real functions of p_1, \dots, p_n and q_1, \dots, q_n and they are independent and in involution. \square

Remarks. These integrals are rational functions of the coordinates p_1, \dots, p_n and q_1, \dots, q_n since they are polynomials in z_{kl} and p_1, \dots, p_n , and the $z_{kl} = (q_k - q_l)^{-1}$ for $k \neq l$ and $z_{kk} = 0$.

§ 3 - SYMPLECTIC ACTIONS OF A GROUP. MOMENT MAP AND REDUCTION OF THE PHASE SPACE

Let X_H be a Hamiltonian vector field of Hamiltonian function H defined on a symplectic manifold (M^{2n}, ω) ; assume that the flow ϕ_H^t is an one-parameter group of symplectic diffeomorphisms. Given a first integral F , that is $(F, H) = 0$, F is constant along the integral curves of ϕ_H^t and H is constant along the integral curves of the flow ϕ_F^t of X_F ; assume also X_F be complete. If one considers the restriction of H to a level surface $F^{-1}(c)$ which is a submanifold of dimension $2n-1$ when c is a regular value of F , one sees that H is constant on the integral curves of ϕ_F^t lying on $F^{-1}(c)$. Then $F^{-1}(c)/\phi_F^t$, the manifold of the orbits of ϕ_F^t on $F^{-1}(c)$, has dimension $2n-2$ and H induces a function \tilde{H} which is well defined in the quotient. Moreover, any integral curve of X_H on $F^{-1}(c)$ is projected on an integral curve of the vector field \tilde{X}_H obtained by projection of X_H . Roughly speaking, if it is known a first integral F it is possible to reduce X_H to another system \tilde{X}_H with $2n-2$ dimensions.

As in the Arnold-Liouville's theorem, if one considers k first integrals F_1, \dots, F_k in involution and independent everywhere, it is possible to define $F = (F_1, \dots, F_k) : M \rightarrow \mathbb{R}^k$ and an action of the Abelian group \mathbb{R}^k on the level surface $F^{-1}(c)$, using the fact that the flows ϕ_j^t of X_{F_i} commute and assuming also that they are

complete. The action is the map $A : \mathbb{R}^k \times M \rightarrow M$ given by $A(t, p) = A((t_1, \dots, t_k), p) = \phi_1^{t_1} \circ \dots \circ \phi_k^{t_k}(p)$ for all $p \in M$ and all $t = (t_1, \dots, t_k) \in \mathbb{R}^k$. It is clear that $A(t+s, p) = A(t, A(s, p))$. One can prove that the quotient $F^{-1}(c)/\mathbb{R}^k$, the set of all orbits of \mathbb{R}^k , is a symplectic manifold of dimension $2n-2k$ and that the function \tilde{H} , which is well defined in the quotient, is the Hamiltonian function of the Hamiltonian vector field $\tilde{X}_{\tilde{H}}$, projection of X_H under the derivative of the quotient map. The above method is called the Jacobi-Liouville method of reduction.

It will be also shown that there exist other kinds of group actions, including noncommutative actions; a good example studied below in example 3.2 is the noncommutative action of the rotation group $SO(3)$ on $\mathbb{R}^3 \times \mathbb{R}^3$ which can be used to reduce a Hamiltonian system invariant under that action.

Example 3.1: Let $H(p, q), (p, q) \in \mathbb{R}^{2n}$, be a Hamiltonian function invariant under the translation $(p, q) \mapsto (p, q + s(1, \dots, 1))$, that is, $H(p, q + s(1, \dots, 1)) = H(p, q)$ for all $s \in \mathbb{R}$, the differentiating with respect to s at $s = 0$, it results $\sum_{k=1}^n \frac{\partial H}{\partial q_k}(p, q) = - \sum_{k=1}^n \dot{p}_k = 0$. This shows that $F = p_1 + \dots + p_k$ is a first integral, called the linear momentum. Consider now the following change of coordinates:

$$\xi_k = q_k - q_n, \quad \xi_n = q_n$$

$$n_k = p_k, \quad n_n = \sum_{i=1}^n p_i, \quad k=1, \dots, n.$$

It defines a canonical transformation since

$$\sum_{i=1}^n d\eta_i \wedge d\xi_i = \sum_{i=1}^n dp_i \wedge dq_i.$$

Let $\Gamma(\eta, \xi)$ be defined by $\Gamma(\eta, \xi) = H(p, q)$. The function Γ does not depend on ξ_n since $\frac{\partial \Gamma}{\partial \xi_n} = -\dot{\eta}_n$ and η_n is an integral. The system restricted to any level surface $\eta_n = c$ becomes $\dot{\xi}_k = \frac{\partial \Gamma}{\partial \eta_k}$, $\dot{\eta}_k = -\frac{\partial \Gamma}{\partial \xi_k}$, $k=1, \dots, n-1$, with $(n-1)$ degrees of freedom. Knowing how to solve it, it is then possible to integrate the remaining scalar equation $\dot{\xi}_n = \frac{\partial \Gamma}{\partial \eta_n} = \phi(t, c)$. This is, essentially, the Jacobi-Liouville method of reduction in the case of one first integral.

Example 3.2: Let $H(p, q) = \frac{1}{2}|p|^2 + V(|q|)$, $(p, q) \in \mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$. This function is invariant under the orthogonal group $SO(3)$, since $H(Rp, Rq) = H(p, q)$ for all $R \in SO(3)$. Using the Lie algebra $g = so(3)$ of all skew-symmetric operators, one obtains that $\exp sA \in SO(3)$ for all $s \in \mathbb{R}$ and $A \in g$. Then $H((\exp sA)p, (\exp sA)q) = H(p, q)$, which, after differentiating with respect to s at $s = 0$, gives

$$\langle \frac{\partial H}{\partial p}, A q \rangle + \langle \frac{\partial H}{\partial q}, A p \rangle = 0.$$

Thus defining \hat{J}_A by $\hat{J}_A(p, q) = \langle p, A q \rangle$, \hat{J}_A is an integral for any $A \in g = so(3)$. It is known that to each $A \in so(3)$ there corresponds an unique $a \in \mathbb{R}^3$ such that $Ax = a \wedge x$, for all $x \in \mathbb{R}^3$.

