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1. Introduction

One of the most prominent discoveries in representation theory in the 20th century
was made by Weyl proving that every finite-dimensional module over a complex
semisimple Lie algebra is completely reducible. Further, the irreducible finite-
dimensional modules are parameterized by their highest weights and their char-
acters and dimensions can be explicitly written in terms of the celebrated Weyl
formulas, see, for example, [40], and the references therein for a detailed exposition.

Unfortunately, Weyl’s results do not provide explicit formulas for the action
of the generators of the Lie algebras. Such formulas were first discovered in the
fundamental works of Gelfand and Tsetlin in 1950. At that time they published
two short papers with explicit constructions of tableaux basis of the modules and
formulas for the action of the generators of the algebra on the tableaux. These
formulas are known today as Gelfand-Tsetlin formulas. The formulas are for simple
finite-dimensional modules and Lie algebras of type A [31], and Lie algebras of types
B and D [32]. It is interesting to note that these works did not include proofs or
references to earlier works. In an effort to understand better the results of Gelfand
and Tsetlin, mathematicians and physicists developed various tools that lead to
formal proofs of Gelfand—Tsetlin formulas. Some of the first works containing such
proofs are [I, 2]. In these works, Baird and Biedenharn studied Racah—Wigner
calculus on the unitary groups, and discovered a natural relation with the Gelfand-
Tsetlin formulas. Independently, in 1962, Zhelobenko introduced lowering operators
and suggested that they can be used to prove the Gelfand—Tsetlin formulas for gl(n),
see [64]. Inspired by the work of Zhelobenko, Nagel and Moshinsky [53], and Pei-Yu
[55], obtained yet other proofs of the Gelfand—Tsetlin formulas for gl(n).

In the 1970s a series of papers of Gould, Green, and others used the technique of
tensor-type identities to obtain further relations with the Gelfand—Tsetlin theory.
More precisely, in [38], certain sets of group invariants were used to derive a hierar-
chy of tensor identities, known as characteristic identities, satisfied by the generators
of the general, orthogonal, and symplectic groups. With the aid of characteristic
identities, Wigner coefficients formulas and yet another proof for the action of the
generators of the algebras of types A, B, and D on finite-dimensional modules were
obtained in [34], [35].

The Gelfand-Tsetlin technique providing explicit bases and action of the gen-
erators is best suited for the case of gl(n). Although in this paper we work with
this case only, one should mention that many interesting and deep results are es-
tablished in the cases of orthogonal and symplectic Lie algebras. One especially
powerful technique used to studying these cases is the theory of Yangians. We will
not discuss this theory here, and the interested reader is referred to [52] and the
references therein.

It is important to note that the Gelfand—Tsetlin theory has strong combinatorics
flavor. The representation of the classical groups in tensor product spaces was used
to construct bases of the representations of the classical Lie algebras parameterized
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by standard Young tableaux. The first proof of the formulas presented in [I] relies
on calculus of Young patterns. Gelfand—Tsetlin bases were used as prototypes to
study combinatorial properties of the supporting graphs of representations of Lie
algebras of types B, C, and Ga, see [g].

Undoubtedly, Gelfand—Tsetlin bases are not the only important bases of rep-
resentations. Finding explicit bases of representations of semisimple Lie algebras
has been a central topic of research in the last several decades. Deep results were
discovered by De Concini and Kazhdan [5], Kashiwara [43], Littelmann [46, [47],
Lusztig [48], among others. We refer the reader to [49] for an overview of the dif-
ferent types of bases. However, explicit formulas for the action of the generators
on the corresponding basis elements are known only for bases of Gelfand—Tsetlin
type.

The Gelfand—Tsetlin theory for infinite-dimensional modules is a rapidly devel-
oping subject. Important categories that include infinite-dimensional modules are
highest-weight modules, weight modules, Harish-Chandra modules, among others.
Unfortunately, even the classification of the simple objects in some of these cate-
gories is still an open problem. One important category involved in this paper, and
the Gelfand—Tsetlin theory as a whole, is the category of weight modules. In what
follows, we provide some history on the study of this category.

Let g be a finite-dimensional simple Lie algebra over the complex numbers,
and let h be a Cartan subalgebra of g. A g-module M is called a weight module
if M = @ycy- Ma, where My = {v € M [hv = A(h)v, VI € b}. The space My
is called a weight space, the set {\ € h* | My # 0} is called the weight support of
M, and the dimension of M) is called the weight multiplicity of A. If h acts locally
finitely, but not necessarily diagonally, on M, then we say that M is a generalized
weight module. It is an easy exercise to show that a simple generalized weight module
is a weight module.

A weight module M is torsion free provided that all root vectors of g act in-
jectively on M. If M is a torsion-free module then all weight multiplicities of M
(finite or infinite) are equal. This invariant of M is called the weight degree of M.
Furthermore, the weight support of a torsion-free module M coincides with a full
coset A+ @ of h*/Q, where @ is the root lattice of g and X is in the weight support
of M. On the other hand, a simple weight module may have “full support” without
being torsion free, in which case the weight multiplicities are necessarily infinite.
The first examples of such modules were given in [16]. Simple modules with full
support are called dense.

A breakthrough in the theory of weight modules with finite weight multiplicities
was made by Fernando [I3], in 1990 who reduced the classification of all such simple
modules to determining the simple torsion-free modules. He also showed that the
only simple Lie algebras admitting torsion-free modules are those of type A or C.
The next major breakthrough was made in 2000 by Mathieu [50], who classified and
provided a realization of all simple torsion-free modules of finite degree. Previously,
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the case of degree 1 was worked out in [4]. Important properties of the annihilators
of the torsion-free modules were established in [41].

The study of weight modules with infinite multiplicities is still at its initial stage.
A result similar to the one of Fernando reduces the classification of all such simple
modules to the classification of all simple dense modules of simple Lie algebras.
For the classical simple Lie algebras this reduction was obtained in [I5] and for all
exceptional simple Lie algebras except Fg in [29]. Finally, in [7], the reduction in all
cases, including all important classes of finite-dimensional Lie superalgebras, was
completed.

One natural category of weight modules is the category of Gelfand—Tsetlin mod-
ules. More precisely, this is the full subcategory of the category of generalized weight
modules consisting of modules that admit a generalized eigenbasis for the Gelfand-
Tsetlin subalgebra, a maximal commutative subalgebra of the universal enveloping
algebra U(g) of g. Gelfand—Tsetlin modules were introduced in [0HI1] as an attempt
to generalize the celebrated tableaux construction of Gelfand—Tsetlin.

Gelfand—Tsetlin subalgebras have applications that extend beyond the study
of Gelfand—Tsetlin modules. For example, these subalgebras were related to the
solutions of the Euler equation in [I4], and to the subalgebras of U(g) of maximal
Gelfand—Kirillov dimension in [59]. Gelfand-Tsetlin subalgebras were studied in
[44, [45] in connection with classical mechanics, and also in [36] [37] in connection
with general hypergeometric functions on the Lie group GL(n,C).

A general theory of Gelfand—Tsetlin modules for a class of Galois algebras (for
a definition, see [27]) was developed in [28]. The results for these Galois algebras
can be applied to the universal enveloping algebras of sl(n) and gl(n), and provide
structural properties of the corresponding simple Gelfand-Tsetlin modules. In the
generic case the characters of the Gelfand—Tsetlin subalgebra parametrize such
simple modules. However, in the non-generic case, i.e. in the singular case and
n > 2, we may have more than one isomorphism class of simple Gelfand-Tsetlin
modules with a fixed character of the Gelfand—Tsetlin subalgebra. The theory of
singular Gelfand-Tsetlin modules was initiated in [2I] where 1-singular modules
were constructed and studied in detail. Immediately after the construction of the
1-singular modules, there was an abundance of successful attempts to construct
simple Gelfand—Tsetlin modules with a given singular character. For more details,
we refer the reader to the following papers [12] 2TH26| B0, B9, 68| 60, 6], [63].
In particular, a classification of the simple Gelfand—Tsetlin modules was recently
announced in [42] [62].

A classification of the simple 1-singular Gelfand—Tsetlin modules was obtained
in [23] and leads to the classification of all simple Gelfand—Tsetlin modules of the
Lie algebra sl(3) (and of gl(3)). The latter classification is the main purpose of this
paper and it is provided via very explicit tableaux construction.

Our classification result relies on various old results on Gelfand—Tsetlin s((3)-
modules obtained in [3, I5HIS], combined with newer results from [19, [57].
We remark that some technical statements in the paper on the properties of
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Gelfand—Tsetlin modules can be simplified using the theory recently developed, for
example, in [23] 28] [58]. However, for the sake of completeness and for reader’s con-
venience, we opted to keep the original paper containing detailed and explicit proofs.

The structure of the paper is as follows. In Sec. 2, we set up the notation and
state basic definitions and results needed in the rest of the paper. In Sec. Bl we prove
some general results about the Gelfand—Tsetlin modules of gl(n). Section @ is de-
voted to the description of certain “easier to study” classes of Gelfand—Tsetlin mod-
ules of gl(n), namely finite-dimensional modules, generic modules, and 1-singular
modules. In Sec. B, we collect some important definitions and preliminary results
that relate Gelfand—Tsetlin modules to their Gelfand-Tsetlin character. In Sec. [G]
we prove the main results about existence and uniqueness of simple Gelfand—T'setlin
modules of s[(3). The explicit description of all simple Gelfand—Tsetlin modules for
5[(3) is included in Sec. [l Finally, in Sec. Bl we study localization functors on the
category of Gelfand—Tsetlin s[(3)-modules and prove that any simple module in
this category can be obtain from an Fs;-injective module using a FEs;-localization
functors.

2. Preliminaries

The ground field will be C. In the first part of the paper, we fix an integer n > 2.
For a € Z, we write Z>, for the set of all integers m such that m > a. Similarly,
we define Z,, etc. For a Lie algebra a by U(a) we denote the universal enveloping
algebra of a. For a commutative ring R, Specm R will stand for the set of maximal
ideals of R.

By gl(n) we denote the general linear Lie algebra consisting of all n x n complex
matrices, and by {E; ;|1 < ¢,j < n} — the standard basis of gl(n) of elementary
matrices. We fix the standard Cartan subalgebra of gl(n), the standard triangular
decomposition and the corresponding basis of simple roots of gl(n). The weights of
gl(n) will be written as n-tuples (A1,...,\,) through the identification h* — C™.

The Lie subalgebra g = sl(n) of gl(n) is generated by {E; i+1, Fit1,:]1 <1<
n — 1}. The standard Cartan subalgebra of g will be denoted by b, i.e.

h = Span{hi = Ez - Ei+1’i+1 |Z = 17 NN e 1}
Let ¢; denote the projection of a n x n matrix onto its (¢,4)th entry. Then a basis
of simple roots of the root system A of g is given by 7 = {a; = ¢; —€;41 |1 =1,...,
n — 1} and the corresponding positive roots are A" = {e; —€; = a; + -+ + aj_1 |
i<j}.

2.1. Index of notations

o Section Bl cmr; i(cmk); s ymi(1); M(x); Suppgr(M); Mx; Supp(M); I'(r);
GT x(n).

e Section B2l GT (n).

o Section @Il T'(v); Tn(R); Xo-
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e Section B2 675 Qp; B(T(v)); GT r(v)(n).

o Section BB V(T(0)); Smi e ersi et (w); e} (w); ers(w); QUT(w));
O (T (w)); N(T(w); T(T(w)).

e Section B4 F; T, (C)gen; HY
D?; Tab(w).

e SectionBl gi(z,y); C(h).

e Section[73} At (Tab(w)); A(Tab(w)) N (Tab(w)); C(w); R(w); N(ys,p)(Tab(w));
N (Tab(w)); N (Tab(w)); A(Tab(w)); N(Tab(w)); Tab(B).

e Section [[Hl M (B); L(B).

e Section 8 D;;; Df;; QD

e Section B2l ©,(u); L.

o Section B3l LEGj); LECj).

Qo (k. t); Hi Hy Fig, V(T(0)); B(T(0)); Veen: S;

2]7

3. Gelfand—Tsetlin Modules of gl(n) and sl(n)
3.1. Gelfand—Tsetlin modules of gl(n)
Let for m < n, gl,,, be the Lie subalgebra of gl(n) spanned by {E;; |1,j =1,...,m}.
We have the following chain:
ghhcglb C---Cygl,.
It induces the chain U; C Uy C --- C U, for the universal enveloping algebras

Un=U(gl,), 1 <m<mn.Set U:=U(gl,). Let Z,, be the center of U,,. Then Z,,
is the polynomial algebra in the m variables {¢pk |k =1,...,m},

Cmk = Z E1122E1213 s Eikil' (1)
(i15eerin) E{1,e,m}*
The (standard) Gelfand-Tsetlin subalgebra I' in U [10] is generated by |J;_, Z;.
The algebra I is a polynomial algebra in % variables {¢;; |1 < j <i<mn}.
For i =1,...,n denote by S; the ith symmetric group and set G = S,, x --- x S7.
Let A be the polynomial algebra in variables {l;; |1 < j <1 < n}.
Let 2 : = A be the embedding given by t(¢mi) = Ymk (1) where

m m 1
— ) _ 1)k - -
ol =3t m =] (1- ) @
i=1 i
The image of ¢ coincides with the subalgebra of G-invariant polynomials in A which
we identify with T, see [65] for more details.

Remark 3.1. Note that I' contains the standard Cartan subalgebra of gl(n)
spanned by E;;, ¢ = 1,...,n. Indeed, ¢;,1 = Z:’;l FE;; for each 1 < m < n. There-
fore, E;; belong to I' for each 1 < ¢ < n.

Remark 3.2. We should note that the polynomial 7,,x(l) is symmetric of degree
k in variables L1, ..., lmm, and {ym1(1),...,Ymm(l)} generate the algebra of S,-
invariant polynomials in the variables 1, ... Lnm (see [65]).
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Example 3.3. The polynomials 7,,(l) for m < 4 are listed as follows:

v11(l) = l11,

Y21 (1) = (l21 + l22) + 1,

Yoo (1) = (131 + 135) + (I21 + l22),

Y31(1) = (I31 + I32 + I33) + 3,

Yao(l) = (131 + 135 + 133) + 2(I31 + l32 + I33) + 1,

va3(1) = (I5) + 135 + I35) + 4(13, + 155 + [33) — (s1ls2 + I1ls3 + l32lss) — 6

+ (131 + I32 + 133),
Ya1 (1) = (la1 + lag + lag + laa) + 6,
vao(l) = (I3, + 130 + 35+ 134) + 3(lux + laz + laz + lua) + 4,
Yaz (1) = (31 + U3y + 135 + 134) — (Lanlaa + lanlas + larlag + laolas + Laolaa + lazlaa)
+ 615, + 130 + 135 + 130) + 3(lar + laz + lag + lua) — 19,
Yaa(l) = (lgy + Lz + Uy + 1) + 90 + U + Uy + 1a) + 2105, + g + U5 + 13)
— (G lao + Gy las + Gy lag + L3y + Ll + Laal3, + olus + Uolaa + laalds)
— (laal3y + 13314q + 14313y) — 10(la1lan + larlag + laglaz + lazlaa
+la1la3 4 laolaa) — 19(la1 + Lz + lag + laa) — 120.

Definition 3.4. A finitely generated U-module M is called a Gelfand—Tsetlin mod-
ule (relative to T') provided that the restriction M|r is a direct sum of I'-modules:

Mr= € Mm), (3)
meSpecm I’

where
M(m) = {v € M |mFv =0 for some k > 0}.

Definition 3.5. An algebra homomorphism x : I' — C will be called Gelfand-
Tsetlin character.

Remark 3.6. For each m € SpecmI" we have associated a character xpy, : [' —
I'/m ~ C. In the same way, for each nonzero character x : I' = C, Ker(y) is a
maximal ideal of I". So, we have a natural identification between characters of T"
and elements of Specm I'. So, using Gelfand—Tsetlin characters, a Gelfand—Tsetlin

module (with respect to I') M can be decomposed as M = P, .. M(x), where

M(x) = {v € M|for each v € T, 3k € Z> such that (y — x(7))*v = 0}.
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Definition 3.7. Given a Gelfand—Tsetlin module M, the Gelfand—Tsetlin support
of M is the set

Suppgr(M) := {x € I'" [ M(x) # 0}.

Definition 3.8. A finitely generated U-module M is called a weight module
(relative to b) provided that the restriction M|y is a direct sum of h-modules:

M= ED My, (4)

A€bh*

where
My :={ve M|hv=Ah)v for all h € h}.
The weight support (or simply, the support) of M is
Supp(M) :={X € b* | My # 0}.

Remark 3.9. Any simple Gelfand—Tsetlin module M over gl(n) is a weight module
with respect to the standard Cartan subalgebra § spanned by E;, i = 1,...,n,
see Remark Bl Moreover, I' is diagonalizable on any simple finite-dimensional
module. On the other hand, a simple weight module need not to be Gelfand—Tsetlin,
however, simple weight modules with finite h-weight multiplicities are Gelfand—
Tsetlin. The latter is true since in this case I' has a common eigenvector in every
nonzero weight space. In particular, every highest-weight module or, more general,
every module from the category O is Gelfand—Tsetlin.

The definition of a Gelfand-Tsetlin module depends on the choice of the
Gelfand—Tsetlin subalgebra I'. One can easily define a family of Gelfand-Tsetlin
subalgebras of gl(n) as follows. Let m = {1, ..., Bn—1} be a base of the root system
of gl(n), where B, = €;, —€;,,,, k=1,...,n—1. Let gl; be the subalgebra of gl(n)
spanned by E;j, 4,5 € {i1,...,ix}. In particular, gl, ~ gl(k) and f1,..., Sk are the
simple roots of gl;,. Then we have a chain of embeddings

ghc---Cygl,.

Let Z; be the center of U(gl;) and I'(m) be the subalgebra generated by Z;, i =
1,...,n. We will call I'(7) a Gelfand-Tsetlin subalgebra associated with .

Each subalgebra I'(7) gives rise to a category of Gelfand—Tsetlin modules which
we denote by GT7 (n). Let 7 and 7’ be different bases of the root system. Then w
and 7’ are conjugate under the action of the Weyl group of gl(n). Hence, I'(7) and
['(#') are also conjugate which leads to an equivalence of the categories GT (n)

and GT (n).

Example 3.10. Two bases m and 7’ may define the same Gelfand—Tsetlin subal-
gebra. Indeed, take for example the bases m = {€1 — €2,e2 — €3} and 7' = {e3 — €y,
€1 — €3} of root system of gl(3). Then I'(r) = I'(n’). One easily checks that gl(3)
has three distinct Gelfand—Tsetlin subalgebras and they are parameterized by the
gly-part of the chain.
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3.2. Gelfand-Tsetlin modules of sl(n)

Let T be a Gelfand—Tsetlin subalgebra of gl(n). Consider the natural projection
7 : glln) = sl(n), 7(4) = A — #In, which extends to an epimorphism 7 :
U(gl(n)) — U(sl(n)). Then the image 7(T") of T" is called the (standard) Gelfand—
Tsetlin subalgebra of sl(n). It is a maximal commutative subalgebra of U(sl(n))

isomorphic to a polynomial ring in w — 1 generators. With a small abuse of
notation, by G7 (n), we denote the category of all Gelfand—Tsetlin s[(n)-modules

relative to I.

4. Families of Gelfand—Tsetlin Modules for gl(n)
4.1. Gelfand—Tsetlin tableaux

The simple finite-dimensional modules are the first natural examples of Gelfand—
Tsetlin modules. In this case, an eigenbasis for the action of the generators of I'
(@) is given by the so-called Gelfand-Tsetlin tableaux, following the original work
of Gelfand and Tsetlin. In particular, for every simple finite-dimensional module
M, dim(M(x)) = 1 whenever x € Suppgr(M). In order to describe the Gelfand—
Tsetlin tableaux, we first fix some notation.

oo . n(n+1)
Definition 4.1. Fix a vector v = (v;;)7<, € C 2.

(i) By T'(v) we will denote the following array with complex entries {v;;}.

Un1 Un2 e Un,n—1 Unn

Un—1,1 Vn—1,n—1

Such an array will be called a Gelfand-Tsetlin tableau of height n.
(ii) Throughout the paper, for any ring R, T, (R) will stand for the space of the
Gelfand—Tsetlin tableaux of height n with entries in R. We will identify T;,(C)

n(n+1)

with the set C~ 2z  in the following way: to each

n(n+1)
V= (Unl,-, Unn|Un-1,1,- s Un—1,n—1| - |V21,V22|v11) € C" 2

we associate a tableau T'(v) € T,,(C) as above.

Remark 4.2. There is a natural correspondence between the set I'* of characters
X : I' = C and the set of Gelfand—Tsetlin tableaux of height n. In fact, to obtain
a Gelfand-Tsetlin tableau T'(I) from a character x we find a solution (l;;) of the
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system of equations

{mG(l) = X(ka)}lgkgmgn-

Conversely, for every Gelfand-Tsetlin tableau T'(v) with entries {v;; |1 < j <i <
n}, we associate x, € I'* by defining ., (¢mk) = Ymk(v). It is clear that each tableau
defines such a character uniquely. On the other hand, a tableau is defined by a
character up to a permutation of the rows, i.e. an element of S,, X S;,_1 X -+- X S7.

4.2. Gelfand—Tsetlin formulas for finite-dimensional modules

In this section, we recall the classical result of I. Gelfand and M. Tsetlin.

Definition 4.3. A Gelfand—Tsetlin tableau of height n is called standard if vg; —
Vg—1,i € Zzo and Vg—1,i — Vk,i+1 € Z>0 foralll1<i<k<n-1.

Note that, for the sake of convenience, the second condition in the definition
above is slightly different from the original condition in [31I]. Here is the classical
result of Gelfand and Tsetlin [31].

Theorem 4.4. Let L(\) be the simple finite-dimensional module over gl(n) of high-
est weight A = (A1,...,\n). Then there exists a basis of L(\) parameterized by the
set of all standard tableaur T'(v) = T (vi;) with fized top row vp; = A\j — j + 1,
j =1,...,n. Moreover, the action of the generators of gl(n) on L(\) is given by
the Gelfand—Tsetlin formulas:

k+1(

k 1\ Vg — U 1 .
> (HJ? ) 4 ),
i=1

Hj;éi(v’fi — Vkj)

By k1

(T(v) =-
Boor Z ( k7 (vki — Ukm))T(v . 5ki)
i=1 H];éz(v’“ k) ’

k k-1
Ew(T(v)) = (k -1+ kai - Z Uku)T v
=1 =1

where 6 € T,,(Z) is defined by (6);; = 1 and all other (6", are zero. If the new
tableau T (v £ §*1) is not standard, then the corresponding summand of Ey. 41 (T (v))

or Eyt1,1(T(v)) is zero by definition.

