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' ' • INTRODUCTION TO H,~JULTONIA.f snuns. Tl:E TU[O"E:. "' ; .... :;,:.:> 
AND UOUVILLE 

Let M • M2n be an even dimensional dit:ferentiable mani­
fold. A symplect ic menifolO le • pair (M;ca,) ,Miere w is en alter~ate 
nondegenerate and cloeed 2-form on H. (We will assume enough dif­
ferentiability). 

• If (M, w) and (N, v> are S)'111plectic 111anifolds and f s H .. N 
is a diffeomorphism euch that f•v • w, that is, fie a eymplectic 
presening dltfeomorphbm, f·b eaid to be• canonical tranaforpa-

Example 1.11 "• R20 • {(q,p)} with the natural 2-form 

, 
., • dpl ,.. dql + • • • + dpn .i< dqn· 

~xa■ple 1.21 M • T*Q, the cotangent bundle of any differentiable. 
manifold Q, ie a B)'lllplectie manifold. The 2-form w will be,in thie 
case, the derivative d9 of a · 1~form 8 described below. Let isT*O+O · . . . . . 
be the canonical projection and, for all Px E T*Q, op E Tp (T*Q) 

. X X one define■ 



2 

-Any local coordinate system U(q1 , ••• ,qn) on O induces naturally a 

■yetem of coordinates (t)-
1 (u)(q,p), qi• qi• t, i•l, .•. ,n. For 

1 i 8 
n _ n _ 

t1ese coord nates, • I p.dq. so that w • d8 • I dpi A dq .• 
i•l 1 1 i•l 1 

. A smooth function H 

llfil ~Hon" by ·the fonnula 

M ~ R'defines a Hamiltonian vector 

·. for all vector fields~ on N. x8 ie well defined since w ie non­

degenerate. 

. .. , .. ·.... .. 

An important · result ' of. Darboux gives us local canonical 

coordinates for which w has a· useful expression: 

Theore•· 1.11 .Ln (M,co) be a s·ymplectic manifold. Every point x EM 

has o coordinate neighbourhood u • U(q1, •••• qn,P1 , •• ,pn) such that . .. 

(For a · proof see [A], [A-M]). 

· Using · theee coordinates, called canonical coordinates 

the local expression of the vector field x8 assumes the classical 

.-

' ·1 
.l 

,form; . 1 
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i•l, ••• , n. 

Reaarta1 The ,ollowing facta' will be mentioned without proof•. 

l • Every 1ymplectic manifold (M,111) l■ orientable ■inc• it adait■ th• following volume form 

'1•11111 ••• 11111 

i - If ♦~ denotes the one-parameter pseudogroup of local dif~ .' feomorp~hms generated b~-Xfi, then < ♦~>*w • 11>, _ i.e. _,.. the local. flow ♦~ ·preserve• the eymplectic ■tructure. Jn particular, -♦~ l preserves the volume form Q. . \ . 
~ , . 

• .• • • -r• .. i . . · .. '.- ., 
3 - The Hamiltonian functton Hie constant along the trajectories :-of x8 • that is, · 

This is the· so called conservation of energy law • . 

, The Poisson bracket (H,G) of two c•-runction■ Hand G on (M,111) i■ th• c•~f,nc~ion defin~d by1 
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This operation turn• C~(M) into a Lie algebra since the Jacobi 

identity 

.~ 
((F,G),H) + ((G,H),F) + ((H,F),G) • 0 

holds true. Moreover, the map H ~ XH is a homomorphism of 

Lie­

bracket for two vector fields on H. When (H,G) • 0 the func­

tions Hand Gare said to be in involution and, since [~,xGJso, 
XH dnd XG are commuting vector fields. This also means that 

~he local flows+~ and ♦G satisfies 

When;~ is defined for all t E ~. XH is said to be complete. 

Example 1.3: According to Newton's law, the motion of a particle 

under a time independent potential V • V(x} is _gi~ by the second order 
av n • -av 2n equation i. ax , ' XE R, equivalent to*. y, y - 7ix,(x.y)ER • 

This system is associated to the Hamiltonian function 

H(x,y) • l IYl 2 + V(x). 
2 
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The theore■ of Arnold and liou,ille 

Let (M,w) be a eymplectic manifold and XH be the Hamil­
tonian vector field corresponding to H. A smooth function F:M ➔ R 
is a first integral of XH if ·Fis constant along the trajectories 
of x8 , that is, dF(XH) • O. Since (F,H) • w(XH,XF) • dF(XH), one 
sees that Fis a first integral of XH if and only if F and Hare 
in involution. The Jacobi identity shows that the set· of all first 
integrals is ,; Lie subalgebra of c•(M). 

Theorem ~-2: ~ (M2n,w) be a symplectic manifold and 
be functions in involution. Consider a connected component MA 21 
t.he level set{~ e M2n1Fi(x)_· • Ai, i•l, ••• ,n} for A•0.1 ,.:.,An)ER~. 
Assume dFl(x), ••• ,dFn(x) are linearly independent for any Xe MA. 
Then: 

1 _J\ is an-dimensional submanifold of M2n invariant 1~A under _the 
flows of the commuting vector fields XF , ... ,x.F and w<')-.•')- )-0. 

1 n · 1 j 

2 - If XF , •• ~, XF pre complete on MA thi;, m,nifold is diffeomorphic 1 n n-k k to a product of R by a torus T, for some integer k, O~k~n. 
Furthermore, il MA is compact then MA is diffeomorphic to 
l..QDUi. Tn • {(f1 , ••• ,,n)mod 2w}. 

a 

3 - ll MA is compact and under the same hypothesis in 2), the flow 
of the vector field x8 , for H • F 1 , !iefin;,s m Mi guasiperiodic 
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motions ,ct) given, in the enqular coordinates•• <,1 , •.• ,,
0

i 

£i• v , . v • vO.). 
dt 

• - Under the same hypothesis on M>. in .3), it is possible to find 
functions I 1 , ••• ,In depending only on F1 , ••• ,Fn, called action 
coordinates such that ( 11' , , • , I , '1, .... , , ) are canonical coor: . n n • 
dinates in a neighbourhood of MA and then x8 is given by: 

so that 

r Pr~;_· :The 

sll • 0 
dt 

H • H(I) 

statement 

Sl!R. • \l(I) • 
dt 

and v(I) -11! 
ar 

. . . .. 