Therefore $\hat{J}_A(p, q) = \hat{J}_a(p, q) = \langle p, a \wedge q \rangle = \langle a, p \wedge q \rangle$. If (e_1, e_2, e_3) is the canonical basis of \mathbb{R}^3 , one has $q \wedge p = \langle q \wedge p, e_1 \rangle e_1 + \langle q \wedge p, e_2 \rangle e_2 + \langle q \wedge p, e_3 \rangle e_3$. The map $(p, q) \mapsto q \wedge p$ is a vector valued first integral called the angular momentum. Therefore, if $q = (q_1, q_2, q_3)$ and $p = (p_1, p_2, p_3)$, the components $F_1 = q_2 p_3 - q_3 p_2$, $F_2 = q_3 p_1 - q_1 p_3$, $F_3 = q_1 p_2 - q_2 p_1$ of $q \wedge p$ are integrals of motion and one may expect to reduce the phase space \mathbb{R}^6 by six dimensions. But, in this case these integrals are not in involution, since $(F_1, F_2) = -F_3$. In order to see that the reduced space has two dimensions, one fixes a value $c = q \wedge p$ of the angular momentum and assume $c \neq 0$. One may choose the coordinates such that $c = \lambda e_3$, $\lambda > 0$, $e_3 = (0, 0, 1)$. Then $q_2 p_3 - q_3 p_2 = 0$, $q_1 p_3 - q_3 p_1 = 0$ and since $\lambda = (q_1 p_2 - q_2 p_1) > 0$ it results that $p_3 = q_3 = 0$, that means, the problem is reduced to $\mathbb{R}^2 \times \mathbb{R}^2$ with the quadratic integral $\lambda = q_1 p_2 - q_2 p_1$. The new phase space $\mathbb{R}^2 \times \mathbb{R}^2$ is invariant under the rotations of $SO(2)$. The reduced Hamiltonian function $\tilde{H} = H|_{\mathbb{R}^2 \times \mathbb{R}^2}$ is obtained by making $p_3 = q_3 = 0$ and then

$$\tilde{H} = \frac{1}{2}(p_1^2 + p_2^2) + V(r), \quad r = \sqrt{q_1^2 + q_2^2}.$$

It is also obvious that \tilde{H} is invariant under $SO(2)$. Following a method discovered by Jacobi, one introduces polar coordinates $q_1 = r \cos \phi$, $q_2 = r \sin \phi$ and, for the conjugate variables one chooses the special functions $p_r = p_1 \cos \phi + p_2 \sin \phi$ and $p_\phi = r(-p_1 \sin \phi + p_2 \cos \phi)$. Since $p_\phi = q_1 p_2 - q_2 p_1 = \lambda$, p_ϕ is an integral and a straightforward computation shows that the co-

ordinate system (p_r, p_ϕ, r, ϕ) is canonical since $\tilde{\omega} = dp_1 \wedge dq_1 + dp_2 \wedge dq_2 = dp_r \wedge dr + dp_\phi \wedge d\phi$. The Hamiltonian function \tilde{H} in these coordinates is given by

$$\tilde{H} = \frac{1}{2} \left(p_r^2 + \frac{1}{r^2} p_\phi^2 \right) + V(r) = \frac{1}{2} \left(p_r^2 + \frac{\lambda^2}{r^2} \right) + V(r)$$

so that the system reduces to

$$\dot{p}_r = - \frac{\partial \tilde{H}}{\partial r} = - \frac{\lambda^2}{r^3} + \frac{dV(r)}{dr}$$

$$\dot{r} = \frac{\partial \tilde{H}}{\partial p_r} = p_r$$

$$\dot{\phi} = \frac{\partial \tilde{H}}{\partial p_\phi} = \frac{1}{r^2} p_\phi = \frac{\lambda}{r^2}$$

The two first equations define a system in two dimensions; using the conservation of the energy, one can solve the scalar equation

$$\dot{r} = \pm \sqrt{2c - \frac{\lambda^2}{r^2} - V(r)} \quad \text{to find } r(t) \text{ and then integrate } \dot{\phi} = \frac{\lambda}{r^2(t)}$$

The Moment Map

Let (M, ω) be a symplectic manifold such that $\omega = d\theta$, that is, besides to be closed and nondegenerate, ω is an exact two-form. In this case $(M, d\theta)$ is said to be an exact symplectic manifold. As an example one has the cotangent bundle $M = T^*Q$ of a manifold Q (see example 1.2).

An action of a Lie group G on a manifold M is a smooth map $\phi : G \times M \rightarrow M$ such that, for any $g \in G$, the map $\phi_g : M \rightarrow M$ defined by $\phi_g(p) = \phi(g, p)$ is a diffeomorphism, $\phi_e = \text{id}(M)$, e being the identity of G , and $\phi_g \circ \phi_h = \phi_{gh}$ for all $g, h \in G$. The orbit $O(p)$ of a point $p \in M$ is the set

$$O(p) = \{\phi_g(p) \mid g \in G\}.$$

One also defines the maps $\phi_p : G \rightarrow M$ by $\phi_p(g) = \phi(g, p)$. A symplectic action of a Lie group G on a symplectic manifold (M, ω) is an action $\phi : G \times M \rightarrow M$ such that ϕ_g is a symplectic map, i.e., $\phi_g^* \omega = \omega$ for all $g \in G$. If, moreover, $\omega = d\theta$ and $\phi_g^* \theta = \theta$ for all $g \in G$, one has an exact symplectic group action.