We call the formulas above the Gelfand-Tsetlin formulas for gl(n).
Set err(v) == k—1+ Zle Vi — Zf;ll Vg—1,i- We note that Eri(T(v)) =
erk (V)T (v) is well defined for any Gelfand—Tsetlin tableau T'(v).

Definition 4.5. Let T'(v) be a Gelfand-Tsetlin tableau. Then we call (e11(v), ...,

enn(v)) (respectively, (e11(v) — e22(v), ..., en—1,n-1(V) — €nn(v))) the gl(n)-weight
(respectively, the sl(n)-weight) of the tableau T'(v).
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The formulas for the action of the generators of gl(n) in the theorem above
imply that the standard tableaux T'(v) forms an eigenbasis for the action of the
standard Cartan subalgebra h. The following result shows that such basis is an
eigenbasis for the Gelfand—Tsetlin subalgebra. For the proof, see [65].

Theorem 4.6. Let L(\) be the simple finite-dimensional module over gl(n) of high-
est weight A = (A1, ..., \n), with basis as described in Theorem 4l The action of
the generators c.s of I' (see Eq. () is given by

crs(T'(v)) = vrs(0)T (v), (5)
where v.5(v) are the symmetric polynomials defined in (2I).

As a direct consequence of Theorems .4l and [.6] any simple finite-dimensional
gl(n)-module is a Gelfand-Tsetlin module with one-dimensional Gelfand—Tsetlin
subspaces.

Remark 4.7. Whenever we refer to finite-dimensional sl(n)-modules we will use
the same vector space and the Gelfand-Tsetlin formulas for generators E, i or
E,41,r, for the action of the generators of a Cartan subalgebra {hi,...,hy,_1} we
define h;(T(v)) := (Eiy — Eit1,41)(T(v)). We also fix the action of the central
element EFy1 + ---+ E,, as zero.

Example 4.8. Let us denote by M the simple highest-weight gl(3)-module with
highest weight (1,0,—1). M is a finite-dimensional module of dimension 8. The
tableaux realization guaranteed by Theorem [4.4] consists of a vector space spanned
by the set of all standard tableaux of height 3 with top row (1, —1,—3).

1 1 -3 1 -1 -3
T, = 1 ~1 =] 1 -1
1 0
1 ~1 -3 1 -1 -3
Ts = 1 —2 Ti=| 1 —2
1 0
1 1 -3 1 -1 -3
Ts = 0 —2 Ts=| 0 -2
-1 0
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1 -1 -3 1 -1 -3

T; = 1 -2 Ts=| 0 -1

-1 0

By Theorem 4] the simple module M is isomorphic to Spanc{7;|i=1,...,8}
endowed with the action of gl(3) given by the Gelfand—Tsetlin formulas.

Since the action of Eqq + Eaz + E3s is fixed to be trivial and h = Spanc{hy =
E11 — Eaa, ha = Ea3 — Es3}, M becomes an sl(3)-module with weight support

Supp(M) = {(17 1)7 (_17 2)7 (27 _1)7 (070)7 (_27 1)7 (17 _2)7 (_17 _1)}'

Then as an s{(3)-module, M is isomorphic to L(1, 1) (the simple finite-dimensional
5[(3)-module of highest weight (1,1)). The following picture shows the weights lat-
tice of the sl(3)-module M. Note that Mg ¢ is two-dimensional with basis {7}, Ts}.

(-1,2) (1,1)

(-1,-1) (1,-2)

In particular, the basis elements of M o) cannot be distinguished by the action
of the Cartan subalgebra. However, using I', the module decomposes as a direct
sum of one-dimensional I'-submodules.

The following theorem will give us information about the dimension of Gelfand—
Tsetlin subspaces for simple Gelfand—Tsetlin modules and the possible number of
non-isomorphic Gelfand—Tsetlin modules with a given Gelfand—Tsetlin character in
its support.

Theorem 4.9 (|28, Theorem 6.1;54]). Let U = U(gl(n)), I C U the Gelfand-
Tsetlin subalgebra, m € Specm . Set @, = 112!...(n — 1)l

(i) For a Gelfand-Tsetlin module M, such that M (m) # 0 and M is generated by
some x € M(m) (in particular for a simple module), one has

dim¢ M(m) < Qn-

(ii) The number of isomorphism classes of simple Gelfand—Tsetlin modules N such
that N(m) # 0 is always nonzero and does not exceed Q.
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The theorem above shows that elements of Specm I classify the simple Gelfand—
Tsetlin gl(n)-modules (and, hence, sl(n)-modules) up to some finiteness and up to
an isomorphism of Gelfand—Tsetlin modules which contains two different Gelfand—
Tsetlin characters.

In [51], Gelfand—Tsetlin modules with tableaux realization and action given by
the Gelfand—Tsetlin formulas are studied, but such modules V satisfy dim(V'(x)) <1
for all x € I'*. In what follows, we will consider a more general definition of tableaux
realization, which will allow to consider certain classes of modules with dim(V (x))
greater than 1.

For any Gelfand—Tsetlin tableau T'(v) € T,,(C) we consider the set

B(I(v)) == {T(w+2) |2 € Tu(Z), 20 = 0,1 < k < n}. (6)

If an indecomposable Gelfand—T'setlin module V' has a tableaux realization and
T'(v) is one of the basis tableaux then it has a basis which is a subset of B(T'(v)).
On the other hand, we might have a module with a basis consisting of a subset of
tableaux from B(T'(v)) but without a tableaux realization. This may happen, for
example, when V has a Gelfand—Tsetlin character of multiplicity more than 1. For
this reason, we extend the notion of modules with a tableaux realization.

Definition 4.10. We say that a Gelfand—Tsetlin module M admits a generalized
tableauz realization with respect to a Gelfand—Tsetlin subalgebra I' if M has a
basis By labeled by a subset of B(T'(v)) for some tableau T'(v), such that every
M)y € Bu, T(w) € B(T(v)), is a generalized eigenvector of ¢, of eigenvalue
Yrs(w), for all r, s. We will denote by GT 1, (n) the full subcategory of the category
of Gelfand—Tsetlin modules GT (n) which consists of modules with a generalized
tableaux realization with respect to I' whose basis contains 7'(v).

The subcategory GT r(,)(n) is closed under the operations of taking submod-
ules and quotients. Moreover, as our main result will imply, simple modules of the
categories GT () (3) for all T'(v) exhaust all simple Gelfand-Tsetlin modules for
5((3).

Conjecture. Simple modules of the categories GT p(yy(n) for all T(v) exhaust all
simple Gelfand—Tsetlin modules for sl(n).

Remark 4.11. There are modules in G7 (n) that do not belong to G7 1, (n) for
any T'(v). For example, consider n = 2 and a simple weight module V(\,v) with
a weight A € C in its weight support and on which the Casimir element cyo acts
as a multiplication by v € C, where v # (A + k)2 + 2(\ + 2k) for any integer k.
Then V(A,7) has a non-split self-extension which remains a weight module but
on which coo does not act semisimply. This self-extension is an indecomposable
Gelfand—Tsetlin module that does not admit a generalized tableaux realization.

Definition 4.12. We will call the subcategory GT r(,)(n) the block of GT (n) gen-
erated by T (v).
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From now on, whenever n is clear from the context, we will write G7 7, instead

of GT 1y (n).

4.3. Generic modules

Observing that the coefficients in the Gelfand—Tsetlin formulas in Theorem 4]
are rational functions on the entries of the tableaux, Drozd et al. [I1] extended the
Gelfand—Tsetlin construction to more general modules. In the case when all denom-
inators are nonzero for all possible integral shifts, one can use the same formulas and
define a new class of infinite-dimensional gl(n)-modules: generic Gelfand—Tsetlin
modules (cf. [I1} Sec. 2.3]).

Definition 4.13. A Gelfand-Tsetlin tableau T'(v) (equivalently, v € T, (C)) is
called generic if vi; —vg; ¢ Z for all 1 < i # j < k <n —1. A Gelfand—Tsetlin
character y, associated to a generic tableau T'(v) (see Remark {2 will be called a
generic Gelfand—Tsetlin character.

Recall that B(T'(v)) = {T'(v+2) | # € T,—1(Z)} for any Gelfand—Tsetlin tableau
T(v).

Theorem 4.14 ([11, Sec. 2.3]). Let T(v) be a generic Gelfand—Tsetlin tableau
of height n.

(i) The vector space V(T(v)) = Spang B(T'(v)) has a structure of a gl(n)-module
with action of the generators of gl(n) given by the Gelfand—Tsetlin formulas.
(ii) The action of the generators of T' on the basis elements of B(T(v)) is given
by (@).
(iii) The gl(n)-module V(T (v)) is a Gelfand—Tsetlin module with Gelfand—Tsetlin
multiplicities equal to 1.

The module V(T'(v)) constructed in Theorem [T4] will be extensively used in
future and will be referred as the generic Gelfand—Tsetlin module associated to
T(v). In general V(T'(v)) need not to be simple. Because I' has simple spectrum
on V(T(v)) for T(w) in B(T(v)) we may define the simple U-module in V(T (v))
containing T'(w) to be the simple subquotient of V(T'(v)) containing T'(w).

Remark 4.15. By Theorem [4.T4l(iii), given two different tableaux T'(w) and T (w")
in B(T(v)), there exists an element of I" that has different eigenvalues for T'(w) and
T(w’). Whenever we say that I' “separates” tableauz of V(T (v)) we will refer to
this property.

4.3.1. Gelfand-Tsetlin formulas in terms of permutations

In this section, we will rewrite the Gelfand—Tsetlin formulas in terms of permuta-
tions. These formulas will be very useful when verifying certain identities for the
action of g on V(T'(v)).
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Let §m denote the subset of S,, consisting of the transpositions (1,1%),
i1=1,...,m. For £ < m, set &y, = Nm,l X +ee X §g. For ¢ > m, we set ®yp, = Py
Finally, we define ®, = {Id}. Every o in ®,, will be written as an |[¢ — m|-tuple
of transpositions and by o[t] we will denote the tth component of the tuple.

Remark 4.16. Recall that in order to have well-defined action of ¢ € ®,, on
T,-1(C), for w € T;,_1(C) and o € Py, on w we set

o(w) = (Wp1o-1[n-1(1)s - > Wn-to-t 1)) [WLo-11)(0))-
Definition 4.17. Let 1 < r < s < n. Define
Erg = 0T 4 0TIl L gL e (7)),
Furthermore, define ¢,,- = 0 and €5 = —&ps.
Definition 4.18. For each generic vector w and any 1 <t < n — 1 define

t—1
[T (wan — w1 ;)

2 ’
Hj;él(wtl — wij)

t+1

n [T (wi — wiga,5) _

eg )(w) = Hi ; ei_i_i(w) =
Hj;él(wﬂ — Wy;)

k+1 k—1
Hji_l (wkl - wk+1,j) szl (wkl - wkfl,j)

k P erpk(w) = ==
Hj;él(wkl — Wg;) Hj;él(wkl — Wg;)

ekk+1(w) == —

Lemma 4.19. For each m > k the action of E,i is given by the expression:

Eni(T@) = Y erirnlo@) | T] (€57 (0(v)) T(wZo(aH,i)).
cED 1 j=k+2 i=k

Proof. The case k = m+1 follows from the Gelfand—Tsetlin formulas. The general
case follows by induction on m — k using the relation

B kt1(Brr1,6T (V) = Egg1 k(B k1T (v)) = Ep 1 T(v)

for any generic vector v. O

Lemma 4.20. For each r < s the action of E,s is given by the expression:
s—2 s—1
+
E.(Tw)= > []] e (o)) | es—1,5(o(0)T (v + Zo(gi,iﬂ)).
o€drs \J=r i=r

Proof. The case s = r+ 1 follows from the Gelfand—Tsetlin formulas. The general
case follows by induction in s — r using the relation

Er,r+1(Er+1,sT(U)) - ErJrl,S(Er,rJrlT(U)) = E.sT(v)

for any generic vector v. O
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Definition 4.21. For each generic vector w € T,,(C) and any 1 < r;s < n we
define

5—2
H e§+)(w) es—1,s(w) ifr<s
j=r
ers(w) = es+1,s(w) H e;:)z if r > s,
Jj=s+2
T r—1

r71+2wri72wr,1,i if r=s.

Proposition 4.22. Let v € T,,(C) be any generic vector and z € T,,_1(Z). The
Gelfand-Tsetlin formulas for the U-module V(T (v)) can be written as follows:

Eim(T(w+2)) = Y em(o(+2)T(0+z+0(em)).

€@y,

Proof. Follows from Lemmas 19 and 20 and the fact that Z;’;}l o(git1,i) =
0(em.¢) when m > £ and Zf;; o(giit1) = 0(Em,) when m < £. O

Example 4.23. Let us write explicitly the functions e,s(w) from Definition [£.21]
and the Gelfand—Tsetlin formulas in Proposition in the case of gl(3). Let v €
T5(C) be a generic vector, z € T5(Z) and w = v+z. Set also 7 to be the permutation
that interchanges the entries in positions (2,1) and (2,2). Considering

e11 = (0,0,0) e11(w) = wn
g22 = (0,0,0) eg2(w) = w1 + waz —wi1 +1
= (0,0,0) e33(w) = w31 + w2 + w3z — w21 — Wwaz + 2
(O 0,1) e12(w) = — (w11 — wa1)(wi1 — waz)
=(0,0,-1) || ear(w) =1
= <1,0 I R s ove= 7 w—
:( 1,0,0) 632(10):%
31 =(=1,0,-1) || es1(w) = ;=
e13 = (1,0,1) e13(w) = —Lwarmwan) (e —wea) (War—wn) (wir ~wso)
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The action of gl(3) on any tableau is given by

E11(T(w)) = e (w)T(w),
Eo (T (w)) = ega(w)T(w),
Es3(T(w)) = ess(w)T(w),
FEi12(T(w)) = ern(w)T(w + €12),

Eso(T(w)) = es2(w)T (w + £32) + e32(r(w))T(w + 7(232)),
Eas(T(w (7 (w))T( (€23)),
Er3(T(w)) = exs(w)T(w + 13) + e13(r(w))T(w + 7(213)),

(7 (w))T( (€31))-

The explicit description of all simple generic modules for gl(3) was obtained first
in [56]. The classification of simple generic modules gl(n) was completed in [20].
Let us discuss briefly the main results in the last classification.

Definition 4.24. Let T'(v) be a fixed Gelfand-Tsetlin tableau. For any T'(w) €
B(T(v)),and for any 1 <r <n,1<s<r,and 1 <u <r—1 we define

T (w)) == {(r,s,u) | wrs — wr_1.4 € Z},
QN (T (w)) = {(r,5,u) | wrs — Wr—1.4 € Z>0}-

A basis for the simple subquotients of V(T'(v)) is provided in the following
theorem.

Theorem 4.25 ([20, Theorems 6.8 and 6.14]). Let T(v) be a fized generic
Gelfand-Tsetlin tableau and T'(w) in B(T (v)).

(i) The module U - T(w) has a basis of tableau
N(T(w)) ={T(w") € B(T(w)) | X" (T(w)) € & (T (w))}.
(ii) The simple module containing T(w) has a basis of tableaus
I(T(w)) = {T(w) € B(T(w)) | Q" (T(w)) = (T (w"))}.

The action of gl(n) on T'(w') € N(T(w)) is given by the Gelfand—Tsetlin for-
mulas. The action of gl(n) on T(w') € Z(T(w)) is given by the Gelfand—Tsetlin for-
mulas with the convention that all tableau T (w' £ 6%) for which QF (T (w' £ §*%)) #
QT (T (w)) are omitted in the sums for Ey p11(T(w')) and Eyiq x(T(w")).
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Corollary 4.26. Let T(v) be a generic Gelfand-Tsetlin tableau. The module
V(T (v)) is simple if and only if QT (v)) = 0.

Example 4.27. Consider a,b,c € C such that {a — b,a —¢,b —c} NZ = () and
v = (a,b,cla,b+ 2|a), then

T(v) = a b+ 2

a

QUT)) ={(3,1,1),(3,2,2), (2,1, 1)}, Q*(T(v)) = {(3,1,1),(2,1,1)}. So, by The-
orem [£.25] the simple subquotient of V(T'(v)) containing T'(v) has a basis

Z(T () ={T(w+ (m,n,k))|m <0,k <m, and n > —2}.

Example 4.28 (See also [51l, Sec. 4.3]). Let ai,...,a, be complex numbers
such that a; — a; ¢ Z for any ¢ # j. Denote by T'(v) the Gelfand-Tsetlin tableau
of height n with entries v;;, such that v,s = a, for 1 < s < r < n. The tableau
T(v) is a generic Gelfand-Tsetlin tableau and by Theorem .25 a basis for a simple
gl(n)-module containing T'(v) has a basis

Z(TW)) ={T(v+ 2) | zrs — 2r—1,s € Z>o for any r, s}.
Moreover, we can easily check that Spangs Z(T'(v)) is a submodule of V(T'(v)) iso-

morphic to the simple Verma module M (a1,a2 +1,...,a, +n —1).

Using the description of simple subquotients of V(T'(v)), we will also be able to
describe the Loewy series decomposition for V(T'(v)). We will use the convention
that the first module in the list is the socle of V(T (v)).

Theorem 4.29. Let T'(v) be a generic tableau and set t := |Q(T(v))|. The Loewy
series decomposition of the Gelfand-Tsetlin module V(T (v)) is given by

Dt7 Dt—17"'7D07
where D; = Spanc{T (w) € B(T(v)) | |Q(T(w))| =i} and 0 <i < t. If D; = 0 for

some 1 < i <t we omit this term in the Loewy decomposition.

Proof. Let us show first that D, is a simple submodule of V(7T'(v)). By Theorem
E25(i), if |QT(T(w))| = t, the module generated by T'(w) is simple and hence,
equal to Spanc{T(w')||Q*(T(w"))] = t}. That is, V(T (v)) has a unique simple
submodule M, namely M = D;.

Set My 1 :=V(T(v)) and define M; := M;;1/D;. Note that

M = Spang{T(w) € B(T(v)) | |2+ (T(w))] < i}.

So, by Theorem [L25ii) any element basis of D; is a basis element of a simple
submodule of M;;1 and, then D; is the sum of all simple submodules of M;;;. O
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Remark 4.30. We will often apply Theorem[d.29in the following way. If V;, j € J,
are all non-isomorphic simple subquotients of V(T'(v)), and T'(w;) € V;, then the
modules Loewy series components of V(T (v)) are precisely

Di=Dun®---®D;,,,
where {D;;}7L, is the set of all Vj such that [QF (w;)| = i.

Although Theorem gives a nice relation between the category G7 1, (see
Definition A10) and Q(7'(v)), it is not true that G7p(,) is completely determined
by Q(T'(v)) — see the following example.

Example 4.31. Consider the tableaux T'(v) and T'(v’) such that Q(T'(v)) =
QT (v')) but GT (v is not equivalent to GT 7(,). Take

a a a a a+1 a+2

T(v) = a Yy T(v') = a Yy

z z

Then Q(T'(v)) = Q(T'(v")). The Loewy series of T'(v) is D3, Dy, however, the Loewy
series of T'(v") is Ds, D2, D1, Dy.

4.4. Singular Gelfand—Tsetlin modules

The classical constructions of simple finite-dimensional modules and of generic mod-
ules presented in Secs. and have one common feature — an explicit basis
parameterized by a set of Gelfand—Tsetlin tableaux. In the finite-dimensional case
all the entries of the tableaux T'(v) in the basis satisfy vy — vg; € Z, while in the
generic case they satisfy vy, — vi; ¢ Z for any k # n. We may consider the stan-
dard and generic tableaux as the two extreme cases of the singular Gelfand—Tsetlin
tableaux where the latter are defined as follows.

Definition 4.32. A vector v € T,(C) will be called singular if there exist 1 <
s <t <r <n-—1such that v,s — v+ € Z. The vector v will be called 1-singular
if there exist k,i,j with 1 <4 < j < k < n — 1 such that vy; — vy; € Z and
Urs — Upt € Z for all (r,s,t) # (k,i,7), r # n. If v is 1-singular, the tableau T'(v)
will be called 1-singular tableau. A Gelfand—Tsetlin character x, associated to a
singular (respectively, 1-singular) tableau T'(v) (see Remark 2] will be called a
singular (respectively, 1-singular) character.

4.4.1. Construction of 1-singular Gelfand—Tsetlin modules

In [21], an explicit construction of modules with a generalized tableaux realization
(see Definition EI0]) associated with any 1-singular Gelfand-Tsetlin tableau was
provided. In this section, we provide the main details of this construction.
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Set v a vector of variables with % entries indexed by (r, s) such that 1 <
s <r < n. By F we will denote the space of rational functions on v;;, 1 < j < ¢ < n,
with poles on the hyperplanes v,s — v,y = 0. Note that V(T'(v)) is defined for all
generic v and that V(T'(v)) = V(T'(v')) whenever v — o(v') € T,,—1(Z) for some
o € G. Thus, V(T(v)) is defined for elements v in the (generic) complex torus
T =T,(C)/T,-1(Z). Denote by T},(C)gen the set of all generic vectors v in T;,(C)
such that V(T'(v)) is simple, equivalently, v,s — v,_1 ¢ Z for any r,s,t. Until the
end of this section we fix (4,7, k) such that 1 <i<j<k<n-—1.

By H we denote the hyperplane vy; — vg; = 0 in T,,(C), also by 7 € Sp—1 X - - -
x 51 we denote the transposition on the kth row interchanging the ith and jth
entries. 7 stands for the subset of all w in T,(C) such that wy,. # wys for all
triples (¢,7,s) except for (t,r,s) = (k,4,j). Finally, by F;; denote the subspace of
F consisting of all functions that are smooth on .

Let us fix v in ‘H such that v3; = v; and all other differences vy, — Vs are

non-integer. In other words, ¥ € H and v + T),_1(Z) C H.

Remark 4.33. For any generic vector w we can choose a representative of the
class w + T5,—1(Z) of w in T = T,,(C)gen/Tn—-1(Z) as “close” as possible to U as
follows. Let m,s := |Re(Trs — wrs)] (the integer part of the real part of .5 — wys),
m be the vector in T),_1(Z) with components m,s, and ¥[w] := w + m. Then
S = {v[w] |w € T),(C)gen } is a set of representatives of T'.

Our goal is construct a module V(T(7)) with Gelfand-Tsetlin support
{Xo4m |m € Tn_1(Z)}. We will refer to this module as the 1-singular univer-
sal tableaur Gelfand-Tsetlin module associated with v, or simply as the universal
module.

We formally introduce the complex vector space V(T'(v)) as the one spanned
by vectors {T(0+ 2), DT (v + 2) | 2 € T,,—1(Z)} subject to the relations T'(v + z) —
T(W+7(z)) =0 and DT(0+ z) + DT (v + 7(2)) = 0. We will refer to T'(u) as the
reqular Gelfand—Tsetlin tableau associated with u and to DT (u) as the derivative
Gelfand—Tsetlin tableau associated with wu.