(I). 

1) is an immediate 

that ~ is a ·regular value of the function 

consequence of the fact 

in invol~tion. To prove 2), note that. the condition (Fi,Fj) • 0 im-
plies [xF , XF ] • O, _so, by completeness 

t • · i 8 j t +i•• tj • ♦ j • ♦i, t,s ER, and one can 

of XF., their flows satisfy 
1 

define an action A of the 
. n Abelian add~tive group~ on M>. in the following way 

for all x EM). and all (t1 , •• .' ,tn) E Rn. Thia action is transitive 

., . 
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on MA, that is MA is an orbit of Rn under the ,ction A • . ln fact, 

for a fixed X E "A' the map 

Ax:(tl, ••• ,tn) E Rn I+ A((t1 , ••• ,tn),x) EMA 

is a local diffeomorphism since dA (--L I ) • XF (x) 
X ati t•O , i 

and the 

vector·s XF. (x·), i•l, •.. ,n, are linearly independent. The inverse 
l. 

function theorem implies that each orbit of.Rn in MA is open, and 
since MA is connected, the ~ull orbit is MA. Let x EMA and 
G • Gx • {t•(t1 , ••• ,tn) E RnlA(t,x) • x} be the isotropy group at 
the point x. It can be easily stiown that G does not depend on the 
choice of x and that G is a discrete subgroup of Rn. 
there exist k vectors e1 , .•. ,ek E G such that 

ThereforJi \ 

Since MA is diffeomorphic t~ the quotient ~n/G ; it follows that MA 
is diffeomorphic to ~n-k MT~. The statement 2) is thus proved. 
Now, if MA is compact, it is'clear that MA is diffeomorphic to a 
torus Tn • {(q,1 , ••• ,1p

0
)mod 21t}. The map (1p1 , ... ,!Jln) ..:. _A(i~lq,iei,x) 

is a diffeomorphism of the unit rectangle O < q,i < 1, i•l, .•• ,n . , 
into the torus MA: these are the angular coordinates. In co­
ordinates (t1 , ••• ,tn) the int~g:al curve ♦~(~) of XH through x 
is the line' t 2 • t 3 • • ·tn • o. Since the change of coordina'tes_ 
t. I+ cp is linear, then the in~egral . curves of ~ff , in angular .. co-
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~rdinates, are given by cp(t) • vt + cp(O). To prove 4) one sees 
that the compactness of MA and the implicit function theorem imply 
that there exist a ball. Bin Rn and a neighborhood W of MA, dif­
feomorphic to ·Tn x B, such that Tn x (O} is the image of HA under 
this diffeomorphism. One sees that (cp1,:··•'n•F1 , ••• ,Fn) is a 
global system of coordinates for w under which x

8 
~s given by 

' 
!U: • O, S2 • v(F). dt dt 

These coordinates may not be canonical; but, as can be seen in [A, 
pag 276] ,· it ia possible to find n other functions 11 , ••• , In, de­
pending o~ly on F1 , ••• Fn, called the action coordinates such that 
( 1

1 , . ,·., In• cp1 , .•. , cpn) is ·a global system of canonical. coordinates 
for a neighborhood ·W of M,_, diffeomorphic to ·Tn xii, B a ball in ., 
Rn, ·and _M}. is the image· of Tn x {0} under this diffeomorphism. The 
syst_em XH in these coordinates (I, cp) 

so that, H • . H(I) and v(I) • .ill (I). 
31 , , 

is given by~• o,a • v(I), dt dt 
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I 2 - INTEGRABLE SYSTEMS 

In the present notes an integrable system will mean a 

Hamfltonian system defined on a· symplectic manifold (M2n,w) which 

admits n first integrals Fi•·~•,Fn in involution and independent 
that is dF1(x), ••• ,dFn(x) are linearly independent at all x EM, 

It will be presented now some examples of integrable 
systems. The symplectic manifold will be R2~, or , a proper open set 
of it, whith the canonical 2-form, unless mention in contrary. 

·Example 2.lz Harmonic oscillators 

The Hamiltonian function H • l .¥ 
· 2 1•1 

, · defines the differential equations 

The functions 
.ri • qf +Pf·~ i•l,,,.,n, are first integrals indepdndent and · in 
involution. 

Example 2.2: 

Consider a Hamiltonian function H depending e,nly ori the 
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variables p1 , ••. ,pn, so that 1!!... • 0, i•l~···,n· The functions aq. . l. . Fi• pi, i•l, ••• ~n prove the integrability of the system. 

Example 2.3: Toda lattice for finitelv manv points 

Consider n points on the line with coordinates q1 , .•• ,qn, 

satisfying the differential equations 

. - au 
aq. 

l. 

. (J 

,i•l, ... ,n, 

n-1 where the potential is given by U • k!l exp(qk - qk+i)· The cor-

responding Hamiltonian system has Hamiltonian H • ½IPl 2+utql, ... ,<In)· 
The iptegrability was discovered by Henon and Flaschka 

using different methods; it will be presented here the 

of Flaschka and Moser (see also . [M-1], [M-2], [M--3]_). 

Flaschka constructed the tridiagonal matrices 

L • 
. . 

al . • • .. . . 
•·• • • •• 11n-l 

an-1 'bn 

and B • 

and showed that ttie Hamiltonian system 

( [H], [F]) 

approachs 
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q1. • P Pi• - au • exp(qi-1 i ' aq1 

i•l, ••• ,n (here q0 •_..,and qn+l • +111), is equivalent to the system 
l • ..£. L • [B,L] •BL~ LB, if one defines dt 

The completeness of the Toda lattice system follows from the next 

lemma. 1:· 

Lemma 2.1: ll U • . U(q~, ••• ; qn) is bounded below, the system 

has all sqlut.ions 
defined on - 00 

Proof. ~y hypothesis, there exists a real constant b such t hat 
U(q).? b. Therefore 

½IPl 2 ~ H(p(t),q(t)) - b. 

