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1. Introduction

One of the most prominent discoveries in representation theory in the 20th century

was made by Weyl proving that every finite-dimensional module over a complex

semisimple Lie algebra is completely reducible. Further, the irreducible finite-

dimensional modules are parameterized by their highest weights and their char-

acters and dimensions can be explicitly written in terms of the celebrated Weyl

formulas, see, for example, [40], and the references therein for a detailed exposition.

Unfortunately, Weyl’s results do not provide explicit formulas for the action

of the generators of the Lie algebras. Such formulas were first discovered in the

fundamental works of Gelfand and Tsetlin in 1950. At that time they published

two short papers with explicit constructions of tableaux basis of the modules and

formulas for the action of the generators of the algebra on the tableaux. These

formulas are known today as Gelfand–Tsetlin formulas. The formulas are for simple

finite-dimensional modules and Lie algebras of type A [31], and Lie algebras of types

B and D [32]. It is interesting to note that these works did not include proofs or

references to earlier works. In an effort to understand better the results of Gelfand

and Tsetlin, mathematicians and physicists developed various tools that lead to

formal proofs of Gelfand–Tsetlin formulas. Some of the first works containing such

proofs are [1, 2]. In these works, Baird and Biedenharn studied Racah–Wigner

calculus on the unitary groups, and discovered a natural relation with the Gelfand–

Tsetlin formulas. Independently, in 1962, Zhelobenko introduced lowering operators

and suggested that they can be used to prove the Gelfand–Tsetlin formulas for gl(n),

see [64]. Inspired by the work of Zhelobenko, Nagel and Moshinsky [53], and Pei-Yu

[55], obtained yet other proofs of the Gelfand–Tsetlin formulas for gl(n).

In the 1970s a series of papers of Gould, Green, and others used the technique of

tensor-type identities to obtain further relations with the Gelfand–Tsetlin theory.

More precisely, in [38], certain sets of group invariants were used to derive a hierar-

chy of tensor identities, known as characteristic identities, satisfied by the generators

of the general, orthogonal, and symplectic groups. With the aid of characteristic

identities, Wigner coefficients formulas and yet another proof for the action of the

generators of the algebras of types A, B, and D on finite-dimensional modules were

obtained in [34, 35].

The Gelfand–Tsetlin technique providing explicit bases and action of the gen-

erators is best suited for the case of gl(n). Although in this paper we work with

this case only, one should mention that many interesting and deep results are es-

tablished in the cases of orthogonal and symplectic Lie algebras. One especially

powerful technique used to studying these cases is the theory of Yangians. We will

not discuss this theory here, and the interested reader is referred to [52] and the

references therein.

It is important to note that the Gelfand–Tsetlin theory has strong combinatorics

flavor. The representation of the classical groups in tensor product spaces was used

to construct bases of the representations of the classical Lie algebras parameterized
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by standard Young tableaux. The first proof of the formulas presented in [1] relies

on calculus of Young patterns. Gelfand–Tsetlin bases were used as prototypes to

study combinatorial properties of the supporting graphs of representations of Lie

algebras of types B, C, and G2, see [8].

Undoubtedly, Gelfand–Tsetlin bases are not the only important bases of rep-

resentations. Finding explicit bases of representations of semisimple Lie algebras

has been a central topic of research in the last several decades. Deep results were

discovered by De Concini and Kazhdan [5], Kashiwara [43], Littelmann [46, 47],

Lusztig [48], among others. We refer the reader to [49] for an overview of the dif-

ferent types of bases. However, explicit formulas for the action of the generators

on the corresponding basis elements are known only for bases of Gelfand–Tsetlin

type.

The Gelfand–Tsetlin theory for infinite-dimensional modules is a rapidly devel-

oping subject. Important categories that include infinite-dimensional modules are

highest-weight modules, weight modules, Harish-Chandra modules, among others.

Unfortunately, even the classification of the simple objects in some of these cate-

gories is still an open problem. One important category involved in this paper, and

the Gelfand–Tsetlin theory as a whole, is the category of weight modules. In what

follows, we provide some history on the study of this category.

Let g be a finite-dimensional simple Lie algebra over the complex numbers,

and let h be a Cartan subalgebra of g. A g-module M is called a weight module

if M =
⊕

λ∈h∗ Mλ, where Mλ = {v ∈ M |hv = λ(h)v, ∀h ∈ h}. The space Mλ

is called a weight space, the set {λ ∈ h∗ |Mλ �= 0} is called the weight support of

M , and the dimension of Mλ is called the weight multiplicity of λ. If h acts locally

finitely, but not necessarily diagonally, on M , then we say that M is a generalized

weight module. It is an easy exercise to show that a simple generalized weight module

is a weight module.

A weight module M is torsion free provided that all root vectors of g act in-

jectively on M . If M is a torsion-free module then all weight multiplicities of M

(finite or infinite) are equal. This invariant of M is called the weight degree of M .

Furthermore, the weight support of a torsion-free module M coincides with a full

coset λ+Q of h∗/Q, where Q is the root lattice of g and λ is in the weight support

of M . On the other hand, a simple weight module may have “full support” without

being torsion free, in which case the weight multiplicities are necessarily infinite.

The first examples of such modules were given in [16]. Simple modules with full

support are called dense.

A breakthrough in the theory of weight modules with finite weight multiplicities

was made by Fernando [13], in 1990 who reduced the classification of all such simple

modules to determining the simple torsion-free modules. He also showed that the

only simple Lie algebras admitting torsion-free modules are those of type A or C.

The next major breakthrough was made in 2000 by Mathieu [50], who classified and

provided a realization of all simple torsion-free modules of finite degree. Previously,
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the case of degree 1 was worked out in [4]. Important properties of the annihilators

of the torsion-free modules were established in [41].

