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§ 1 - INTRODUCTIGN TO HaRILTORIAA SYSTEMS. TEE THEGRE. OF ....o.3
AND _'uouvmt

Let M = Hzn be an even dimensional differentiable mani-

fold. A symplectic manjfold is a pair (M, w),vhere w is an altetnate.

nondegenerate and closed 2-form on M. (We will assume enough 4if-

ferentiability).

If (M,w) and (N,v) are symplectic manifolds and f i1 M- N

is & diffeomorphism such that f*v « w, that is, £ is a aymplectie o

preserving diffeomorphism, f-is said to be a ggggniggl_;;gngjgigg;

tion.

2n

Exaumple 1.1 M e R . = {{q.p)} with the natural 2-form

a I
, '

we dp1 A dq1 *+ o0 + dpn A dqd

Example 1.2: M = T*Q, the cotangent bundle of any dszerentxable
manifold Q, is a symplectic manifold. The 2-form w will be,in this
case, the detivativo 46 of a’ 1~torn © described below. Let t:T'QfQ-
be the canonical projection and, for a1 Py € T'Q. up € Tpx (i;Q)

x
one defines

! : GKP‘)(GP‘) - Pi(dt(opx)"
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-Any local coordinate system U(ql....,qn) on Q induces naturally a
system of coordinates (t)-l(u)(c';.p), c';i =q, e, i=1,...,n. For
@ n
these coordinates, 6 « I p.dg. so that w = 40 = E dp. A 4q,.
: ST W T ogey T
_A smooth function H : M + R defines a Hamiltonian vector
field X, on M by the formula '

._;(n,x“) = dH(n)

" for all vector fields n on M. XH is well defined since w is non-

degenerate.
N . 1

‘an 1mportant.resu1t of Darboux gives us local canonical

-coordinateg for which w has a useful expreséion:

. Theorem 1.1: Let (M,w0) be a symplectic manifold. Every point x €M
- mmnmmmm_mm U - U(qyee09,0PyrvrsP,) such that
i »

(") Y - dp1 A dq1 + .. ¢ dpn A dqn

(For a proof see [A],[A-M]).

v

-Using - these coordinates, called canonical coordinates ,°

‘the local expression of the vector field X, assumes the classical

form;
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Remarks: The following facts will be mentioned without proofs .’
For details, see [a], [A-n] .

1- Every symplectic manifold (H,u) is orientable since it admits

the tollowing volume form
n-u’“oo-’\w

- 1f @; denotes the one-parameter pseudogroup of local d:lf-~
feomorphisma generated by xH' then (¢H) wegy, {, -e., the local

flow 1»" preserves the symplectic structure. In particular, "ll )

Preserves the volume form Q. S
4 .' - § 7 } ’ .
[ Aede

3 = The Hamiltonian tunction H is constant along tﬁo i:‘ra':je.c-to'ﬂeyi
of X, that is, - F -

an(x,) = ...cxHA.'vik,!r--‘ Ad.

" This is the so called wimmu law, .
4 - mm_k_g& (H, G). of two ¢c” -tunctionl H and G on (H.u)

is the ¢® 7f9nc_t;ion_d.t1nqd by:

L -
2 o



KH,G). = m(xG,xH).

This operation turns C”(M) into a Lie algebra since the Jacobi

identity

((F,G),H) + ((G,H),F) + ((H,F),G) = O

holds true. Moreover; the map H -+ XH is a homomorphism of
Lie algebras since (H,G) [xH.xG], where [+,*] is the Lie-
bracket for two vector fields on M. When (H,G) = 0 the func-
tions H and G are said to be in j.nvglution and, since [XH,XG]=O,
XH dnd XG are commuting vector fields. This also means that

o t 8 A 0
t‘:he local flows (}H and +G satisfies

by o 4G = 43 by -

When ¢; is defined for all t € R, X, is said to be complete.

Example 1.3: According to Newton's law, the motion of a particle
under a time indeéendent potential V = V(x) is given by the second order
equation ¥ = -T?:! ., x €R", equivalent tot =y, ¥ = -axﬂ,(x.y)Ellzn.

This system is associated to the Hamiltonian function

H(x,y) = % |y|2 + V(x).



The theorem of Arnold and Liouville

Let (M,w) be a symplectic manifold and Xy be the Hamil-
‘tonian vector field corresponding to H. A smooth function F:ﬁ * R
is a first integral of xH if F is constant along the trajectories
of X,,. that is, dF(xB) = 0. Since (F,H) = w(xH,xF) - dF(xH), one
sees that F is a first integral of xH if and on%y if F and H are
in involution. The Jacobi identity shows that the set of all first
integrals is a Lie subalgebra of c®(m). . d

Theorem 1.2: Let (Mzn,m) be a symplectic manifold and Fl,...,Fn
be functions in jnvolution. Consider a connected component M, of
the level set {x € M*"|F, (x) = Ao i=l,...0n} for Am(A),...,A )eR"

Assume dFl(x),...,an(x) are linearly_ independent for any x € "A’

Then:

4 :
1 -T ) 48 ~dimension submani fol Mzn invariant under the

flows of the commuting vector fields xrl. . ..,X_Fnﬂ u.)(XFi,ij)-O.

2 - 1f xF ,.._.,xF are complete on HA is ifold is diffeomorphi
1 n '

to a_product of R" I by a torus Tk, for some integer k, O<k<n.,

Furthermore, if M, is compact then M, is diffeomorphic to a

torus T = {(vl....,wn)mod 2r}.

3-1f N, >mpact _an ndé the same hypothesis in 2), the flow
Qof the vector field xH. for H = Fl’ Qefin:.-sgmA guasiperiodig
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L mpotions ¢(t) given; in the anqular coordinates ¢ = (vl,....vn)
by .