Then, lp(t) I ~ IC • (H(p(O) ,q(O)) - b) 112 • If (m,M) is the 11axima·1 

in_terva~ of definition of the solution (p(t) ,q(t)) and t 0 and t are 
in (m,M), one has 
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u ·M <+111 , one gets lq(t) I ~ jq(t
0

) I + IC(M - t
0

) so that (p(t) ,q(t)) 

remains in a compact subset of R 2" for all t E [t
0 ,M), which is e 

contradic t ion . Therefore, M • +•. Analogously, one proves that 

11 • -111. 
0 

It is well known that L(t) has real simple eigenvalues 

since L(t) is a Jacobi matrix. The next lelllffla proves that these 

, eigenvalues do not depend on t. 

Lemma 2.2: For any solution L(t) of i • [e,L], there exists an 
orthogonal matrix O<t) ·such that L(t) • TQ(t) L(O) Q(t) with Q(t) 

given by o ·- -QB, Q(O) - I. 

depend' on t. 

4 • 

I · , 

l Pr~f~ We have 

. . 
So. the eigenvalues of L(t) 

Therefore, · Q(t) TQ(t) • Q(O) TQ(O) • I. 

do not 

Define M(t) _. TQ(t) L(O) Q(t). · .It is easy to see that M(t) sa-

1 . 

f. 

. , 



■ . 

13 

tisfies M • [B,M] and M(O) • L(O). By uniqueness of s~lution; it 
results M(t) • L(t). Since L(~) is similar to L(O), it 
that the eigenvalues of L(t) do not depend on time t. 

follows 

The next lemma proves that, as t goes to+• or-•, the 
matrix L(t) tends to a diagonal matrix with distinct eigenvalues. 

Lemma 2.3: The elements a1 (t),. •• ,an_1 (t), b1 (t), ••• ,bn(_t) are 
• bounded functions, lim ak(t) • 0 and lim bi(t) • bi(tm). 

t➔im t➔tm 

Moreover 

and < b (-... ) n < +m. 

Proof. By Lemma 2.2, L(t) • TO(t) L(O) Q(t); them IL(t)I ~ IL(O)I 
which implies that ak(t) and bi(t) are ·bounded functions. ~he dif­
ferential equation i • [e,L] · can be written as the system 

k•l, ••• ,(n-1), 

first integral 

j•l, .•• ,n, (here a0 
n-1 2 n H •4 t a + · 2 t k•l · k j•l 

which admits the 

J
+m 2 

integrals ak(t)dt, 
-eo 

k•l, ••• ,n-1, converge; this is true for k•l and k•n-1, because 
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and the functions bj(t) are bounded. 

equality 

Analogously, using the 

T . I (~a~(t) - 2a~(t) + 2a~-l (t) )dt • 

-T 

(b.(tl-bj(t)) IT: 

-T 

the argument follows by induction. The convergence- of a;(t)dt I+ ... 

assures that lim ak(t} • 0 
t-+t• 

lim 6j<t> • o. t-+t• 

Moreover~ 

I . 

so that 

li-m bj(t) • 
t-++ ... 

lim bj (t) • and 
t-+-a> 

_.., ' 

. -+-

2J (a~(t) - a~..:l (t) )dt + bj (0) 
0 . • 

r· 2 
2 

bj(O). -2 (aj (t) - aj_1(t))dt .+ 
-m 

Next, t~ _prove that the diagonal elements of L(m) are distinct,one 
uses the fact that the spectrum of L(t) tends to the spectrum of 
L( +m) as t-++_m _and the eigenvalu_es . of L(t) are distinct and do not 
depend on t. ·Finally, if "bk+l(_+•)-bk(+•) > 0 then ak(t) > 0 for 
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all t big enough which contradicts the fact that · lim ak(t) • O. 
t .. +m Therefore one obtains 

-m < b (+m) < n 

The next theorem proves the integrability of t~e 

0 

Toda 
lattice system. In order to do that, one considers the characte­
ristic polynomial 

( 

+ I n 

of L(t), which does not depend on t; hence 11 , ••• ,In are · first 
integrals. 

Theore• 2.1: The integra.l.§ 11 , ••• ,In are inderiend~.!1.Lj!nd in in- · 
~elution, so that the Toda lattice system is integrable. 

Proof. Consider the matrices Land M • diag(b1 , ••• ,b· ). The first . n 
integrals Ij 

c1-sense, to 

• Ij(a1 , ... ,an_1,b1 , ... ,bn .>' j•l, ••• ,n, tend, · in the 
the symmetric functions a

1 , ••• ,a , a : • aj(b1 , ••• ,b ), · · n J n j•l, ••• ,n, of the matrix M. Iri fact, 
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The functions b1 , ••• , bn are independent-, i.e., db1 , ••• , dbn are 

linearly independent everywhere in the phase space, Also, the de­

tenninant of the coefficients· of da
1, ••• ,don with respect to 

db
1·, ••. , dbn is equal to 

which, by lemma 2.3, is strictly positive fort big enough. It 

follows now that dI1 , •• ,,dln are linearly independent in a neigh­

borhood of (p1 (+m), ••• ,pn(tm)), then everywhere in the phase space, 

since the flow of a vector field is a diffeomorphism. The func-

tions a1'•··•an as functions of P1, • • •, Pn are in involution 

Since Il, • ~ • , In, as functions of P1 • ... •Pn• ql'. • • 'qn. are first 

integrals of the original Hamiltonian system, then the Poisson 
bracket (I~,Ij_} is also an inte~ral. But (Ii,Ij~ tends to_ (ai,aj)• 0 
along a~y solution, · as t➔+~. Then, . (Ii,Ij) • O everywhere. o 

Example 2.4: Then-particle system on the line, with the inverse I 

square potential considered by Caloaer o and Marchioro. 