The study of weight modules with infinite multiplicities is still at its initial stage.

A result similar to the one of Fernando reduces the classification of all such simple

modules to the classification of all simple dense modules of simple Lie algebras.

For the classical simple Lie algebras this reduction was obtained in [15] and for all

exceptional simple Lie algebras except E8 in [29]. Finally, in [7], the reduction in all

cases, including all important classes of finite-dimensional Lie superalgebras, was

completed.

One natural category of weight modules is the category of Gelfand–Tsetlin mod-

ules. More precisely, this is the full subcategory of the category of generalized weight

modules consisting of modules that admit a generalized eigenbasis for the Gelfand–

Tsetlin subalgebra, a maximal commutative subalgebra of the universal enveloping

algebra U(g) of g. Gelfand–Tsetlin modules were introduced in [9–11] as an attempt

to generalize the celebrated tableaux construction of Gelfand–Tsetlin.

Gelfand–Tsetlin subalgebras have applications that extend beyond the study

of Gelfand–Tsetlin modules. For example, these subalgebras were related to the

solutions of the Euler equation in [14], and to the subalgebras of U(g) of maximal

Gelfand–Kirillov dimension in [59]. Gelfand–Tsetlin subalgebras were studied in

[44, 45] in connection with classical mechanics, and also in [36, 37] in connection

with general hypergeometric functions on the Lie group GL(n,C).

A general theory of Gelfand–Tsetlin modules for a class of Galois algebras (for

a definition, see [27]) was developed in [28]. The results for these Galois algebras

can be applied to the universal enveloping algebras of sl(n) and gl(n), and provide

structural properties of the corresponding simple Gelfand–Tsetlin modules. In the

generic case the characters of the Gelfand–Tsetlin subalgebra parametrize such

simple modules. However, in the non-generic case, i.e. in the singular case and

n > 2, we may have more than one isomorphism class of simple Gelfand–Tsetlin

modules with a fixed character of the Gelfand–Tsetlin subalgebra. The theory of

singular Gelfand–Tsetlin modules was initiated in [21] where 1-singular modules

were constructed and studied in detail. Immediately after the construction of the

1-singular modules, there was an abundance of successful attempts to construct

simple Gelfand–Tsetlin modules with a given singular character. For more details,

we refer the reader to the following papers [12, 21–26, 30, 39, 58, 60, 61, 63].

In particular, a classification of the simple Gelfand–Tsetlin modules was recently

announced in [42, 62].

A classification of the simple 1-singular Gelfand–Tsetlin modules was obtained

in [23] and leads to the classification of all simple Gelfand–Tsetlin modules of the

Lie algebra sl(3) (and of gl(3)). The latter classification is the main purpose of this

paper and it is provided via very explicit tableaux construction.

Our classification result relies on various old results on Gelfand–Tsetlin sl(3)-

modules obtained in [3, 15–18], combined with newer results from [19, 57].

We remark that some technical statements in the paper on the properties of
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Gelfand–Tsetlin modules can be simplified using the theory recently developed, for

example, in [23, 25, 58]. However, for the sake of completeness and for reader’s con-

venience, we opted to keep the original paper containing detailed and explicit proofs.

The structure of the paper is as follows. In Sec. 2, we set up the notation and

state basic definitions and results needed in the rest of the paper. In Sec. 3, we prove

some general results about the Gelfand–Tsetlin modules of gl(n). Section 4 is de-

voted to the description of certain “easier to study” classes of Gelfand–Tsetlin mod-

ules of gl(n), namely finite-dimensional modules, generic modules, and 1-singular

modules. In Sec. 5, we collect some important definitions and preliminary results

that relate Gelfand–Tsetlin modules to their Gelfand–Tsetlin character. In Sec. 6,

we prove the main results about existence and uniqueness of simple Gelfand–Tsetlin

modules of sl(3). The explicit description of all simple Gelfand–Tsetlin modules for

sl(3) is included in Sec. 7. Finally, in Sec. 8, we study localization functors on the

category of Gelfand–Tsetlin sl(3)-modules and prove that any simple module in

this category can be obtain from an E21-injective module using a E21-localization

functors.

2. Preliminaries

The ground field will be C. In the first part of the paper, we fix an integer n ≥ 2.

For a ∈ Z, we write Z≥a for the set of all integers m such that m ≥ a. Similarly,

we define Z<a, etc. For a Lie algebra a by U(a) we denote the universal enveloping

algebra of a. For a commutative ring R, SpecmR will stand for the set of maximal

ideals of R.

By gl(n) we denote the general linear Lie algebra consisting of all n×n complex

matrices, and by {Ei,j | 1 ≤ i, j ≤ n} — the standard basis of gl(n) of elementary

matrices. We fix the standard Cartan subalgebra of gl(n), the standard triangular

decomposition and the corresponding basis of simple roots of gl(n). The weights of

gl(n) will be written as n-tuples (λ1, . . . , λn) through the identification h∗ → C
n.

The Lie subalgebra g = sl(n) of gl(n) is generated by {Ei,i+1, Ei+1,i | 1 ≤ i ≤
n− 1}. The standard Cartan subalgebra of g will be denoted by h, i.e.

h = Span{hi = Eii − Ei+1,i+1 | i = 1, . . . , n− 1}.

Let εi denote the projection of a n× n matrix onto its (i, i)th entry. Then a basis

of simple roots of the root system Δ of g is given by π = {αi = εi− εi+1 | i = 1, . . . ,

n− 1} and the corresponding positive roots are Δ+ = {εi − εj = αi + · · ·+ αj−1 |
i < j}.

2.1. Index of notations

• Section 3.1. cmk; i(cmk); Γ; γmk(l); M(χ); SuppGT(M); Mλ; Supp(M); Γ(π);

GT π(n).