92 = v, v = y(2).
dt

4 - Under the same hypothesis on HA in 3), it is possible to find

functions Il,...,In depending only on Pl,....Fn, called action
gogrding;es such that (Il,...,I ,¢1,..w.¢n) are canonicail coor

dinates in a neighbourhood of M and then X, is given by:

9 =0 49« u(1),
dt dat

so that H = H(I) and v(I) = 3H (1),
i : D 4
e I
Proof. :The statement 1) is an immediate consequence of the fact
that X is a regular value of the function

. n2n n .
(Fl.Fz,...,Fn) : ﬁ + R , and that Fl""'Fn are

in involution. To prove 2), note that the condition (F Fj) = 0 im-
plies [XF ,X ] = 0, _so0, by completeness of XF . their flows satisfy
¢t ?j = ?j ° ¢1 , t,8 ER, and one can deflne an action A of the ’

Abelxan additive group R" on MA in the following way

t t
1 n
A((tl,...,tn),x) -2¢1 o,..0 Qn (x)

for all x € M, and all (tl,...,fn) € R". This action is transitive



on MA' that is M, is an orbit of R" under the action A. . In fact,

for a fixed x € MA' the map
T
Ax:(tl....,tn) ER b A((tl,....tn),x) € M,

" is a local diffeomorphism since CL -9 | = X, (x) and the
ti [t=0 i

vectors xFi(x). i=1,...,n, are linearly independent. The inverse
function theorem implies that each orbit of.Rn in MA is open, and
since M, is connected, the full orbit is M, . Let x € M, and
G - G, = {t-(tl,....tn) € RnlA(t,x) = x} .be the isotropy groixp at
, the point x. It can be easily shown that ¢ does not depend on the
choice of x and thatG is a discrete subgroup of R". Therefore ,

there exist k vectors el....,ek € G such that

k‘ '
G = 1_1 | m €2z, i-l,...,k s |

Since MA is diffeomorphic t@ the guotient mn/G, it follows that MA

is diffeomorphic to Rn_k x Tk. The statement 2) is thus provéd
Now, if MA is compact, it is’'clear that MA is Aiffeomorphic to a
torus T = {(ml,...,m Jmod 27). The map (vl,...,¢ ) H Al gl¢iei,x)
is a dlffeomorphlsm of the unit rectangle 0 < ?; < 15 shni=] e i
into the torus HA ; these are the angular coordinates. In co-
ordinates (tl,...,t ) the integral curve ¢1(x) of X, through x

is the line t2 = t3 = .. = tn - 0. Since the change of cootdina'tes'

t #o is linear, then the integral curves of xH » in angular - co-



ordinates, are given b& 9(t) = vt + 9(0). To pProve 4) one sees
that the compactness of MA and the implicit function éheorem imply
that there exist a ball B in R” and a neighborhood W of M, ., dif-
feomorphic to ™" x B, such that T" x {0} is the image of HA under
this diffeomorphism. One sees that (vl....,w ,Fl,...,F ) is a
global system of coordinates for W under which xH is given by

.
9F . 0, 49 = y(F),
dt dt
These coordinates may not be canonical; but, as can be seen in [A,
pag 276], it is possible to find n other functions IyeeresI, de-
pendiné oq}y on Fl,...Fn + Called the action coordinates such that
(11,.;,,In,v1,....wn) is'a global system of canonical coordinates
:for a neighborhood W of M, . &iffeomorphic to™ x 8, B a ball in
Rn,'ana M, is the image of Tn x {0} under this diffeomorphism. The
éystem Xy in these coordinates (1, ) is given by Ql =0, g% = y(I1),
go that, H = (H(I) and v(1) = 3_ (n).
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§ 2 - INTEGRABLE SYSTEMS

In the present notes an integrable system will mean a
Hamiltonian system defined on a symplectic manifold (Mzn,w) which

admits n first integrals Fl"”'Fn in involution and jindependent

.that is dFl(x),...,an(x) are linearly independent at all x € M.

It will be presented now some examples of integrable
systems. The s&mplectic manifold will be RZﬁ, Or.a proper open set

of it, whith the canonical 2-form, unlese mention in contrary.

Example 2.1: Harmonic oscillators

q 3 81 2 2 2. . smeu )
‘ The Hamiltonian function H < ifl ai[pi *qq _.'ui»§>R,
i=1,...,n , defines the differential equations

g, = aﬂ = Qa.p. , P, = - 8H . -0.q
i op; i’i i 3q, i

which are equivalent to &i -,-uiqi r i=1,...,n, The functions

F; = qi + pi'. i=1,...,n , are first integrals independent and in

involution.,

Example 2.2:

Consider a Hamiltonian function H depending only on the

\
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variables p,,...,p_, so that 31 = 0, ja1,...,n.
n aqi
F; =p; . i=l,...,n , prove the integrability of the system.

Example 2.3:

Consider n points on the line with coordinates ql,...,qn'

da lattice for finitel

man

satisfying the differential equations

q q q n-1
where the potential is given by U k£1 exp(qk qk+1).

q.

1

a

= - 38U ja1,,..,n,
9q

1

oints

The functions

The cor-

responding Hamiltonian system has Hamiltonian H = %Iplzw(ql,...,qn).

The iptegr.abilit,y was discovered by Henon and Flaschka

t[4]. [F])

using different methods; it will be presented here the approachs

of Flaschka and Moser (see also [M-1],[m-2], ["'.3].)'

Flaschka constructed the'tridiagonal matrices

-

ol ah-1
an--l bp

and B =

and showed that tlie Hamiltonian system
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e g N = q. = =q. A

9 =Py « By e explq; _; - q;)-exp(q;-q;,,)
1 .

i=},...,n (here q, = == and 9. = +»), is equivalent to the systenm

i = % L = [B,L] = BL - LB, if one defines
2bi e -pi ’ i'l,...,ﬂ, and

= I a =
2a, = exp 2(9)( A yq) ¢ k=L, ...,n-1,

The completeness of the Toda lattice system follows from the next

lemma, b PV

¥

03

Lemma 2.1: 1£ U = U(q;,...,q,) is bounded below, the system

5 ™ '- 3 - - 9 ’ i = . !
a5 = Py, By ig_ ; fl 1,...,n , has all sdlutions
i \
defined on -» < t < +o,

Proof. By hypothesis, there exists a real constant b such that

U(g) > b. Therefore
%Ipl2 < Hip(t),q(t)) - b .