Remark 4.34. Although {T(v+ z), DT (v + z) |z € T,—1(Z)} is not a basis, we
have the following natural basis of V(T'(9)):

B(T(0)) ={T(v+ 2), DT (v + w) | ki < 2kj, Wki > Wi;}-

Set Vgen = @ es V(T'(v)) and V' = V(T'(0)) © Vgen- Then F @ Vgey is a gl(n)-
module with the trivial action on F. We next define a gl(n)-module structure on
V(T (9)).

The evaluation map ev(v) : Fij ® V' — V' is the linear map defined by
ev(0)(fT(v+ 2)) = fO)T (@ + z), ev(0)(fDT (0 + 2)) = f(O)DT(v + z). Fur-
thermore, DY : F;; @ V(T'(v)) — V(T'(v)) will denote the linear map defined by
D(fT(v+2)) = D*(f)T(v+2)+f (2)DT (0+2), where D?(f) = 1 ( of _ of ) (@),

B’UM 6vkj
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z€T,_1(Z), f € Fij, and v € S. We may think of DV as the map
D’ ® ev(v) + ev(v) @ D°.

This map extends to a linear map F;; ® Vgen — V(T'(0)) which we will also denote
by D°.

Theorem 4.35 ([21, Theorems 4.9 and 5.6]). V(T'(v)) has structure of
Gelfand-Tsetlin module over gl(n) with action of the generators of gl(n) given by

Eps(T(0+ 2)) = D" ((vki — vij) Ers (T (v + 2))), (7)
By (D(T (5 + w))) = D (Eyy(T(0 +w)), (3)
and action of the generators of I' given by

ers(T(0+ 2)) = D" ((vki — vij)ers (T (v + 2))), (9)
Crs (IDT} (T (v +w))) D° (crs(T'(v + w))), (10)

where v is a generic vector in the set of representatives S, and z,w € Ty,—1(Z) with

w # 7(w).

Remark 4.36. In the case of gl(3) we can give the following interpretation of the
basis elements of the module V(T'(7)). Let T(v) be a generic tableau such that
V(T (v)) is simple, and let T'(7) be such that Uz = Uaa:

V31 V32 V33 V31 Us2 U33

T(v) = V21 V22 T(v) = Va1 V22

V11 V11

Then T(0 + (m, n,k)) and DT (v 4 (m,n,k)) can be considered as formal limits in
the following way:

T(v+ (m,n, k) := lim T(v+ (m,n, k)), (11)

V=0

DI (v + (m,n,k)) := lim (

V=

T(v+ (m,n,k)) —T(v+ (n,m, k:))) (12)
V21 — V22 .

One essential property of generic Gelfand—Tsetlin modules described in Theorem
HI4lis that ' “separates” the basis elements of B(T'(v)), that is, for any two different
tableaux T3, T in B(T'(v)) there exists an element v € I' such that v - Th = T3
and v - T5 = 0 (see Remark [L.15]). In the case of 1-singular modules V(T'(7)) this
is also true and follows from the fact that no derivative tableau D(T'(0 + w)) is an
eigenvector for the action of cxa € T'. A detailed proof can be found in [33, Sec. 5].

Theorem 4.37. Let © be any 1-singular vector and B(T(v)) be as before. Then T
separates the tableauz in the basis B(T(v)).
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In the case of T3(C) (equivalently, Gelfand-Tsetlin tableaux of height 3) every
singular vector is a 1-singular vector. Therefore, in the case of gl(3) the 1-singular
modules exhaust all singular Gelfand—Tsetlin modules.

Example 4.38. The simple Verma sl((3)-module M =M (—1,—1) admits a
tableaux realization as a subquotient of the module V(T'(9)), where @ is the singular
vector (—1,—1,—1,—1,—1,—1). This module contains Gelfand—Tsetlin characters
of dimension 2. For example, if x is the Gelfand—Tsetlin character associated with
the tableaux T'(v 4 (—1,0,—1)) and DT(+ (0, —1,—1)), then dim(M(x)) = 2 (see
Sec. (C13) for details).

5. Gelfand—Tsetlin Modules of s[(3) and Modules of C ()

From now on we focus on the case n = 3 and g = s((3). We fix the standard Gelfand—
Tsetlin subalgebra I' of g, that is the one corresponding to the chain whose second
component is generated by Fi2 and Eo;. The corresponding category of Gelfand-
Tsetlin modules G7(3) will be denoted simply by GT.

Let C(h) be the centralizer of the Cartan subalgebra b in U(g), where

b = Spang{H; := E11 — Ea2, Hy := Eas — E33}.

In this section, we collect some properties of modules in G7 that are related to the
category of modules of C'(h). The results are based on the works [3] [16], [I7], but for
reader’s convenience we provide proofs for some statements.

The following result provides an important relation between the simple C(h)-
modules and the simple weight modules (for a proof, see for example, [15]).

Lemma 5.1. For any simple C(h)-module W there exists a simple weight g-module
M such that My ~ W for some X\ € h*. Conversely, if M is a simple weight g-
module then My is a simple C(h)-module.

Denote A := FE12F21, B := FEs3F32. Recall that the center of U(g) is generated
by ¢32 and ¢33, see Eq. (). For convenience we will also use the following generators
of the center of U(g):

1 q 3
c = 12032 and c2 = 2032 €33.

The following two lemmas provide important technical properties of C(f) and
the simple C(h)-modules.

Lemma 5.2 ([3, Lemma 1.1]). The centralizer C(h) is an associative algebra
generated by Hy, Hy, A, B, ¢1, and ca.
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Lemma 5.3 ([16]). Let W be a simple C(h)-module, and let H; = h;1d, ¢; = v;1d
on W, for some constants h;,~v;, i = 1,2. Then the following identities hold on W:

1 1
aA =A%+ AB+ BA+ ABA — §A2Bf §BA2+TB+TI,

1 1
aB = B%*+ AB+ BA+ BAB — 532.4— 5AB2 +rB+mnl,

(AB — BA)> = ABA + BAB + %TBQ + %rlAz

1=

- (g . 1) (AB + BA) + (1 +7)B + (r1 + 1) A + 11,
where

1 1
roi= §(h? —2hy), ri:= §(h§ — 2hs),

1 1 1
a:= 6y, +hy + hy — ghf - ghg + Shiha,
1
3p = §(h1 — h2)® = y2 + 6v1(ho — h1 + 3) — hi — h3 — hihy + 2hy — 2ho,
1 Lo 1 2 _ 2
T = §h1p+ hihs, T = —§ph2 + §h2(18’71 — h1 — h2 — hihg + 3h1),
1

1 1
n:i= Zp2 + Ep(h1h2 + h% + h% — 1871) + Zhlhz(hth +4— 2@).

Let M be a simple module in G7. In particular, it is a weight module. Consider
any A € b* from the weight support of M. The central elements ¢; and co act
on M, and hence on M), as a multiplication by some complex scalars v; and s,
respectively. If A\(H;) = h;, then H; = h;1d, i = 1,2, on M. Since M is a Gelfand—
Tsetlin module, then each component M (x) is finite-dimensional. Hence, one can
choose a basis of M with respect to which A|ys, has a Jordan canonical form Aj.

Consider the following polynomial in two variables:

ga(@,y) = (& —y)* = 2(z +y) — 2r.
Recall r = §(h? — 2h1). Note that g (z,y) depends only on hy = A(Hy).

Definition 5.4. Let A € h*.

(i) A sequence (u;)ics is A-connected (or, simply, connected) if gx(pi, pit1) = 0
for all 4 € J, for some connected subset J of Z. A subsequence (/) e of
a connected sequence (u;);es will be called a connected subsequence if J' is
connected.

(ii) A A-connected sequence (p;)jes with p; # p; for any ¢ # j, is called
A-connected chain.

(iii) We will say that a set B is A-connected if the elements of B can be ordered in a
A-connected chain (p;);cs. We will call the sequence (1;) ey the A-connected
chain associated to B.
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We note that if B is A-connected, then there are at most two A-connected chains
associated to B.

Lemma 5.5. Let M be a simple Gelfand—Tsetlin module and A\ € b* a weight of
M. Then the distinct eigenvalues of Ay is a A-connected set.

Proof. This lemma follows from [3, Lemmas 2.2 and 2.3], but for reader’s conve-
nience, a brief proof is written. Let [A)] = diag(A;) be the matrix of A in a fixed
Jordan canonical basis of M), where A; corresponds to the generalized eigenspace
with eigenvalue y;, and let [By] = (B;;) be the block matrix of By relative to this
basis, for which B;; and A; are in the same position. If i # j, looking at the (4, j)th
block of the matrix equation corresponding to the first relation in Lemma [5.3] we
obtain

1 1
0= AiBij + BijAj + AiBijAj — 53”14]2 — §A’2Bij +1rDB;;.

Applying the above identity to suitable elements of the basis of M, one can see that
Bij = 0if (i + pj) — (i — pj)* +7 # 0 (for details, see the proof of [3, Lemma
2.2]). Since M is simple, then M) is a simple C(h)-module. However, if the set of
eigenvalues of A is a union of two “disconnected” sets, then one easily can prove
that M) is a direct sum of two modules, which is a contradiction (for details, see
the proof of [3] Lemma 2.3]). |

Until the end of this section we assume that M is a simple Gelfand—Tsetlin
module, A € Supp M.

Lemma 5.6. If (1u;)jcs is a A-connected sequence with |J| > 3, then the following
recurrence relation holds for any i:

Pit1 + pi—1 = 205 + 2. (13)

Proof. As (pj)jes is a connected sequence, we have g¢x(u;, pi—1) = 0 and
gx (i, pir1) = 0. By solving both quadratic equations in terms of u; we have

{pimt, piva} ={pm +1+ \/1 +4pi + b3 — 21}

therefore, piy1 + pri—1 = 2p; + 2. O

Definition 5.7. Let (u;);cs be a A-connected sequence. We say that (u;);eJ is

(i) degenerate if p; = —3r for some i € J;
(ii) critical if p; = —1/4 — %7 for some i € J;
(iii) singular if (pj)jes is a connected subsequence of a degenerate or a critical
connected sequence;
(iv) generic if it is not singular.
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Example 5.8. If A = (0,0), then the sequence {0,2,6,12,...} = {n(n+1)|n > 0}
is a degenerate connected chain and C; := {n(n+ 1)|n > i} is a connected chain
that is not degenerate for each ¢ > 0.

Lemma 5.9. Let (ij)jes be a A-connected sequence.

(i) If (pi)jer is degenerate, then p; € {n(n+1) — % |n >0} forallic J.
(ii) If (ui)jes is critical, then p; € {n® — 1 — & |n >0} for alli € J.
(iii) If (wi)jes is generic, then u; € {n® + ny/T+dpo + 2r + po |n € Z} for all
i € J, where \/T+ 4ug + 2r is a fized solution of x> = 1 4 4ug + 2r.

Proof. By Lemmal5.6 in order to determine a connected sequence, it is enough to

know two connected values. In the case of a degenerate sequence we have p; = f%r

for some i, and hence, p;11 = p; or p;—1 = p;. Assume p;— 1 = p; and ¢ = 0

for simplicity. Then p, = n(n +1) — 5, n € Z, give the unique solution of the

recursive equation (L3)). Therefore, all y; are in the set {n(n+1) — 5 |n > 0}. This

proves part (i). For parts (ii) and (iii) we reason in the same manner. Namely, for
1

a critical chain, we use that p; = —3 — %r for some ¢, hence p;y1 = p; + 1 or

ti—1 = W; + 1, while in the generic case, given p; in the connected sequence, we

have piy1 € {p; + 1 £ /1 +4p; + 2r}. O
The properties of Ay are described in the following theorem.

Theorem 5.10. Let M be a simple Gelfand—Tsetlin module. Then the following
hold:

(i) For every A € Supp M, every eigenvalue of Ay has multiplicity at most two.
(ii) If (pi)ics is a connected chain of the set of distinct eigenvalues of Ay = A |y,
then

(a) if the chain (u;)ics is generic, then all eigenvalues of Ay are distinct;

(b) if the chain (p;)ics is degenerate, then the chain can be chosen so that
p1 = —3, and if the multiplicity of p; equals 1 then the multiplicity of i1
is also 1;

(¢) if the chain (p;)ics is critical then the chain can be chosen so that uq+1 =
Wa, the multiplicity of py is 1, and if the multiplicity of p; equals 1 fori > 1,
then the multiplicity of p;+1 also equals 1;

(d) if the chain (;)ics is singular but not degenerate or critical, then all eigen-
values of Ay are distinct.

Proof. The proof of all parts can be found in [I5] [I7]. The strategy is to apply the
relations from Lemma [53] to a Jordan form of Ajy. Proofs of parts (b) and (d) can
be also found in [3| Theorem 2.7]. O

As a consequence of Theorem [5.10] we have the following statement.
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Corollary 5.11. Let M be a simple weight g-module. Then for any A € b* and
any i # j we have dim(ker(E;;|ar,)) < 1.

Proof. Suppose that ker(E;;|ar,) # 0. Consider the Lie subalgebra a of sl(3) iso-
morphic to s(2) that is generated by E;; and Ej;. Then M is a Gelfand-Tsetlin
a-module with respect to the Gelfand—Tsetlin subalgebra generated by b, the center
of U(s1(3)), and the center of U(a). The statement follows from Theorem 5EI0 O

Remark 5.12. In what follows, we give an interpretation of the eigenvalues of A
in terms of tableaux and the Gelfand—Tsetlin formulas. Set for i € Z

T(v;) = x4+ y—i

The set of all tableaux in B(T'(vg)) with fixed g-weight A € h* (see Definition
M5 is {T(v;)|i € Z}. Moreover, the Gelfand-Tsetlin formulas imply that A =
E12FE> acts on T(v;) as multiplication by u; = —(xz + ¢ — 2)(y — ¢ — 2), and
r=1((2z—2z—-y—-1)?%— (22— —y—1)). We have:

(i) (pi)iez is degenerate with p; = —3r if and only if z —y € {2j — 1,25 + 1}.

(i) (ps)iez is critical with p; = —3 — L7 if and only if z — y = 2j.

In particular, (u;);cz is singular if and only if the tableau T'(vg) (respectively, X, )
is singular and {u;} is generic if and only if T'(vg) (respectively, X.,) is generic.
Note also that x(4) = —1
X(A) = —%r if and only if x = x With |we; — was| = 1.

— %r if and only if x = x, with w1 = wes. Finally,

Definition 5.13. We say that a Gelfand-Tsetlin character x is critical (respec-
tively, degenerate) if x = x, for some v such that vy = wvea (respectively,
‘Ugl — ’022‘ = 1).

Since A € I', we can extend the concepts of generic and singular chains to
Gelfand—-Tsetlin modules.

Definition 5.14. A Gelfand—Tsetlin module M is called generic if every Gelfand—
Tsetlin character of M is generic. A Gelfand—Tsetlin module M is called singular
if it has a singular Gelfand—Tsetlin character.

Note that any finite-dimensional module is a singular Gelfand-Tsetlin module,
moreover, any 1-singular module as defined in Sec. £4lis a singular Gelfand—Tsetlin
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module. Also, generic modules as defined in Sec. are generic Gelfand—Tsetlin
modules.

Proposition 5.15. If a simple Gelfand—Tsetlin g-module M is singular, then each
Gelfand-Tsetlin character of M is singular.

Proof. The statement follows by a direct computation. Let x be a singular
Gelfand—Tsetlin character of M, v € M(x), v # 0. If Ejov # 0 then we easily
check that Eiav € M(x') for a singular x’. Similar reasoning applies for Fajv.
Suppose now Eazv # 0. Then Eazv € M(x') @ M(x"), where x’ and x” are both
singular (one of the subspaces can be zero). Moreover, if x belongs to a critical
(respectively, degenerate) connected chain, then x’ and x” belong to a degenerate
(respectively, critical) connected chain. We reason similarly for Ess. O

Definition 5.16. Given a Gelfand-Tsetlin character x and M a Gelfand-Tsetlin
module, we say that M is a simple extension of the character x if M is simple and

X € Suppgr (M) (i.e. M(x) #0).

Lemma 5.17. Let M be a simple Gelfand—Tsetlin module, x € Suppgr(M) and
A = xly. If there exists a basis {w;}ier of My such that the action of Bx on this
basis is completely determined by the eigenvalues of Ay and x, then M is the unique
simple extension of x.

Proof. Under these conditions, the simple C(h)-module M) is defined uniquely,
moreover, as M )(\1) ~ M ;\2) implies M (") ~ M®)| the uniqueness follows. O

The generic Gelfand-Tsetlin modules are completely determined by any of their
characters, as the following result shows.

Theorem 5.18. If M is a generic simple Gelfand—Tsetlin module then for any
X € Suppgr (M) the subspace M (x) is one-dimensional and M is the unique simple
extension of x.

Proof. The result can be found in [15] [I7], but for the sake of completeness we
provide a proof. Let x € Suppqr(M) and let A = x|y be the associated to x weight.
Let o € C be an eigenvalue of the operator Ay = Al|pz,. Then all eigenvalues of
Ay form a connected chain, i.e. belong to a sequence ju; = i% +i/T + 4o + 27 + po,
i € Z for some choice of the square root (see Lemma [B.9(iii)).

Using relations between A and B we can choose a basis {w; |i € Z} (this set
can be finite or bounded from one side or unbounded) of M) such that

wi—1 + bjw; + dip1wirr, 1 <0,
Ayw; = pwg;  and  Byw; = § w1 + bowg + wy, 1=0,

diwi—1 + byw; +w;q1, >0
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with
L. Op —p T
T 2wk
P E(pim1)(3 + pim1 — pi) — O(pim1) (Spim1 — Spi + 3+ 1)
' Apier — i + 1) (i1 — 3+ &7) ’
1 1
E(mi) = 5 (s + )07 = (25 +1)bi = Srapg = (r+ 7w =,
O(pi) == (@ — 2p3)bs — b — ripss — 71,

where r, 71, 17, 7, and 7 are defined in Lemma 5.3l
Hence, in this case B) is completely determined by x and Ay. The uniqueness
follows from Lemma [5.17 O

Note that in singular cases the subspace M(x) can be two-dimensional (see
Example [3]). Also, in these cases for a given x € I'* there can exist two non-
isomorphic simple extensions of x. Such examples were first constructed in [16].

6. Simple Extensions of Singular Gelfand—Tsetlin Characters

In this section, we provide sufficient conditions for a singular Gelfand—Tsetlin char-
acter to admit a unique simple extension.

Theorem 6.1. If x is a critical Gelfand—Tsetlin character then x admits a unique
simple extension.

Proof. By Theorem EJ, there exist at most two simple modules M) and M)
such that y € Suppgy(M®) for i = 1,2. Assume that we have two such modules
and let A € Supp(M ™) N Supp(M ) such that A = x|y. For i = 1,2, consider the
restriction AE\i) of A = F13FE2 on Mii). Since M@ are Gelfand-Tsetlin modules,
then we can choose bases B1 = {wo,...,wn}, 0 <m < oo and By = {wy, ..., w},
0<k<o0of M)(\l) and M)(\2) such that the matrix [Agf)] of Ag\i) with respect to B;
is in a Jordan normal form and each eigenvalue of Ag\i) has algebraic multiplicity
at most two.

By Theorem [510(ii)(c), the eigenvalue x(A) of Ag\l) and Ag?) has multiplicity 1.
Suppose first that all eigenvalues of both Ag\l) and Ag?) have multiplicity 1. Then
they can be ordered in connected chains {p, |0 < n < m} and {um |0 < m < k}
with

and p; = i? — 1 — Zr for i > 1 (see Lemma 59(ii)).
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Applying the relations from Lemma we obtain

) boU)O + wy, 1= O7
Aw; = pyw;, >0, Bw; =
ciwi—1 + byw; + w1, 0<i<m,

(14)
bow(, + wi, i=0,

Aw} = pwi, >0, Bw,= ) ) ) .
ciw;_q +bw; +wiq, 0<i<Kk,

where
0
c1 = (g0)7
0(p1) 1
cy = (1+ p2 — 1)’ ’
d27 n> 17
C; = di, P> 2,
and

26(po) = <g +2p0 + 7'>9(/L0)-

If m < k, then ¢, 41 = 0 implying that M) is reducible. Similarly, if m > k, then
cky1 = 0 and M is reducible. It follows that k = m. But then formulas (I4)
define uniquely a simple C(f)-module M)(\l) ~ M)(\Q). Therefore, M) ~ M),

Suppose now that the algebraic multiplicity of some p; is two in M )(\1). For
simplicity assume that

po |0 0 buu | bz bi3
AW = . BY] = ;
A 0 | 1 B ba1 | ba2 D23

0 | 0 m b1 | bz b33

where [Bg\l)] stands for the matrix of B[, ) relative to Bi. Applying the relations
A

from Lemma [5:3 we obtain b3z = 0. Note that due that MS) is simple as a C(b)-
module we have b12 # 0 and bs; # 0. Hence, using row operations, one can change
the basis By so that b3 becomes 0.
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Now, applying the relations from Lemma [5.3] we obtain

bao = b3z,

1 3

b+ 2oy = a — 210 — 1

5 1+ 5022 a Lo ,

1 2

55121?31 = —abay + byy + 2p1bog + rp1 + 1,
3

§b23 = —1—b11 — 2boo,

2b12bo1 = —(2,u0 +1-— a)(4u0 + 1) —3ripuy +r1 — 371,

1
5[)311)12 = (4#0 =+ 3)(2}1,0 =+ 1 — a) + U1 <|>7'17

(b11 + b22)b31 = 0.

By changing the basis if needed, we can assume b1s = 1. Therefore, the matrix
[Bg\l)] is completely determined by y and the matrix [Ag\l)]. We can show that the

latter holds for any Jordan normal form [Ag\l)}.

Consider now the matrix [A&Q)]. If this Jordan normal form is not equivalent to
[Ag\l)], then one of the modules Mil) or M)(\2) will not be simple. Indeed, this can be
immediately seen from the form of matrices [Bg\l)} and [B/(\z)}. On the other hand,

if [Ag\l)] = [Af\z)] then MS) ~ M)(\z) as C(h)-modules and hence M) ~ M®). g

If x is a singular Gelfand—Tsetlin character in a critical connected chain and
X is not critical then there might exist two simple extensions of x (see [16] for
examples). On the other hand we have.

Corollary 6.2. Suppose that x is a singular character in a critical connected chain
and x is not critical. If X = x|y, then there exists a unique simple extension M of
x with diagonalizable Ay.

Proof. Indeed, if Ay is diagonalizable then B, is determined uniquely. As it was
shown in the proof of Theorem [6.1] it is sufficient to know one eigenvalue of Ay to
reconstruct the whole Ay in a simple module. Hence, the statement follows. O

Lemma 6.3. Let M be a simple Gelfand—Tsetlin module, x a degenerate character
of M associated with the weight A € b*. Let p1 = —%7‘7 and ps = 2— %r be connected
eigenvalues of Ay with x(A) = p1. Suppose that both p1 and py have multiplicity 2.
Then the Gelfand—Tsetlin support of M contains a critical character x'.