• Section 3.2. GT (n).

• Section 4.1. T (v); Tn(R); χv.
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• Section 4.2. δij ; Qn; B(T (v)); GT T (v)(n).

• Section 4.3. V (T (v)); S̃m; Φ�m; εrs; e
(+)
t (w); e

(−)
t+1(w); er,s(w); Ω(T (w));

Ω+(T (w)); N (T (w)); I(T (w)).
• Section 4.4. F ; Tn(C)gen; Hk

ij ; Φ�m(k, t); H; H; Fij , V (T (v̄)); B(T (v̄)); Vgen; S;
Dv̄; Tab(w).

• Section 5. gλ(x, y); C(h).

• Section 7.3. Λ+(Tab(w)); A(Tab(w)); N (Tab(w)); C(w); R(w); N(r,s,p)(Tab(w));

N (1)(Tab(w)); N (2)(Tab(w)); Â(Tab(w)); N̂ (Tab(w)); Tab(B).
• Section 7.5. M(B); L(B).
• Section 8. Dij ; Dx

ij ; QDij .

• Section 8.2. Θx(u); Φ
x
α.

• Section 8.3. L
(Gj)
i ; L

(Cj)
i .

3. Gelfand–Tsetlin Modules of gl(n) and sl(n)

3.1. Gelfand–Tsetlin modules of gl(n)

Let for m ≤ n, glm be the Lie subalgebra of gl(n) spanned by {Eij | i, j = 1, . . . ,m}.
We have the following chain:

gl1 ⊂ gl2 ⊂ · · · ⊂ gln .

It induces the chain U1 ⊂ U2 ⊂ · · · ⊂ Un for the universal enveloping algebras

Um = U(glm), 1 ≤ m ≤ n. Set U := U(gln). Let Zm be the center of Um. Then Zm

is the polynomial algebra in the m variables {cmk | k = 1, . . . ,m},

cmk =
∑

(i1,...,ik)∈{1,...,m}k

Ei1i2Ei2i3 . . . Eiki1 . (1)

The (standard) Gelfand–Tsetlin subalgebra Γ in U [10] is generated by
⋃n

i=1 Zi.

The algebra Γ is a polynomial algebra in n(n+1)
2 variables {cij | 1 ≤ j ≤ i ≤ n}.

For i = 1, . . . , n denote by Si the ith symmetric group and set G = Sn × · · · × S1.

Let Λ be the polynomial algebra in variables {lij | 1 ≤ j ≤ i ≤ n}.
Let ı : Γ→ Λ be the embedding given by ı(cmk) = γmk(l) where

γmk(l) =

m∑
i=1

(lmi +m− 1)k
m∏
j �=i

(
1− 1

lmi − lmj

)
. (2)

The image of ı coincides with the subalgebra of G-invariant polynomials in Λ which

we identify with Γ, see [65] for more details.

Remark 3.1. Note that Γ contains the standard Cartan subalgebra of gl(n)

spanned by Eii, i = 1, . . . , n. Indeed, cm1 =
∑m

i=1 Eii for each 1 ≤ m ≤ n. There-

fore, Eii belong to Γ for each 1 ≤ i ≤ n.

Remark 3.2. We should note that the polynomial γmk(l) is symmetric of degree

k in variables lm1, . . . , lmm, and {γm1(l), . . . , γmm(l)} generate the algebra of Sm-

invariant polynomials in the variables lm1, . . . lmm (see [65]).
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Example 3.3. The polynomials γmk(l) for m ≤ 4 are listed as follows:

γ11(l) = l11,

γ21(l) = (l21 + l22) + 1,

γ22(l) = (l221 + l222) + (l21 + l22),

γ31(l) = (l31 + l32 + l33) + 3,

γ32(l) = (l231 + l232 + l233) + 2(l31 + l32 + l33) + 1,

γ33(l) = (l331 + l332 + l333) + 4(l231 + l232 + l233)− (l31l32 + l31l33 + l32l33)− 6

+ (l31 + l32 + l33),

γ41(l) = (l41 + l42 + l43 + l44) + 6,

γ42(l) = (l241 + l242 + l243 + l244) + 3(l41 + l42 + l43 + l44) + 4,

γ43(l) = (l341 + l342 + l343 + l344)− (l41l42 + l41l43 + l41l44 + l42l43 + l42l44 + l43l44)

+ 6(l241 + l242 + l243 + l244) + 3(l41 + l42 + l43 + l44)− 19,

γ44(l) = (l441 + l442 + l443 + l444) + 9(l341 + l342 + l343 + l344) + 21(l241 + l242 + l243 + l244)

− (l241l42 + l241l43 + l241l44 + l41l
2
42 + l41l

2
43 + l41l

2
44 + l242l43 + l242l44 + l42l

2
43)

− (l42l
2
44 + l243l44 + l43l

2
44)− 10(l41l42 + l41l44 + l42l43 + l43l44

+ l41l43 + l42l44)− 19(l41 + l42 + l43 + l44)− 120.

Definition 3.4. A finitely generated U -module M is called a Gelfand–Tsetlin mod-

ule (relative to Γ) provided that the restriction M |Γ is a direct sum of Γ-modules:

M |Γ =
⊕

m∈SpecmΓ

M(m), (3)

where

M(m) = {v ∈ M |mkv = 0 for some k ≥ 0}.

Definition 3.5. An algebra homomorphism χ : Γ → C will be called Gelfand–

Tsetlin character.