Let \mathfrak{g} be the Lie algebra of a Lie group G and let $\phi : G \times M \rightarrow M$ be a symplectic group action of G on a symplectic manifold (M, ω) . Given $a \in \mathfrak{g}$, $g(t) = \exp t a \in G$ for all $t \in \mathbb{R}$, then $\phi_{g(t)}$ is a symplectic diffeomorphism. Let X_a be the vector field defined on M by $X_a(p) = \frac{d}{dt} \phi_{g(t)}(p) \Big|_{t=0}$. The vector field X_a is called the infinitesimal generator of the action corresponding to $a \in \mathfrak{g}$. The map $a \mapsto X_a$ is linear since $X_a(p) = \frac{d}{dt} \phi(g(t), p) \Big|_{t=0} = \frac{d}{dt} \phi_p(g(t)) \Big|_{t=0} = d\phi_p(e)a$. If, moreover, the symplectic group action is exact, then the vector field X_a is a Hamiltonian vector field with Hamiltonian function $J_a = \theta(X_a)$, as proved below. If β is a n -exterior form on M , recall that $X_a \lrcorner \beta$ denotes the $(n-1)$ -exterior form given by $(X_a \lrcorner \beta)(v_1, \dots, v_{n-1}) = \beta(X_a, v_1, \dots, v_{n-1})$. By the well known

formula $L_{X_a} \theta = d(x_a \lrcorner \theta) + x_a \lrcorner d\theta$, (see [A-M]) and since $\phi_g^*(t) \theta = \theta$ implies $L_{X_a} \theta = 0$, one obtains $d(x_a \lrcorner \theta) = -x_a \lrcorner d\theta$ that is $d(\theta(x_a)) = -x_a \lrcorner d\theta$ which proves the assertion. Since the map $a \in g \mapsto \hat{j}_a = \theta(x_a)$ is linear, the moment map J associated to the exact symplectic group action can be defined as $J : M \rightarrow g^*$, by the formula $(Jp)a = \hat{j}_a(p)$, for all $p \in M$ and $a \in g$. It can be shown that the linear map $a \mapsto x_a$, considered above, has the property $x_{[a,b]} = [x_a, x_b]$. Then the linear map $a \mapsto \hat{j}_a$ is a homomorphism of Lie algebras, that is, $\hat{j}_{[a,b]} = (\hat{j}_a, \hat{j}_b)$.

The next theorem shows that the moment map $J : M \rightarrow g^*$ has the universal property of being a vector valued first integral for any Hamiltonian system X_H such that the Hamiltonian function H is invariant under group action.

Theorem 3.1: Let ϕ be an exact symplectic group action of a Lie group G on an exact symplectic manifold $(M, d\theta)$ and let $H : M \rightarrow \mathbb{R}$ be any smooth Hamiltonian function invariant under the action, that is, $H \circ \phi_g = H$ for all $g \in G$. Then the flow ϕ_H^t of the Hamiltonian vector field X_H leaves invariant the moment map $J : M \rightarrow g^*$, i.e., $J \circ \phi_H^t = J$, or equivalently, the function \hat{j}_a is a first integral of X_H for all $a \in g$.

Proof. Since $H(p) = H(\phi_g(p))$, take $g = g(t) = \exp t a$, $a \in g$, and compute the derivative with respect to t at $t=0$ of $H(p) = H(\phi_{\exp t a}(p))$.

Thus, one obtains

$$0 = dH(x_a(p)) = d\theta(x_a(p), x_H(p)) = (H, \hat{J}_a)(p) ,$$

which shows that \hat{J}_a is a first integral of x_H , for any $a \in g$. Finally, $[(J \circ \phi_H^t)p]a = [J(\phi_H^t(p))]a = \hat{J}_a(\phi_H^t(p)) = \hat{J}_a(p) = (Jp)a$. \square

At this point it is interesting to go back to example 3.2, where the group $G = SO(3)$ defines an exact symplectic group action on the exact symplectic manifold $(M, d\theta) = (\mathbb{R}^3 \times \mathbb{R}^3, d\theta)$, $\theta = \sum_{i=1}^3 p_i dq_i$; the group action is given by $\phi_R(p, q) = (Rp, Rq)$, for all $R \in SO(3)$. In fact, it is clear that $[d\phi_R(p, q)](Y, X) = (RY, RX)$ and $\theta_{(p, q)}(Y, X) = \sum_{i=1}^3 p_i dq_i(Y, X) = \sum_{i=1}^3 p_i dq_i(X)$. Then $\theta_{(p, q)}(Y, X) = \sum_{i=1}^3 p_i X_i = \langle p, X \rangle$.

Finally

$$\theta_{(Rp, Rq)}(RY, RX) = \langle Rp, RX \rangle = \langle p, X \rangle = \theta_{(p, q)}(Y, X).$$

Recall also that $\hat{J}_a(p, q) = \langle a, p \wedge q \rangle$, for all $a \in g = \mathfrak{so}(3) \cong \mathbb{R}^3$. The moment map $J: M \times g^*$ is given by $J(p, q) = \langle \cdot, p \wedge q \rangle$. By the last theorem, any Hamiltonian function $H: \mathbb{R}^6 \rightarrow \mathbb{R}$ invariant under the action of $SO(3)$ (in particular, that one considered in example 3.2) defines a Hamiltonian system for which the functions \hat{J}_a are first integrals; in particular $(p, q) \mapsto p \wedge q$ is a vector valued first integral for such systems.

Any action of a Lie group G on a vector space V is called a representation. The adjoint representation of G on its Lie algebra g is the action $\text{Ad} : G \times g \rightarrow g$ defined by $\text{Ad}(g, a) = [dL_g \circ dR_{g^{-1}}(e)](a)$ where dL_g and $dR_{g^{-1}}$ denote, respectively, the derivatives of the left and right translations

$$x \in G \mapsto gx \in G \quad \text{and} \quad x \in G \mapsto xg^{-1} \in G.$$

One also introduces the notation $\text{Ad}(g)a = \text{Ad}(g, a)$. Since $\text{Ad}(g) : g \rightarrow g$ is the derivative $d\psi_g(e) : g \rightarrow g$ of the map

$$\psi_g : x \in G \mapsto gxg^{-1} = L_g R_{g^{-1}}(x) \in G$$

at $e \in G$, one obtains $\text{Ad}(gh) = \text{Ad}(g) \circ \text{Ad}(h)$.