Proof. Let uq,us,us, us be nonzero elements of M such that
Ayuy = prur,  Axug = u1 + prug,
Ayuz = pauz, Axug = uz + pauy.
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Suppose that Myte,—e, does not contain a critical character. Then the eigen-
values {fik, 1y -y fm}s k > 1, of Axjey—e; form a part of a critical connected
chain but without the critical character 1. By Theorem these eigenvalues are
of multiplicity 1. Let vy, vy be eigenvectors of Axie,—e,- Then we have

)
FEa3(u2) = agvy,
Ea3(u3) = azvi + aqvz,
Eos(ug) = asvy + agoa.

Since ui,us,us, and uy are linearly independent and their images span at least a
two-dimensional space we have that dim(ker(F2s3 |ar,)) > 2 which is impossible by
Corollary 5111 O

From Lemma [6.3] we immediately have the following.

Corollary 6.4. Let x be a degenerate Gelfand—Tsetlin character such that pu, =
X(A) and A = xl|y. If {p1, 2} is a A-connected set, then there exists at most one
simple extension of x such that both p1 and us have multiplicity 2.

Proof. Indeed, any such simple module M will contain a critical character x’
determined by the condition Ea3(M(x)) C M(x') + M(x"). But, by Theorem [6.1]
X' defines M uniquely. O

Lemma 6.5. Let M be a simple Gelfand—Tsetlin module such that M is singular
but has no critical characters. Then A is diagonalizable on M .

Proof. Fix A € Supp M, then the distinct eigenvalues of A, form a singular
A-connected chain. If this chain is critical then Ay is diagonalizable since there
is no critical eigenvalue, see Theorem [E.I0(ii)(d). Suppose that the chain is degen-
erate. Then by Theorem EI0(ii)(b) one can order the distinct eigenvalues of Ay in
the following way: {41, pt2, - . ., tm }, Where p1 = —ir, and if the multiplicity of y;
equals 1 then the multiplicity of p;41 is also 1. Suppose that M has a character x
such that X¥(A) = p1 and p; has multiplicity 2. If uo has multiplicity 2, then by
Lemma there exists a critical character x’ in the Gelfand—Tsetlin support of
every simple extension of , and we obtain a contradiction.

Assume now that u; has multiplicity 2 but pue has multiplicity 1. Consider the
weight subspace M/ = Myie,—es and A’ = A|pr. Observe that M’ # 0, since
otherwise dim(ker E23|pr, ) > 2 which is a contradiction by Corollary BTl If A" has
no critical eigenvalue, then neither does Ay, e, 4k(e, —es), for all integer k. In this
case all these subspaces M ¢, ¢, yk(e; —en), & € Z can generate only one eigenvector
of A’ with eigenvalue p; and, hence, produce only multiplicity 1 eigenvalue p;
of A’. But this contradicts to the simplicity of M. Therefore, A’ must contain a
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critical eigenvalue giving a contradiction again. Therefore, A, is diagonalizable,
which completes the proof. O

The proof of Lemma implies also the following statement.

Corollary 6.6. Let M be a simple Gelfand-Tsetlin module and x a Gelfand-
Tsetlin character of M associated with X € b* and such that dim(M(x)) = 2.
Then M has a critical character X' associated with the weight \ + ex — €3.

Theorem 6.7. Let M be a simple Gelfand—Tsetlin module and x be a Gelfand—
Tsetlin character such that dim(M (x)) = 2. Then M is the unique simple extension

of x.

Proof. Let A = x|y. Since dim(M(x)) = 2, the distinct eigenvalues of Ay form
a singular A-connected chain {u1,..., pum}, m < oo. Moreover, there exists p; of
multiplicity 2. We proceed with two cases.

Case 1. The chain {1, . .., ftm } is critical. By Theorem[EI01all distinct eigenvalues
can be ordered in the following way: {1, 2, - - ., thm }, where g1 +1 = pg, multiplic-
ity of p1 is 1, and if the multiplicity of u; equals 1 for ¢ > 1 then the multiplicity
of pi11 is also 1. Therefore, the module M has a critical character x’ such that
X' (A) = p1. Thus, every simple extension of x contains X’ in its Gelfand—Tsetlin
support. Applying Theorem [6.I] we conclude that M is unique.

Case 2. The chain {u1,...,um} is degenerate. By Theorem one can order
the distinct eigenvalues of Ay in the following way: {u1, 2, - .., thm}, where p; =
—5, and if the multiplicity of p; equals 1 then the multiplicity of ;41 is also 1.
Therefore, M has a character ¥ such that ¥(A) = p1 and p; has multiplicity 2. By
Corollary 6.6, A|n,,., ., must contain a critical eigenvalue. Thus, M is unique by
Theorem This completes the proof. O

Theorem 6.8. Let M be a simple Gelfand—Tsetlin module such that M is singular
but has no critical characters. Then for each character x € Suppgr(M), M is the
unique simple extension of x with the property that it has no critical characters.

Proof. Let as usual A = x|y and Ax = A, . It follows from Lemma that Ay
is diagonalizable. We proceed in two steps.

Step 1. Suppose that x belongs to a critical connected chain. As M does not have
critical characters, x(A) belongs to a critical connected chain p; = i% — i — %r,
1 <n <i<m < oo for some integers n and m. Then as in Theorem [6.1] there

exists a basis {w;,n < i < m} such that

brwy, + Wpy1, i=n,
Aw; = pyw;,  Bw; = § diwi—1 + biw; +wipq, >, (15)
AdpWm—1 + bW, i =m.
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Hence, B) = B is determined uniquely by y and Ay. The uniqueness follows
from Lemma 517

Step II. Suppose that x(A) belongs to a degenerate chain {1, pio, ...} where p, =
n(n—1)—3r,n > 1 (see Lemmal5.9(i)). We proceed considering two cases depending
on the connected chain {1, pa, ...}

Case 1. The chain {u1, o, ...} does not contain a degenerate character, that is
the eigenvalues of Ay are {ug, ftk+1,---, s} for some k > 1 and some s < oo.
Applying relations from Lemma [53] one can choose a basis {wg,...,ws} of M)y
such that the matrix of Ay is diagonal and the matrix of By has a tridiagonal
form as in the generic case. Suppose there exists another simple extension W of
x satisfying the conditions of the theorem such that the eigenvalues of Alw, are
{d, ftds1s-- -, pe} for some d > 1 and some ¢ < oo. If d = k and s = ¢, then the
diagonal matrices [A|ar, | = [A]w,] will give the same matrix of By, hence M ~ W
by Lemma 517

Suppose d < k (note that in this case k < t). Then applying relations from
Lemma we obtain that Wy has a C(h)-submodule U such that the eigenval-
ues of A|y are {ug, k+t1,--.,ut}. Hence, M has a nontrivial proper submodule
M such that the eigenvalues of A‘]\’;[/A are {{k, fk+1, - - -, it ;. This contradicts the
irreducibility of M. The case d > k is treated analogously.

Case 2. The chain {u1, u2,...} does contain a degenerate character, that is the
eigenvalues of Ay are {u1, a2, ..., pus} for some s < oco. Let x’ be the character
associated with u. Using relations from Lemma [5.3] we see that r2 +2ar +47 =0
and there exists a basis {w;, 1 < i < s} of M) such that

Tw1 + wa, 1 = 17
Aw; = \w;, 1<i<s, DBw;= qiw;—1 + bjw; + Wi, 1<i<s, (16)
qsWs—1 + bsw57 i =s,

where

Ll 2+1( +71)
- = —=mMr —\r T1)T —
q2 3 81 2 1 1 UBD

and T is a root of the equation

1 1
xzf(r+a)x+ﬁf§r1r2+§rﬁ*77:0-

Let W be another simple extension of x. Then p; must be an eigenvalue of Alyy, ,
otherwise M is not simple. In fact, the quadratic equation on 7" shows that there
might exist two non-isomorphic simple modules with the same degenerate chain
{p1, .-, ps . We will show that only one such module will satisfy the conditions of
the theorem.
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The hypothesis that there is no critical characters in all connected chains
implies that Eo3(M(x')) C M(x), where x is a character such that x(A) be-
longs to a critical connected chain (without critical characters by hypothesis).
Also, Eaz(W(x')) € W(X). If both Ea3(M(x')) and E23(W(x')) are nonzero then
M(x) # 0 and W(x) # 0. We immediately conclude that M ~ W by Theorem [6.11
Suppose Ea3(M(x')) = Ea3(W(x')) = 0. Apply the same arguments for Ey5. If
both E13(M(x')) and E13(W(x’')) are nonzero, then M ~ W as above. On the
other hand, if E13(M(x")) = E13(W(x')) =0, then M and W are simple quotients
of the same generalized Verma module generated by a weight vector v such that
FEs3v = Fh3v = 0. But such generalized Verma module has a unique simple quotient
implying M ~ W. Hence, it remains to consider mixed cases. We finish the proof
considering three subcases. Recall that a weight module is pointed if all its nonzero
weight spaces are one-dimensional. All other cases are considered analogously.

Case 2(a). Suppose Eas(M(x)), E1a(M(x')) # 0, and Ess(W (X)), Exs(W(x')) =
0. Then W is a quotient of the generalized Verma module M; generated by an
element v € M; such that Faosv = FEy3v = 0. Suppose Es2(W(x')) # 0 and
Es (W (x')) # 0. If one of Esa(M(x')) or Es1(M(x’')) is nonzero then we are done.
Suppose Es2(M(x')) = E31(M(x’)) = 0 and thus M is a quotient of generalized
Verma module M, generated by v’ such that Esv’ = E319” = 0. In order not to
have critical characters both M and W must be pointed modules, that is all weight
spaces have dimension 1. Let x'(H1) = h1, x'(Hz2) = h2. Comparing the values of
Casimir elements on M and W we obtain h; = —2hy. This condition guarantees
that M and W have common degenerate character x’. Let us find the condition
when W is a pointed module. It is sufficient to check when the following system
has a nontrivial solution:

0 = Ea3(aE320 4+ BEs31 E12v) = hoav + E21 Erg,
0= E13(O[E32U + 6E31E12U) = aFov + ﬁ(hq + ho + 1)E12.

Assume that Ei3v # 0. Then we have hoa — Shy — %Br =0, and o + B(h1 +
ha+1)=0.1f hy =0, then M ~ W ~ C. If hy # 0 then hy = 2, hs = —1, and
X'(A) = 0. It follows that Eogv = E13v = Eojv = 0 with hy = 2, hs = —1 or
E23’U == E13’U = Elgv = 0 with h1 = —2, hg =1.

Consider first the case hy = —2, and let © € h* be such that u(Hy) = u(Hs) =
—1. Then W, is one-dimensional and E12W,, = 0. Hence, W, is a Gelfand-Tsetlin
subspace and A|w, = —Id. But, this is a critical value and, thus, W contains critical
characters, which is a contradiction.

Suppose now that hy = 2 and consider 1 € h* such that u(Hy) = 1, p(Hz) = —2.
Then W, is one-dimensional and E.;W, = 0. Hence, W, is a Gelfand-Tsetlin
subspace and Alw, = 0. Again, this is a critical value which is a contradiction.

Suppose now that Es2(W(x’)) = 0. Then E12(W(x’')) = 0 and W is a highest-
weight module of highest weight x'|g and x'(Hz2) = he = 0. Since X’ is degenerate
we have hy = 0 or hy = —2. In the case hy = 0, we obtain M ~ W ~ C.
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Now suppose h; = —2 and Aly () = —2Id. This highest-weight module has no
critical characters. Since Es51 W (x') # 0 we have E31 M (') = 0, otherwise M ~ W
as before. Since A|ps(,y = —2Id and all characters have multiplicity 1, we have
EsM(x') = 0. Thus, in addition we have E3a M (x’) = 0. Consider a weight p € h*
such that p(Hy) = —1, u(Hz) = 1. The subspace M,, is one-dimensional. In fact,
this is a critical Gelfand-Tsetlin subspace, since Ay, = —Id. Hence, M does not
satisfy the conditions of the theorem and W again is a unique required module.

Case 2(b). Suppose Ea3(M(x")), E1s(W (X)) # 0, and E23(W (x')), E13(M (X)) =
0. Now, we act by Esy and FEs;. Suppose first that FEso(M(x')) = 0 and
Esiy(W(x')) = 0. Hence, M contains a nonzero vector v such that Ey3v =
E35v = E13v = 0. On the other hand, W contains a nonzero vector v’ such that
E31v" = Ea3v’ = FEy1v" = 0. Moreover, Hyv = Hyv' = 0. But, since A is diagonaliz-
able on M and on W, we have Fy1v = E2v' = 0. Thus, M ~ W ~ C.

Suppose now Es1(M(x')) = 0 and Es3(W(x')) = 0. Hence, M contains a
nonzero vector v such that Fi3v = Fs3;v = 0, and W contains a nonzero vec-
tor v/ such that Fssv’ = Fo3v’ = 0. We obtain that Hyv = Hiv' = 0 and
Hyv = Hov' = 0. Moreover, Av = Av’ = 0. Since A is diagonalizable on M
and W we have Ejov = E19v' = 0 and Es1v = Fyv' = 0. Thus, M ~ W ~ C.

Finally, let E31(M(x’)) =0 and Es2(M(x’)) = 0. Hence, M contains a nonzero
vector v such that Ei3v = E3v = FEzv = 0, implying E1ov = 0. So, either
Hiyv=Hov=0and M ~W ~C, or Hiv = —2 and Hyv = 2. In the latter case W
contains a nonzero vector v’ such that Ey3v’ = 0, Hiv' = —2v/, and Av' = —2v".
Hence, E12v" = 0 and Ej3v" = 0 since A is diagonalizable. We have civ = c1v/
implying Hov = Hov' = 0 which is a contradiction.

Case 2(c). Suppose Ex3(M(x')) # 0, and Ex3(W(x')), Exs(M (X)), E1s(W (X)) =
0. Now, we act by E32 and E3; on M(x') and W (x’). Without loss of generality
we may assume that Es3(M(x')) = 0 and E31 (W (x')) = 0. Therefore, Eo; W (x') =
[Eas, E51 )W (x') = 0 and AW (x') = 0. Hence, we have either Hyw = Haw = 0 or
Hyw = 2w, Hyw = —2w for any w € W(x'). In the first case, we obtain M ~ W ~
C. Consider the second case. Since AM(x’) = 0, we must have Fa; (M (x')) = 0
(otherwise A will not be diagonalizable on M,,), where Ea (M (x’)) C M,. Thus,
Esy35(M (X)) = [Ea1, E13)M (x) = 0, which is a contradiction. |

We next state the main theorem in this section.

Theorem 6.9. Let M be a simple Gelfand-Tsetlin g-module and x € Suppgp(M).
Consider the following conditions:

(i) x is non-critical and dim M (x') <1 for any x’' € T'*;
(ii) — 2
)
)

X 1s non-critical and dim(M (x)) ;
(iii
(iv) M has no critical characters.

X 1s critical;
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If any of (i1)—(iv) holds, then M is the unique simple extension of x. If (1) holds, then
M is the unique simple extension of x with property (i), but x may have another
simple extension with two-dimensional Gelfand—Tsetlin multiplicities.

Proof. Let x be a non-critical character of M. Suppose first that M is generic.
Then M is the only simple extension of y by Theorem [B.I8 Suppose now that
M is singular and satisfies the conditions in (i). Assume first that y(A) belongs
to a critical chain but x(A) itself is non-critical. Then M is the unique simple
extension of xy by Corollary Assume now that x(A) belongs to a degenerate
chain {1, p2,...} where p, =n(n—1) — ir, n > 1 (see Lemma [(.9(i)). Suppose
that M) and M) are two simple extensions of x satisfying the conditions of (i).

If iy is not an eigenvalue of Ag\i) = A‘M)(\i)7 where A = x|y, then M) ~ M) since
Ag\i) (and thus M®) is uniquely determined by x(A) in this case. Assume that
is an eigenvalue of both Ag\i)7 1 = 1,2. Consider the weight A= A+e —e3 and
the eigenvalues of Aéi). They belong to the same critical chain. If both Ag\i) have
a common non-critical eigenvalue then M) ~ M®) by Corollary 6.2l Hence, may
assume that Ag\i) have distinct eigenvalues. This is only possible if dim M )(\i) =1land
dim MS(\i) <1,i=1,2. Let B\My:) = b;Id. Recall that a weight module is torsion
free if all root vectors act injectively on the module. Now consider the following
cases.

Case 1. x(A) — kx(Hy) # 0, b; — mx(Hz) # 0 for i = 1,2 and k,m € Z. In this
case both M) and M) are pointed torsion-free modules. Set S\(H,) =hsi=1,2.
Then we have A% = jijld, A = fip1d, BYY = bild, and BY = byld, where we
can assume that ji; = *i — %fz% + hy and 2 = i1 + 1. Using the second identity
in Lemma we also have

ab; = 2fb; + b2 +rifis + 1, i=1,2. (17)

Keeplng in mind that 7 and a depend of hy and ho, 7 depends of hy and b;,
depend of ha, (a — 2u1)b1 — b1 — rifi1 — T1 can be express as a polynomial in hi,
hs. Let us consider the two-variable polynomial

filey) = (alz,y) = 2p(0)bily) — B () — (W) —ni(ey), i=1,2
Then by (D), fi(h1,hs) = 0. An easy calculation shows that

(1) o~ /T (2) 3
AS\+2€2*263 B M2(h1 o 2)Id7 A5\+262*2€3 - /j’l(h‘l - 2)Id7
B! — by(he + 41d, B — By + 4)1d.

A+2€2—2e3 A+2€2—2e3

Then f;(hy —2, ha+4) =0, i = 1, 2. Similarly, using the operator E%, we obtain
fi(ﬁl + 4, hy — 2) = 0. Hence, fi(izl + 6, ﬁg) = 0. If we repeat this argument again
we will obtain f;(h1 + 12, k) = 0 and so on. Hence, if g(z) = f1(z, hy), we have
shown that g(t) = 0 implies g(t + 6) = 0, so g has infinitely many roots, thus g = 0,
which is impossible.
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Case 2. x(A) — kx(Hy) =0, b, — mx(Hz) # 0 for some k € Z and all i = 1,2,
m € Z. Without loss of generality we may assume that y(A) = 0. Since A is
diagonalizable on both modules, then this immediately implies that both M)
and M) are quotients of generalized Verma modules (induced from an infinite-
dimensional simple s[(2)-module W) that have the same central character and the
same weight support. Since the generalized Harish-Chandra homomorphism defines
W uniquely we conclude that M) ~ M (),

Case 3. x(A4) — kx(Hy) = 0, by — mix(Hz) = 0, by — max(Hz) # 0, for some
k,my € Z and all t = 1,2, my € Z. This case is handled in a similar way as Case 2.

Case 4. x(A) — kx(Hy) = 0 and b; = m;x(Hz) for some integer k,m;, i = 1,2.
Therefore, as in Case 2, both M) and M) are quotients of the same generalized
Verma module. Hence, mq = mo and MW ~ M) This completes the proof of (1).

If x is a non-critical character such that dim(M(x)) = 2, then M is a unique
simple extension of xy by Theorem implying the result for (ii). The uniqueness
of the extension if (iii) holds follows immediately from Theorem It remains to
consider (iv). Suppose M is generic. Then the uniqueness of simple extension for
any character of M again follows from Theorem [F.I8 If M is singular but without
critical characters, then we apply Theorem O

7. Realizations of all Simple Gelfand—Tsetlin Modules for sI(3)

In this section, we give an explicit realization of all simple Gelfand—Tsetlin modules
of sl(3). For this purpose, we consider any Gelfand-Tsetlin character x € I'* and
construct a Gelfand—Tsetlin module M such that any simple extension of y is
isomorphic to some subquotient of M (recall that, by Theorem 9] the number of
non-isomorphic simple extensions is at least one and at most two).

Remark provides a natural correspondence between the Gelfand—Tsetlin
characters and the Gelfand—Tsetlin tableaux. Hence, given a character xy we can
associate a tableau T'(v) and the problem of constructing simple extensions of y is
reduced to the problem of finding simple modules with tableaux realization contain-
ing T'(v) as a basis element. Recall that any Gelfand-Tsetlin tableau T'(v) of height
3 is either generic (ve1 —v92 ¢ Z) or 1-singular (ve; —va2 € Z), and the constructions
in Sec. @l allow us to describe an explicit Gelfand-Tsetlin module V(T'(v)) for any
T'(v). This, combined with Theorem [6.9] implies that for the desired classification,
it is sufficient to describe all simple subquotients of the modules V (T'(v)).

7.1. Structure of generic sl(3)-modules V(T (v))

In this section, we consider all possible generic Gelfand-Tsetlin tableaux T'(v) and
describe all simple subquotients of the sl(3)-module V(T'(v)). The description in-
cludes an explicit basis for each simple subquotient, its weight support and its
Loewy decomposition. Since g = sl(3), the action of E11 + Eag + E33 is zero, thus
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w31 + w3z + wssz + 3 = 0 for any Gelfand—Tsetlin tableaux T'(w). We first rewrite
Theorem .14 in the case of s((3).

Theorem 7.1. If T(v) is a generic Gelfand—Tsetlin tableau of height 3, then the
vector space V(T (v)) spanned by the set of tableaux B(T(v)) has a structure of
a Gelfand-Tsetlin s1(3)-module with the action of sI(3) on V(T(v)) given by the
Gelfand-Tsetlin formulas:

F1o(T(w)) = —(w21 — wi1)(waz — wip)T(w + 61,
Ey(T(w)) = T(w—d"),

w21 — W11 21 W22 — W11 29
Eso(T(w)) = ——————T(w — 6%') — —=————T(w — %),
32( ( )) W21 — W22 ( ) W21 — W22 ( )
o (T(w)) = (w31 — war) (w32 — wor ) (w33 — w21)T(w e
W21 — W22
(w31 — wa2) (w32 — wao)(wss — w22)T(w 4672,
W21 — W22
Bi5(T(w)) = (w21 — w31) (w21 — w32) (w21 — w3z) (w2 — wll)T(w 4574 s
W21 — W22
+ (w31 - w22)(w32 - w22)(w33 - w22)(w21 - wll)T(w + 522 + 511)’
W21 — W22
1 1
Es1(T(w)) = ———T(w — 62 — 51 — T(w— 622 — 5,
31( ( )) W21 — W22 ( ) W21 — W22 ( )
Hy(T(w)) = (2wi1 — (w21 + waz + 1)) T (w), (18)
HQ(T(IU)) = (2(1021 —+ w22 + ].) — wll)T(w) (19)

By Theorem[5.18] a generic character admits a unique simple extension. In order
to describe such simple extension, given a tableau T'(w) € B(T (v)) we will describe
explicit basis of tableaux for the simple subquotient of V(T'(v)) that contains T'(w).