Remark 3.6. For each m ∈ SpecmΓ we have associated a character χm : Γ →
Γ/m ∼ C. In the same way, for each nonzero character χ : Γ → C, Ker(χ) is a

maximal ideal of Γ. So, we have a natural identification between characters of Γ

and elements of SpecmΓ. So, using Gelfand–Tsetlin characters, a Gelfand–Tsetlin

module (with respect to Γ) M can be decomposed as M =
⊕

χ∈Γ∗ M(χ), where

M(χ) = {v ∈ M | for each γ ∈ Γ, ∃ k ∈ Z≥0 such that (γ − χ(γ))kv = 0}.
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Definition 3.7. Given a Gelfand–Tsetlin module M , the Gelfand–Tsetlin support

of M is the set

SuppGT(M) := {χ ∈ Γ∗ |M(χ) �= 0}.

Definition 3.8. A finitely generated U -module M is called a weight module

(relative to h) provided that the restriction M |h is a direct sum of h-modules:

M =
⊕
λ∈h∗

Mλ, (4)

where

Mλ := {v ∈ M |hv = λ(h)v for all h ∈ h}.
The weight support (or simply, the support) of M is

Supp(M) := {λ ∈ h∗ |Mλ �= 0}.

Remark 3.9. Any simple Gelfand–Tsetlin moduleM over gl(n) is a weight module

with respect to the standard Cartan subalgebra h spanned by Eii, i = 1, . . . , n,

see Remark 3.1. Moreover, Γ is diagonalizable on any simple finite-dimensional

module. On the other hand, a simple weight module need not to be Gelfand–Tsetlin,

however, simple weight modules with finite h-weight multiplicities are Gelfand–

Tsetlin. The latter is true since in this case Γ has a common eigenvector in every

nonzero weight space. In particular, every highest-weight module or, more general,

every module from the category O is Gelfand–Tsetlin.

The definition of a Gelfand–Tsetlin module depends on the choice of the

Gelfand–Tsetlin subalgebra Γ. One can easily define a family of Gelfand–Tsetlin

subalgebras of gl(n) as follows. Let π = {β1, . . . , βn−1} be a base of the root system

of gl(n), where βk = εik − εik+1
, k = 1, . . . , n− 1. Let glk be the subalgebra of gl(n)

spanned by Eij , i, j ∈ {i1, . . . , ik}. In particular, glk � gl(k) and β1, . . . , βk are the

simple roots of glk. Then we have a chain of embeddings

gl1 ⊂ · · · ⊂ gln .

Let Zi be the center of U(gli) and Γ(π) be the subalgebra generated by Zi, i =

1, . . . , n. We will call Γ(π) a Gelfand–Tsetlin subalgebra associated with π.

Each subalgebra Γ(π) gives rise to a category of Gelfand–Tsetlin modules which

we denote by GT π(n). Let π and π′ be different bases of the root system. Then π

and π′ are conjugate under the action of the Weyl group of gl(n). Hence, Γ(π) and

Γ(π′) are also conjugate which leads to an equivalence of the categories GT π(n)

and GT π′(n).

Example 3.10. Two bases π and π′ may define the same Gelfand–Tsetlin subal-

gebra. Indeed, take for example the bases π = {ε1 − ε2, ε2 − ε3} and π′ = {ε2 − ε1,

ε1 − ε3} of root system of gl(3). Then Γ(π) = Γ(π′). One easily checks that gl(3)

has three distinct Gelfand–Tsetlin subalgebras and they are parameterized by the

gl2-part of the chain.
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3.2. Gelfand–Tsetlin modules of sl(n)

Let Γ be a Gelfand–Tsetlin subalgebra of gl(n). Consider the natural projection

τ : gl(n) → sl(n), τ(A) = A − tr(A)
n In, which extends to an epimorphism τ̄ :

U(gl(n)) → U(sl(n)). Then the image τ̄ (Γ) of Γ is called the (standard) Gelfand–

Tsetlin subalgebra of sl(n). It is a maximal commutative subalgebra of U(sl(n))

isomorphic to a polynomial ring in n(n+1)
2 − 1 generators. With a small abuse of

notation, by GT (n), we denote the category of all Gelfand–Tsetlin sl(n)-modules

relative to Γ.

4. Families of Gelfand–Tsetlin Modules for gl(n)

4.1. Gelfand–Tsetlin tableaux

The simple finite-dimensional modules are the first natural examples of Gelfand–

Tsetlin modules. In this case, an eigenbasis for the action of the generators of Γ

(1) is given by the so-called Gelfand–Tsetlin tableaux, following the original work

of Gelfand and Tsetlin. In particular, for every simple finite-dimensional module

M , dim(M(χ)) = 1 whenever χ ∈ SuppGT(M). In order to describe the Gelfand–

Tsetlin tableaux, we first fix some notation.

Definition 4.1. Fix a vector v = (vij)
n
j≤i ∈ C

n(n+1)
2 .

(i) By T (v) we will denote the following array with complex entries {vij}.

vn1 vn2 · · · vn,n−1 vnn

vn−1,1 · · · vn−1,n−1

· · · · · · · · ·

v21 v22

v11

Such an array will be called a Gelfand–Tsetlin tableau of height n.

(ii) Throughout the paper, for any ring R, Tn(R) will stand for the space of the

Gelfand–Tsetlin tableaux of height n with entries in R. We will identify Tn(C)

with the set C
n(n+1)

2 in the following way: to each

v = (vn1, . . . , vnn|vn−1,1, . . . , vn−1,n−1| · · · |v21, v22|v11) ∈ C
n(n+1)

2

we associate a tableau T (v) ∈ Tn(C) as above.

Remark 4.2. There is a natural correspondence between the set Γ∗ of characters

χ : Γ → C and the set of Gelfand–Tsetlin tableaux of height n. In fact, to obtain

a Gelfand–Tsetlin tableau T (l) from a character χ we find a solution (lij) of the
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system of equations

{γmk(l) = χ(cmk)}1≤k≤m≤n.