The coadjoint representation of G on g^* , $\text{Ad}^* : G \times g^* \rightarrow g^*$, is given by the maps $\text{Ad}^*(g) : g^* \rightarrow g^*$, $g \in G$, defined by the formula $[\text{Ad}^*(g)](\mu)a \stackrel{\text{def}}{=} \mu[\text{Ad}(g^{-1})a]$ for all $\mu \in g^*$ and all $a \in g$. With this definition one obtains $\text{Ad}^*(gh) = \text{Ad}^*(g) \circ \text{Ad}^*(h)$.

If one fixes now $\mu \in g^*$ one obtains the orbit $O(\mu)$ of the coadjoint representation, which is the set $O(\mu) = \{\text{Ad}^*(g)\mu \mid g \in G\}$. It is a basic result due to Kirillov and Kostant that $O(\mu)$ has a canonical symplectic structure.

Example 3.3: Isospectral matrices.

Let G be the Lie group of all the $n \times n$ non singular real matrices and let T be an element of G . Then $\text{Ad}(T)A = T A T^{-1}$ for all $A \in g$. The well known inner product

$$(A, B) \in g \times g \rightarrow \langle A, B \rangle \stackrel{\text{def}}{=} \text{trace } A^T B$$

identifies the Lie algebra g of all $n \times n$ real matrices with its dual g^* by

$$A \in g \mapsto v \in g^*, v(\cdot) = \langle \cdot, A \rangle.$$

For a fixed $\mu \in g$, the orbit $O(\mu)$ of the coadjoint representation is identified with the set of all matrices which are similar to the matrix M given by the identification $\mu(\cdot) = \langle \cdot, M \rangle$. In fact, $O(\mu) = \{X \mid \text{Ad}^*(g)\mu(\cdot) = \langle \cdot, X \rangle, g \in G\}$ and $\text{Ad}^*(g)\mu(\cdot) = \langle \cdot, X \rangle = \mu(\text{Ad}(g^{-1})(\cdot)) = \mu(g^{-1}(\cdot)g) = \langle g^{-1}(\cdot)g, M \rangle = \text{trace } g^{-1}(\cdot)g^T M = \text{trace } g^{-1}(\cdot)g^T M g^{-1} g = \text{trace } (\cdot)g^T M g^{-1} = \langle \cdot, T(g^{-1})M g \rangle$ then $X = T(g^{-1})M T g$ and X is similar to M . If μ is such that M has distinct eigenvalues then $O(\mu)$ consists of the so called isospectral matrices. A symplectic structure will be defined on the manifold $O(\mu) = \{TMT^{-1} \mid T \in G\}$. The point M belongs to $O(\mu)$ and the tangent space of $O(\mu)$ at the point M is the set $\{[A, M] \mid A \in g\}$. To see this, one considers a generic curve $T(t)$ in G such that $T(0) = I$

and $\dot{T}(0) = A$; then $T(t) M T(t)^{-1}$ is a generic curve on $O(\mu)$, passing through M at $t=0$. Since $\frac{d}{dt} T(t)^{-1} \Big|_{t=0} = -\dot{T}(0) = -A$ one obtains

$$\frac{d}{dt} (T(t) M T(t)^{-1}) \Big|_{t=0} = AM - MA = [A, M].$$

This description of the tangent space of $O(\mu)$ at M can be used to show that the dimension of $O(\mu)$ is n^2-n . The form ω on $O(\mu)$ is given by $\omega([A, M], [B, M]) \stackrel{\text{def}}{=} \text{trace}([A, B] \cdot M)$. One verifies that this form is nondegenerate, skew-symmetric and closed, thus defining a symplectic structure on $O(\mu)$.

Consider again an exact symplectic group action ϕ and its corresponding moment map $J : M \rightarrow g^*$. The moment map J is said to be equivariant with respect to a pair of functions $f : M \rightarrow M$ and $h : g^* \rightarrow g^*$ if $J \circ f = h \circ J$, that is, if the following diagram commutes:

$$\begin{array}{ccc} M & \xrightarrow{J} & g^* \\ f \downarrow & & \downarrow h \\ M & \xrightarrow{J} & g^* \end{array}$$

Theorem 3.2: Given any exact symplectic group action $\phi : G \times M \rightarrow M$ of a Lie group G on an exact symplectic manifold $(M, d\theta)$, the corresponding moment map J is equivariant with respect to $\phi_g : M \rightarrow M$ and to $\text{Ad}^*(g) : g^* \rightarrow g^*$, for all $g \in G$.

Proof. To be equivariant means $J \circ \phi_g = [\text{Ad}^*(g)] \circ J$, for all $g \in G$, that is, $[J(\phi_g(p))]a$ has to be equal to $[(\text{Ad}^*(g))Jp]a$ for all $p \in M$ and $a \in g$. Let x_a be the infinitesimal generator of the action corresponding to $a \in g$. But $[J(\phi_g(p))]a = J_a(\phi_g(p)) = [\theta(x_a)]\phi_g(p) = \theta_{\phi_g(p)}(x_a(\phi_g(p)))$. On the other hand one has $[(\text{Ad}^*(g))Jp]a = Jp[\text{Ad}(g^{-1})a] = J_{\text{Ad}(g^{-1})a}(p) = [\theta(x_{\text{Ad}(g^{-1})a})](p) = \theta_p[d\phi_p(e)(\text{Ad}(g^{-1})a)]$.