Then, |p(t)| < K = {(H(p(0),q(0)) - b)]'/2 . If (m,M) is the maximal
interval of definition of the molution (p(t),q(t) ana t, and t are

in (m,M), one has
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: latt)] < lateg)| +

Jt Iptt)lat] < Iq(to)l +K|t—to|.
t, -
If M <+=, one gets |q(t)]| < |q(to)| + K(M - to) so that (p(t),q(t))’
remains in a compact subset of n2n for all t € [to,H), which is a
contradiction. Therefore, M = +w, Analogously, one proves that
me= -, | ) o
. A

"It is well known that L(t) has real simple eigenvalues
since L(t) is a Jacobi matrix. The next lemma proves that these

eigenvalues do not depend on t.

»

Lemna 2.2: For apy solution L(t) of L = [B,LJ, there exists an
~orthogonal matrix Q(t) such that L(t) = To(t) Loy Q(t) with Q(t)

given by 6.- -QB, Q(0) = 1. 'Soi the eigenvalﬁes of L{(t) do not
depend on ;.' ' ' ’

Proéf. We have
e «0To+0T--sTo-0% T .

= -0B 70+ 0B Tg =0, since TB = -B.

~
.

Therefore, Q(t) To(t) = 9(0) To(0) = 1.

i

Define M(t) = TQ(t) L(0) Q(t). It is easy to see that M(t) sa-
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tisfies M = [B,M] ana M(0) = L(0). By uniqueness of solution, it
results M(t) = L(t). Since L(t) is similar to L(0), it follows
that the eigenvalues of L(t) do not depend on time t. o

The next lemma proves that, as t goes to += or -w s the

matrix L(t) tends to a diagonal matrix with distinct eigenvalues.

Lemma 2.3: The elements a (t),...,an 1(t), b (t),...,b {t) are
bounded fungtlons, lim ak(t) = 0 and 1lim b (t) = b, (tm) .,

t+tom t+ix
Moreover - < bn(+m) <. B b1(+m) < 4
and : -® < bl(-w) <ITHlE < bn(-w) < +o, -
Proof. By Lemma 2.2, L(t) = "Q(£) L(0) Q(t); them |L(t)] < !L(o)l

which implies that a, (t) and bi(t) are bounded functlons. The dlf-

ferential equation ﬂ = [B,L) can be written as the system

. . .' & s 2._ 2
4 - a (b, i b, ) -, bj .2(a aj—l) ’

J
k=1,...,(n-1), j=1,...,n, (here a8p = a, = 0), which admits the
first integral H=4"I a2+ 2 § 12 . The i .
irst integra -4k=1'ak + st 3 .. e integrals ak(t)dt '

k=1,..,,n-1, converge; this is true for k=1 and k=n-1, because
T T T
2 2 . -
J (2a3(¢) » 2a,_,(t))at = J (b, (t)-b_(t)at =(b, (t)-p_(t))|
-T ’ -7 . . =T
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énd the functions bj(t) are bounded. Analogously , using the

equality

T

T
2 2 2
J (223(6) - 2a3(e) + 207 (D)ot = (b, (6)-b,(e))

=T . -T

. 4+
the argument follows by induction. The convergence. of J ai(t)dt
-00 A Y

assures that t&ig a, (t) = 0 ; also, Bj(t) = 2(a§(t)-a§_1(t))implies

© lim b,(t) = 0,
trtem J

Moreover,

' T

| by(T) - b(0) = J 2(a§(t) - ag_l(c))d;

d o
80 thqt'
- 2
;ii: by(t) = zjo (Tj(t) - ajy (DAt + by(o)
o

and | tifz-bj(t) = -ZJ (ag(t) - ag_l(t))dt.+ bj(O)‘

Next, to‘prOQe that the diagonal elements of L(=) are distinct,one
uses the fact that the spectrum of L(t) tends to the spectrum of .
L(+=) as t++= and the eigenvalues.of L(t) are distinct and do not

depend on t. -Finaliy, if bk+1(4c)-bk(+w) > 0 then ék(t) >0 for
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all t big enough which contradicts the fact that - lim ak(t) = 0,

t+ 4w
Therefore one obtains
- < bn(+w) 3 Gan G b1(+u) < 4
" and analogously -wo ¢ bl(-m) IR A 0! 103 bn(-m) < 4w , ()

The next theorem proves the integrability of the _ Toda
[}
lattice system. In order to do that, one considers the characte-

ristic polynomial

n n=1
An(x) AT+ IIA + ee. + In

of L(t), which does not depend on t; hence 11,...,1n are first

integrals.

Theorem 2.1: The inteqrals 11,...,In are_independent and_in in-

Yolution, so that the Toda lattice system is integrable.

Proof. Consider the matrices L ang M= diag(bl,...,b;). The first

integrals Ij = Ij(al'""an—l'bl""'bn)' J=1l,...,n, tend, in the

Cl-sense, to the symmetric functions o = Oj(bl"'"th)'

l'i"'an 0 °j
J=1,...,n , of the matrix M. In fact,

.

. :
35f + 0 as (al....,an_l) -+ 0.
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The functions bl""'bn are independent, i.e., dbl""'dbn are
linearly independent everywhere in the phase space. Aiso, the de-
terminant of the coefficients of dol....,don with respect to

dbl""'dbn is equal to

n (b, - b,)

lcicjen P 3
which, by lemma 2.3, is strictly positive for t big enough. It
follows now that dII....,dI are linearly independent in a neigh-
borhood of (p1(+w),....p (+=)), then everywhere in the phase space,
since the flow of a vector field is a dlffeomorphlsm. The func-
tions O4/++++0, as functions of Pys-e.,p, are in involution .
Since Il,.;.,In, as functions of Pyre--sPpe Qyr-eeeqy are first
integrals of the original Hamiltonian system, then the Poisson
bracket (Ii'Ij_) is also an integral. But (Ii'Ij). tends to_(oi,oj)- 0

along any solution, as te+cw. Then,.(Ii,Ij) = 0 everywhere. (u]

Example 2.4: The n-garticlé system on the line, with the inverse
square potential considered bv _Calogero and Marchioro.