Conversely, for every Gelfand–Tsetlin tableau T (v) with entries {vij | 1 ≤ j ≤ i ≤
n}, we associate χv ∈ Γ∗ by defining χv(cmk) = γmk(v). It is clear that each tableau

defines such a character uniquely. On the other hand, a tableau is defined by a

character up to a permutation of the rows, i.e. an element of Sn × Sn−1 × · · · × S1.

4.2. Gelfand–Tsetlin formulas for finite-dimensional modules

In this section, we recall the classical result of I. Gelfand and M. Tsetlin.

Definition 4.3. A Gelfand–Tsetlin tableau of height n is called standard if vki −
vk−1,i ∈ Z≥0 and vk−1,i − vk,i+1 ∈ Z>0 for all 1 ≤ i ≤ k ≤ n− 1.

Note that, for the sake of convenience, the second condition in the definition

above is slightly different from the original condition in [31]. Here is the classical

result of Gelfand and Tsetlin [31].

Theorem 4.4. Let L(λ) be the simple finite-dimensional module over gl(n) of high-

est weight λ = (λ1, . . . , λn). Then there exists a basis of L(λ) parameterized by the

set of all standard tableaux T (v) = T (vij) with fixed top row vnj = λj − j + 1,

j = 1, . . . , n. Moreover, the action of the generators of gl(n) on L(λ) is given by

the Gelfand–Tsetlin formulas:

Ek,k+1(T (v)) = −
k∑

i=1

(∏k+1
j=1 (vki − vk+1,j)∏k

j �=i(vki − vkj)

)
T (v + δki),

Ek+1,k(T (v)) =

k∑
i=1

(∏k−1
j=1 (vki − vk−1,j)∏k

j �=i(vki − vkj)

)
T (v − δki),

Ekk(T (v)) =

(
k − 1 +

k∑
i=1

vki −
k−1∑
i=1

vk−1,i

)
T (v),

where δij ∈ Tn(Z) is defined by (δij)ij = 1 and all other (δij)k� are zero. If the new

tableau T (v± δki) is not standard, then the corresponding summand of Ek,k+1(T (v))

or Ek+1,k(T (v)) is zero by definition.

We call the formulas above the Gelfand–Tsetlin formulas for gl(n).

Set ekk(v) := k − 1 +
∑k

i=1 vki −
∑k−1

i=1 vk−1,i. We note that Ekk(T (v)) =

ekk(v)T (v) is well defined for any Gelfand–Tsetlin tableau T (v).

Definition 4.5. Let T (v) be a Gelfand–Tsetlin tableau. Then we call (e11(v), . . . ,

enn(v)) (respectively, (e11(v)− e22(v), . . . , en−1,n−1(v)− enn(v))) the gl(n)-weight

(respectively, the sl(n)-weight) of the tableau T (v).
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The formulas for the action of the generators of gl(n) in the theorem above

imply that the standard tableaux T (v) forms an eigenbasis for the action of the

standard Cartan subalgebra h. The following result shows that such basis is an

eigenbasis for the Gelfand–Tsetlin subalgebra. For the proof, see [65].

Theorem 4.6. Let L(λ) be the simple finite-dimensional module over gl(n) of high-

est weight λ = (λ1, . . . , λn), with basis as described in Theorem 4.4. The action of

the generators crs of Γ (see Eq. (1)) is given by

crs(T (v)) = γrs(v)T (v), (5)

where γrs(v) are the symmetric polynomials defined in (2).

As a direct consequence of Theorems 4.4 and 4.6, any simple finite-dimensional

gl(n)-module is a Gelfand–Tsetlin module with one-dimensional Gelfand–Tsetlin

subspaces.

Remark 4.7. Whenever we refer to finite-dimensional sl(n)-modules we will use

the same vector space and the Gelfand–Tsetlin formulas for generators Er,r+1 or

Er+1,r, for the action of the generators of a Cartan subalgebra {h1, . . . , hn−1} we

define hi(T (v)) := (Eii − Ei+1,i+1)(T (v)). We also fix the action of the central

element E11 + · · ·+ Enn as zero.

Example 4.8. Let us denote by M the simple highest-weight gl(3)-module with

highest weight (1, 0,−1). M is a finite-dimensional module of dimension 8. The

tableaux realization guaranteed by Theorem 4.4 consists of a vector space spanned

by the set of all standard tableaux of height 3 with top row (1,−1,−3).

1 −1 −3 1 −1 −3

T1 = 1 −1 T2 = 1 −1

1 0

1 −1 −3 1 −1 −3

T3 = 1 −2 T4 = 1 −2

1 0

1 −1 −3 1 −1 −3

T5 = 0 −2 T6 = 0 −2

−1 0
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1 −1 −3 1 −1 −3

T7 = 1 −2 T8 = 0 −1

−1 0

By Theorem 4.4, the simple module M is isomorphic to SpanC{Ti | i = 1, . . . , 8}
endowed with the action of gl(3) given by the Gelfand–Tsetlin formulas.

Since the action of E11 + E22 + E33 is fixed to be trivial and h = SpanC{h1 =

E11 − E22, h2 = E22 − E33}, M becomes an sl(3)-module with weight support

Supp(M) = {(1, 1), (−1, 2), (2,−1), (0, 0), (−2, 1), (1,−2), (−1,−1)}.

Then as an sl(3)-module, M is isomorphic to L(1, 1) (the simple finite-dimensional

sl(3)-module of highest weight (1, 1)). The following picture shows the weights lat-

tice of the sl(3)-moduleM . Note that M(0,0) is two-dimensional with basis {T4, T8}.