The fact that $\exp t a$ is the one parameter group of $a \in g$, implies that $g^{-1}(\exp t a)g$ is the one parameter group of $\text{Ad}(g^{-1})a$; in fact, the curve $g^{-1}(\exp t a)g$ passes through $e \in G$ for $t = 0$ and its derivative at $t=0$ is $\frac{d}{dt}(g^{-1}(\exp t a)g)|_{t=0} = \frac{d}{dt}(\text{Ad}(g^{-1})a)|_{t=0} = d\text{L}_{g^{-1}} \circ dR_g\left(\frac{d}{dt} \exp t a\right)|_{t=0} = d\text{L}_{g^{-1}} \circ dR_g(a) = \text{Ad}(g^{-1})a$. Consequently $[(\text{Ad}^*(g))Jp]a = \theta_p\left[\left(\frac{d}{dt} \exp t \text{Ad}(g^{-1})a(p)\right)_{t=0}\right] = \theta_p\left[\left(\frac{d}{dt}(\phi_{g^{-1}} \circ \exp t a \circ \phi_g(p))\right)_{t=0}\right] = \theta_p\left[d\phi_{g^{-1}}\left(\frac{d}{dt} \exp t a(\phi_g(p))\right)_{t=0}\right] = \theta_{\phi_g(p)}(x_a(\phi_g(p)))$, the last equality being true because $\phi_g^* \theta = \theta$.

The proof is then complete. □

The Reduced Phase Space

Given an exact symplectic group action $G \times M \rightarrow M$ on an

exact symplectic manifold $(M, d\theta)$, let us consider the corresponding moment map $J : M \rightarrow \mathfrak{g}^*$. Fix $\mu \in \mathfrak{g}^*$ and consider the set

$$J^{-1}(\mu) = \{p \in M \mid J(p) = \mu\}.$$

In the example 3.2, G is $SO(3)$ and $J^{-1}(\mu)$ consists of those states for which the angular momentum vector μ is fixed. By the equivariant property, the isotropy subgroup

$$G_\mu \stackrel{\text{def}}{=} \{g \in G \mid \text{Ad}^*(g)\mu = \mu\}$$

acts on the set $J^{-1}(\mu)$, which in the example consists of all rotations leaving fixed the angular momentum vector μ . Again, in example 3.2, if $\mu \neq 0$, G_μ is a one-dimensional rotation subgroup $SO(2)$. To eliminate this angle one considers the quotient set $J^{-1}(\mu)/G_\mu$, which corresponds to the elimination of the "ignorable" angle of rotation. Under appropriate assumptions, for example (see [A], Appendix 5), if μ is a regular value of J , if the isotropy group G_μ is compact and acts on $J^{-1}(\mu)$ without fixed points, it is possible to construct the bundle

$$\pi : J^{-1}(\mu) \rightarrow \tilde{M} = J^{-1}(\mu)/G_\mu,$$

and \tilde{M} is called the reduced phase space; \tilde{M} is a symplectic manifold and its structure is given by a two form $\tilde{\omega}$ which is defined

as follows: if $j : J^{-1}(\mu) \rightarrow M$ is the injection map then $j^* \omega$ is the pullback of $\omega = d\theta$ to $J^{-1}(\mu)$. This form $j^* \omega$ is invariant under G_μ and therefore there exists $\tilde{\omega}$ in the quotient, such that $\Pi^* \tilde{\omega} = j^* \omega$. Moreover, if H is any Hamiltonian function invariant under the action ϕ_g , the reduced Hamiltonian flow $X_{\tilde{H}}$ on $(\tilde{M}, \tilde{\omega})$ is defined by $d\tilde{H} = -X_{\tilde{H}} \lrcorner \tilde{\omega}$, where the Hamiltonian function \tilde{H} is such that $\tilde{H} \circ \Pi = H \circ j$, that is, the restriction of H to $J^{-1}(\mu)$ is invariant under G_μ and defines \tilde{H} in the quotient (see [A] Apendice 5 and [A-M]).

§ 4 - PERSISTENCE OF TORI. THE THEOREM K.A.M. (Kolmogorov, Arnold and Moser)

Assume it given an integrable system of Hamiltonian function H_0 , with the hypothesis of the Theorem 1.2 of Arnold and Liouville. Assume also that in a neighborhood of the Torus M_λ , diffeomorphic to $B \times T^n$, B being a ball in \mathbb{R}^n , there are action-angle canonical coordinates (I, φ) and x_{H_0} is given in $B \times T^n$ by

$$\frac{dI}{dt} = 0, \quad \frac{d\varphi}{dt} = v_0(I),$$

so that $H_0 = H_0(I)$ and $v_0(I) = \frac{\partial H}{\partial I}(I)$.

If, moreover, $\det \frac{\partial^2 H_0(I)}{\partial I^2} = \det \frac{\partial v_0(I)}{\partial I} \neq 0$, the system x_{H_0} is called non-degenerate. In this case the frequencies (v_0^1, \dots, v_0^n) are non-resonant, that is, $\langle v_0, k \rangle \neq 0$ for all sequences $k \neq 0$ of integers, and the orbits are dense in each invariant torus $I = \text{cte}$, which is then the closure of the orbits. This means that if the frequencies are non resonant, the tori do not depend on the choice of the action-angle coordinates.

Denote (I, φ) by (p, q) and consider a perturbation on the non-degenerate Hamiltonian by

$$H = H_0(p) + H_1(p, q)$$

with $H_1(p, q+2\pi) = H_1(p, q)$, where $H_1(p, q)$ is small in a sense that will be precised below. The equations for the perturbed Hamiltonian are

$$\dot{q} = v_0(p) + \frac{\partial H_1}{\partial p}, \quad \dot{p} = -\frac{\partial H_1}{\partial q}.$$

All the data in the statement of the next theorem are supposed to be analytic and x_{H_0} non-degenerate. If one selects a non-resonant frequency $v = v^*$, the equations on the invariant nonperturbed torus $T_0(v^*)$ are characterized by $p = p^*$ where $v^* = v_0(p^*)$.

Theorem 4.1: (K.A.M.)

Given $K > 0$ and for almost all non-resonant v^* (except for a set of Lebesgue measure zero), there exist $\varepsilon > 0$ and a map $p = p(Q)$, $q = q(Q)$ from an abstract torus $T = \{Q \bmod 2\pi\}$ into $\mathbb{B} \times \mathbb{T}^n$ such that according to the perturbed system one has $\dot{Q} = v^*$ and $|p(Q) - p^*| < K$, $|q(Q) - Q| < K$, provided that $|H_1| < \varepsilon = \varepsilon(K, v^*, H_0)$.