By ([I8) and (4, it is clear that B(T(v)) is an eigenbasis for the action of the
generators of the Cartan subalgebra . In particular, any subquotient of V(T'(v)) is
a weight module. The following proposition describes explicit bases for the weight
subspaces of the subquotients of V(T'(v)).

Proposition 7.2. Let M be a Gelfand—Tsetlin module with basis of tableaux By; C
B(T(v)) for some generic tableau T (v). If T(w) € By is a tableau of weight A, then
the weight space My is spanned by the set of tableaux {T (w4 (i, —i,0)) |i € Z} N Byy.

Proof. As B(T(v)) = B(T'(w)), we just need to characterize tableaux of the form
T(w + (m,n,k)) in By with the same weight A of T'(w). By the Gelfand-Tsetlin

2130001-38



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Classification of simple Gelfand-Tsetlin modules of sl(3)

formulas we have
Hy(T(w+ (m,n, k) = (2(wi1 + k) = (w21 + m + waz + 1+ 1))T(w + (m, n, k)),
Hy(T'(w + (m,n,k))) = (2(w21 +m + w2 +n+ 1) — (w11 + k)T (w + (m,n, k)).
In particular, the weight of T'(w) is

A = (2wy1 — (w1 + waz + 1), 2(wa1 + waz + 1) — wiy).

Furthermore, a tableau T'(w+(m, n, k)) in Bys has weight A if m, n, k satisfy m+n =
0 and k = 0. O

In this section, we will use Theorem to describe all simple subquotients of
the generic sl(3)-modules V(T'(v)). Let us recall this result.

Let T'(v) be a generic Gelfand-Tsetlin tableau of height 3 and T'(w) € B(T (v))
and QY (T'(u)) = {(r,s,t) | urs — up—1+ € Z>0}. The complex vector space with
basis N (T(w)) = {T(w') € B(T(v))| Q" (T(w)) C QT (T(w'))} is a submodule of
V(T(v)) containing T'(w). Moreover, Z(T(w)) := {T'(w') € B(T(v)) | Q" (T(w)) =
QT (T(w))} is a basis of the unique simple extension of x,,, where x,, € I'* is given
by Xuw (Crs) = '-Y'r’s(w)'

By Theorem H.25] bases of the subquotients of V(T'(v)) can be described by
subsets of Z3. In order to describe these bases, we introduce the following notation.

Definition 7.3. Let T(w) be a tableau and B be a subset of Z3. Assume that
M is a Gelfand-Tsetlin module with basis {T'(w + (m,n,k)) | (m,n, k) € B}. Then
we will denote M by M (B, T(w)), or simply by M (B) if T'(w) is fixed. If M(B) is
simple, then we will write L(B) for M(B).

Example 7.4. With the notation of Definition [7.3] the simple module from Ex-
ample [4.27] can be written as follows:

m <0 m <0,
Ll k<m | =M| kE<m, T(v) |,
n> -2 n> =2,

where v = (a,b,¢,a,b+ 2, a).

7.2. Realizations of all simple generic Gelfand—Tsetlin
s1(3)-modules

In this section, we describe all simple objects in every generic block GT 7, (see
Definition and Remark [2]). Such description will include an explicit tableaux
basis of each simple subquotient M in G71(,) and the weight support of M. For
the weight support we will use Proposition and the explicit basis. If the weight
multiplicities are finite, a picture of the weight support along with the multiplicities
is provided. We also present the components of the Loewy series of the universal
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module V(T'(v)). A rigorous proof based on Theorem .25 Proposition [[.2] and
Theorem .291is given for Case (G6) only, however, for all other cases the reasoning
is the same.

Until the end of this section we use the following convention. The entries of
the Gelfand—Tsetlin tableaux will be integer shifts of some of the complex numbers
a,b,c,x,y,z. We also assume that if any two of a,b,c,z,y, z appear in the same
row or in consecutive rows of a given tableau, then their difference is not integer.

Remark 7.5. By Theorem [5.18 any generic character has a unique simple exten-
sion. In particular, if T'(v) is generic, the number of simple subquotients of V (T'(v))
is equal to the number of simple modules in G7 7(,). This number depends only on
Q(T(v)) (see [20, Theorem 7.6]).

(G1) Consider the following Gelfand-Tsetlin tableau:

a b c

T(v)= x Y

The module V(T'(v)) is simple, and GT 7, has unique (up to isomorphism)
simple module. This module has infinite-dimensional weight multiplicities.

Module Basis
Ly L(Z3)

(G2) Let T'(v) be the tableau:

I. Simple subquotients.
In this case, the module V(T (v)) has two simple subquotients and they
have infinite-dimensional weight multiplicities:

Module Basis
Lo L(m < k)
II. Loewy series.
Ly, L.
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(G3) Consider the tableau:

T(w) = a Y

I. Simple subquotients.
In this case, the module V(T (v)) has two simple subquotients and they
have infinite-dimensional weight multiplicities:

Module Basis

L, L(m <0)

Lo L(0 < m)

II. Loewy series.
Ly, Ls.
(G4) Consider the tableau:
a b c
T(v) = a Yy
Y

I. Simple subquotients.
In this case, the module V(T'(v)) has four simple subquotients. The bases
and corresponding weight lattices are given by

(i) Modules with infinite-dimensional weight multiplicities:

Module Basis
m <0
L L -
' (kSn)
0<m
La L( n < k)

(ii) Modules with unbounded finite weight multiplicities:

Module Basis
0<m
L L
’ (kSn>
m <0
L L( n < k)
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The origin of the picture above corresponds to the sl(3)-weight as-
sociated to the tableau T'(v).

II. Loewy series.
Ly, Ly®Ls, L.
(G5) Let T'(v) be the generic tableau:

I. Simple subquotients.
In this case, the module V(T'(v)) has four simple subquotients. The bases
and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m<0
L L -
2 <m < k:)
0<m
Ly L(kém)

(ii) Two modules with unbounded finite weight multiplicities. In this
case, the origin of the weight lattice corresponds to the sl(3)-weight
associated to the tableau T'(v + §11):

Module Basis
m<0

L L<k§m)
0<m

La L(m < k)
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II. Loewy series.

Ly, Ly® L3, Ly

(G6) Consider the tableau:

I. Simple subquotients.
In this case, the module V(T (v)) has eight simple subquotients. The
bases and corresponding weight lattices are given by

(i) Two modules with infinite-dimensional weight spaces

Module Basis
0<m
Ly Ll n<0
k<m
m <0
Ly Ll 0<n
m <k

(ii) Six modules with unbounded finite weight multiplicities. In this
case, the origin of the weight lattice corresponds to the sl(3)-weight
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+521):

associated to the tableau T'(v + §'1

L9 o E|C o ®o s FIf o ¥|g s E|E &%

g VIV VIEVEVIVEY iy VIV iy Vol VY

AIE & w8 E|lEo w|lo & Bloo w|loo B
= 2 = = = =

(]

S

o

o — [l 2] © >~ 0

S| 3 S 3 3 S N

'S9 [0l SS300Y UedQ 104 1ds0xe ‘peniwed jou AjJoLIS ST UOINLISIP pue 8sN-8y "T2/92/80 U0 O 1NVd OVS 3d IAVAISHIAINN Aq
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II. Loewy series.

Ly, Lo®L3® Ly, Ls®LeD L7, Ls.

Proof. If M denotes the universal module V(T'(v)), we proceed as follows:
first prove that L; is a simple submodule of M, then that M; := M /L, has
simple submodules isomorphic to Lo, L3, and L4, then prove that My :=
M1 /(L & L3 & Ly) has simple submodules isomorphic to Ls, Lg, and L7,
and finally show that Lg = My/(Ls & L¢ @ L7) is a simple module.

By Theorem [L25 we see that, L; (respectively, Lo, Ls, L4, Ls, Lg,
L7, and Lsg) is a simple subquotient of V(T'(v)) containing the tableau T'(v)
(respectively, T'(v+(0,0,1)), T(v+(0,1,0)), T(v+(1,0,1)) , T(v+(0,1,1)),
T(v+(1,0,2)), T(v+ (1,1,1)), and T(v + (1,1,2))). To find the layers of
the Loewy series decomposition for V(T'(v)) we apply Theorem and
Remark We describe these layers in four steps.

Step 1. L; is a simple submodule of M. By Theorem [F25(i), the module
with basis N (T'(v)) = {T(w) | QT (T(v)) € QT (T(w))} is a submodule of
M, but QT (T(v)) ={(3,1,1),(3,2,2),(2,1,1)} = QT (v)), thus N(T(v)) =
Z(T(v)). Hence, Ly is a simple submodule of M.

Step 2. M, := M /L has simple submodules isomorphic to La, L3z, and Ly.
For these modules we have that

QH(T(v (3,2,2),(2,1,1)},
QH(T(v (3,1,1),(3,2,2)},
QN (T(v+(0,1,0))) = {(3,1,1),(2,1,1)}.

Hence, by Theorem E25(i) the modules with bases Z(T'(v + (1,0,1))) U
Z(T(v)), Z(T(v + (0,0,1))) UZ(T(v)) and Z(T(v + (0,1,0))) UZ(T(v)) are
submodules of M. Therefore, the modules with bases Z(T'(v + (1,0,1)));
Z(T(v + (0,0,1))), and Z(T'(v + (0,1,0))) are submodules of My := M/L,
since L; is has basis Z(T'(v)).

+(1,0,1)))

) =A{
+(0,0,1))) = {
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Step 3. My := M1/(Ly ® L3 ® L4) has simple submodules isomorphic to
L5, Lg, and L7. For these modules we have

( (U + (O’ L, 1))) = {(3’ L, 1)}a
(T( (1’171))) = {(2’171)}a
(T( (1’072))) = {(3’272)}

)

Hence, by Theorem [A25(i) the modules with bases Z(T'(v + (1,0,1))) U
Z(T(v)); Z(T (v + (0,0,1))) UZ(T(v)) and Z(T(v + (0,1,0))) UZ(T(v)) are
submodules of M. Therefore, the modules with bases Z(T'(v + (1,0,1)));
Z(T(v+(0,0,1))) and Z(T(v+(0, 1,0))) are submodules of My := My /(L2 @
L3 & Ly4) because Ly has a basis Z(T'(v)).

Step 4. M3/(Ls ® L¢ ® L7) ~ Lg. In fact, QT (T (v + (1,1,2))) = 0 so the
submodule of V(T'(v)) generated by T'(v+(1,1,2)) is V(T'(v)) and the simple
subquotient containing T'(v + (1, 1,2)) has the same basis as Ms/(Ls B Ls B
L7) so, we have M3 /(L5 & Lg & L7) ~ Lg. O

(G7) Consider the tableau:

I. Simple subquotients.
In this case, the module V(T'(v)) has four simple subquotients.

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
0<m
L, L<n§0>
m<0
L L -
3 < 0<n )

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis
m<0
L L<n§0>
0<m
L L
4 < 0<n )
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55555 5 5.5
L]

The origin of the picture above corresponds to the sl(3)-weight associ-
ated to the tableau T'(v + §'1 + §21).

II. Loewy series.
L17 L2 S L3a L4~

(G8) Set t € Z~o and consider the following Gelfand—T'setlin tableau:

a a—t c

T(v) = a Yy

I. Simple subquotients.
In this case, the module V(T'(v)) has three simple subquotients.

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
Ly L(m < —t)
L L(0<m)

(ii) A cuspidal module with ¢-dimensional weight spaces:

Module Basis
Lo L(—t<m <0)
II. Loewy series.
L17 L23 L3'
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(G9) For each t € Z~, let consider the following generic tableau:

I. Simple subquotients.
In this case, the module V(T (v)) has six simple subquotients. The bases
and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m < —t
L2 L( m <k )
0<m
L L
’ (kSm>

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis
m < —t
L L( kém)
0<m
L L
¢ <m<k>
— Iy
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(iii) Two modules with weight multiplicities bounded by ¢:

Module Basis
—t<m<0
Ls L -
k<m
—t<m<O0
L L -
: < m <k )
2 1 1.2 2 .2 2 2 2
° DR )
2 2\1 1.2 2 2 2 2
o o e o o o o
2 2\1 1 2 2 2 2
e e <~ L3 e o e e
2 2 2 1 .2 2 2
°
2

The pictures above correspond to the case t = 2, and the origin is the
51(3)-weight associated to the tableau T'(v — 2521).

II. Loewy series.
Ly, Ly®Ls, Lis®Ls, L.
(G10) For each t € Z~q, let T'(v) be the following Gelfand-Tsetlin tableau:

a a—t c

I. Simple subquotients.
In this case, the module V(T (v)) has six simple subquotients. The bases
and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m < —t
L L( kén)
0<m
L L
0 (n<k>
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(ii) Two modules with unbounded finite weight multiplicities:

Module Basis
m < —t
L L -
’ <n<k:>
0<m
Ly L(kén)

(iii) Two modules with finite weight multiplicities bounded by t.

Module Basis
—t<m<O0
L L -
’ (kSn)
—t<m<O0
L L -
5 <n<k‘)
2 2. 2.2 2 21 1.2
[ ] e o o o [ ]
2 2\2 2 2 2 2 2
o o e O o o o
2 2\2 2 2 2 2
e o e o e o
2 2 2\2 2 «— Lo 2 .2 2

The pictures above correspond to the case t = 2, and the origin is the
s1(3)-weight associated to the tableau T'(v — §22).

II. Loewy series.
Ly, Ly®Ls, Ls®Ls, Ls.
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(G11) For any t € Z~g, let T(v) be the tableau:

a a—t c

I. Simple subquotients.
In this case, the module V(T'(v)) has 12 simple subquotients. We provide
pictures of the weight lattice corresponding to the case ¢ = 2, and with
origin at the s[(3)-weight associated to the tableau T'(v).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m < —t
Ls Ll 0<n
m<k
0<m
Lg Ll n<0
k<m

(if) Six modules with unbounded finite weight multiplicities:

Module Basis
m < —t
Ly Ll n<0
k<m
m < —t
Lo Ll n<0
m <k
m < —t
Ls L 0<n
k<m
0<m
L10 L HSO
m <k
0<m
L1 Ll 0<n
k<m
0<m
Lo Ll 0<n
m <k
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(iii) Four modules with finite weight multiplicities bounded by ¢:
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Module

Basis

Ly

L

—t<m<O0

n <0
m <k

Ly

L

—t<m<O0

0<n
m <k

II. Loewy series.

Ly, Ly®Ls® Ly, Ls®Le®L7®Ls, Lo9®Lio® L1, Lo
(G12) Consider t € Z~¢, and T'(v) to be the Gelfand-Tsetlin tableau:

a

b

b—t

T(v) =

I. Simple subquotients.

In this case, the module V(T'(v)) has 12 simple subquotients. We provide
pictures of the weight lattice corresponding to the case t = 2, and with
origin at the sl(3)-weight associated to the tableau T'(v + §'1).
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(i) Two modules with infinite-dimensional weight multiplicities:

Module

Basis

Ly

L

0<m
n < —t
k<m

Ly

m <0
0<n
m <k

(ii) Six modules with unbounded weight multiplicities:

Module

Basis

Ly

m <0

Lo

«— L1
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(iii) Four modules with finite weight multiplicities bounded by ¢:
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— Lg L10 —

II. Loewy series.
Ly, Ly®Ls®Ls, Ls®SLs®Lr®Ls, Lg®Lio® L1, Lo
(G13) Consider t € Zsg. Set T'(v) to be the following Gelfand-Tsetlin tableau:

a a—t c

I. Simple subquotients.
In this case, the module V(T'(v)) has six simple subquotients. We provide
pictures of the weight lattice corresponding to the case ¢t = 2, and with
origin at the sl(3)-weight associated to the tableau T'(v + §11).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m < —t

L L -

3 (O<n)
0<m

Ly L<n§0>
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(ii) Two modules with unbounded finite weight multiplicities:

—~—
— o e
s40® o V|V s
2lvi vily v ZIEVIE v
anOO AV 2|V o
~ ~ S— N G
~ ~
m {
E <
IR I w O
~ ~

4 4 4 4 4 4 4 4

(iii) Two modules with finite weight multiplicities bounded by #:
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II. Loewy series.

Lo®Ls, Ls®Ls, Lg.

L17
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(G14) Set t,s € Zso with ¢ < s and let T(v) be the following Gelfand—Tsetlin
tableau:

I. Simple subquotients.
In this case, the module V(T'(v)) has eight simple subquotients. We
provide pictures of the weight lattice corresponding to the case t = 1,
s = 2, and with origin at the s[(3)-weight associated to the tableau T'(v).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m< —s
L L -
3 ( m <k )
0<m
Lo L(kém)

(ii) Two modules with unbounded finite weight multiplicities:
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m< —s
L L -
' (kSm>
0<m
Ls L(m < k)
— Ly
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(iii) Four modules with finite weight multiplicities. The modules L4 and

L7 have multiplicities bounded by ¢, and Lo, L5 have multiplicities

bounded by s — t:

A N N
_ S , S
o VI gVl g ViV«
Zlg & ylg V|EV
Ay w|V «|v E|V &
o T
N—— N——
N——— N———
I T
[0}
S
3
=3 I I T I
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II. Loewy series.

Lg.

Li®Ls, Le® Ly,

Ly @ Ls,

L17
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(G15) Set t,s € Zso with t < s and let T'(v) be the following tableau:

a a—t a—s

T(v) = a Yy

I. Simple subquotients.
In this case, the module V(T'(v)) has eight simple subquotients. We
provide pictures of the weight lattice corresponding to the case t = 1,
s = 2, and with origin at the sl(3)-weight associated to the tableau
T(v—§%?).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
m< —s
L L(kgn)
0<m
L L
® <n < k:>

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis
m< —s
L L -
3 ( n<k )
0<m
Lo L(kgn>

(iii) Four modules with bounded weight multiplicities. The modules
Ly and L; have multiplicities bounded by ¢, and Ly, Ls have
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multiplicities bounded by s — t:

)
)

| < | <
.E<_n<_n<_k<_k
Zlgvi|Evig v|E vV
Aly «|V x|y 2|V &
N I I Y
| |
N——— N——
/U\L(L\L
[0}
=
3
S| SS9 S

L7 —

II. Loewy series.

Lg.

Li®Ls, Le® Ly,

Ly @ Ls,

L17

(G16) For any t,s € Zq with ¢ < s let T'(v) be the following tableau:
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I. Simple subquotients.
In this case, the module V(T '(v)) has four simple subquotients. The bases
and corresponding weight multiplicities are given by

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis
L1 L(m < —s)
Ly L(0<m)

(ii) Two cuspidal modules; Lo with weight multiplicities s — ¢ and Ls
with weight multiplicities ¢:

Module Basis
Ly L(—s<m<—t)
L L(—t<m<0)

II. Loewy series.

L17 L27 L37 L4'

7.3. Structure of singular sl(3)-modules V (T'(7))

In this section, we describe all simple singular Gelfand—Tsetlin s[(3)-modules. Like
in the generic case it is enough to explicitly present all simple subquotients of
V(T (v)) for every 1l-singular vector .

7.3.1. Singular Gelfand-Tsetlin formulas
Recall the construction of the 1l-singular sl(3)-modules V(T(7)) in Sec. @4 We

adapt this construction to g = s((3). Since the singularity appears in row 2, we fix
v € T5(C) such that D21 = Taa. Also, we denote by 7 the permutation in S5 x S X Sy
that interchanges the (2,1)th and (2, 2)th entries and is identity on rows 1 and 3.

Recall that V(T'(7)), as a vector space, is generated by the set of tableaux
{T(v+2),DT(v+2")| 2,2" € Z3} satisfying the relations T'(v+2) —T(v+7(2)) =0
and DT(0+ z) + DT(v + 7(2)) = 0. As explained in Remark 37

B(T(’l—})) = {T(’L_} + Z),DT(@ + U)) | 291 < z99 and waoy > U)Qz}

is a basis of V(T'(v)).

Definition 7.6. Given w € Z?, the tableau associated to w with respect to B(T(v))
is defined by
T(w+w) if wa < waa,

Tab(w) = {

In particular, B(T(v)) = {Tab(w) |w € Z3}.

DT (04 w) if way > waa.

2130001-62



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Classification of simple Gelfand-Tsetlin modules of sl(3)

We next write explicitly the formulas for the action of s{(3) on V(T'(7)). We
again use the conventions v = (v31, V32, Us3, V21, V22,v11), ¥ = (a,b, ¢, x, x, z), and
w = (0,0,0,m,n, k). For any rational function f in {vi; }1<;<i<s, Oy, (f) will stand
for ai{j (v).

Recall that by Proposition [£22 the Gelfand-Tsetlin formulas for generic mod-
ules can be written as follows:

Hi(T(w+2))=hi(v+2)T(v+2),

ET(+2)= > ens(o(v+2)T(w+z+0(ers)),

c€ED,

where hi (w) = 2wy — (w1 +waz + 1), ho(w) = 2(wa1 +waa + 1) — w11, and e,(w),
ers are defined in Example

Using the relations T(0+42) =T (0+7(z)) = 0 and DT (0+2)+ DT (v+7(2)) =0
(see Sec. ) we can write the above formulas in a simpler form. Set for convenience
W = v + w. Then

H;(Tab(w)) = h;(v + w) Tab(w) for i=1,2, (20)
Es1 (Tab(w)) = Tab(w + €21), (21)
E12(Tab(w)) = e12(0 + w)Tab(w + £12). (22)

If E = E;; € {Es9, Es3, E31, F13}, € denotes the corresponding €;;, and é(w) :=
(v21 — va2)e(w), then the action of E on Tab(w) is given by
2(é(w)DT(w +€) + DY (é(v + w))T (W + ¢€)) if wo; = waa,  (23)
e(w)T(w +¢€) + e(t(w))T(w + 7(¢)) if wor < waz,  (24)
{D”(e(v+w))T( g) + D?(e(r(v + w)))T(w + 7(¢))
+e(w)DT(w + €) + e(m(w)) DT (w + 7(€))

—~ ~—

if wo1 > was. (25)

Remark 7.7. Note that the Gelfand—Tsetlin formulas for singular tableaux have
the same coefficients as in the classical formulas for tableaux of the same type (see
formulas (20)—(25])). More precisely, the action of the generators E;; on a regular
tableau is a linear combination of regular tableaux with the same coefficients as
those that appear in the classical Gelfand—Tsetlin formulas. On the other hand,
the corresponding action on a derivative tableau is a linear combination of both
regular and derivative tableaux, and the coefficients of the derivative tableaux are
the same as those that appear in the classical formulas.