Consider n particles on the line with coordinates 

k,i • l •••• ,n, as their 
potential, _ ~o that the equations of motion are given by 

.-, -· 



• 
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As observed by Moser in [M-2), this system possesses n integrals, 

\ ... .. ~~ 

independent and in involution, which are polynomials in 
-2 (qk - q1 ) , a fact that can be derived below following 

~k and 

the same 
lines as used for the Toda lattice system~ As before, matrices L 
and Bare introduced and the .differential equation L • BL - LB is , 
considered, which can be _transformed in the above equations of 
motion. In order to do that, set 

_1. • . • 

and define the matrices 

z(X • (z:,.) for Ct • 1, 2, ·. 

y -diag(y1 , ..• ,yn) 
I 

. (" "· et) • 
Da for et -chag j! 

1 2!k j - 2,3. 

Defining L • y + iz1 , B - iD2 - iz2 , one sees that L 1s Hermi-
tian, that is, L • L* (its conjugate tr~nspose) and B is skew-
Hermitian, that is, B - .:.e• • . The equations of 10otion in terms of 
the variables zkl. and yk • -~ k can be written as 



This last system is redundant, since on~y the (n-1) variables 
zk,k+l are independent, the other being determined by· the rela­

. -1 -1 -1 . t1ons zk1 • zkr + zrt if k,1,r distinct and zkl + z1k • o. It 
is easy to check that 

and a st~ghtforward computation shows that L • [B,L] leads to the 
equations of motion in the variables zk1 and yk. This implies, by 
a similar argument used _in the lemma 2.2, that the coeficients Ik 
of the characteristic polynomial 

det(>.I - L) 

-· are integrals of the motion. 

+ I n 

The next lemma proves that, as t goes to+• or -m, that 
the matrix L(t) tends to a real diagonal matrix with distinct 
eigenvalues. The proof is found in [M-2] and it is presented he~e 
for a sake of completenes~. 

·1.ema 2.4: The elements y
1
(t), ••• ,yn(t) and zk1 (t), k,1•1, ... ,n, 

are bounded functions, lim y~(t) • yk(tm) exist, lim zkl.(t) • 0 t•t• ~ t•tm 
~ +• > Y1 (+•) > ... ; ·> Yn(+•) > -• 

-• < yl(~•) < -~, < Yn(-m) < +• • 
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Proof. The matrix L(t) is defined for all t ER by Lemma 2.1 • 
Moreover, L(t) satiafies the equation L(t) • Q*L(O)Q where O(t) is 
an unitary matrix defined by 6 • -OB, Q(O) • I. Therefore, · L(t) 
and so its components are bounded functions oft E 1R. W°ithout loss 
of generality, the particles can be labelled according to the order . 
q1 < ••• < qn at t•O and then for all t E ~. by the conserva­
tion of energy. The next step is· to prove that there exist and are 
finite the limits lim qk(t), k•l, ••• ,n. From the equations of t-+:l:m 
motion it follows that for any T > 0 one has 

T 

½[qn-ql] (T)- ½[qn-ql] (-T) • 1T c~n (qn-qj)-3+ j~l (qj-ql)-3)dt. 

Since the left-hand side is bounded and the right-hand side is an 
increasing function of T, one sees that J+ ... (qk-q1)-3dt <.., for _.., 
k>l•l and for 1<k•n, and by in~uction for all pair (k,1) with k>1. 
Front. 

it follows that 

the velocities 

f(t) • qk+l(t) 

. T 

qk(T) - qk(O) • 2 jfk f (qk - qj}-3dt 
0 

lim qk(t) exists and is finite. The t•:I:• ' 
satisfy 

ql(+m) ~ ••• < q (+m) - n and 

ql(-m) .?. • • • .? qn (-m). 

limits of 

In fact, if 
- qk(t) and , assuming • by ,contradiction, that 



lim f(t)•b<O, one sees that 
t-+ ♦a> 

sufficiently big, t>t
0

, which 

20 

f(tl-f(t0 l < llCt-t l 2· 0 
implies that f(t) • 

-
/ 

for all t and to 
qk+i<t)-qk(t) is 

negative fort big enough, in contradiction with the fact that 
qk+l > qk. The above inequalities for the limit velocities are, 
in· fact, strict inequalities. To prove this, let cp(t) • q -q > o. n . 1 
Then½ ~(t) 2 2(qn - q1 )~ 3 

> 0, so that q, is increasing and 
q,(+ ... ) • qn(+cx,) - q1 (+m) 2 O, If, bycootradiction, ~(+m) • 0, then 
«p(t) < 0 · for all t E 1R so that cp(t) is a decreasing positive fu.nc­
tion; therefore f(t) is bounded, But, then,½ ij(t) 2 (max cp)- 3>0; 
hence integrating twice one gets 

. . which shows that cp(t) is unbounded, which is a contrsdiction 
Therefore, gn( _+m) > c;r1 (+m). This and the inequ~lities c;r1 (.+ao) ~ ••• 
~ qn(+m) imply the existence of ans such that gs(+m) < q

8
+1 (+ao) • 

It _will be shown now that q1(+m) < · q
8

(+ao). First of all, observe 
that, setting a• q 1 (+m) ~ q (+m), then s+ B 

.for all --t and t 0 -big enough. Therefore, for j > s: 

~~-

t:~ 
J .....,,..,..., 



implies that 

1 d 2 
Now, - -- (q 

2 dt2 s 

) -3 > Z(q - ql - s 

· 21 

-3 A - O(t ). Calling t(t). qs - ql + t A being a 
positive constant, one verifies that 

so that 

if tis big enough and A is 
chosen suitably. Thus~ is increasing and+<+•) > O since +(+m)•O 
leads to a contradiction. S~nce +<+•) ·7 q

8
(+m) - q1 (+m) it fol-

Analogously 

q 1 (+m) < q (+•) and, by induction, s+ n 

one 

< q ( + ... ) < + ... , n . 

and, analogously, 

> • • • > 

.. -1 Finally, since :z. • (q - q) Kl k 1' 

q (-m) n > --

proves that 

one obtains 



.. 

22-

lim ~kt (t) • o. 
a t .. tao 

The next theorem proves the integrability of the mecha­
nical system with the potential considered by Calogero· and MarchiQ 
ro. 