Consider n particles on the 1line with coordinates
. -2 o
gl,...,qn and define U = kfl (qk - ql) » k, = 1,...,n, as their

potential, so that the equations of motion are given by

Ge=-2 =2 I (q -aqp”?

. k=1,...,n.
gy I¢k :



As observed by Moser in [M-Z], this system possesses n integrals,
independent and in involution, which are polynomials in qk and
(qk = qz)-z, a fact that can be derived below following the same
lines as used for the Toda lattice system. As before, matriées L
and B are introduced and the differential equation L = BL - LB is.

considered, which can be transformed in the above equations of

motion. 1In order to do that, set

(qp - a)) ™ sor- x p s
)

0 for k =t

40 =

¥

and define the matrices

o
Zy = (zkl) for a=1,2,.

Y = diag(yl.---,yn) .
i

D di i"."z“
a™ 1ag[j.1 kj] for a = 2,3,

Defining L = Y + :i.Z1 » B = iD, - 122 ¢ One sees that L is Hermi-
tian, that is, L = L* (its cbnjugate transpose) and B is skew-
Hermitian, that is, B = <B*, ' The equations of motion in terms ‘of

the variables zkl and Y = -qk can b? written as

: . , 1 .3
> g =79 = - .jfl zkj '

2 )
zk" - zk!.(yk - Y") v k,.r - 1,..‘-'7!.
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This last system is redundant, since only the (n-1) variables
2, ke OT® independent, the other being determined by - the rela-

A -1 -1 -1 . .
tions Zyey ™ Zep t z ., if k,%,r distinct and Zyy * 25, = 0. It

is easy to check that

{B,L] = BL - 1B = i[y,zz'] - [Dz,zl].+ [zz,zl]

and a straightforward computation shows that L = [B,L] leads to the
" equations of motion in the variables L and Y- This implies, by
a similar argument used in the lemma 2.2, that the coeficients I

k
of the characteristic polynomial

det(AI - L) =" 4+ 1A™ 1 4 . 4
n
are integrals of the motion.

The next lemma proves that, as t goes to +® pr - , that
the matrix L(t) tends to a real 'diagonal matrix with distinct
' eigenvalues. The proof is found in [M-2] and it is presented here

for a sake of completeness.

. Lemma 2.4: The elements yl(t),...,yn(t) an zkz(t), k,2=1,...,n ,

are bounded functions, tiiz yk(t) = yk(tcﬂ exist, tlim zkz(t) =0

-+%oo

and Cte >y, () > Ll Yp(t®) > =,

—= <y, (-=) < vey < y,(-=) < 4= ,
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Proof. The matrix L(t) is defined for all tER by Lemma 2.1 .
Moreover, L(t) satisfies the equation L(t) = Q*L(0)Q where Q(t) is
an unitary matrix defined by Q = -0B, Q(0) = 1. Therefore, L(t)
and so its components are bounded functions of t € R. withou£ loss
of generality, the particles can be labelled according to the order
9y € ..o < 9, at t=0 and then for all t € R, by the conserva-

tion of energ;. The next step is to prove that ghere exist and are
finite the limits t}%z ék(t). k=1,...,n. Fﬁom the equations of

motion it follows that for any T > O one has

T
s s _afe - _ _ e -3 ) -3
%[qn ql](T) z[ﬁn qIJ( T) [T(jgn(qn qj) + jﬁl(qj ql) ]dt.

Since the left-hand side is Bounded and the right-hand side is an
t+x

increasing function of T, one sees that I (qk-qz)-adt < o for
-00

k>{=1 and for f<k=n, and by induction for all pair (k,%) with k>8.

From

T
. . —3
q, (T) - q.(0) = 2 jfk L(qk - qjl dt

it follows that tlim ék(t) éxists and is finite. The 1limits of
-+t ; N .

the velocities satisfy
61(+w) < vee £G () ' and

&1(-0) £3 000 W én(-w). . b'a In fact, if

f(t) = qk+1(t) - qk(t) and . assuming , by contradiction, that

vy
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lim £(t)=b<0, one sees that f(t)-f(t ) < E(t-t ) for all t and t,
suff1c1ent1y big, t>t,, which implies that f(t) = ., 1(t) qk(t) is
negatlve for t big enough, in contradiction with the fact that
qk+1 > qk. The above inequalities for the limit velocities are ’

in fact, strict inequalities. To prove this, let g(t) = 9,-9, > 0.

Then % (L) > 2(qh - ql)-3 >0, so that ¢ is increasing and’

9(+=) = § (+=) - §)(+=) 3 0. If, bycontradiction, §(sw) = 0, then
¢(t) < 0-for all t € R s0 that g(t) is a decreasing positive func-
tion; therefore ¢(t) is bounded. But, then, % P(t) > (max v)—3>0'

hence integrating twice one gets

- ?(t) > 9(0) + $(0)t + (max ¢)~3 t2/2
! .
which shows that ¢(t) is unbounded, which is a contrzdiction .
Therefore, é (+=) > &1(+¢). This and the 1nequa11t1es q1(+w) <l Na

q (+x) 1mp1y the exlstence of an 8 such that q (+) < q {(4)

s+1
It will be shown now that q1(+n) < qs(+w). First of all, observe

that, setting a = és+l(+o) K és(+w), then
a(t-ty) < [qs+1(t)-qs(t)]—(qs+1(t:o)-qs(to)] < 32(t-ty)

for all .t and to-big enough. Therefore, for j > s:

qj.- 9 = [qj 1 qj-l]l* D [qs+1 - qs] 2 954179,
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implies that

=1!

0 s (qy - q,)'1 < (gg,, - g0t =ot™h.