Proof. (see [A-A]).

The meaning of the Theorem K.A.M. is that there exists an invariant torus $T(v^*)$ of the perturbed system, close to the torus $T_0(v^*)$, for almost all v^* (except for a set of measure zero of frequencies). The union of all tori $T(v^*)$ is a set with positive measure in the phase space and its complement has measure which tends to zero as $|H_1| \rightarrow 0$.

The theorem K.A.M. was presented by Kolmogorov, proved by Arnold in the analytic case and by Moser in the C^k case, $k=333$, when $n=2$. Today, one finds other versions for this remarkable result, even C^k versions ($k > 2n$, etc.).

The behavior of the trajectories which are in the complement of the invariant tori set is not completely known. If $n=2$, the phase space has dimension four, and then two tori T^2 separate in two connected components a surface of energy of dimension three. If one trajectory starts between two tori, it always remains between these tori. But for $n > 2$ the tori T^n do not separate a hyper-surface of energy (dim. $2n-1$) and apparently a trajectory could start close to two tori at $t=0$ and for big times it could go far-way from them; this phenomenon is called the diffusion of Arnold and it is an important field of research now days.

REFERENCES

[A] Arnold V. - "Méthodes mathématiques de la Mécanique Classique", Editions Mir, 1976.

[A-A] Arnold V., Avez A. - "Ergodic Problems of Classical Mechanics", Benjamin 1968.

[A-M] Abraham R., Marsden J. - "Foundations of Mechanics", Benjamin 1978.

[F] Flaschka H. - "The Toda lattice II. Existence of integrals". Physical Review B vol. 9 n° 4, 1974 (p.1924).

[H] Hénon M. - "Integrals of the Toda lattice". Physical Review B vol. 9 n° 4, 1974 (p.1921).

[M-1] Moser J. - "Finitely many mass points on the line under the influence of an exponential potential" - An integrable system - Lect. Notes in Physics, Springer 1975.

[M-2] Moser J. - "Three Integrable Hamiltonian Systems Connected with Isospectral Deformations" - Advances in Math 16 197-220 (1975).

[M-3] Moser J. - "Various aspects of Integrable Hamiltonian Systems" - CIME Lectures Bressanone Italy, June 1978.

"RELATÓRIO TÉCNICO"
DEPARTAMENTO DE MATEMÁTICA APLICADA
TÍTULOS PUBLICADOS

RT-MAP-7701 - Ivan de Queiroz Barros
On equivalence and reducibility of Generating Matrices
of RK-Procedures - Agosto 1977

RT-MAP-7702 - V.W. Setzer
A Note on a Recursive Top-Down Analyzer of N.Wirth - Dezembro 1977

RT-MAP-7703 - Ivan de Queiroz Barros
Introdução a Aproximação Ótima - Dezembro 1977

RT-MAP-7704 - V.W. Setzer, M.M. Sanches
A linguagem "LEAL" para Ensino básico de Computação - Dezembro 1977

RT-MAP-7801 - Ivan de Queiroz Barros
Proof of two Lemmas of interest in connection with discretization
of Ordinary Differential Equations - Janeiro 1978

RT-MAP-7802 - Silvio Ursic, Cyro Patarra
Exact solution of Systems of Linear Equations with Iterative Methods
Fevereiro 1978

RT-MAP-7803 - Martin Grötschel, Yoshiko Wakabayashi
Hypohamiltonian Digraphs - Março 1978

RT-MAP-7804 - Martin Grötschel, Yoshiko Wakabayashi
Hypotraceable Digraphs - Maio 1978

RT-MAP-7805 - W. Hesse, V.W. Setzer
The Line-Justifier: an example of program development by transformations
Junho 1978

RT-MAP-7806 - Ivan de Queiroz Barros
Discretização
Capítulo I - Tópicos Introdutórios
Capítulo II - Discretização
Julho 1978

RT-MAP-7807 - Ivan de Queiroz Barros
(r',r) - Estabilidade e Métodos Preditores-Corretores - Setembro 1978

RT-MAP-7808 - Ivan de Queiroz Barros
Discretização
Capítulo III - Métodos de passo progressivo para Eq. Dif. Ord. com
condições iniciais - Setembro 1978

RT-MAP-7809 - V.W. Setzer
Program development by transformations applied to relational Data-Base
queries - Novembro 1978

RT-MAP-7810 - Nguiffo B. Boyom, Paulo Boulos
Homogeneity of Cartan-Killing spheres and singularities of vector
fields - Novembro 1978

RT-MAP-7811 - D.T. Fernandes e C. Patarra
Sistemas Lineares Esparsos, um Método Exato de Solução - Novembro 1978

RT-MAP-7812 - V.W. Setzer e G. Bressan
Desenvolvimento de Programas por Transformações: uma Comparação entre
dois Métodos - Novembro 1978

RT-MAP-7813 - Ivan de Queiroz Barros
Variação do Passo na Discretização de Eq. Dif. Ord. com Condições
Iniciais - Novembro 1978

RT-MAP-7814 - Martin Grötschel e Yoshiko Wakabayashi
On the Complexity of the Monotone Asymmetric Travelling Salesman
Polytope I: HIPOHAMILTONIAN FACETS - Dezembro 1978

RT-MAP-7815 - Ana F. Humes e E.I. Jury
Stability of Multidimensional Discrete Systems: State-Space
Representation Approach - Dezembro 1978

RT-MAP-7901 - Martin Grötschel, Yoshiko Wakabayashi
On the complexity of the Monotone Asymmetric Travelling Salesman
Polytope II: HYPOTRACEABLE FACETS - Fevereiro 1979

RT-MAP-7902 - M.M. Sanches e V.W. Setzer
A portabilidade do Compilador para a Linguagem LEAL - Junho 1979