Theorem 2.2: The Hamiltonian system 

. - au 
aqk 

k•l, ••• ,n, 

-2 · ~ -U • t (qk - q 1 ) , i s an integrable s y stem. k<1 

Proof. Using Lemma 2.4 and following the same ideas as in Theorem 
2.1, one can prove that the integrals I 1 , ••• ,In are real func-

involution. 
□ 

Remarks. These integrals are ·rational functions of the coordi­
nates p1 , ••• ,pn an~ q 1 , ••• ,qn since they are polynomials in zkl 

) -1 and p1 , ••• ,pn' and the zk1 • (qk - q 1 fork I land zkk • 0. 
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t 3 - SYMPLECTIC ACTIONS OF A GROUP. MOMENT MAP AND REDUCTION or 
THE PHASE SPACE 

Let x8 be a Hamiltonian vector field of Hamiltonian fun£ 

tion H defined on a symplectic manifold (H2n,w); assume that the 

flow ~tH 1.·s an t of y l ct'c T one-parame er group s mp e 1. diffeomorphisms. 

Given a first integral F, that is (F,H) • O, F is constant along 

the integral curves of ♦~ ~nd His constant along the integral cux 
. t 

ves of the flow ♦F of XF; assume also XF be complete. If one con-

siders restriction of -1 
which is the H to a level surface F (c) a 

submanifold of dimension 2n-l when c is a regular value of F, one 

t sees that His- constant on the integrals curves of ♦F lying on 
-1 -1 t t F (c). Then F (c)/♦F, the manifold of the orbits of ♦F on 

F-1 (c), has dimension 2n-2 and H induces a function H which is 

well defined in the quotient. Mor,eover, any integral curve of x8 
-1 ' -on F (c) is projected on an integral durve ·of the vector field x8 

. obtained by projection of x8 • Roughly speaking, if it is known a 

first integral Fit is possible to reduce x8 to another system .x8 
with 2n-2 dimensions, . 

As in the Arnold-Liouville's theorem, if one considers k 

first integra~• F1 , ••• ,Fk in involution and independent everywhere, 

it is possible to define F • ." (F1 , ••• ,Fk):M-+ IRk and an action of 

the A~elian group Rk on the -~evel surface F-1 (c), using the fact 

that the flows ♦~ of XFi commute and assuming also that they are 
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complete. The action is the map A: Rk x M ~ M given by A(t,p) • 
ACCt1 ,._•; ,tk),p) • t1 • ... • ♦~(p) for nllpEMardallt•Ct1, .•• ,t,c)ERk. 
It is . clear that A(t+s,p) • A(t,A(s,p)). One can prove that the 
9uotient F-1 (c)/Rk, the set of all orbits of Rk, is a · symplectic 
manifold of dimension 2n-2k and that the function ff, which is well 
defined in the quotient, is the Hamiltonian function of the Hamil-

. tonian vector field XH, projection of x
8 under the derivative o( 

the quotient map. The above method is called the Jacobi-Liouville 
method of reduction. 

It will be also shown that there exist other kinds of 
group actions, including nonco1111Dutative actions; a good example 
studied below in example ·J.2 is the ·noncommutative action of the ' 3 3 rot~tion group S0(3) on R x R which can be used to reduce a 
Hamiltonian system invariant under that action. 

Example 3.1: I.et H(p,q), (p,q)ER2n, be a Hamiltonian function invariant 
under the translation (p,q) ..... (p,q + s(l, ... ,l)), that is, 
H(p,q + s(l, ••• ,l)) • H(p,q) for all s ER, the differentiating 
with respect to sat s • O, it results ¥ filL(p,q) • - ¥ p • O. k•l aqk k•l k 
This shows that F • p

1 + ••• +pk is a· first integral, ·called the 
linear momentum, Consider now the following ~ of coordinates: 

tk -qk --qn tn -q~ . 
n 

Tlk -pk ., ·"n - l pi k•l, ••• ,n. i•l 
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It defines a canonical transformation since 

Let f(T\,t) be defined by f(n,t) • H(p,q), The function r does not , 

depend on t since!!:._• -nn and nn n a,;n 
restricted to <Jny level sµrface nn • c 

is an integral, The system 

becomes ~k • .if_, ~ •- ar Go a ''k -ar-' 
1'.lk "k 

k•l, ••• ,n-1, with (n-lJ degrees of freedom,, Knowin~ how : : to soive 
i it, it is then possib~e t?.integrat~ the remaining s~a}~r equation 

~ - lL • <h(t,c), This is, essential,ly;-the Jacobi-Liouville method .. n ,, ann l' . 

of reduction in the case of one f·irst ~ntegral, 

Example 3.2: Let H(p,q) • ½IPI 2 + V( lql), . (p,q) · E R3 ·x ·RJ ·• R6 • 

This function is· invariant under the orthogonal group SO(J), . since .. 
H(Rp,Rq) • H(p,q) for alf R E S0(3), Us,ing the Lie algebra g=s.o(J) 
of all skew-symmetric operators, one obtains that . exp s . A E S0(3) 
for alls ER and A e 9. Thfn H((exp s A)p,(exp s A)q) • H(p,q), 
which, after differentiating ·with respect to s at ·s . • 0, ·gives · 

( lJ! , A q ) + ( 3H . A p ) • O , ap · · aq 

Thus defining 
,. 

jA(p,q) 
·. 

(-p, A q) jA is an. integral JA by - , for 
any A E g • so(J), It is known that to each A e so(J) there cor-
responds an unique a e R3 such that Ax• a 11. x I for all X E· R3 . 
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Therefore jA (p, ,q) • ja (p,q) • ( p,a " q ) • ( a, p " q ) • If 

(e1 ,e2,e3) is the canonical basis of R3 , one has Q"P • ·(g"p,e1)e
1 

+ 

( q"p,e2 )e2 + ( Q"p,e3 )e3 • The map (p,q) f+ q " p is a vector 

~alued first integral called the angular momentum. Therefore, if 

q ~ (q1 ,q2 ,q3 )· and p • (p1 ,p2 ,p3), the components F1 • q2p3-q3p2 , 

F2 ·• q3P1-q1P3, F3 • q1p2-q2p1 of q" p are integrals -Of motion 

·and one may expect to reduce the phase space R6 by six dimensions. 