7.3.2. Explicit formulas and computations

Some explicit computations are included in the following example.
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Example 7.8. For any complex numbers a and v;;, 1 < j < ¢ < 3, consider the
following Gelfand—Tsetlin tableaux:

V31 V32 V33 a a a

T(v) = V21 V22 T(v) = a a

V11 a

Consider w = (0,1,0) = 6?2 and v’ = (1,0,0) = §?! in Z3. Then the following
hold:

(i) Using @24), E32(T(0+ w)) = D?((v21 — va2)Es2(T (v + w))) which equals to

o V21 — V11 21
D — _ T -0
<(U21 V22) <v21 — (om + 1) (v+w )

(v22 +1) —wny 22 ))
- T -9
+(v22+1)—v21 (v+w )

o (021 — v22) (Va1 —vn1) o
=P < vo1 — (v22 + 1) )T(w o)

_ (7121 - 022)(021 - 7111) _ 1
+ ev(v) ( oo — (v;2 7 1) ) DT (w — 6%1)

v ((Uzl —v22)((v22 +1) — v11)> ()

(vag + 1) — vy

(va1 — v22)((va2 + 1) — v11)
(va2 + 1) — v21

= ev(D) (&) T(w — 62) + ev (D) ((Uzl — v22)(v21 — Uu)>

vo1 — (Va2 + 1) vo1 — (va2 + 1)

+ ev(D) ( > DT (v)

« DT (w5 — 1) + ev (D) (%) (%)

=T (v).
(i) Using [25), E32(DT (v + w')) = D?(E32(T(v+ w'))) which equals to

_ 1—
Do (7121 + V11

Tv+w — 621)) + D" <&T(v +w - 622))
vo1 + 1 — va

vo2 — (v21 + 1)
vo1 + 1 — 11

_ (U21+1U11
va1 + 1 — vao

vo1 + 1 — vog

) T(v) + ev(v) ( > DT ()
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O] U22 — V11 - 21 22
+D | —————— | T(Ww+d6* -6
(7122 — (va1 + 1)> ( )

_ V22 — V11 — 21 _ 22
+ ev(v) (—1}22 yp—— 1)> DT(v+ 0 5%%)

5 (ve1+1 —U11> _ 5 ( V22 — V11 ) R
="' ——--——|TO)+D" | ———— | T(0+ 5" =46
(U21+1U22 @) vz — (v21 + 1) ( )

= %T(T;) - %T(@ + 621 — %2,

The computations made in the last example can easily be applied to the formulas
20)-@5). As a result we have the following set of formulas.

Action of the generators on reqular tableaux:

Eyn (T(w)) =T (w— ),
E(T(0)) = —(x+m—z—k)(x+n—z—k)T(w+ ).

T(w—6%) +2(x +m — 2z — k)DT (w — §%!) if m=n,
Es3o (T (w)) = . .
32 (T (w)) r+m—z kT(w7621)7m+n z kT(zI)fém) i m £,
m-—n m-—n
3
(9521 (H(Ugi — V21 — m)) T(II) + 622)
i=1

—2(a—x—m)(b—2—m)(c—x—m)DT(w+ 6*2) if m =n,
By (T (w)) =

(afx—m)(bfx—m)(cfx—m)T

— 521
p— (w+07)

7(afx*n)(bfwfn)(cfm*n)T(er(;”) if m #n.

m-—n
Action of the generators on derivative tableauz (recall that we assume m > n):
Eo (DT (w)) = DT (w — 6*),
Eyu(DT(0) = —(x+m — 2z —k)(xz +n — 2z — k)DT(w + §')

+ %T(w 1o,

_ tm—z—k tn—z—Fk
B (DT(@)) = %DT(U} — 5%y %DT(U} —5%2)
1 1 2(x+m—z—k) o
Jr§(m—n (m —n)? )T(w o)
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1 1 20@+n—z—k)
§(m—n (n—m)?

) T(w — §2%),

(a—xz—m)(b—xz—m)(c—x—m)

Ea3(DT(@)) = — — DT (w + 6°')
T
-y, (H?—I(U:;; - 222 - ”)> T(w + 622)

(a—x—n)b—x—n)(c—x—n)

-2 T (w + §°%)

(m —n)?

3
-~ (Hi—1(v3z — b1 — m)) T(w + 6%)
n—m

a—z—m)(b—xz—m)(c—x—m)

72( T(w + 621).

(m —n)?
Lemma 7.9. The action of T' on V(T'(v)) is given by the formulas:

ers(T(0 + w)) = Yrs(V+w)T (0 + w),

crs(DT (0 +w)) = Yrs(0 +w)DT (0 + w) + DY (s (v + w))T (0 + w).

Proof. The identities follow from Theorem [£:35 Indeed,

Crs(T(0+ 2)) = D”((va1 — va2)crsT(v + 2))

=D ((va1 — v22)vrs(v + 2)T (v + 2))
= D"((v21 — v22)vrs(v + 2))T(0 + 2)
+ev(v) ((va1 — v22)yrs (v +2)) DT'(0 + 2)

7.3.3. Submodules generated by singular tableauz

In this section, we obtain an analogous to Theorem [.25(i) for 1-singular tableaux.

Recall that B(T(v)) = {Tab(z) | z € Z3} is a basis of V(T'(v)).
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Definition 7.10. Let o be a fixed critical vector, Tab(w) € B(T'(9)), and w = v+w.
Define
Q‘*‘(Tab(w)) if wo < w22,

+(Tab(w)) =
A (T b( )) {Q+(Tab(7(w))) if wa1 > wos.

Lemma 7.11. Assume that wey # waee. Then T(0 + w) belongs to U - DT (v + w).

Proof. The action of caa — y22(7 + w) on DT(T + w) is given by the formula (27
and can be easily check that is a nonzero multiple of (we1 — w22)T (T + w). |

Lemma 7.12. Suppose Tab(w) is a critical tableau. If Tab(w') is a derivative
tableau such that AT (Tab(w)) C A*(Tab(w’)), then Tab(w’) € U - Tab(w).
In particular, the simple subquotient M of V(T(v)) containing Tab(w) satisfies
dim(M,,,) = 2.

Proof. The statement follows from Remark [(77] and formulas ZI)-@3]). In fact,
the numerators of the coefficients of the derivative tableaux appearing in the de-
composition of g7 (v + w) as linear combination of basis elements, are either zero
(if g is a product of generators of the form Fa1, F19, or E;;) or the same as the
numerators of the coefficients that appear in the classical Gelfand—Tsetlin formu-
las. In the latter case Tab(w’) is a derivative tableau, hence we cannot have zero
coefficients. Therefore, we can use the same arguments as in the proof of Lemma

HL28(i). O
Definition 7.13. For any tableau Tab(w) € B(T' (7)) define
A(Tab(w)) := {Tab(w') € B(T'(v)) | A*(Tab(w)) € AT (Tab(w'))}.

By C(w) we will denote the set of all critical tableaux in A(Tab(w)) and by
R(w) we will denote the set of all regular tableaux in A(Tab(w)). Also, set

R(w) U A(Tab(w')) | if wa1 < waa,
N(Tab(w)) = w’GLJC(w)
A(Tab(w)) if w21 Z w22.

Lemma 7.14. For any tableau Tab(w) we have N (Tab(w)) C U - Tab(w).

Proof. The statement follows from Remark [[.7] Lemmas [[.11] and More
precisely, as the Gelfand—Tsetlin formulas for singular tableaux have the same co-
efficients as in the classical formulas for tableaux of the same type, we can use the
reasoning in [20, Proof of Theorem 6.8] and adapt it to the singular case. O

The following lemma together with Lemma [7.T1] gives a sufficient condition in
order to have modules with Gelfand—Tsetlin multiplicity 2.
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Lemma 7.15. Suppose that Tab(w) is a regular tableau such that QT (Tab(w)) =
QF (Tab(w")) for some critical tableau Tab(w’), then Tab(r(w)) € U - Tab(w).

Proof. The statement follows directly from Lemma [7.12] O

Corollary 7.16. Let Tab(w) be a regular tableau associated to a Gelfand-Tsetlin
character x. If {Tab(w') | QT (Tab(w’)) = QT (Tab(w))} does not contain critical
tableauz, then any simple subquotient N of V(T'(v)) satisfies dim(N, ) < 1.

Proof. Since Tab(w) is regular, we; < wag. Then Tab(7(w)) is a derivative tableau
such that Tab(w) € U - Tab(r(w)) (see Lemma [.TT)). Therefore, it is enough to
prove that Tab(r(w)) ¢ U- Tab(w). However, this follows from Theorem
and the fact that we cannot obtain critical tableaux from Tab(w) with the same
QF(Tab(w)), in particular we cannot obtain derivative tableaux Tab(w’) such that
QF (Tab(w’)) = Q7 (Tab(w)). O

Remark 7.17. By definition of N (Tab(w)), any Tab(w’) in N (Tab(w)) satis-
fies the relation |Q*(Tab(w))| < |2 (Tab(w’))|. However, it is possible to have
Tab(w') € U - Tab(w) with [QF(Tab(w’))| = |2F(Tab(w))| — 1. For instance, con-
sider v = (a, b, ¢, z, z,z) such that {a—z,b—z,c—z}NZ = and w = (0,0, 0), then
|+ (Tab(w))| = 2 while E35 Tab(w) = Tab(w — §%!) and |QF (Tab(w — §21))| = 1.

Let us write Tab(w’) <4 Tab(w) if Tab(w') appears with non-zero coefficient in
the decomposition of g - Tab(w) for some generator g € gl(n).

Lemma 7.18 ([33, Lemma 7.4]). Suppose that Tab(w') <, Tab(w) with g €
gl(n) of the form Ey ki1 or Egiig, then |QT(Tab(w'))| > |QF(Tab(w))| — 1.
Moreover, the complete list of Gelfand-Tsetlin tableauz Tab(w) and Tab(w’) such
that Tab(w’) <4 Tab(w), and |Q* (Tab(w’))| = |QF (Tab(w))| — 1 is as follows:

(1) a b c a b c
Tab(w) = x x—t Tab(w')=| z—t x
T z+1
fort e Zsy.
(ii) a b c a b c
Tab(w) = x x—t Tab(w')=| 2 —t || z—1
x x
fort e Zso.
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(iii) a b c a b c
Tab(w) = x x Tab(w')=| z—1 x
x x
(iv) x b c x b c
Tab(w) = x x—t Tab(w')=| z—t || v +1
z z

(v) x b c x b c

Tab(w) = x x Tab(w') = x x+1

forb#x and c # .

Remark 7.19. For the tableaux in Lemma [[I8(iv) and (v), one may consider x
at positions 3i, i = 1,2, 3, obtaining the same property for Q.

Definition 7.20. We will say that a tableau Tab(w) is of type (I) if it can be
written in the form of one of the tableaux Tab(w) of parts (i), (ii), or (iii) of
Lemma [Z.1§ for some z,a,b,c,t,z. We also say that the tableau is of type (II), if
can be written in the form of one of the tableaux Tab(w) of parts (iv) or (v) of
Lemma [T1I8 for some x, b, ¢, t, z, and x appear in the top row in position 3i.

Remark 7.21. With the notation of Lemma [[ I8 for tableaux of type (I) we

have Q1 (Tab(w’)) = Q*(Tab(w))\{(2,1,1)} and for tableaux of type (II); we have

QF (Tab(w')) = QF (Tab(w))\{(3,4,2)}.

Definition 7.22. Let Tab(w) € B(T(v)) and (r,s,t) € QT (Tab(w)). Set
Nir,s,p)(Tab(w)) := N(Tab(w)) UN(Tab(w")),

where Tab(w’) is any tableau such that QT (Tab(w))\{(r,s,p)} = QT (Tab(w’)).
Also, define

N (Tab(w)) = {ngl,l)(Tab(w)) if Tab(.w) is of type (I), (28)
N (Tab(w)) otherwise,
N®@(Tab(w)) := {N(3,i2)(Tab(w)) if Tab(w)is of type (II),,
N (Tab(w)) otherwise, (29)
A(Tab(w)) := N (Tab(w)) UN® (Tab(w)). (30)
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Lemma 7.23. Let Tab(w) be any Gelfand-Tsetlin tableau and Tab(w') €
N (Tab(w)). We have A(Tab(w’)) C U - Tab(w).

Proof. As Tab(w’) € N(Tab(w)), by Lemmas[(.14 [718, and Remark [[.21] we have
N (Tab(w')) € U - Tab(w) for i = 1,2. O

The following theorem summarize the results of this section.

Theorem 7.24. Let Tab(w) € B(T(v)). The submodule U - Tab(w) has the follow-
ing basis of tableauz:

N (Tab(w)) := U A(Tab(w')).

Tab(w’)EN (Tab(w))
Proof. The statement follows from Lemmas [7.18 and [7.23] O

Definition 7.25. Let M be a Gelfand-Tsetlin module with basis By C B(T'(7))
for some 1-singular vector v. We say that Tab(w) € By is QT -mazimal in M if
|QF (Tab(w))| is maximal for all Tab(w) in Bjs. Also, denote by U -y Tab(w) the
submodule of M generated by Tab(w).

The next two corollaries follow from Theorem and will be useful when
describing the simple subquotients of V (T'(7)).

Corollary 7.26. Let M be a Gelfand—Tsetlin module with basis By C B(T'(0)) for
some 1-singular vector v. If Tab(w) € Bys is a regular tableau that is Q" -mazimal
in M, then U -y Tab(w) is a simple submodule of M.

Proof. It is enough to proof that Tab(w) belongs to U - s Tab(w’) for any Tab(w’)
in U -p Tab(w). As Tab(w’) in U - Tab(w) and Tab(w) is a regular tableau, we
have Q1 (Tab(w)) € Q*(Tab(w’)) U {(r,s,t)} for some (r,s,t). As Tab(w) is Q-
maximal, we should have Q (Tab(w)) = Q*(Tab(w’)) U{(r, s,t)} for some (r, s,t).
Therefore, U -3y Tab(w) C U - p; Tab(w') and, then we have Tab(w) € U -j Tab(w').

O

Corollary 7.27. Let M be a Gelfand-Tsetlin module with basis Byy C B(T(v))
for some 1-singular vector v. If {Tab(w) € By | Tab(w) is QT -mazimal} does not
contain reqular tableauz, then for any QV-mazimal tableau Tab(w) the submodule
U -y Tab(w) is a simple submodule of M.

Proof. The proof is analogous to the proof of Corollary [[.20] O

In order to describe the basis of the simple subquotients of V(T'(7)) we modify
Definition [73] to singular vectors.

2130001-70



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Classification of simple Gelfand-Tsetlin modules of sl(3)

Definition 7.28. Let ¥ be any 1-singular vector and B be a subset of Z3. By Tab(B)
we will denote the set of tableaux {Tab(m,n, k)| (m,n, k) € B} C B(T(v)). Assume
that M is a Gelfand—Tsetlin module with basis Tab(B). Then we will denote M by
M (B, ), or simply by M(B) if v is fixed. If M (B) is simple, we will write L(B) for
M(B).

Example 7.29. Let © = (a,b,c|a,alz). Below we give a basis for the submod-
ule of V(T'(v)) generated by Tab(0,0,0). In this case B(T(v)) does not contain
tableaux of type (I), (II)2, or (II)s. However, the set of all tableaux of type (II); is
{Tab(0,n,k)|n € Z<o}. By definition we have

~ ~

N (Tab(0,0,0)) = A(Tab(0,0,0)) = .A(Tab(0,0,0))
= {Tab(m,n, k) [m <0, n < 0},
N (Tab(0, —1,0)) = A(Tab(0, —1,0)) = N (Tab(0, —1,0))
= {Tab(m, n, k) |m < 0}.

Therefore, by Theorem [[.224] the submodule of V(T'(7)) generated by Tab(0,0,0)
has basis:

J  A(Tab(w')) = A(Tab(0,0,0)) U A(Tab(0, —1,0)) = Tab(m < 0).
N (Tab(0,0,0))

7.4. The singular block containing L(—p)

In this section, we describe all simple subquotients of the module V(T'(7)) with
v = (a,a,ala,ala).

Next, we give an algorithm, which based on Theorem and Corollaries
and [C.27] provides an explicit basis of all simple subquotients of a module M with
basis Bys C B(T'()).

Step 1. If there is an Q-maximal regular tableau in B, choose any such tableau
Tab(w). By Corollary [[.26] U -»s Tab(w) is a simple submodule of M.

Step 2. If there are no Q-maximal regular tableaux in By, consider any -
maximal (derivative) tableau Tab(w). By Corollary [[.27 the module U -y,
Tab(w) will be a simple submodule of M.

Step 3. Using the bases of M and U - Tab(w) (see Theorem [[.24]), we find a basis
of M/(U -ps Tab(w)).

Step 4. Start over the procedure with the module M’ := M /(U -p; Tab(w)).

Example 7.30. Set v = (a, a, a|a, a|a). Below we define explicit bases of all simple
subquotients of V(T'(7)).
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Note that none of the tableaux in B(T'(v)) can be of type (II);, i = 1,2,3.
Therefore, N'?) (Tab(w)) = N (Tab(w)) for any Tab(w) € B(T(v)). Moreover, the
set of all tableaux of type (I) is {Tab(m, n, k) |n < m = k}. Now, we apply Steps 1-4

described above to the module V(T'(V)).

(1) The tableau Tab(0,0,0) is QT-maximal on V(7'(v)). By Corollary [7.26,
U - Tab(0,0,0) is a simple submodule of V(T'(7)) and by Theorem [[.24] the
submodule U - Tab(0, 0,0) has a basis

N (Tab(0,0,0)) = A(Tab(0,0,0))
= N (Tab(0,0,0))
m <0
=Tab| n<0
k<n

Denote this module by Ly, and My = V(T'(v))/L;.
(2) Now, the derivative tableau Tab(0, —2, —1) is Q*-maximal in M;. By Theorem
[[24 U - Tab(0,—2, —1) has a basis

~ ~

N (Tab(0, -2, —1)) = A(Tab(0,0,1))
= N (Tab(0, -2, —1))

m <0
= Tab .
n <0

Moreover, by Corollary [[.217 U -ps, Tab(0,—2,—1) is a simple submodule of
M, and has a basis

m <0
m<0
Tab( )\Tab n<0
n<0
k<n
m <0
=Tab| n<0
n<k

Denote by Lj this module and My = My /Ls.
(3) The tableau Tab(0,1,0) is QT-maximal in My and U - Tab(0, 1,0) has a basis
A(Tab(0,1,0)) U .A(Tab(0,0,0)) which is equal to

m<n
m <0

m <0
Tab UTab n <0

k<m
k<n

kE<n
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Therefore, U -z, Tab(0,1,0) has basis

m<n
m <0 m<0 m <0

m <0
Tab UTab n<0 Tab| n <0 UTab n<0

kE<m
k<mn k<n n <k

= Tab(k <m <0< n),

call this module Ly and M3 = Ms/Ls.

(4) There are not Q" -maximal regular tableaux in M3, so we choose the derivative
tableau Tab(1, 0,0) which is QT -maximal in Mj3. By Corollary[Z.27] the module
U -u, Tab(1,0,0) is a simple submodule of M3 with basis

Tab(k <n <0<m)

call this module Ls and My = M3/ Ls.
(5) The tableau Tab(0, 1, 1) is QT -maximal in My and U -y, Tab(0, 1, 1) is a simple
submodule of M, with basis

m<0<n
Tab
m<k<n
call this module Ly and M5 = My/Ly.

(6) The derivative tableau Tab(1,0, 1) is Q*-maximal in Mjy. Therefore, by Corol-
lary 27 U -z, Tab(1,0,1) a simple submodule of My with basis

n<0<m
Tab
n<k<m
call this module L7y and Mg = M5/ Lr.

(7) The tableau Tab(0, 1,2) is Q*-maximal in Mg so, U -z, Tab(0, 1,2) is a simple
submodule of Mg and has a basis

Tab(m <0< n <k)
call this module Lg and M7 = Mg/ Lg.
(8) The tableau Tab(1,0,2) is QT-maximal in M7 and U -y, Tab(1,0, 2) is a simple
submodule of M7 with a basis
Tab(n <0< m < k)
call this module Lg and Mg = M7/Lg.
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(9) The tableau Tab(1,1,0) is Q"-maximal in Mg. The module U -, Tab(1,2,2)
is a simple submodule of Mg with a basis

0<m
Tab| 0<n
k<n

call this module Lg and Mg = Mg/ Ls.
(10) The tableau Tab(1,1,2) is Q"-maximal in My and U - Tab(1, 1, 2) has a basis
Tab(Z?). Therefore, U -y, Tab(1,1,2) is has a basis

0<m
Tab| 0<n
n<k

call this module Lqg.

Remark 7.31. The reasoning in Example [[.30] can be applied also when find-
ing the Loewy series decomposition of V(T'(7)). More precisely, the Loewy series
decomposition of V(T'(9)) for © = (a, a,ala,ala) is

Ly, Ly®Ls, L4y Ls®Lg, L7, Lg®Lg, Lig.

7.5. Realizations of all simple singular Gelfand—Tsetlin
s[(3)-modules

In this section, we will describe all simple objects in every block G7 7, defined by
a singular Gelfand—Tsetlin character x, (see Definition and Remark[.2]). Such
description will include an explicit tableaux basis of each simple subquotient M in
GT 1(v) and the weight support of M. For the weight support we will use Proposition
[7.321and the explicit basis to give a description of the weight multiplicities, when the
multiplicities are finite, a picture of the weight lattice is provided. We also present
the components of the Loewy series of the universal module V(T (v)). A rigorous
proof based on Theorem [7.24], and Corollaries[7.26 and is given for Case (C'13),
see Sec. [[.4, Example For all other cases the reasoning is the same.

The simple subquotients will be defined by their corresponding subsets of Z3,
equivalently, by their bases in B(T(v)). We should note that all subsets of Z3 that
define a simple subquotient are defined by a set of inequalities of the form a < b or
a < b where a, b are elements in the set {m,n,k,0,—t, —s}.

As we did for the description of generic blocks we will characterize the weight
spaces for subquotients of the singular module V(T'(7)).

Proposition 7.32. Let M be a singular Gelfand-Tsetlin module with basis of
tableaur By C B(T'(0)). If Tab(z) € Bas is a tableau of weight A, then the weight
space My is spanned by the set of tableaux {Tab(z + (i,—i,0))|i € Z} N Byy.
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Proof. The action of the generators of h in M is given by the same expressions
as in the case of generic modules, therefore, we can use the same argument of the
proof of Proposition O

We now describe the sets B C Z? that define all simple subquotients of V (T'(?)).
For convenience, the modules listed in one row are isomorphic. Recall that 7 de-
note the transposition (id, (1,2),id) € S5 x Sa x Si. It is worth noting that all
isomorphisms between simple subquotients of V(T'(7)) are 7-induced, that is all
isomorphisms between simple subquotients are given by L(B) — L(7(B)).

Remark 7.33. In general it is not true that if B C Z2 defines a subquotient of
V(T (v)) then 7(B) defines also a subquotient of V (T(7)).

Remark 7.34. We should note that for singular s[(3)-modules we may have char-
acters with unique simple extension or with two non-isomorphic simple extensions.
In particular, the number of simple subquotients of the singular blocks in general
will not coincide with the number of non-isomorphic modules in the block.