_a

-3) e

2
NOW, l L ( = ) -
22 8T N7 g

I {q - qj)‘s - ot + 351 (qj -q

3

2 2(q, - ql)-3 - 0(t™7). Calling ¢(t) = a, - q, +% . A being a

positive constant, one verifies that

[

&= - o= 2A - -3 -' -3
v(t) = § 4, + % 2 4(q, q;) T+ %% o(t 7) ,

so that

b > 4(q - q15-3 >0 if t is big enough and A is
chosen suitably. Thus { is increasing and V(+=) > 0 since §(+»)=0
leads to a contradiction. Since $(+w)'r és(+m) - &1(+w) it fol-
lows that él(+m) < &B(+m). E Analogously , one proves that

és+1(+w) < én(+w) and, by induction,
-w < él(+u) < ees < én(+m) < 4o ,
and, analogously,

o > él(—u) > e [ én(-ﬂ) > -e

Finally, since ikz = (q) - 0:1!;)-1 = 0o(t™!) as |t|++=, one obtains
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lim 2 (t) = 0, D
tote K2
The next theorem proves the integrability of the mecha-

nical system with the potential considered by Calogero and Marchio

ro.

- Theorem 2.2: The Hamiltonian system

-

ék-pk'f’k"a—u—- ’ k-l,...,n,

9k
where U = kEL (qk - q,')-2 » i8 an inteqrable system.

Proof. Using Lemma 2.4 and following the same ideas as in Theorem
; .
2.1, one can prove that the integrals Il""'ln are real func-

tions of pl....,pn and'ql,...,qn and they are independent ‘and in

involution. o

Remarks. .These integrals are ‘rational functions of the coordi-

nates Pyree-oPy and ql....,qn since they are polynomials in Zy

and p),...,p , and the Zy = (g - cj")-1 for k £ £ and z,, = 0.
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§ 3 - SYMPLECTIC ACTIONS OF A GROUP.  MOMENT MAP AND REDUCTION OF
THE PHASE SPACE

Let XH be a Hamiltonian vector field of Hamiltonian fung
tion H defined on a symplectic manifold (Mzn,m); assume that the
flow ¢§ is an one-parameter group of symplectic diffeomorphisms .
Given a first integral F, that is (F,H) = 0, F is constant along
the integral curves of ¢; and H is constant along the integral cur
ves of the flow ¢; of Xpi assume also Xp be‘complete. If one con-
siders the restriction of H to a level surface F—l(c) which is a .
submanifold of dimension 2n-1 when ¢ is a regular value of F, one
sees that H is-constant on the integrals curves of ¢; lying on
Fl(c). Then F—l(c)/¢; . the manifold of the orbits of ¢; on
Fhl(c), has dimension 2n-2 and H induces a function H * which is
well defined in the quotient. MorFover, any integral curve of‘ Xy
on F-l(c) is projected on an integral curve ‘of the vector fielad iH

obtained by projection of xH. Roughly speaking, if it is known a

first integral F it is possible to reduce Xy to another system -iH

with 2n-2 dimensions,

As in the Arnold-Liouville's theorem, if one conside;s k
first integrals Fl,...,Fk in involution and independent everywhere,
it is possible to define F -.(Fl,...,Fk):M -+ Rk and an action of
the Abelian group R* on the level surface F-l(c), using the fact

that thé flows ¢§ of xF. commute and assuming also that they are
i
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complete. The action is the map A : r* x M + M given by A(t,p) =

A((tl....,tk),p) = 1»: LR -¢;(p) for all p€M and all t-‘(tl,...,t.k)ﬂik.
It is clear that A(t+s,p) = A{t,A(s,p)). One can prove that the
quotient F-l(c)/Rk, the set of all orbits of RX, is a- symplectic
manifold of dimension 2n-2k and that the function fi, which is well
defined in the quotient, is the Hamiltonian function of the Hamil-
* tonian vector field iH' projection of xH under the derivative of

the quotient map. The above method is called the Jacobi-Liouville

method of reduction.

It will be also shown that there exist other kinds of
group actions, including noncommutative actions; a good example
studied below in example 3.2 is the noncommutative action of the

: :

3 3

rotation group SO(3) on R” x R _which can be used to reduce a

Hamiltonian system invariant under that action. !

Example 3.1: Let H(p,q),(p,q)ekzn, be a Hamiltonian function invariant
under thé translation (p,q) . (p,qg + 8(1,...,1)), that is,
H(p,q + s(1,...,1)) = H(p,q) for all s € R, the differentiating

. . E 9H n
with respect to 8 at 8 = 0, it results 22 (p,q) = - ¢
k=1 aqk k=1

. This shows that F = Py + +c0 + Py is a first integral, '‘called the

;‘;k-o.

linear momentum. Consider now the following chapge of coordinates:

"¢ k=1,...,n.
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It defines a canonical transformation since .
A R . A o
igldni s 121 dp; * dqy

Let T'(n,§) be defined by I'(n,§{) = H(p,q). The function I does not

.depend on {n since %%ﬁ = -ﬁn and n, is an integral. The system

restricted to gny level surface n, = ¢ becomes tk = %%_. n, =- %%_,
K k

k=1,...,n-1, with (n-1) deégrees of freedom. , Knowing how . to solve
it, it is then possible to integrate the remaining scalar equation

= 3L « ¢(t,c). This is, essentially, the Jacobi-Liouville method

N 3nn
of reduction in the case of one first integral.

Example 3.2: Let H(p,q) = %lpl2 + v(laD), . (p.a@) e R3 x &3 = gE .
This function is-invariant under the orthogonal group S0(3), since
H(Rp,Rq) = H(p,q) for all R € SO(3). Using the Lie algebra g=s0(3)
of all skew-symmetric operators, one obtains that .exp 8 A € s0(3)
for all s €ER and A € g. Thén H((exp 8 A)p,(exp s A)q) = H(p,q) ,

which, after differentiating with respect to s at '8 = 0, gives
8H | A + (3, a =0 .
<ap' q) ‘<Bq P)

Thus defining SA by 3A(p,q) - {(p. Aq) , 3A is an integral for

any A € g = s0(3). It is known that to each A € so(3) there cor-

3

responds an‘unique a € R” such that Ax = a A x , for all x E-R3 .