But, in this case these integrals ·are .not in involution, since 

(F1 ,F2 ) • -F3 • In order to see that the reduced space has two 

dimensions, one fixes a value c • q" p of the angular momentun &d 

assume . c + o. One may choose the coordinates such that c • Ae3 , 

A > 0 

einc~ A •_(q1p2 - q2p1 ) ; _ O it result~ that p3 • g3 • 0. that 
· 2 2 means, the problem is reduced to R x R with the quadratic inte-

gral A• q1p2 - q2p1 • ·The new phase space R2 
K R2 is 

und·er the rotations of S0(2). The reduced Hamiltonian 

ff• HIR2 x R2 is obtained by making p3 • q3 • 0 and then 

imfariant 

function 

It is also obvious that His invariant under 50(2). 

method discove~ed by Jacobi, one introduces polar 

F9llowing . a 

coordinates 

q1 • r cos+• q2 • r sin+ and, for the conjugate variable~ one . 

chooses the special functions Pr • p1 c_os + + p2 sin ♦ and 

p♦ • r(-p1 sin ♦ + p2 cos ♦). Since p♦ • q1p2 - q2p1 • A, p♦ is 

an integral.and a straightforward computation shows that the co-
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ordinate system (pr,p+ 1 r,t) is canonical since~ •dp1Adq1+dp2~dq2• 

• dprAdr + dp♦Ad+. The Hamiltonian function Hin these- coordinates 

is given by 

so that the system reduces to 

. - . -

. 
r • 

.L p♦ - .!,_. 
r2 r2 

The two first equations define a system in two . dimensions: nsing 
the conservation of the energy, one can solve the scalar equation 

. 
r • t /2c - A

2 
- V(r) 

r2 

The Moment Map 

. 
to find r(t) and then integrate+• A 

r 2 (t) • 

Let (M,w) be a symplectic manifold such that w • d0 

that is, besides to be closed and nondegenerate, w is an exact two . 
-form. In this case (M,d0) -is said to be an exact s vmpl ectic neni-
.f.21&. As an example one has the cotangent bupdle M • T*Q of a 
manifold O (see ·example 1.2). 
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An action of a Lie group G on a manifold M is a smooth 
map ♦: G x M ~ M such t~at, for any g E G, the map ♦ ·: M ~ M de-g . 
fined by tg(p) • ♦ (g,p) _is a diffeomorphism, +e ,. id(M), e being 

the identity of G, and ♦9 _o ♦h • ♦gh for all g,h e G. The orbit 
O(p) of a point p e Mis the set 

·one also defines the maps ♦p:G ~ M by ♦P(g) • ♦ (g,p). A symplectic 
action of a Lie group G on a symplectic manifold (M,w) is an actioo 

♦ :G x M ~ M such that ♦9 is . a symplectic map, i.e., ♦ *Ci) -g (I) for 
' all g e G, If, moreover, Cl) - d8 and +•e. e for all g e G, one , . 9 

has an exact symplectic group action. 
I 

Let g be the Lie algebra of a Lie group G and let ♦ :Gx~M · 
be a symplectic group action of G on a symplectic manifold (M.~) 
Given a E g ., g(t) • exp ta E G for all t ER, then ♦g(t)° is a 
symplectic diffeomorphism. Let Xa be the vector field defined on 

M by Xa(p) • ~t ♦~(t)(p) l t•O' The vector field xa is called th~ 
infinitesimal generator of the action corresponding to a E 9. The 

map a 1+ xa is linear since Xa(p) "' ;t cj,(g(t),p) lt•o• ~t ♦p(g(t))lt .. o• 
•• dcj,p(e)a. If. moreover, the symplectic group action is_ exact, 
then the vector field X

8 
is a Hamiltonian vector field with Hamil­

tonian function j • 8(X ), as proved below. If 8 is an-exterior a - a . . •. 

form on M, recall that x
8 

_1 _8 denotes the (n-1)-exterior fonn given , • l . • 

by (X
8
J 8) .(v

1
, ... -,v

0
_

1
) • 8(x

8
·,v

1
,._ •• ,v

0
_

1
). By the well known 
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formula Lx 8 • d(X
8 

_I 8) + xa _f d8, (see ·[A-M]) and since +;ct;8•8 
a 

implies Lx 8 • 0, one obtains ~(Xa-' 8) • -x
8 

Jd8 that is 
a 

d{9{X
8

)) • -x
8 

_J d9 which proves the assertion, Since the map 

a E ~ ~ j • 8(X) is linear, the moment map J associated to the a a 
exact symplectic group action can be defined as~: M ➔ g*, by the 

_formula (Jp)a • j
8 

(p), for all p E M and a E 9. rt can be shown 

that the linear map a~ Xa, considered above; has th~ property 

Then the linear map a~ j is a homomorphism of 
• ll 

The next theorem shows·that the moment map J:M ➔ g* has 

the universal property -of being a vector valued first integral for 

any Hamilt~nian system XH such that the Hamiltonian function His 

invariant under _group action. 

' Theore■ 3.1: .ktl ♦ be an exact symplectic group action of a Lie ·· 

group G on an exact symplectic manifold (M,d0) and let H:M ➔ ~ M 

any smooth Hamiltonian function invariant under the action. that 

is, Ho ♦g • H for all g E G, ·t Then the flow tu of the Hamiltonian 

vector field -X8 leaves invariant the moment map J :·M ➔ g*, i.e., 

J • t~ • J, or equivalently, "the function ja is a fi{st integral 

£!. XH for all a E g. 