RT-MAP-7903 - Martin Grötschel, Carsten Thomassen, Yoshiko Wakabayashi
Hypotraceable Digraphs - Julho 1979

RT-MAP-7904 - N'Guiffo B. Boyom
Translations non triviales dans les groupes (transitifs) des
transformations affines - Novembro 1979

RT-MAP-8001 - Ângelo Barone Netto
Extremos detectáveis por jatos - Junho 1980

RT-MAP-8002 - Ivan de Queiroz Barros
Medida e Integração
Cap. I - Medida e Integração Abstrata - Julho 1980

RT-MAP-8003 - Routo Terada
Fast Algorithms for NP-Hard Problems which are Optimal or Near-Optimal
with Probability one - Setembro 1980

RT-MAP-8004 - V.W. Setzer e R. Lapyda
Uma Metodologia de Projeto de Bancos de Dados para o Sistema ADABAS
Setembro 1980

RT-MAP-8005 - Imre Simon
On Brzozowski's Problem: $(1\cup A)^* = A^*$ - Outubro 1980

RT-MAP-8006 - Ivan de Queiroz Barros
Medida e Integração
Cap. II - Espaços Lp - Outubro 1980

RT-MAP-8101 - Luzia Kazuko Yoshida e Gabriel Richard Bitran
Um algoritmo para Problemas de Programação Vetorial com Variáveis
Zero-Um - Fevereiro 1981

RT-MAP-8102 - Ivan de Queiroz Barros
Medida e Integração
Cap. III - Medidas em Espaços Topológicos - Março 1981

RT-MAP-8103 - V.W. Setzer, R. Lapyda
Design of Data Models for the ADABAS System using the Entity-Relationship
Approach - Abril 1981

RT-MAP-8104 - Iván de Queiroz Barros
Medida e Integração
Cap. IV - Medida e Integração Vetoriais - Abril 1981

RT-MAP-8105 - U.S.R. Murty
Projective Geometries and Their Truncations - Maio 1981

RT-MAP-8106 - V.W. Setzer, R. Lapyda
Projeto de Bancos de Dados, Usando Modelos Conceituais
Este relatório Técnico complementa o RT-MAP-8103. Ambos substituem o
RT-MAP-8004 ampliando os conceitos ali expostos. - Junho 1981

RT-MAP-8107 - Maria Angela Gurgel, Yoshiko Wakabayashi
Embedding of Trees - August 1981

RT-MAP-8108 - Ivan de Queiroz Barros
Mecânica Analítica Clássica - Outubro 1981

RT-MAP-8109 - Ivan de Queiroz Barros
Equações Integrais de Fredholm no Espaço das Funções A-Uniformemente Contínuas
- Novembro 1981

RT-MAP-8110 - Ivan de Queiroz Barros
Dois Teoremas sobre Equações Integrais de Fredholm - Novembro 1981

RT-MAP-8201 - Siang Wun Song
On a High-Performance VLSI Solution to Database Problems - Janeiro 1982

RT-MAP-8202 - Maria Angela Gurgel, Yoshiko Wakabayashi
A Result on Hamilton-Connected Graphs - Junho 1982

RT-MAP-8203 - Jörg Blatter, Larry Schumaker
The Set of Continuous Selections of a Metric Projection in C(X)
- Outubro 1981

RT-MAP-8204 - Jörg Blatter, Larry Schumaker
Continuous Selections and Maximal Alternators for Spline Approximation
- Dezembro 1981

RT-MAP-8205 - Arnaldo Mandel
Topology of Oriented Matroids - Junho 1982

RT-MAP-8206 - Erich J. Neuhold
Database Management Systems; A General Introduction - Novembro 1982

RT-MAP-8207 - Béla Bollobás
The Evolution of Random Graphs - Novembro 1982

RT-MAP-8208 - V.W. Setzer
Um Grafo Sintético para a Linguagem PL/M-80 - Novembro 1982

RT-MAP-8209 - Jayme Luiz Szwarcfiter
A Sufficient Condition for Hamilton Cycles - Novembro 1982

RT-MAP-8301 - W.M. Oliva
Stability of Morse-Smale Maps - Janeiro 1983

RT-MAP-8302 - Béla Bollobás, Istvan Simon
Repeated Random Insertion into a Priority Queue - Fevereiro 1983

RT-MAP-8303 - V.W. Setzer, P.C.D. Freitas e B.C.A. Cunha
Um Banco de Dados de Medicamentos - Julho 1983

RT-MAP-8304 - Ivan de Queiroz Barros
O Teorema de Stokes em Variedades Celuláveis - Julho 1983

RT-MAP-8305 - Arnaldo Mandel
The 1-Skeleton of Polytopes, oriented Matroids and some other lattices -
- Julho 1983

RT-MAP-8306 - Arnaldo Mandel
Alguns Problemas de Enumeração em Geometria - Agosto 1983

RT-MAP-8307 - Siang Wun Song
Complexidade de E/S e Projetos Optimais de Dispositivos para Ordenação -
- Agosto 1983

RT-MAP-8401-A - Dirceu Douglas Salvetti
Procedimentos para Cálculos com Splines
Parte A - Resumos Teóricos - Janeiro 1984

RT-MAP-8401-B
Parte B - Descrição de Procedimentos - Janeiro 1984

RT-MAP-8401-C
Parte C - Listagem de Testes - Janeiro 1984

RT-MAP-8402 - V.W. Setzer
Manifesto contra o uso de computadores no Ensino de 19 Grau - Abril 1984

RT-MAP-8403 - G. Fusco e W.M. Oliva
On Mechanical Systems with Non-Holonomic Constraints: Some Aspects of the
General Theory and Results for the Dissipative Case - Julho 1984

RT-MAP-8404 - Imre Simon
A Factorization of Infinite Words - Setembro 1984 - São Paulo - IME-USP
7 pg.

RT-MAP-8405 - Imre Simon
The Subword Structure of a Free Monoid - Setembro 1984 - São Paulo - IME-USP
6 pg.