.
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Therefore 3A(p,q) = 3a(p,q) ={(parg)={(apnrq). If
(el,e2,§3) is the canonical basis of Ra, one has gAp -(dhp,el)el +
( qu{ez_)ez + < q°p, e, )e3- The wap (p,q) » g A p is a vector

valued first integral called the angular momentum. Therefore, if
q= (ql,qz,qs)'and p= (pl,pz,p3), the components F, = q2p3—q3p2 o
F, = Q3P)-q;P3, Fp= q,P,"q,P; of ¢ A p are integrals of motion
‘and one may expect to reduce the phase space R6 by six dimensions.
But, in‘this case these integrals ‘are not in involution, since
(Fl,Fz) = -Fa. In order to see that the reduced space has two
dimensions, one fixes a value c = g A p of the angular momenﬂmuand .
assume. ¢ + 0. One may choosé the coordinates such that c = Ae3 3
A >0, ey = (0,0,1). Then 95P3 = 93P = 0, q;P; - G3p; = O and
sinc% A -_(q1p2 - qul) $.0 it results that Py = Q3 =0, that

means, the problem is rgduced.to_R2 x mz with the quadratic inte-

gral A = 43P - 4,P,- ‘The new phése space Rz x Rz is invariant
under the rotations of S0(2). The reduced Hamiltonian function

H=H éz x g2 is obtained by making p3'- gy = 0 and then
& 1002 o2 . S22
H .E(pl +py) + V() , x q; *+ q9; -

~ It is also obvious that_ﬁ is invariant under S0(2). Following - a
method discove{ed by Jacobi, one introduces polar coordinates
g, = r cos ¢. q, = r sin ¢ ?nd, for the conjugate Qariables one .
chooses the sgecial functions P, = Py cos $ + | sin ¢ and
p¢ = r(-p; sin ¢+ P, cos ¢). Since p¢ = q,Py - qz.p1 = ], pQ is

an integral. and a straightforward computation shows that the co-
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w -dpl Adq1+dp2 I\dqzn
= dp Adr + dp¢Ad¢. The Hamiltonian function i in these coordinates

ordinate system (pr,p+,r,?) is canonical since
is given by

. 2 2 2

H=21 + 1 +V =1 + A+ v(r i

so that the system reduces to

: )
= - 3H a - A 4 AV(y) ,
= 3 dr

r
ar =
: - R
. T=20 =p
., T
&-___aﬁ -l_p ._L.
Ly . 2 ? L2

The two first equations define a dystem in two dimensions; using

the conservation of the energy, one can solve the scalar equation

S g .
r=3 //éc - L; - V(r) to find r(t) and then integrate ¢ = 25 .
r r (t)

The Moment Hag.

Let (M,w) be a symplectic manifold such that w = do ;
that is, besides to be closed and nondegenerate, w is an exact two
-form: In this case (M,d0) is said to be an exact symplectic mani-
£901d. As an example one has the cotangent bupdle M = T"Q of a

manifold Q (see example 1.2). : g

3 ’
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An action of a Lie qroup G on a manifold M is a smooth
map ¢ : G x M + M such that, for any g € G, the map ¢g': M+ M de-

fined by ¢g(p) = ¢(g,p) is a diffeomorphism, ¢e = id(M), e being
the identity of G, and ¢9.° b, = ¢gh for all g,h € G. The orbit

o(p) of a point p € M is the set

x

o(p) = {¢g(p)|g € G} .

[

‘One also defines the maps ¢p:G + M by ¢p(g) = ¢(g,p). A symplectic

action of a Lie group G on a symplectic manifold (M,w) is an action

$:G x M » M such that ¢ is a symplectic map, i.e., ¢;w = @ for

all g € G. If, moreover, w=4d0 and ¢‘6 = @ for all g € G, one

has an exact symplectic groug action.

Let g be the Lie algebra of a Lie group G and let ¢:GxM+M -

- be a symplectic group action of G on a symplectic manifold (M,w) .

Given a € g, g(t) =exp t a € G for all t € R, then ¢g(t)' is a

symplectic diffeomorphism. Let xa be the vector field defined on

" by (x ,J B)(vl.....v 1) = B(xa;vl'ﬂ"'v

‘= d¢p(e)a. If, moreover, the symplectic group action is exact

M by X, (p) = __ ¢g(t)(p)|t-0 The vector field X, is called the

1nf1n1;e§imal generator of the_action corresponding to a € g. The

map a ¢ X is linear since X_(p) = 4 $(g(t),.p) =4 & (g(r) -
a ° a dat t=0 3¢ p t=0

14

then the vector field xa is a Hamiltonian vector field with Hamil-

tonian function 3 = O(x ), as prdved below. If B is a n-exterior

~ form on M, recall that x |8 denotes the (n-1)-exterior form given

n-1’* By the well known
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formula ane = d(x, o) + x, Jae, (see [a-M]) and since ¢;(t)9-9

implies Ly, ® = 0, one obtains d(x, 1 6) = -x_ _Jae that is

a
ae(x,)) = -xa.J dé which proves the assertion., Since the map

a€cEghm ja = Q(Xa) is linear, the moment map J associated to_ the
exact symplectic group action can be defined as J : M + g*, by the

formula (Jpla = Sa(p), for all p € M and a € g. It can be shown
that the linear map a + xa' considered above, has the property
x[a,bﬂ - [xa.xg]. Then the linear map a b ga is a homomorphism of

Lie algebras, that is, J = (3 ,3).
[a,tﬂ a'’b

The next theorem shows:that the moment map J:M -+ g* has

the universal property of being a vector valued first integral for
any Hamiltonian system XH such that the Hamiltonian function H is

invariant under group action.