Proof. Since H(p) • H(♦9 (p)), take g • g(t) • exp t a, a E g, · and 

compute the derivative with respect to t at t•O of H(p)•H<+expt 8(p) _). 
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Thus, one obtains 

0 • dH(X (p)) • d8(X (p), XH(p)) • (H,j ) (p) a - a a 

which shows that j a is a first integral . of x
8

, for any aEg • Finally, 

[<Jo +~>p]a ·• [J< ♦~(p))Ja • ja( ♦~(p)) • j
8

(p) • (Jp)a. □ 

' 
· At this point it is interesting to go back to 

3,2, where the group G • S0(3) defines an exact symplectic 

example 

group 
action on the exact symplectic manifold (M,d8) • (~ 3 x R 3 , d9) , 
8 • I p

1
~ dqi~; the group .action is given by i•l 

for all RE S0(3). In fact, it is clear that 
l 

(RY,RX) and 8( ,<Y,X) • - ·-.J: · pi dqi~ - (Y,X) • 
I p,q i•l 

·e< ,<Y;X)• l p
1
.x

1
. • (p,x· ) : . ·· p,q i•l · 

Fina;uy 

♦8 (p,q) • (Rp,Rq) , 

[ d♦R (p,q)] (Y, X) • 
> 
t p. dq.(X). Then 

i•l 1 · 1 

Recall also that j
8

(p,q) • . ( a,p " q) , for all a E g • so(3)~3• 

The moment map J:M ➔ g• is given by J(p,q) • ( • , p "q) • · By 

. the la~t theor~m; any Hamiltonian function H: R6 • R invariant 

· under the action of S0(3) (in particular, that one considered in 

example 3,2)· defines a Hamiltonian system for which the functions 

-~a are fir~t integrals; in particular (p,q) ~ p" q is a veptor 
~alued -fir~t integral for such ·systems. 
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Any action of a Lie group G on a vector space V is called 
a representation •. The adjoint representation of G on its Lie al-, . . 

' gebra g is the action Ad: G x g ➔ g defined by Ad(g,a) • 

rdL • dR 1{e)] (a) where dL and dR l denote,respectively, the L g g- :., g g-
derivatives of the left and right translations 

-1 Xe G ~ xg e G, 

One also introduces the notation Ad(g)a • Ad(g,a), since Ad(g):g+g 
is the derivative dt

9 (e) : g + g of the map 

ate E G, one obtains Ad(gh) • . Ad(g) o Ad(h). 

The coadjoint representation of G on g* ~ · Ad* : G x g* -+ g• r ... . is 
given by the maps Ad*(g) : g*-+ g*, g E G, defined by .the formula · 
[Ad*(g)] (µ)a d~f µ[Ad(g- 1 )a] ;. for ail µ E g* and a.11 a E g • With 
this definition one obtains Ad*(gh) • ~d*(g) o Ad*(h). 

If one fixes nowµ E ·g• one obtain~ the orbit O(µ) of · 
the coadjoint representation,: which is the set O(µ}•{Ad*(g)µlgEG}, 
It is a basic result due to Kiriilov and Kostant that O(µ) has a 
canonical symplectic structure, 



-
32 

Exaaple 3.3: Isospectral matrices. 

Let G be the Lie ~roup of all the nxn non singular real 
111atrices and let T be an element of G, Then Ad(T)A •TA T-l for 
all _A E g. The well known inner product· 

identifies the Lie algebra g of all n • n real matrices with its 
dual g* by 

A e g .. v e 9 * v( •} • { •, A ) • 

For a fixedµ E g, the orbit .O(µ) of the coadjoint representation 
is identified with the set of all matrices which are sim.ilar to 
the matrix M given by the identificationµ(•)• ( •,M) . In fact, 
O(µ) • {XIAd*(g)µ(•) • ( •,X ), g E G} and Ad*(g)µ(•l • ( •,X) • 
µ(Ad(g- 1 )(•)) • µ(g- 1 ( 0 )9)

0 

• .( g-l(.-)g,M ) · • trace g-l(.)g TM • 
-1 T -1 · T trace g ( ■ )g ~ - 9 g ~ trace (•)g M 

-1 g 

X • T(g-l)H Tg and Xis . similar to M. Ifµ is such that M 

then 

has 
distinct eigenvalues then O(µ) consists of the so called i sospec-
tr.al matrices. A symplectic structure will be defi.nM on the manifold 
O(µ) • {TMT-1 1T E G}, The point M belohgs to O(µ) and the tangent· 
space of O(µ) at . the point Mis the set {[A,M]IA E g} . 

this, one considers a generic curve T(t) in G such that 

To see 

T(O) • I 

,; 
I 
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and T(O) • A: then T(t) M T(t)-l is a generic ~urve on O(p), pass­

ing ~hrough Mat t•O. Since..&. T(t)-
1

1 • -T(O) • -A one obtains dt . t•O 

.J! (T(t) M T( t}1
) I . AM - MA - [A,M]. 

dt t•O 

This description of the tangent space of O(µ) at M can be used to 

show that the dimension of O(µ) is n2-n. The form w on O(µ) is 

given by w( [A,M], [B,M]) d;~ t.rftce ( [A,B] .M). One verifies ·· that 

this form is nondegenerate, skew-symmetric and closed,thusdefining 

a symplectic structure on O(µ). 

Consider again an exact symplectic group action ♦ and 

its corresponding moment map JIM+ g*, The moment map J is said ' 
to be eguivariant with respect to a pair of functions f'1 M +Mand 

h : g* + g* if J • f • b • J, that is-, if the following diagram , 
commuteau 

M _ ___,.J __ .9* 

fl lh 
M _ ___,.J __ ...... ·. g*: 

Theorea 3.2~ Given any exact symplectic group action +: G x M + M 

of a Lie group G on an exact symplectic manifold (M,d8_), the cor­

responding moment map J is eauivariant with respect to 

and to Ad*(g) : g* + g* for all g E G. 
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Proof. To be equivariant means J • ♦g - [Ad*(g)] • J , for all 
g E G, that is, [J < ♦g ( i>»] 8 has to be equal to [(Ad•(g) )Jp] a for 
all p E M and a E g. Let xa be the infinitesimal generator of 
the action corresponding to a E g. But [J< ♦9 Cp))]a • 3a< ♦9 (p)) • 
• [e<xa>] ♦9 (p) • e♦ (p)(Xa< ♦9 (p))). on the other hand one has . 9 
[(Ad*(g))Jp)a • Jp[Ad(g-l)a] • jAd(g-l)'a(p) • [e(XAd(g-l)a)] (p) -
• ep[d♦p(e)(Ad(g-1 )al]. 