(−2, 1) (0, 0) (2, −1)

(−1, −1) (1, −2)

(−1, 2) (1, 1)

In particular, the basis elements of M(0,0) cannot be distinguished by the action

of the Cartan subalgebra. However, using Γ, the module decomposes as a direct

sum of one-dimensional Γ-submodules.

The following theorem will give us information about the dimension of Gelfand–

Tsetlin subspaces for simple Gelfand–Tsetlin modules and the possible number of

non-isomorphic Gelfand–Tsetlin modules with a given Gelfand–Tsetlin character in

its support.

Theorem 4.9 ([28, Theorem 6.1; 54]). Let U = U(gl(n)), Γ ⊂ U the Gelfand–

Tsetlin subalgebra, m ∈ SpecmΓ. Set Qn = 1!2! . . . (n− 1)!.

(i) For a Gelfand–Tsetlin module M, such that M(m) �= 0 and M is generated by

some x ∈ M(m) (in particular for a simple module), one has

dimC M(m) ≤ Qn.

(ii) The number of isomorphism classes of simple Gelfand–Tsetlin modules N such

that N(m) �= 0 is always nonzero and does not exceed Qn.
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The theorem above shows that elements of SpecmΓ classify the simple Gelfand–

Tsetlin gl(n)-modules (and, hence, sl(n)-modules) up to some finiteness and up to

an isomorphism of Gelfand–Tsetlin modules which contains two different Gelfand–

Tsetlin characters.

In [51], Gelfand–Tsetlin modules with tableaux realization and action given by

the Gelfand–Tsetlin formulas are studied, but such modules V satisfy dim(V (χ))≤ 1

for all χ ∈ Γ∗. In what follows, we will consider a more general definition of tableaux

realization, which will allow to consider certain classes of modules with dim(V (χ))

greater than 1.

For any Gelfand–Tsetlin tableau T (v) ∈ Tn(C) we consider the set

B(T (v)) := {T (v + z) | z ∈ Tn(Z), znk = 0, 1 ≤ k ≤ n}. (6)

If an indecomposable Gelfand–Tsetlin module V has a tableaux realization and

T (v) is one of the basis tableaux then it has a basis which is a subset of B(T (v)).
On the other hand, we might have a module with a basis consisting of a subset of

tableaux from B(T (v)) but without a tableaux realization. This may happen, for

example, when V has a Gelfand–Tsetlin character of multiplicity more than 1. For

this reason, we extend the notion of modules with a tableaux realization.

Definition 4.10. We say that a Gelfand–Tsetlin module M admits a generalized

tableaux realization with respect to a Gelfand–Tsetlin subalgebra Γ if M has a

basis BM labeled by a subset of B(T (v)) for some tableau T (v), such that every

mT (w) ∈ BM , T (w) ∈ B(T (v)), is a generalized eigenvector of crs of eigenvalue

γrs(w), for all r, s. We will denote by GT T (v)(n) the full subcategory of the category

of Gelfand–Tsetlin modules GT (n) which consists of modules with a generalized

tableaux realization with respect to Γ whose basis contains T (v).

The subcategory GT T (v)(n) is closed under the operations of taking submod-

ules and quotients. Moreover, as our main result will imply, simple modules of the

categories GT T (v)(3) for all T (v) exhaust all simple Gelfand–Tsetlin modules for

sl(3).

Conjecture. Simple modules of the categories GT T (v)(n) for all T (v) exhaust all

simple Gelfand–Tsetlin modules for sl(n).

Remark 4.11. There are modules in GT (n) that do not belong to GT T (v)(n) for

any T (v). For example, consider n = 2 and a simple weight module V (λ, γ) with

a weight λ ∈ C in its weight support and on which the Casimir element c22 acts

as a multiplication by γ ∈ C, where γ �= (λ + k)2 + 2(λ + 2k) for any integer k.

Then V (λ, γ) has a non-split self-extension which remains a weight module but

on which c22 does not act semisimply. This self-extension is an indecomposable

Gelfand–Tsetlin module that does not admit a generalized tableaux realization.

Definition 4.12. We will call the subcategory GT T (v)(n) the block of GT (n) gen-

erated by T (v).
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From now on, whenever n is clear from the context, we will write GT T (v) instead

of GT T (v)(n).

4.3. Generic modules

Observing that the coefficients in the Gelfand–Tsetlin formulas in Theorem 4.4

are rational functions on the entries of the tableaux, Drozd et al. [11] extended the

Gelfand–Tsetlin construction to more general modules. In the case when all denom-

inators are nonzero for all possible integral shifts, one can use the same formulas and

define a new class of infinite-dimensional gl(n)-modules: generic Gelfand–Tsetlin

modules (cf. [11, Sec. 2.3]).

Definition 4.13. A Gelfand–Tsetlin tableau T (v) (equivalently, v ∈ Tn(C)) is

called generic if vki − vkj /∈ Z for all 1 ≤ i �= j ≤ k ≤ n − 1. A Gelfand–Tsetlin

character χv associated to a generic tableau T (v) (see Remark 4.2) will be called a

generic Gelfand–Tsetlin character.

Recall that B(T (v)) = {T (v+z) | z ∈ Tn−1(Z)} for any Gelfand–Tsetlin tableau

T (v).

Theorem 4.14 ([11, Sec. 2.3]). Let T (v) be a generic Gelfand–Tsetlin tableau

of height n.

(i) The vector space V (T (v)) = SpanC B(T (v)) has a structure of a gl(n)-module

with action of the generators of gl(n) given by the Gelfand–Tsetlin formulas.

(ii) The action of the generators of Γ on the basis elements of B(T (v)) is given

by (5).

(iii) The gl(n)-module V (T (v)) is a Gelfand–Tsetlin module with Gelfand–Tsetlin

multiplicities equal to 1.