Theorem 3.1: Let $ be an exact symplectic group action of a Lie
group G on_an exact symplectic manifold (M,d0) and let H:M - R be

any smooth Hamiltonian function invariant under the action, that

is, H o ¢g = H for all g € G. Then the flow #E of the Hamiltonian
vector field X, leaves invariant the moment mép J :°M =+ g%, i.e.,

J o ?; =J, or eguiva;entlx,.tne function Sa is a fiist inteqral

of X, for all a € g.

Proof. Since H(p) --H(¢g(p)). take g = g(t)'- exp t a, a € g, and

(p)).

compute the derivative with respect to t at t=0 of H(p)-ﬂ(&expta
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Tﬁus, one obtains
0 = aH(x_(p)) = a8 (x, (p) , X, (p)) = (H.Sa)(p) A

which shows that 3a is a first integral of xH, for any a€gy . Finally,

(J o ¢t)p a= J(@t(p)) a=J (¢t(p)) =3 (p) = (Jpla . ful
H H a TH a

> N\

-At this point it is interesting to go back to example
‘3.2, where the group G = SO(3) defines an exact symplectic  group
action on the exact symplectic manifold (M,do) = (R’ x R3, de)

r

3

0= ifl Py dqit i the group action is given by ?R(p,q) = (Rp,Rq).

~for all R € SO(3). 1In fact, it is clear that [d¢R(p,q)] (Y,.X) -
! ] 1 3

.(mr,.m’c) and e(p'q)(v,x) - 151' P d?it (Y,X) = 151 P; .9q;(X). Then

O p,q (1% = 121 Pi¥5s% (p.Xx) . |
" Finally
G(Rp'Rq)(RY.RX) = (Rp,Rx> = <p'x> - Q(p’q)(y'x)'

Reqall also that 3a(p,q) = (a,prq) , foralla€gs= so(3)zr3,
The moment map J:M + g* is given by J(p,q) = ( + , p » q) . ' By
.-fhe last theorem, any Hamiltonian function H : RG + R . invariant
under the action of S0(3) (in particular, that one considered in -
example 3.2)'define§ a Hamiltonian system for which the functions

3° are first integrals; in particular (p,q) » pAg is a vector

valued.first integril for such systems.
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Any action of a Lie group G on a vector space V is called
a ;epresentation:._The adjoint representation of G on its Lie al-
gebra g is the aétion Ad : G x g + g defined by Ad(g,a) =
[dL e dR l(e)](a) where dLg and ng_1 denote,respectively, the
‘derivatlvea of the left and rxght translations

0

X €GP QGXxEG and X € G b xg-1 € G.

One also introduces the notation Ad(g)a = Ad(g,a). Since Ad(g) :g+g
is the derivative dw (e) : 9+ g of the map

Y, t X EGk gxg L =1 R _4({x) €6
g g-1

at e € G, one obtains Ad(gh) « ad(g) o.Ad(h). :_ 2

The coadijoint regresentaﬁigg of G on g;‘:Ad* :t G x g - g r.. is
given by the maps Ad*(g) : g* -+ g*, g € g, defined by ‘the tormula"
[ra*(@)] (wa €% y[ad(g™ )a) " for all y € g* and alla € g . With
this definition one obtains Ad (gh) = Ad*(g) » Ad (h)

If one fixes now u € 9* oﬁe obtains the orbit O(u) of
the coadjoint representation, which is the set o(uw)={ada*(g)ulgecy.
It is a basic result due to Kirillov and Kostant that O(u) has a

1

canonical symplectic structure.
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Example 3.3: Isospectral matrices.

Let G be the Lie group of all the nxn non singular real
wmatrices and let T be an element of G. Then AMTIA =T ATl for

all A € g. The well known inner product -
(A,B) € gxg=+ (A,B) 9€f trace 2.Tn

identifies the Lie algebra 9 of all n x n real matrices with its

dual g* by

g A€gmrveEg', vie) = (o,a) .
! : a
For a fixed y € g, the orbit'O(ﬁ) of the coadjoint representation
is 1dentif1ed with the set of all matrices whlch are similar to
the matrix M given by the identification u(.) = (+.M) . In fact,
oy) = {x|aa*(gluls) = ( «,x >, 9 € G} and Ad*(g)p(.) = (X)) =
p(ad(g™1)(e)) = u(g-l(-)g)'- ( g-l(-)g,M Y = trace g_l(-)g ™M =
trace g-i(-)g Tm_g-l g = trace (-)g T gl a ( -.T(g-l)M g ) then
X = T(g—l)M Tg and X is.similar to M. If u is such that M has
distinct eigenvalues then O(u) consists of the so called isospec-

. tra atrices. A symplectic structure will be defined on the manifold

o(u) = {TMT-IIT € G}. The point M belongs to O(u) and the tangent:
space of O(u) at the point M is the set {[a,M][A € gl . To see

this, one considers a generic curve T(t) in G such that T(0) = T
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and T(0) = A; then T(t) M T(t)! is a generic curve on O(y), pass-

= -T(0) = -A one obtains

ing through M at t=0. Since 4 T(t)™!
* dt t=0

4 (1(t) M (T
at

= AM - MA = [A,M].

t=0 .

This description of the tangent space of O(y) at M can be used to
show that the dimension of O{u) is n%-n. The form ®w on O(y) is
given by w([a,M],[B,M]) ds? trace ([A,B].M). One verifies that
this form is nondegenerate, skew-symmetric t;nd closed, thus defining

a symplectic structure on 0(u).

Consider again an exact sympléctic group ac.tion‘ $ and
its corresponding moment map J : M » g*. The moment map J is said
to be equivariant with respect to a pair of functions £: M + M and
h:g"+g"if Jef=hed, that is, if the following 'diagiam

commutes:

&

Theorem 3.2: Given any exact symplectic group action d:G xM+ M
of a Lie group G on an exact symplectic manifold (M,d0), the cor-

responding moment map J is equivarjant with respect to ¢g Tt M+ M
and to Ad*(g) : g* + g* ', for all g € G.
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Proof. To be equivariant means J o ¢g = [Ad*(g)] e J, for all

g9 € G, that is, [J(¢g(b))Ja has to be equal to [(Ad*(g))Jpﬂa for

all p €M and a € g. Let X, be the infinitesimal generator of -

the action corresponding to a € g. But [h(¢g(p))]a = 3a(¢g(p)) -

= [G(X 1]é (p) = & (Xa(4,(p))). On the other hand one has
g ¢ (p) g

1
[(Ad*(g))ap]a - Jp[Ad(g )a] = JAd(g_l)-a(p) - [e(xAd(g'l)a)](p) =

ep[d¢p(e)(Ad(g-1)a)].