Until the end of this section we use the following convention. The entries of the
Gelfand—Tsetlin tableaux we will use will be integer shifts of some of the complex
numbers a, b, ¢, ¢, z. We also assume that if any two of a, b, ¢, z, z appear in the same
row or in consecutive rows of a given tableau, then their difference is not integer. For
convenience, in the description of basis of simple subquotients, isomorphic modules
are listed in the same row.

(C1) Consider the Gelfand-Tsetlin tableau:

a b c

T(v) = x x

z

In this case the module V(T'(7)) is simple and all its weight spaces are
infinite-dimensional:

Module Basis
Ly L(Z3)

(C2) Consider the following Gelfand-Tsetlin tableau:

a b c

T(v) = x x
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I. Number of simples in the block: 2
II. Simple subquotients.
In this case, the module V(T'(9)) has two simple subquotients and they
have infinite-dimensional weight multiplicities:

Module Basis
ITII. Loewy series.
Ly, L.

(C3) Consider the following Gelfand—Tsetlin tableau:

T(v) = a a

I. Number of simples in the block: 2

II. Simple subquotients.
We have two simple subquotients and they have infinite-dimensional
weight spaces:

Module Basis
ITI. Loewy series.
Ly, L.

(C4) Consider the Gelfand—Tsetlin tableau:

T(v) = a a

I. Number of simples in the block: 5
II. Simple subquotients.
In this case, we have six simple subquotients. The origin of the
weight lattice corresponds to the sl(3)-weight associated to the tableau
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(ii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis
< <
Lo I m<0<n L I n<0<m
m<k<n n<k<m
ITI. Loewy series.
Ly, Lo, L3® Ly, Ls, Le.

(C5) For any t € Z~¢, consider the following Gelfand—Tsetlin tableau:

a a—t c

I. Number of simples in the block: 11
II. Simple subquotients.
We have 16 simple subquotients. In this case, the origin of the weight
lattice corresponds to the sl(3)-weight associated to the tableau T'(v —
§21). The pictures correspond to the case t = 2.

(i) Six modules with weight multiplicities bounded by ¢, two pairs of
isomorphic modules and two more modules:

Module Basis Module Basis
m< —t<n n<—t<m
m<k<n n<k<m
—t<m<O0 —t<n<0

Ly L 0<n Ly L 0<m
m<k<n n<k<m

Module Basis
—t<m<O0 —t<m<O0
Ly L 0<n U n<0
Ek<m E<n
m<n —t<m<0 m <0
L3 LI{ —t<m<0,U n<—t »Jq —t<n
n<k m <k n<k
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(7L4

Li3 —

(ii) Modules with unbounded weight multiplicities:

Module Basis Module Basis
m < —t n < —t
L3 L 0<n Lio Ll 0<m
k<m k<n
m < —t n< —t
Lo Ll 0<n Lig L] 0<m
n<k m <k
Module Basis
m < —t
I m< —t<n<0 < ¢
1 k<m Ug n<
k<n
< < m < —t
Le L{m_t<n_0}u n<—t
n <k
n <k
m<n 0<m
L1 L 0<m U —t<n<O0
k<n k<n
m<n 0<m n<m
Lie L 0<m pUg —t<n<0,UJq 0<n
n <k m <k n <k
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dimensional weight spaces:

(iii) Two isomorphic modules with infinite-
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ITI. Loewy series.
Ly, Lo ® L3, Ly ® Ls ® Lg, L7 & Lg ® Lg ® L1o, L11 ® L1z ® L13,
L14® Lis, L.

(C6) Set t € Z~o and consider the following Gelfand—T'setlin tableau:

a a—t c

T(v) = a a

z

I. Number of simples in the block: 4
II. Simple subquotients.
In this case, we have five simple subquotients. The origin of the weight
lattice corresponds to the sl(3)-weight associated to the tableau T'(v —
§21). We provide the pictures corresponding to the case t = 2.

(i) Two modules with unbounded weight multiplicities:

Module Basis
m<n
L, L{{m<—t U{TZEZ}
n <0 -
n<m
Ls L {?EWZ}U O<m})
—t<n

(ii) A cuspidal module with ¢-dimensional weight multiplicities:

Module Basis
Ls L(—t <m <0)
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(iii) Two isomorphic modules with infinite-dimensional weight spaces:

ITI. Loewy series.

Module Basis Module Basis
m< —t n < —t
L L - L L -
2 ( 0<n ) 4 ( 0<m >
Lla LQa L37 L47 L5'

(C7) Consider the following Gelfand—Tsetlin tableau:

T(v)= a

a

a

a

I. Number of simples in the block: 7
II. Simple subquotients.
The module V(T'(7)) has 10 simple subquotients. In this case, the origin

of the weight lattice corresponds to the sl(3)-weight associated to the
tableau T'(v + 62! + 611).

(i) Eight modules with unbounded weight multiplicities:

Module Basis
m <0
Ly Ll n<0
k<n
m <0
Lo Ll n<0
n<k
0<m
Lg Ll 0<n
k<n
0<m
L1g Ll 0<n
n<k
Module Basis Module Basis
Ls L(k§m§0<n) Ls L(k§n§0<m)
Lg L(m<0<n<k) || Ls L(n<0<m<k)
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)

Basis
n<0<m
n<k<m

a

Module

I

Basis
m<0<n
m<k<n

a

Module
Ly

(ii) Two isomorphic modules with infinite-dimensional weight spaces:
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ITII. Loewy series.

Lo® L3, Ly, Ls®Ls, L7, Lg®Lg, Lio.

Ly,
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(C8) Consider the following Gelfand—Tsetlin tableau:

I. Number of simples in the block: 3
II. Simple subquotients. The module V(T'(7)) has four simple subquo-
tients. In this case, the origin of the weight lattice corresponds to the
sl(3)-weight associated to the tableau T'(v + 621 + §11).

(i) Modules with unbounded weight multiplicities:

Module Basis
m <0
L L<n§0>
0<n
L L
4 <O<m>
55 5 5 5 5 5 5
[ ]
4 4
o o
o3 o3 — Ly
2 2 2
e o
1.1
[ ]
Ly —

(ii) Two isomorphic modules with infinite-dimensional weight multi-

plicities:
Module Basis Module Basis
Lo L(m§0<n) L3 L(n§0<m)

ITI. Loewy series.

Ly, Ly®L3, Ly.
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(C9) Let s,t € Zso be such that ¢ < s. Consider the following Gelfand—Tsetlin

tableau:

T(v)

= a a

I. Number of simples in the block: 7

II. Simple subquotients. The module V(T'(7)) has 10 simple subquo-

tients. In this case, the origin of the weight lattice corresponds to the

sl(3)-weight associated to the tableau T'(v — §22). The pictures corre-

spond to the caset =1, s = 2.

(i) Two modules with unbounded weight multiplicities:

Module Basis
m<n n<m

Ly L m<—spJdm<—s
n< —t n< —t

n<m

m<n

L L -

10 {O<m}U 0<m )

—t<n

4 4 4 4 4

(ii) Three modules with weight multiplicities bounded by ¢:

Module

Basis

Module

Basis

Lo

m< —s

L Lg
—t<n<O0

I n<-—s
—t<m<O0
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Basis
—t<m<O0

)

—s<n

Module

0<m

Basis
—s<n<—t

Module
Ly
Basis
U

0<n
m<n
—s<m< —t
n<0
F

Basis
—s<m< —t

11.1.1.1.1.1.1
1r.1.1.1.1.1.1.1

Module

Module
Ly

(iii) Three modules with weight multiplicities bounded by s —
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(iv) Two isomorphic modules with infinite-dimensional weight spaces:
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Module Basis Module Basis
m < —s n<-—s
L L - L L -
4 ( 0<n ) 7 ( 0<m )
ITI. Loewy series.
Ly, Ly, Ls®Ly, Ls®Ls, L7®Ls, Lg, Lio.

(C10) Let t,s € Z~¢o be such that ¢ < s. Consider the following Gelfand—Tsetlin
tableau:

T(v) = a a

I. Number of simples in the block: 20
II. Simple subquotients.
The module V(T'(v)) has 32 simple subquotients, two of them are iso-
morphic to the simple finite-dimensional module with highest weight
A= (t—1,s—t—1). Also, there are two isomorphic modules with infinite-
dimensional weight spaces. In this case, the origin of the weight lattice
corresponds to the sl(3)-weight associated to the tableau T'(v — §%2).
We provide the pictures corresponding to the case t = 1, s = 2 (i.e. the
principal block).

(i) Two isomorphic finite-dimensional modules with weight multiplic-
ities of degree min{t, s—t¢} and highest weight A = (t—1,s—t—1):

Module Basis Module Basis
—s<m< —t —s<n< —t

Lg Ll —-t<n<o0 Log Ll -t<m<0
m<k<n n<k<m

(ii) Twenty weight modules with weight multiplicities bounded by ¢ or
s — t. There are eight pairs of isomorphic modules and four more
modules in the list:

Module Basis Module Basis
m < —s n<-—s
Lo Ll -t<n<O0 Ly Ll -t<m<0
k<m k<n
m< —s<n n<—s<m
L3 L ngft L12 L mgft
m<k<n n<k<m
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Module Basis Module Basis
m< —s n<-—s
Lg Ll —t<n<0 Lq5 Ll —t<m<0
m<k<n n<k<m
m< —s n<-—s
Lqg Ll —t<n<0 Loo Ll —t<m<0
n <k m <k
—s<m< — —s<n<—
Lll L 0<n ng L 0<m
kE<m E<n
—s<m< — —s<n<—
Lig L 0<n Loy L 0<m
m<k<n n<k<m
—t<m<O0 —t<n<0
Loy L 0<n Lsg L 0<m
m<k<n n<k<m
—s<m< — —s<n< —t
Loy L 0<n L3y L 0<m
n <k m <k
Module Basis
m<n n<m
L L —s<m< —t —s<m< —t
n <0 n< —t
k<m k<n
n<m
—t<m<O0 m<n
—t<m<O0
L4 L 0<n U —t<m<0,U
—s<n<0
k<m k<n<0
k<n
m<n
scm< —t n<—s<m —s<n<m
Li7 L s N U m < —t U m < —t
n <0
- m <k m <k
n <k
n<m
msn t<m<0
— m
Log L —t<m<0 U -
—s<n<o0
n <k
m <k

The following picture describes the weight support of the above
listed modules. Recall that for the modules listed in the left pic-
ture, the weight multiplicities are bounded by ¢, while for the mod-
ules in the right picture, the multiplicities are bounded by s — ¢.
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Lig |
1 1.1 .1.1.1.1

In the pictures above, the point in the middle is the s[(3)-weight
associated to the tableau T'(v — §2?) and corresponds to the trivial
(i.e. the finite-dimensional) module.

(iii) Eight simple Verma modules (with unbounded set of weight mul-
tiplicities). There are two pairs of isomorphic modules and four
more modules in the list:
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Module Basis Module Basis
<m< — kEk<n<-—
Ls L(k—m— 5) Lis L( ==
0<n 0<m
m< —s n<-—s
L19 L ng L
O<n<k O<m<k
Module Basis
m< —s<n m<n n<m
Ly L n<—t Usn<—s UJUsm<—s
k<m k<mn k<n
m<n n<m
m < —s m< —s
L L B B
: n < —t U n<-—s
n<k n<k
n<m
m<n
L L 0< U 0 <m
m
> —t<n
k<n
kE<n
m<n n<m 0<m
L3o L 0<m U 0<n pUg —t<n<0
n<k n<k m<k
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The weight supports are listed as follows:

L3y —

case, we have one pair of isomorphic modules:

(iv) Two weight modules with infinite weight multiplicities. In this
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ITI. Loewy series.
Ly, Ly ® L3, Ly ® Ls ® Le ® L7, Lg ® Lg ® L1o ® L1y @ L1 ® L3,
Li4s®Lis® L1 ® L17 ® L1g® L1g, Lag ® Loy @ Lo ® Loz @ Lag @ Los,
Lo ® Lo7 @ Lag ® Lag, L3o @ La1, L3o.

(C11) Set t € Z~¢ and consider the following Gelfand-Tsetlin tableau:

a a a—t

T(v) = a a

a

I. Number of simples in the block: 13
II. Simple subquotients.
The module V(T'(v)) has 20 simple subquotients. In this case, the origin
of the weight lattice corresponds to the sl(3)-weight associated to the
tableau T'(7). The pictures correspond to the case t = 1.

(i) Six modules with finite-dimensional weight spaces of dimension at
most t, given by

Module Basis
m<n
—t<m<O0 —t<m<0
Ls LY —t<n<o U{kgng_t}
k<m
—tTZrSnZO —t<m<0
Lg L —t<n§_0 U n< —t
m <k m <k
Module Basis Module Basis
m< —t<n n<—t<m
m<k<n n<k<m
—t<m<0 —t<n<0
Lo L 0<n Lo L( 0<m )
k<m k<n
—t<m<0 —t<n<0
Lqg L 0<n Lqg L( 0<m )
m<k<n n<k<m
L L(—t<m§0> L L(—t<n<0>
0O<n<k 0O<m<k
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In the pictures above, the highest weight of L4 corresponds to the
5(3)-weight associated to the tableau T'(7).
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(ii) Six modules with unbounded finite weight multiplicities:

Module Basis Module Basis
kE<m<—t kE<n<-—t
L3 L L13 L
0<n O0<m
m < —t n < —t
L11 L L18 L
O<n<k 0O<m<k
Module Basis
m<n
< _¢ <n n<m
m < —
L - < —t < —t
! —t<n<O0 Ujns Ugm=
k<n k<n
k<m
m<n
<y n<m
m< —
L - < —t
5 n<0 Uqgm<
n<k
n<k
0<m
Lig Ll 0<n
k<n
0<m
Lag Ll 0<n
n<k
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(iii) Two isomorphic modules with infinite-dimensional weight multi-

plicities:
Module Basis Module Basis
m < —t n < —t
Lg L 0<n L5 L 0<m
m<k<n n<k<m

ITI. Loewy series.
Ly, Lo ® L3 ® L4, Ls ® Le ® L7, Lg ® Lo @ L1o ® L11 @ L12 @ L3,
L14® L15 ® L1g, L17 ® L1 ® L1g, Loo.
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(C12) For any t € Zs consider the tableau:

I. Number of simples in the block: 4
I1I. Simple subquotients.
We have five simple subquotients. In this case, the origin of the weight
lattice corresponds to the sl(3)-weight associated to the tableau T'(7). We
provide pictures of the weight lattice corresponding to the case t = 1.

(i) Two modules with unbounded weight multiplicities:

Module Basis
m<n
Ly L{{m<—t U{:LEZ}
n <0 -
n<m
Ls L {ZEWZ}U 0<m
—t<n

4444444.4

(ii) A cuspidal module with ¢-dimensional weight multiplicities:

Module Basis
Ls L(-t<m<0)
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(iii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis
m< —t n< —t
Lo L Ly L
0<n 0<m

ITII. Loewy series.

L17 LQ, Lg, L4, L5.

(C13) Consider the following Gelfand—Tsetlin tableau:

I. Number of simples in the block: 7
II. Simple subquotients.
The module V(T(7)) has 10 simple subquotients. In this case, the origin
of the weight lattice corresponds to the sl(3)-weight associated to the
tableau T'(v + 62! + 611).

(i) Modules with unbounded weight multiplicities:

Module Basis
m <0
Ly Ll n<0
k<mn
m <0
Ls Ll n<0
n<k
0<m
Lg Ll 0<n
k<n
0<m
Lqg Ll 0<n
n<k
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Basis

m <k

n<0<m

Module

Basis

n<k

m<0<n

Module

Ly

Lg
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(ii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis
m<0<n n<0<m
L L - L L -
: <m<k:§n> ’ <n<k§m>

ITI. Loewy series.

Ly, Ly®Ls, L4 Ls®Ls, L7, Lg®Lg, Lio.

(C14) Consider the following Gelfand—Tsetlin tableau:

T(v) = a a

I. Number of simples in the block: 3
II. Simple subquotients.
The module V(T'(7)) has four simple subquotients. In this case, the
origin of the weight lattice corresponds to the sl(3)-weight associated
to the tableau T'(v + 02! + 0'1).

(i) Modules with unbounded weight multiplicities:

Module Basis
m <0
L L<n§0>
0<n
L L
4 <O<m)
5 5
[ ]
4 4
[ ) ‘.
030‘5 — Ly
2 2 2
[ N )
1.1
[ ]
L] —
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(ii) Two isomorphic modules with infinite-dimensional weight multi-
plicities:

Module Basis Module Basis
Lo Lim<0<mn) || Ls L(n <0< m)

ITI. Loewy series.

Ly, Ly®L3, Ly.

8. Localization on Gelfand—Tsetlin Modules
8.1. Localization and twisted localization functors

We first recall the definition of the localization functor of U-modules. For details,
we refer the reader to [6], [50].

For every root @ € A the multiplicative set F, := {f%|n € Z>¢} C U satisfies
Ore’s localizability conditions because ad f,, acts locally nilpotent on U. By D,U we
denote the localization of U relative to F,. For every weight module M, D, M =
DU @y M is the a-localization of M. If f, is injective on M, then M can be
naturally viewed as a submodule of D, M. Furthermore, if f, is injective on M,
then it is bijective on M if and only if D, M = M.

For x € C and u € DU we set

0.0 = Y- (1) (o) () £ (31)

i>0

where (f) = w Since ad f,, is locally nilpotent on U,, the sum above

is actually finite. Note that for € Z we have O, (u) = fZuf;". For a D, U-module
M by &M we denote the D,U-module M twisted by the action

u-v” = (04(u) - v)*,

where u € DU, v € M, and v”® stands for the element v considered as an element
of ®2 M. Since v = f ™ - v whenever n € Z it is convenient to set f2-v:=v"% in
& %M for x € C.

In what follows we set DZ M := &% (D, M) and refer to it as a twisted localization
of M. One easily check that if M is a weight g-module, then DM is a weight
module as well, in particular, v* € Myy,, Wwhenever v € M). Furthermore, one

easily verifies the following proposition.

Proposition 8.1. Let « be a root and x € C.

(i) DZ is an exact functor from the category of U-modules to the category of DaU-
modules.
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(ii) If M C N are U-modules such that M is fq-injective and N is fq-bijective,
then N = D, M.

In the case when f, acts injectively on M, set QDM := D, M/M. Also, if

a = ¢; —¢; we will write D;;, Dj;, and QD;; for Dy, Df, and QD,, respectively.

8.2. Localization functors in the case of s((3)

From now on, we consider U = U(sl(3)). In this section, we study the relation
between the tableaux bases of a module and its localized module.

Our goal is to apply localization functors to Gelfand—Tsetlin s[(3)-modules and
realize all simple Gelfand—Tsetlin s[(3)-modules as subquotients of twisted localized
modules.

With this in mind, our first step is to obtain conditions on the bases of the
modules that guarantee injectivity or surjectivity of the operator f,. For simplicity,
we will work with o = €1 — €9, hence f, = Fo;.

8.2.1. Injectivity and surjectivity of the operator Foi

In this section, we assume that V is the generic module V(T'(v)), or the singular
module V(T'(7)). By B we denote the lattice of tableaux B(T(v)) (or B(T(?))).
Also, the tableaux basis of a Gelfand—Tsetlin module M that is a subquotient of V'
will be denoted by By C B.

Remark 8.2. Since V' is a weight module, every subquotient M of V is a weight
module. Hence, in order to check injectivity or surjectivity of Fo; on M, it is
enough to check those properties on weight spaces of M. Also, recall that for a
weight A = (A1, A2) in the weight support of M, Eai (My) € My, —2,x,+1)-

To unify the notation, in the case of a generic tableau T'(v) it will be convenient
to write Tab(w) := T'(v4w). Then, the action of F3; on Tab(w) (generic or singular)
is given by the formula:

Es1(Tab(w)) = Tab(w — §'1). (32)

From Propositions and [[32) if Tab(w) € By is a weight vector of weight
A, then the weight space M) is spanned by {Tab(w + (i, —4,0))|i € Z} N By If
w; denotes the vector w + (i, —i,0) € Z3, any element of M) will be of the form
u =3, a;T(w;) for some finite subset I of Z.

Lemma 8.3. The operator Esy acts injectively on M if and only if Tab(w) € By
implies Tab(w — 611) € Byy.

Proof. Suppose first that there exists Tab(w) € By such that Tab(w —§1) ¢ By,
then Fa;(Tab(w)) = Tab(w — §'') = 0 (on M), which implies that Fa; is not

2130001-99



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

V. Futorny, D. Grantcharov & L. E. Ramirez

injective. On the other hand, suppose u := }_,_; a; Tab(w;) € My with Tab(w;) €
By for any i. If w is such that 0 = Eay(u) = ), a; Tab(w; — o), then a; T (w; —
o) =0 for any i € I. Since by hypothesis T'(w; — §'') € By, we have a; = 0 for
any ¢ € I. O

Lemma 8.4. The operator Ea1 acts surjectively on M if and only if T(w) € By
implies T(w + ') € Bys.

Proof. Any element of My, _5 ,+1) is of the form v’ = >
a direct computation using ([32) shows that Ea; (3

ser @i Tab(w; — 0'") and
ser @i Tab(w;)) = . |

8.2.2. Twisted localization with respect to Faq

Recall that for z € C and u € D1,U we have

0.0) = Y- () (ad Ear) () B3 (33)

i>0
Lemma 8.5. Let {c;;}1<j<i<s be the generators of T defined in ([I). Then

Ou(ciy) =7 if (i, 3) # (1,1),
z\Cij) = ciit+ax if (4,5) =(1,1).

Proof. We first note that if u commutes with Fa;, then ©,(u) = u. Since the
generators {c¢;;j o<j<i<3 commute with Ea;, the first part of the lemma is proven.
For the second part, we use that c;; = E11 and (ad Fa1)?(E11) = 0. O

As an immediate consequence of Lemma we have the following corollary
that will be frequently applied.

Corollary 8.6. Let M be any Gelfand-Tsetlin module on which Ea1 acts injec-
tively.

(i) The twisted localized module Di, M is also a Gelfand—Tsetlin module.
(ii) If v € M has Gelfand-Tsetlin character x = (a11,a21, as2,as1, asz,ass), then
v* € Diy M has Gelfand-Tsetlin character x = (a11 + x, a21, a2, as1, asz, ass).

Next, for a Gelfand—Tsetlin module M with tableaux basis Bj; and injective
action of Es;, we explicitly describe the tableaux basis of D{,M. For this, we
introduce some notation.

For B C Z3, denote by B + §'! the region {(m,n,k)|(m,n,k — 1) € B}. Set
B+tétt = (B+ (t—1)6") + ' for t € Nand B+ No't = ;o (B + t6').

Recall Definition [[3 for L(B;v).

Proposition 8.7. Let B C Z3 and L(B) = L(B;v) be a simple Gelfand—Tsetlin
module. Assume that Ea1 acts injectively on L(B;v). Then Di,L(B;v) ~ M(B +
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N6 v+ 26') and QDT, L(B;v) ~ M((B+NSY)\B; v+ xd't). In particular, if x
is an integer we have DioL(B) ~ M (B + N§'') and QDL(B) ~ M ((B + N&§'1)\B).