RT-MAP-8406 - Jairo Z. Gonçalves e Arnaldo Mandel
Are There Free Groups in Division Rings? - Setembro 1984 - São Paulo - IME-USP
25 pg.

RT-MAP-8407 - Paulo Feofiloff and D.H. Younger
Vertex-Constrained Transversals in a Bipartite Graph - Novembro 1984
São Paulo - IME-USP - 18 pg.

RT-MAP-8408 - Paulo Feofiloff
Disjoint Transversals of Directed Coboundaries - Novembro 1984
São Paulo - IME-USP - 126 pg.

RT-MAP-8409 - Paulo Feofiloff e D.H. Younger
Directed cut transversal packing for source-sink connected graphs -
São Paulo - IME-USP - 16 pg. - Novembro 1984

RT-MAP-8410 - Gaetano Zampieri e Ângelo Barone Netto
Attractive Central Forces May Yield Liapunov Instability - Dezembro 1984
São Paulo - IME-USP - 8 pg.

RT-MAP-8501 - Siang Wun Song
Disposições Compactas de Árvores no Plano - Maio 1985
São Paulo - IME-USP - 11 pg.

RT-MAP-8502 - Paulo Feofiloff
Transversais de Cortes Orientados em Grafos Bipartidos - Julho 1985
São Paulo - IME-USP - 11 pg.

RT-MAP-8503 - Paulo Domingos Cordeiro
On the Range of the Levy Complexity - Outubro 1985
São Paulo - IME-USP - 113 pg.

RT-MAP-8504 - Christian Choffrut
Free Partially Commutative Monoids - Setembro 1985
São Paulo - IME-USP - 110 pg.

RT-MAP-8505 - Valdemar W. Setzer
Manifesto Against the use of Computers in Elementary Education - Outubro 1985
São Paulo - IME-USP - 40 pg.

RT-MAP-8506 - Ivan Kupka and Waldyr Muniz Oliva
Generic Properties and Structural Stability of Dissipative Mechanical
Systems - Novembro 1985
São Paulo - IME-USP - 32 pg.

RT-MAP-8601 - Gaetano Zampieri
Determining and Constructing Isochronous Centers - Abril 1986
São Paulo - IME-USP - 11 pg.

RT-MAP-8602 - G. Fusco e W.M. Oliva
Jacobi Matrices and Transversality - Abril 1986
São Paulo - IME-USP - 25 pg.

RT-MAP-8603 - Gaetano Zampieri
Il Teorema di A.E. Nother per finiti gradi di libertà e per i Campi -
Maio 1986 São Paulo - IME-USP - 18 pg.

RT-MAP-8604 - Gaetano Zampieri
Stabilità Dell'Equilibrio Per $\dot{x}+xf(x)=0$, $\dot{y}+yf(x)=0$, $f \in C^1$.
São Paulo - IME-USP - 16 pg.

TÍTULOS PUBLICADOS

RT-MAP-8605 - Angelo Barone Netto e Mauro de Oliveira Cesar
Nonconservative Positional Systems - Stability - Junho 1986
Sao Paulo - IME-USP - 14 pg.

Aplicado

RT-MAP-8606 - Júlio Michael Stern
Fatoração L - U e Aplicações - Agosto 1986
Sao Paulo - IME-USP - 105 pg.

RT-MAP-8607 - Afonso Galvão Ferreira
O Problema do Dobramento Optimal de PLAs - Agosto 1986
Sao Paulo - IME-USP - 73 pg.

RT-MAP-8608 - Gaetano Zampieri
Liapunov Stability for Some Central Forces - Novembro 1986
Sao Paulo - IME-USP - 17 pg.

RT-MAP-8701 - A. Bergamasco, P. Cordaro and J. Hounie
Global Properties of a Class of Vector Fields in the Plane - Fevereiro 1987
Sao Paulo - IME-USP - 37 pg.

RT-MAP-8702 - P. Cordaro and J. Hounie
Local Solvability in C^1 of Over-Determined Systems of Vector Fields -
Fevereiro - Sao Paulo - IME-USP - 32 pg.

RT-MAP-8703 - Imre Simon
The Nondeterministic Complexity of a Finite Automaton - Fevereiro 1987
Sao Paulo - IME-USP - 20 pg.

RT-MAP-8704 - Imre Simon
Infinite Words and a Theorem of Hindman - Abril 1987
Sao Paulo - IME-USP - 8 pg.

RT-MAP-8705 - Sônia Regina Leite Garcia
Relations Between Critical Points of f and its "Radial Derivate" -
Junho 1987 - IME-USP - 38 pg.

RT-MAP-8706 - Gaetano Zampieri
On the Periodic Oscillations of $x = g(x)$ - Abril 1987
Sao Paulo - IME-USP - 25 pg.

RT-MAP-8707 - Imre Simon
Factorization Forests of Finite Height - Agosto 1987
Sao Paulo - IME-USP - 36 pg.

RT-MAP-8708 - Mauro de O. César e Gaetano Zampieri
On Liapunov Stability for $x + xf(x)=0, y + yw(x)=0$ - Dezembro 1987
Sao Paulo - IME-USP - 19 pg.

RT-MAP-8709 - Routo Terada
Um Código Criptográfico para Segurança em Transmissão e Base de Dados -
Marco - Sao Paulo - IME-USP - 31 pg.

BIBLIOTECA "CARLOS BENJAMIN DE LYRA"
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Oliveira and M.S.A. Castilla
Topics on Hamiltonian Systems - Dezembro 1987
— UNIVERSIDADE DE SÃO PAULO - IME-USP - 49 pg.

Cidade Universitária

RT-MAP-8801 - G. Fusco and W.M. Oliva
C.P.66.281 - AG. Periodic Theorems for the Existence of Invariant Subspaces - Abril 1988
05389-970 - SÃO PAULO - BRASIL
Tel: 818.6174; 818.6109; 818.6269 Fax: 818.5036
e-mail: bib@ime.usp.br