\
The fact .that exp t a is the one parameter group of a € g, implies
" that g~l(exp t a)g is the one parameter group of Ad(g-l)a ; in
fact, the curve g'l(exp t a)g passes through e € G for t = 0 and
its derivative at t=0 is 9(g-lexp t a)g)| = dq . Y(exp t a) =
_ de t=0 dt g1 t=0
- dLg_1 o'aRg(é% exp t d]
ol

= dL _) ° dRg(a) = Ad(g~l)a. conse-
oo T g o -

quently [(aa*(g)ap)]a = ep[{'dg{ fexp.t Ad(g'l)l;(p)).tno] =

- P 99[(% 1’g"'l(exp t ;)g(p)) .t'o] i ép[(-‘;,—t(q,g'l *feprat fg(p)))t'o] .

-0 [dqsg (& bkt a(epg(pn]t_c] "% (o) (a4, the 1ase

equality being true because ¢;e = 9,

" The proof is then complete. D

he_Reduced Phase Space

m—)

Given an exact symplectic group action G x M + M op an
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exact symplectic manifold (M,d0), let us consider the correspond-

ing moment map J : M+ g*. Fix y € g* and consider the set

J'l(u) = {p € Ml&(p) = u}.

. "~
.In the example 3.2, G is SO(3) and J-l(u) consists of those statesé

for which the angular momentum vector u is fixed. By the equi-

variant property, the isotropy subgroup

G, def {g € Glaa*(g)u = u}

acts on the set J-l(u),.which in the example consists of all rota—f

1
tions leaving fixed the angular momentum vector u . .Again, in

S0(2). To eliminate this angle one conside;sA the quotieni set
J-l(u)/Gu , which corresﬁonds to the eiiﬁination of the “ignq;agle"
angle of rotation. Under appropriate assumptions{. for 7: eiamé;e
(see [A], Apendice 5), if M i; a regular value of J, if the iso-
tropy group G; is compact and.acts on J'l(ul wiihout-fixed éoints,

it is possible to construct the bundle
m:a by + = q'l(u)/Gu '

and M is called the reduced phase space; M is.a symplectié mani-

fold and its structure is given by a two form & which is ‘defined

i

L-

example 3.2, if u 0, Gu is a one-dimensional rotation fsubgroup z

LY
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as follows: if j : J-l(u) + M is the injection map then j*w is the -
pullback of w = d6 to J-l(u). This form j*w is invariant under -
Gu and therefore there exists & in the quotient, such that Mo=j*w.
Mo;éover, if H is any Bamiltonian function invariant under the
action ¢g + the reduced Hamiltonian flow Xy on (M,®) is defined
by di = -xﬁ'_]ﬁ » where the Hamiltonian function H is such that
Holl=H - j , that is, the restriction of H to J-l(u) isy in-
Qariant under Gu and defines H in the quotient (see [A] Apendice

5 ana [a-M]).
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§ 4 - PERSISTENCE OF TORI. THE THEOREM K.A.M. (Xolmogorov, Arnold

and Moser)

Assume it given an inéegrable system of Hamiltonian
function Hy, with ‘the hypothesis of the Theorem 1.2 of Arnold and
'Ljouville. Assume also that in a neighborhood of the Torus M, .
diffeomorphic to B x ™ » B being a ball in Rn', there are action-

angle canonical coordinates (I,¢) and xﬂo is given in B x ?n by
»

Q_l-o,ﬂ-v
i o .O(I) '

so that Hy = HO(I) and vo(I) = %%(I);

' 2y (1) | av. (1)
If, moreover, det ———Q——- et -0 + 0, the system xHO is
il 31

called non-degenerate. {n this cage the, frequencies (vé,...,vg)
are non-resonant, that is, ( Vork ) # 0 for all sequences k+ 0 of
integers, and the orbits are dense in each invar;ant torus I=cte.,
which is then the closure of the orbits. This means that if the
frequencies are non resonant,’ the tori_do~not depend on the choice

.

. of the action-angle coordinates.

L
¢ ;
Denote (I,¢) by (p,q) and consider a perturbation on the

non-degenerate Hamiltonian by

H = Hy(p) + H,(p.q) '
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with Hl(p,q+2u) - Hl(p,q), where Hl(p.q) is small in a sense that
will be precised below. The equations for the perturbed Hamil-

tonian are

: 3 oH
=y + _A ’ D = - ___l
q = vy5(p) 5 ' P 3

All the data in the statement of the next theorem are supposed to
be analytic and Xgp non-degenerate. If one selects a non-resonant

frequency v = v*, the equations on the invariant nonperturbed to-

rus To(v*) are characterized by p = p* where v* = vo(p*).

Theorem 4.1: (K.A.M.)

Given K > 0 and for almost all non-resonapt v* {except
for d set of Lgbgsgue meagure zero), there exist ¢ > 0 and a __map
P = pP(Q), q = q(Q) from an abstract torus T = {o[mod 2r} inte BxT"

such cordi o_the perturbed tem one has @ = v* and
vy

Ipt@) - p*| < K, lq(@) - ol< K, provided that I8, <€ = e(x, v*,

Proof. (see [A-a)]).

The weaning of the Theorem K.A.M. is that there exists
" an invariant torus T(Vv*) of the pertﬁrbéd system, closé to the
torus T,(v*), for almost all v* (except for a set of measure zero
of frequencies). The union of all tori T(v*) is a set witﬁ posi-
tive measure in the phase space and it; complement has - measure

which tends to zero has |H1| -+ 0.
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