Corollary 8.8. Let M be a simple module in GT, generated by a tableau Tab(w)
and such that Fo1 acts injectively on M. Then for any x € C, DiyM has a
subquotient isomorphic to a simple sl(3)-module in GT generated by the tableau
Tab(w + zd't).

8.3. Simple Gelfand—Tsetlin modules and localization functors

In this section, we will describe the simple Gelfand-Tsetlin sl(3)-modules via local-
ization functors and subquotients starting with some simple F1-injective Gelfand—
Tsetlin module. In order to give such description we rely on Lemmas R3] B4l and
Proposition R In fact, in order to use Proposition [R7 we have to check if the
corresponding module defined in such region is E»-bijective.

For convenience, we denote by Ll(-Gj ) the simple module L; in the jth generic
block from the list in Sec. [[.2] and by LECj) the simple module L; in the jth
singular block in the list in Sec. For example, L§G2) stands for the module
L({k < m}§ T(a7 b, c|z, y‘l‘))

Below we list of all simple modules which are Esi-injective.

(i) Simple E2;-injective generic modules:

L(1G2) L(1G4) L§G4) L(lGS) LéGs) LEGG)

L:())G6) LELG6) Lgcﬁ) ngg) L:(),GQ) LéGg)

Lgmo) LéGlO) Lflo) ngu) LéGH) LE;GH)

G11 G11 G11 G12 G12 G12
e rErErare

G12 G12 G12 G14 G14 G14
L0 [ g [ 1 | 0 | 1o

LéGM) Lgcns) LéG15) LELGM) LéGls)

(ii) Simple E9;-injective singular modules:

C2 C4 C4 C5 C5 C5 C5 C5
5 [ [ [ o [0 [ o [ o [ oo
L§C7) Lém) Lf,,m) Lgcn L(lcw) Lgcw) Lécw) L(701o)
C10 C10 c10 C10 C10 C11 C11 C11
A AU rarS
C11 C11 C11 C11 C13 C13 C13 C13
LT | [ [ e | 67 [0 | [0

Finally, we apply (twisted) localization functors on the modules above and
obtain all simple modules in the block as shown in the following tables. Set
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QD® := QD¥,, and D* = DY,.

Block | Module | Subquotient of Es;-localization
ar | L9 | pa(L{9Y)
G2 | LY | op(ri9?)
a3 | L | D= (L{9Y) = Dl (L{FY)
LéGB) D(y—z)(LéG‘L)) ~ D(z—a)(L(GS))
G4 | LY | opLi9Y)
L | 9p(Ly™)
G5 L | op(r{c™)
£ | e
Ge | LY | op(Li9?)
(€0 QD(LLY)
1| o)
LéG6) Q,D(LgGG))
Gr | LD | pl—a)(pi90)
Lém) D(z—a)(Lé(th%))
LéG7) D(z—a)(LéGt%))
Lf;m) D(z—a)(Lth%))
s LgGB) D(Z‘a)(Lgcg)) ~ ,D(y_z)(L(Glo))
LéGB) D(Z—a)(LéGQ)) ~ D(y—z)(L(Glo))
L | D OE™) = DA (L)
co | LY | opri9)
L | op(rl?)
e | op(r)
Gc10 | L9 | op(r{F0)
LéGlO) QD(LéGlO))
LéGlO) QD(LELGN))
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Block | Module | Subquotient of Es;-localization
o1 Lan) Q,D(LEGH))
LéGll) QD(LéGll))
L(7G11) Q,D(LELGH))
LgGll) QD(L((;GH))
ng‘n) QD(LéGH))
Lz | op(iF)
c12 | L | opri“?)
Lécm) QD(LELG12))
L(7c;12) QD(L§G12))
LéGm) QD(LE)GH))
1 | o)
19| opte™)
G13 | L | pl-ay (@)
LéGlS) D(Z‘a)(Lfll))
L:())G13) ,D(Z_a)(Lz())Gll))
LiGlS) ,D(Z_a)(LéGH))
LéGlS) D(Z_a)(LéGn))
H | oo
14 LéGm) QD(L%GM))
LéGm) Q,D(LéGM))
L(7G14) Q,D(LELGM))
LéG14) QD(LéGlzl))
G5 | L9 | op(LC™)
LéG15) QD(LgGIS))
L(7G'15) QD(LELGLS))
LéG15) QD(LéG12))
L6 L§G16) D<Z—“)(L§G14)) - D(y_z)(Lgms))
LéGw) ,D(Z_a)(LéGM)) o ,D(y_z)(LéGlfn))
L§G16) D) (LG ~ Dlu—2) ([(E19))
Lfle) ,D(Z_a)(LéGM)) o ,D(y_z)(LéGlfn))
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Block | Module Subquotient of Fsi-localization

C1 LgCl) QD(zfm) (L§C2))

c2 | L op(Li?)

o3 LECS) Q,D(z—a)(LgCAL))

Cc4 L§C4) o~ Lé04) soc(QD(L§C4)) o~ soc(QD(LELC4)))
L§C4) QD(L§C4))/L§C4)
Lé04) QD(LELC4)) Lé04)

c5 | LY ~ LI | soc(@D(LI7Y)) ~ soc(@D(L)) /L)
L = LS | s0c(QD(LS™)) = soc(QD(LSG))
Lé05) QD(L§C5))/L§C5)
L9 ~ LS | s0c(@D(LL) /LD ~ soc(QD(L{T™))
L ~ 1§ | oD(L§™) /L ~ oD(Li5Y)/L{5”
{5 oD(LE) /(L7 & L)
Lis” OD(L{TY)

C6 LgC‘S) QD(zfa) (L§C5))
LéC‘S) ~ LL(lC6) QD(zfa) (Lz())C5)) ~ QD(zfa)(ngS))
Lz())C‘S) QD(zfa) (LiC5))
L QD (1467

cr | LD op(Li7)
LiC7) L$C7) soc(QD(LéCn)) ~ soc(QD(LéCn))

CcT CcT CcT Cc7 CcT CcT
L~ L0 | QDL /LY ~ oD(LT) /L
CcT CcT

Ly OD(LE™)

c8 LECS) Q,D(z—a)(LgCﬂ)
LgCS) ~ LéCS) QD(Z—a)(LéCV)) ~ QD(z—a)(LéCﬂ)
LL(LCS) QD(z—a) (LéC7))

c9 LECQ) oplz—a) (LgClo))
L ~ L9 | gpGe=a)(L{C10) ~ op=a) (1010
Lécg) QD(z—a) (L’(7€10))
L ~ LI | gpGe=a)(L{C10) ~ op=a) (1,010
L ~ L™ | @D (LE7Y) > @D (L)
L§ QD (L5 )
Lig” oD (LK)
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Block | Module Subquotient of Fs;-localization

C10 Lécw) ~ nglo) soc(QD(L Clo)/L Clo)) ~ soc(QD(L(Clo)))
Lglcw) oD(L 1010))/L:())010)
Lécw) ~ nglo) soc(QD(L (Clo)) o soc(QD(LéClO)))
Lécw) ~ Légw) soc(QD(L ClO))/L ClO)) - soc(QD(Lgflo )/L ClO))
nglo) oD(L 2010))/Lé010)
Liz " soc(QD(Ly™))
Lig " soc(QD(L;;"))
nglo) oD(L Clo))/(LéCIO) @nglo))
nglo) oD(L ClO))/L(CIO)
Lt = Lig™ | soc(QD(LiG")/Lig ™) = soc(QD(Lyg™))
ngm) QD(L CIO))/L(CIO)
Léflo) QD(L CIO))/L(CIO)
L35 soc(QD(Lis™))
Léglo) oD(L 010))/(L(010) EBLé(flo))
2 soc(QD(Lig™))
Léglo) oD(L ClO))/L(CIO)
Léflo) QD(L CIO))/L(CIO)
Léglo) QD(L CIO))/L(CIO)

C11 Lécn) o~ Lgcn) soc(QD(L 1C11))) o SOC(Q’D(LELCU)))
Lécu) Q,D(L§CH))/LéC“)
Lécn) ~ ngn) SOC(Q'D(L:())CH))) ~ SOC(QD(ngu)))
Lécu) QD(LELCH))/L(?CH)
ngu) ~ ngn) SOC(QD( (CH))) ~ SOC(QD(L(CU)))
Lgfu) ~ ngu) oD(L CH))/L(C by ~ OD(L Cll))/L(C 1
LS = 1§ | DLi)/LiT = eD(wig ™) /LS
Légn) oD(L c11))

c12 | Li“? opG—a)(L{¢1)
Lécu) ELELCM) QD(lz2 a)(L(Cll)) QD(Z’“)(ngn))
L QD (L) = @D (L)
Lécu) op—a) (LECH))
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Block | Module Subquotient of Fs;-localization

13 L:())CL“)) QD(L§013))
L ~ LI | s0c(QD(LYY)) = soc(QD(LE™))

C13 C13 C13) (C13 C13) (C13

L = L | @D(LET) /LT = oD(LET) /i
L(Cl3) QD(L(CB )

C14 L5014> QD= (L{Y)
LéCl4) :Lz())clél) QD(Z a)(Lécll”) QD(Z_G)(LE(*)013))
LfM) QD(z—a) (Lécw))

Corollary 8.9. FEvery simple Gelfand—Tsetlin module can be obtained via a com-
position of a twisted localization functor and taking a subquotient from a simple
FEo1-injective Gelfand—Tsetlin module.

Acknowledgments

D. G. gratefully acknowledges the hospitality and excellent working conditions at
the Sao Paulo University where part of this work was completed. V. F. is supported
in part by CNPq (304467/2017-0) and FAPESP (2018/23690-6). D. G. is supported
in part by Simons Collaboration Grant 358245 and by FAPESP (2014/09310-5).
L.E.R. is supported by FAPESP (2018/17955-7).

References

[1] G. E. Baird and L. C. Biedenharn, On the representations of the semisimple Lie
groups. II, J. Math. Phys. 4 (1963) 1449-1466.

[2] L. C. Biedenharn, On the representations of the semisimple Lie groups. I. The explicit
construction of invariants for the unimodular unitary group in N dimensions, J. Math.
Phys. 4 (1963) 436.

[3] D. Britten, V. Futorny and F. Lemire, Simple As-modules with a finite-dimensional
weight space, Comm. Algebra 23(2) (1995) 467-510.

[4] D. Britten and F. Lemire, A classification of simple Lie modules having a
1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987) 111-121.

[5] C. De Concini and D. Kazhdan, Special bases for Sy and GL(n), Israel J. Math.
40 (1981) 275-290.

[6] V. Deodhar, On a construction of representations and a problem of Enright, Invent.
Math. 57 (1980) 101-118.

[7] I. Dimitrov, O. Mathieu and I. Penkov, On the structure of weight modules, Trans.
Amer. Math. Soc. 352 (2000) 2857-2869.

[8] R. G. Donnelly, Extremal properties of bases for representations of semisimple Lie
algebras, J. Algebraic Combin. 17 (2003) 255-282.

[9] Y. Drozd, V. Futorny and S. Ovsienko, Irreducible weighted s[(3)-modules, Funk.
Anal. Ego Prilozh. 23 (1989) 57-58.

[10] Y. Drozd, V. Futorny and S. Ovsienko, Gelfand—Tsetlin modules over Lie algebra
s((3), Contemp. Math. 131 (1992) 23-29.

2130001-106



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

[11]
[12]
[13]
[14]
[15]
[16]
[17]
18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]
[31]

32]

Classification of simple Gelfand-Tsetlin modules of sl(3)

Y. Drozd, V. Futorny and S. Ovsienko, Harish-Chandra subalgebras and Gelfand—
Zeitlin modules, Math. Phys. Sci. 424 (1994) 72-89.

N. Early, V. Mazorchuk and E. Vyshniakova, Canonical Gelfand-Zeitlin modules over
orthogonal Gelfand—Zeitlin algebras, Int. Math. Res. Not. 2020 (2020) 6947—-6966.
S. Fernando, Lie algebra modules with finite dimensional weight spaces I, Trans.
Amer. Math. Soc. 322 (1990) 757-781.

T. Fomenko and A. Mischenko, Euler equation on finite-dimensional Lie groups, Izv.
Akad. Nauk SSSR, Ser. Mat. 42 (1978) 396-415.

V. Futorny, Weight representations of semi-simple finite-dimensional Lie algebras,
Ph. D. theses, Kiev University (1986).

V. Futorny, A generalization of Verma modules, and irreducible representations of
the Lie algebra sl(3), Ukrainskii Mat. Zh. 38 (1986) 492-497.

V. Futorny, Irreducible si(3)-modules with infinite-dimensional weight subspaces,
Ukrainskit Mat. Zh. 41 (1989) 856—859.

V. Futorny, Weight si(3)-modules generated by semiprimitive elements, Ukrainskii
Mat. Zh. 43 (1991) 281-285.

V. Futorny, D. Grantcharov and L. E. Ramirez, On the classification of irreducible
Gelfand—Tsetlin modules of s[(3), in Recent Advances in Representation Theory,
Quantum Groups, Algebraic Geometry, and Related Topics, Vol. 623 (American
Mathematical Society, 2014), pp. 63-79.

V. Futorny, D. Grantcharov and L. E. Ramirez, Irreducible generic Gelfand—Tsetlin
modules of gl(n), SIGMA 11 (2015) 18, 13 pp.

V. Futorny, D. Grantcharov and L. E. Ramirez, Singular Gelfand—Tsetlin modules
of gl(n), Adv. Math. 290 (2016) 453-482.

V. Futorny, D. Grantcharov and L. E. Ramirez, New singular Gelfand—Tsetlin gl(n)-
modules of index 2, Comm. Math. Phys. 355(3) (2017) 1209-1241.

V. Futorny, D. Grantcharov and L. E. Ramirez, Drinfeld category and the clas-
sification of singular Gelfand—Tsetlin gl,-modules, Int. Math. Res. Not. 5 (2019)
1463-1478.

V. Futorny, D. Grantcharov, L. E. Ramirez and P. Zadunaisky, Gelfand—Tsetlin the-
ory for rational Galois algebras, Israel J. Math. 239 (2020) 99-128.

V. Futorny, D. Grantcharov, L. E. Ramirez and P. Zadunaisky, Bounds of Gelfand—
Tsetlin multiplicities and tableaux realizations of Verma modules, J. Algebra
556 (2020) 412-436.

V. Futorny and L. Krizka, Geometric construction of Gelfand-Tsetlin modules over
simple Lie algebras, J. Pure Appl. Algebra 223(11) (2019) 4901-4924.

V. Futorny and S. Ovsienko, Galois orders in skew monoid rings, J. Algebra
324 (2010) 598-630.

V. Futorny and S. Ovsienko, Fibers of characters in Gelfand-Tsetlin categories,
Trans. Amer. Math. Soc. 366 (2014) 4173-4208.

V. Futorny, S. Ovsienko and A. Tsylke, On the support of irreducible weight modules
for reductive finite-dimensional Lie algebras, University of Bielefeld, Bielefeld (1995)
(preprint).

V. Futorny, L. E. Ramirez and J. Zhang, Combinatorial construction of Gelfand—
Tsetlin modules for gl,,, Adv. Math. 343 (2019) 681-711.

I. Gelfand and M. Tsetlin, Finite-dimensional representations of the group of uni-
modular matrices, Dokl. Akad. Nauk SSSR (N.S.) 71 (1950) 825-828.

I. Gelfand and M. Tsetlin, Finite-dimensional representations of groups of orthogonal
matrices, Dokl. Akad. Nauk SSSR 71 (1950) 1017-1020 (in Russian) [I. M. Gelfand,
Collected Papers, Vol. 11 (Springer-Verlag, Berlin, 1988), pp. 657-661].

2130001-107



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

V. Futorny, D. Grantcharov & L. E. Ramirez

33]
(34]
[35]

(36]

C. Gomes and L. E. Ramirez, Families of irreducible singular Gelfand—Tsetlin mod-
ules of gl(n), J. Pure Appl. Algebra 222 (2018) 3521-3537.

M. D. Gould, The characteristic identities and reduced matrix elements of the unitary
and orthogonal groups, J. Aust. Math. Soc. B 20 (1978) 401-433.

M. D. Gould, On the matrix elements of the U(n) generators, J. Math. Phys.
22 (1981) 15-22.

M. Graev, Infinite-dimensional representations of the Lie algebra gl(n, C) related to
complex analogs of the Gelfand—Tsetlin patterns and general hypergeometric func-
tions on the Lie group GL(n,C), Acta Appl. Math. 81 (2004) 93-120.

M. Graev, A continuous analogue of Gelfand—Tsetlin schemes and a realization of
the principal series of irreducible unitary representations of the group GL(n,C) in
the space of functions on the manifold of these schemes, Dokl. Akad. Nauk 412(2)
(2007) 154-158.

H. S. Green, Characteristic identities for generators of GL(n), O(n) and Sp(n),
J. Math. Phys. 12 (1971) 2106-2113.

J. Hartwig, Principal Galois orders and Gelfand—Zeitlin modules, Adv. Math.
359 (2020) 106806.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate
Texts in Mathematics, Vol. 9 (Springer, New York, 1972).

A. Joseph, Some ring theoretic techniques and open problems in enveloping algebras,
in Non-Commutative Rings, eds. S. Montgomery and L. Small (Birkhauser, 1992),
pp. 27-67.

J. Kamnitzer, P. Tingley, B. Webster, A. Weekes and O. Yacobi, On category O for
affine Grassmannian slices and categorified tensor products, Proc. Lond. Math. Soc.
119 (2019) 1179-1233.

M. Kashiwara, Crystalizing the g-analogue of universal enveloping algebras, Comm.
Math. Phys. 133 (1990) 249-260.

B. Kostant and N. Wallach, Gelfand—Zeitlin theory from the perspective of classical
mechanics I, in Studies in Lie Theory Dedicated to A. Joseph on his Siztieth Birthday,
Progress in Mathematics, Vol. 243 (Birkhduser, Boston, MA, 2006), pp. 319-364.
B. Kostant and N. Wallach, Gelfand—Zeitlin theory from the perspective of classical
mechanics I, in The Unity of Mathematics in Honor of the Ninetieth Birthday of
I. M. Gelfand, Progress in Mathematics, Vol. 244 (Birkh&user, Boston, MA, 2006),
pp. 387-420.

P. Littelmann, An algorithm to compute bases and representation matrices for
SLy,41-representations, J. Pure Appl. Algebra 117/118 (1997) 447-468.

P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998) 145-179.
G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer.
Math. Soc. 3 (1990) 447-498.

O. Mathieu, Bases des représentations des groupes simples complexes (d’apres Kashi-
wara, Lusztig, Ringel et al.), Séminaire Bourbaki, Vol. 1990/91, Astérisque No. 201—
203, Exposé No. 743 (1992), pp. 421-442.

O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier
50 (2000) 537-592.

V. Mazorchuk, Tableaux realization of generalized Verma modules, Can. J. Math.
50 (1998) 816-828.

A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Mono-
graphs, Vol. 143 (American Mathematical Society, Providence, RI, 2007).

J. Nagel and M. Moshinsky, Operators that lower or raise the irreducible vector spaces
of U,,—1 contained in an irreducible vector space of Un, J. Math. Phys. 6 (1965) 682—
694.

2130001-108



Bull. Math. Sci. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 08/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

[54]

[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]

[65]

Classification of simple Gelfand-Tsetlin modules of sl(3)

S. Ovsienko, Finiteness statements for Gelfand—Zetlin modules, in Third Int. Al-
gebraic Conf. Ukraine (Ukrainian), Natsional’'na Akademiya Nauk Ukraini, Institut
Matematiki, Kiev, 2002, pp. 323-338.

H. Pei-Yu, Orthonormal bases and infinitesimal operators of the irreducible repre-
sentations of group Up, Sci. Sin. 15 (1966) 763-772.

L. E. Ramirez, Combinatorics of irreducible Gelfand—Tsetlin sl(3)-modules, Algebra
Discrete Math. 14(2) (2012) 276-296.

L. E. Ramirez, Classificagdo dos sl(3)-mdédulos de Gelfand—T'setlin irredutiveis, Ph.D.
thesis, Universidade de Sao Paulo (2013).

L. E. Ramirez and P. Zadunaisky, Gelfand—Tsetlin modules over gl(n) with arbitrary
characters, J. Algebra 502 (2018) 328-346.

E. Vinberg, On certain commutative subalgebras of a universal enveloping algebra,
Math. USSR Izv. 36 (1991) 1-22.

E. Vishnyakova, Geometric approach to p-singular Gelfand-Tsetlin gl,,-modules,
preprint (2017), arXiv:1705.05793.

E. Vishnyakova, A geometric approach to 1l-singular Gelfand-Tsetlin gl,,-modules,
Differential Geom. Appl. 56 (2018) 155-160.

B. Webster, Gelfand—Tsetlin modules in the Coulomb context, preprint (2019),
arXiv:1904.05415.

P. Zadunaisky, A new way to construct 1-singular Gelfand—Tsetlin modules, Algebra
Discrete Math. 23(1) (2017) 180-193.

D. Zhelobenko, The classical groups. Spectral analysis of their finite-dimensional
representations, Russian Math. Surveys 17 (1962) 1-94.

D. Zhelobenko, Compact Lie Groups and Their Representations, Translations of
Mathematical Monographs, Vol. 40 (American Mathematical Society, 1974).

2130001-109



	Introduction
	Preliminaries
	Index of notations

	Gelfand–Tsetlin Modules of gl(n) and sl(n)
	Gelfand–Tsetlin modules of gl(n)
	Gelfand–Tsetlin modules of sl(n)

	Families of Gelfand–Tsetlin Modules for gl(n)
	Gelfand–Tsetlin tableaux
	Gelfand–Tsetlin formulas for finite-dimensional modules
	Generic modules
	Gelfand–Tsetlin formulas in terms of permutations

	Singular Gelfand–Tsetlin modules
	Construction of 1-singular Gelfand–Tsetlin modules


	Gelfand–Tsetlin Modules of sl(3) and Modules of C(h)
	Simple Extensions of Singular Gelfand–Tsetlin Characters
	Realizations of all Simple Gelfand–Tsetlin Modules for sl(3)
	Structure of generic sl(3)-modules V(T(v))
	Realizations of all simple generic Gelfand–Tsetlin sl(3)-modules
	Structure of singular sl(3)-modules V(T("7016 v))
	Singular Gelfand–Tsetlin formulas
	Explicit formulas and computations
	Submodules generated by singular tableaux

	The singular block containing L(-)
	Realizations of all simple singular Gelfand–Tsetlin sl(3)-modules

	Localization on Gelfand–Tsetlin Modules
	Localization and twisted localization functors
	Localization functors in the case of sl(3)
	Injectivity and surjectivity of the operator E21
	Twisted localization with respect to E21

	Simple Gelfand–Tsetlin modules and localization functors



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