' The fact .that exp ta is the one parameter group of a E g, implies 
· that g-l(exp t a)g is the one parameter group of Ad(g-l)a in 
~act, the curve g-l(exp ~ a)g passes through e E G fort• 0 and 
its derivative at t•O is ~(g-l.(exp t a)g) I • ..!t.(L 

1 
•Rg)(exp t a) I • . . dt t-0 dt g- t-0 

· . • dL •·clag(~ exp t a) 1· ·. • dL -l • dRg(a) • Ad. (g_- 1 )a. Conse­. g-1 dt . t•O g • I 

quently l(Ad~(g)Jp)]a -~- ep[(ddt texp t Ad(g-l)~(p)).t•O] • 

: ~~nd~ tg-1 (exp t a)g (p)) t•o] • 8p[(:t (+9-1 • ♦ exp ta•. ~g<P>))t-o] 

equality being true because +;e • 8. 

The proof is then complete. 
D 

The Reduced Phase Space 

Given an exact symplecti'c group action G x M -+ M on an 
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exact symplectic manifold (H,d8), let us consider the correspond- . 

lng moment map Ji M • g•. Fix_µ E g• and consider the set 

In the example 3.2, G is S0(3) and J- 1 (µ) consists of those states I 
equi-for which the ~ngular momentum vectorµ is fixed, 

variant property, the isotropy subgroup 

By the 

acts on the set J-1 (µ), .whic~ in the example consists of all rota-

tions leaving fixed the angular momentum vector I.I . . Again, in 

example 3.2, if I.I • o, G is a 
I.I 

one-dimensional rotation .subgroup 

50(2). To eliminate this angle one considers the quotient set 

J-1 (µ)/Gµ, which corresponds to the elimination of the "ignorable" 

angle of rotation. Under appropriate assumptions, for example 

( see [A] , Apendice S), if µ is a regular value of J, if the · iso:. 

tropy group Gil is compact and.acts -~n J-1 (~)· without fixed points, 

it is possibie to construct the bundle 

n 

and Mis called the reduced phase apace; Mis a symplectic mani-

fold and ita . structure is given by a two form w which is defin,ed 
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as follows: if j: J-1 (u) ~Mis the injection map then j*w is the · 
llb k f de to J -l(u). pu ac o 111 • This form j*w is invariant under · 

Gµ and therefore there exists win the quotient, such that n*w•j*w. 
Moreover, if His any Hamiltonian function invariant under the 
action ♦9 , the 

by dH • -x8 ·J w 
Hofi•Ho·j 

reduced 

, where 

that is, 

Hamiltonian flow x-H 
on 

the Hamiltonian function 

the restriction of H to 

CH,w> is defined 

H is such that 

J-1(µ) is' in-
variant under Gµ and defines Hin the quotient (see [A] Apendice 
s and [A-M] ) . 

. ' . 
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f 4 - PERSISTENCE OF TORI. THE THEOREM l.A.R. (lol•ogorov, -~rnold 
and "oser) 

Assume it given an integrable BY.Stem of Hamiltonian 

function a0 , with the hypothesis of the Theorem 1.2 of Arnold and 

Liouville. Assume also that in a neighborhood of the Torus MA 

diffeomorphic .to BM Tn, B being a ball in Rn - , there are action­

angle canonical coordinates (I,•) and x80 is given in BM Tn by 

80 that "o. H0(I) ~nd "o (I) • i!H(1) ·. 
aI 

If, moreover, det 
a2HQ(I) 

• det 
av0 (I) 

• 0 • the system XHo ax2 aI 
is 

called non-degenerate. In this case the.frequencies 

are non-resonant . that is, ( v0 ,k ) + 0 · for all s~quences k_+ . o. of 
integers, and the orbits are :dense in each invariant torus .I•cte . , · 

which is then the closure of the orbits. This means that if the 

frequencies are non resonant, · the tori .do ·not depend on the choice 
of the action~angle coordinat~s. 

• 
' I 

~ 
Denote (I, q,) by (p, -q) and consider a perturbation on the 

non-degenerate Hamiltonian by 

' 
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will be precised below. 

tonian are 

The equations for the perturbed Hamil-

) aH, q • v0{p + ap, p . -
All the data in the statement of the next theorem are supposed to 
be analytic and Xe0 non-degenerate. If one selects a non-resonant 
fr~quency v • v*, the equations on the invariant nonperturbed to­
rus T0 (v*) are characterized by p • p* where v* • v0 (p*). 

Theorea 4.1: (K.A.M.) 

ilimi K > o and for almost alL non-resonant v* ( except 
for a set of Lebesgue measure zero) , there exist c > 0 and a map 
p • ' p(Q), q • q(Q) f rom ·an abstract torus T • {olmod 2w} ~ BxTn 
such that according to the perturbed syst em one has Q. v* and 

Proof. ( see [A-A] ) • 

The meaning of the Theorem K.A.M. is that there exists 
an invariant torus T(v*) of the perturbed system, close to the 
torus T0 (v*), for almost all v* (except for a set of measure zero 
of frequencies). The union"of ~11 tori T(v*) is a set with posi­
tive measure in the phase space and its complement has · measure 
which tends to zero has le1 1 • 0. 
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The theorem K.A.M, was presented by Kolmogorov, proved 
by Arnold in the analytic cas1e and by Moser in the Ck case, k•333, 
when n•2. Today, · one finds other versions for this 

result, even ck versions (k. > 2n, etc.). 

remarkable 

The behavior of the trajectories which are in the com­
plement of the invariont tori set is not completely known. If n•2, 
the phase space has dimen~ion four, and then two tori T2 separate 
in two connected components ·a surface of energy of dimension three. 
If one trajectory starts between two tori, it always renainsbet...-een 
these tori, But for n > 2 th19 tori Tn do not separate a hyper-
surface of ene-rgy (dim.2n-l) und apparently a trajectory could 
start close to two tori at t•O and for big times it could go far-' 
way from themJ this phenomenon is called the difusion ·of 
and it is an important •field c,f research now days. 

Arnold 
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