The module V (T (v)) constructed in Theorem 4.14 will be extensively used in

future and will be referred as the generic Gelfand–Tsetlin module associated to

T (v). In general V (T (v)) need not to be simple. Because Γ has simple spectrum

on V (T (v)) for T (w) in B(T (v)) we may define the simple U -module in V (T (v))

containing T (w) to be the simple subquotient of V (T (v)) containing T (w).

Remark 4.15. By Theorem 4.14(iii), given two different tableaux T (w) and T (w′)
in B(T (v)), there exists an element of Γ that has different eigenvalues for T (w) and

T (w′). Whenever we say that Γ “separates” tableaux of V (T (v)) we will refer to

this property.

4.3.1. Gelfand–Tsetlin formulas in terms of permutations

In this section, we will rewrite the Gelfand–Tsetlin formulas in terms of permuta-

tions. These formulas will be very useful when verifying certain identities for the

action of g on V (T (v)).
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Let S̃m denote the subset of Sm consisting of the transpositions (1, i),

i=1, . . . ,m. For � < m, set Φ�m = S̃m−1 × · · · × S̃�. For � > m, we set Φ�m = Φm�.

Finally, we define Φ�� = {Id}. Every σ in Φ�m will be written as an |� −m|-tuple
of transpositions and by σ[t] we will denote the tth component of the tuple.

Remark 4.16. Recall that in order to have well-defined action of σ ∈ Φ�m on

Tn−1(C), for w ∈ Tn−1(C) and σ ∈ Φ�m on w we set

σ(w) := (wn−1,σ−1 [n−1](1), . . . , wn−1,σ−1[n−1](1)| · · · |w1,σ−1 [1](1)).

Definition 4.17. Let 1 ≤ r < s ≤ n. Define

εrs := δr,1 + δr+1,1 + · · ·+ δs−1,1 ∈ Tn(Z).

Furthermore, define εrr = 0 and εsr = −εrs.

Definition 4.18. For each generic vector w and any 1 ≤ t ≤ n− 1 define

e
(+)
t (w) :=

∏t+1
j �=1(wt1 − wt+1,j)∏t
j �=1(wt1 − wtj)

; e
(−)
t+1(w) :=

∏t−1
j �=1(wt1 − wt−1,j)∏t
j �=1(wt1 − wtj)

;

ek,k+1(w) := −
∏k+1

j=1 (wk1 − wk+1,j)∏k
j �=1(wk1 − wkj)

; ek+1,k(w) :=

∏k−1
j=1 (wk1 − wk−1,j)∏k
j �=1(wk1 − wkj)

.

Lemma 4.19. For each m > k the action of Emk is given by the expression:

Emk(T (v)) =
∑

σ∈Φmk

ek+1,k(σ(v))

⎛⎝ m∏
j=k+2

(
e
(−)
j (σ(v))

)⎞⎠T(v + m−1∑
i=k

σ(εi+1,i)

)
.

Proof. The case k = m+1 follows from the Gelfand–Tsetlin formulas. The general

case follows by induction on m− k using the relation

Em,k+1(Ek+1,kT (v))− Ek+1,k(Em,k+1T (v)) = Em,kT (v)

for any generic vector v.

Lemma 4.20. For each r < s the action of Ers is given by the expression:

Ers(T (v)) =
∑

σ∈Φrs

⎛⎝s−2∏
j=r

e
(+)
j (σ(v))

⎞⎠es−1,s(σ(v))T

(
v +

s−1∑
i=r

σ(εi,i+1)

)
.

Proof. The case s = r+1 follows from the Gelfand–Tsetlin formulas. The general

case follows by induction in s− r using the relation

Er,r+1(Er+1,sT (v))− Er+1,s(Er,r+1T (v)) = ErsT (v)

for any generic vector v.
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Definition 4.21. For each generic vector w ∈ Tn(C) and any 1 ≤ r, s ≤ n we

define

ers(w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝s−2∏
j=r

e
(+)
j (w)

⎞⎠es−1,s(w) if r < s,

es+1,s(w)

⎛⎝ r∏
j=s+2

e
(−)
j−2

⎞⎠ if r > s,

r − 1 +

r∑
i=1

wri −
r−1∑
i=1

wr−1,i if r = s.

Proposition 4.22. Let v ∈ Tn(C) be any generic vector and z ∈ Tn−1(Z). The

Gelfand–Tsetlin formulas for the U -module V (T (v)) can be written as follows :

E�m(T (v + z)) =
∑

σ∈Φ�m

e�m(σ(v + z))T (v + z + σ(ε�m)).

Proof. Follows from Lemmas 4.19 and 4.20 and the fact that
∑m−1

i=� σ(εi+1,i) =

σ(εm,�) when m > � and
∑�−1

i=m σ(εi,i+1) = σ(εm,�) when m < �.

Example 4.23. Let us write explicitly the functions ers(w) from Definition 4.21

and the Gelfand–Tsetlin formulas in Proposition 4.22 in the case of gl(3). Let v ∈
T3(C) be a generic vector, z ∈ T2(Z) and w = v+z. Set also τ to be the permutation

that interchanges the entries in positions (2, 1) and (2, 2). Considering

ε11 = (0, 0, 0) e11(w) = w11

ε22 = (0, 0, 0) e22(w) = w21 + w22 − w11 + 1

ε33 = (0, 0, 0) e33(w) = w31 + w32 + w33 − w21 − w22 + 2

ε12 = (0, 0, 1) e12(w) = −(w11 − w21)(w11 − w22)

ε21 = (0, 0,−1) e21(w) = 1

ε23 = (1, 0, 0) e23(w) = − (w21−w31)(w21−w32)(w21−w33)
w21−w22

ε32 = (−1, 0, 0) e32(w) =
w21−w11

w21−w22

ε31 = (−1, 0,−1) e31(w) =
1

w21−w22

ε13 = (1, 0, 1) e13(w) = − (w21−w31)(w21−w32)(w21−w33)(w11−w22)
w21−w22
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The action of gl(3) on any tableau is given by

E11(T (w)) = e11(w)T (w),

E22(T (w)) = e22(w)T (w),

E33(T (w)) = e33(w)T (w),

E12(T (w)) = e12(w)T (w + ε12),

E21(T (w)) = e21(w)T (w + ε21),

E32(T (w)) = e32(w)T (w + ε32) + e32(τ(w))T (w + τ(ε32)),

E23(T (w)) = e23(w)T (w + ε23) + e23(τ(w))T (w + τ(ε23)),

E13(T (w)) = e13(w)T (w + ε13) + e13(τ(w))T (w + τ(ε13)),

E31(T (w)) = e31(w)T (w + ε31) + e31(τ(w))T (w + τ(ε31)).

The explicit description of all simple generic modules for gl(3) was obtained first

in [56]. The classification of simple generic modules gl(n) was completed in [20].

Let us discuss briefly the main results in the last classification.

Definition 4.24. Let T (v) be a fixed Gelfand–Tsetlin tableau. For any T (w) ∈
B(T (v)), and for any 1 < r ≤ n, 1 ≤ s ≤ r, and 1 ≤ u ≤ r − 1 we define

Ω(T (w)) := {(r, s, u) |wrs − wr−1,u ∈ Z},

Ω+(T (w)) := {(r, s, u) |wrs − wr−1,u ∈ Z≥0}.

A basis for the simple subquotients of V (T (v)) is provided in the following

theorem.

Theorem 4.25 ([20, Theorems 6.8 and 6.14]). Let T (v) be a fixed generic

Gelfand–Tsetlin tableau and T (w) in B(T (v)).

(i) The module U · T (w) has a basis of tableaux

N (T (w)) = {T (w′) ∈ B(T (w)) |Ω+(T (w)) ⊆ Ω+(T (w′))}.

(ii) The simple module containing T (w) has a basis of tableaux

I(T (w)) = {T (w′) ∈ B(T (w)) |Ω+(T (w)) = Ω+(T (w′))}.

The action of gl(n) on T (w′) ∈ N (T (w)) is given by the Gelfand–Tsetlin for-

mulas. The action of gl(n) on T (w′) ∈ I(T (w)) is given by the Gelfand–Tsetlin for-

mulas with the convention that all tableau T (w′± δki) for which Ω+(T (w′± δki)) �=
Ω+(T (w)) are omitted in the sums for Ek,k+1(T (w

′)) and Ek+1,k(T (w
′)).
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Corollary 4.26. Let T (v) be a generic Gelfand–Tsetlin tableau. The module

V (T (v)) is simple if and only if Ω(T (v)) = ∅.

Example 4.27. Consider a, b, c ∈ C such that {a − b, a − c, b − c} ∩ Z = ∅ and

v = (a, b, c|a, b+ 2|a), then

a b c

T (v) = a b+ 2

a

Ω(T (v)) = {(3, 1, 1), (3, 2, 2), (2, 1, 1)}, Ω+(T (v)) = {(3, 1, 1), (2, 1, 1)}. So, by The-

orem 4.25, the simple subquotient of V (T (v)) containing T (v) has a basis

I(T (v)) = {T (v + (m,n, k)) |m ≤ 0, k ≤ m, and n > −2}.

Example 4.28 (See also [51, Sec. 4.3]). Let a1, . . . , an be complex numbers

such that ai − aj /∈ Z for any i �= j. Denote by T (v) the Gelfand–Tsetlin tableau

of height n with entries vij , such that vrs = as for 1 ≤ s ≤ r ≤ n. The tableau

T (v) is a generic Gelfand–Tsetlin tableau and by Theorem 4.25 a basis for a simple

gl(n)-module containing T (v) has a basis

I(T (v)) = {T (v + z) | zrs − zr−1,s ∈ Z≥0 for any r, s}.

Moreover, we can easily check that SpanC I(T (v)) is a submodule of V (T (v)) iso-

morphic to the simple Verma module M(a1, a2 + 1, . . . , an + n− 1).

Using the description of simple subquotients of V (T (v)), we will also be able to

describe the Loewy series decomposition for V (T (v)). We will use the convention

that the first module in the list is the socle of V (T (v)).

Theorem 4.29. Let T (v) be a generic tableau and set t := |Ω(T (v))|. The Loewy

series decomposition of the Gelfand–Tsetlin module V (T (v)) is given by

Dt, Dt−1, . . . , D0,

where Di = SpanC{T (w) ∈ B(T (v)) | |Ω+(T (w))| = i} and 0 ≤ i ≤ t. If Di = ∅ for

some 1 < i < t we omit this term in the Loewy decomposition.

Proof. Let us show first that Dt is a simple submodule of V (T (v)). By Theorem

4.25(i), if |Ω+(T (w))| = t, the module generated by T (w) is simple and hence,

equal to SpanC{T (w′) | |Ω+(T (w′))| = t}. That is, V (T (v)) has a unique simple

submodule M , namely M = Dt.

Set Mt+1 := V (T (v)) and define Mi := Mi+1/Di. Note that

Mi+1 = SpanC{T (w) ∈ B(T (v)) | |Ω+(T (w))| ≤ i}.

So, by Theorem 4.25(ii) any element basis of Di is a basis element of a simple

submodule of Mi+1 and, then Di is the sum of all simple submodules of Mi+1.
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Remark 4.30. We will often apply Theorem 4.29 in the following way. If Vj , j ∈ J ,

are all non-isomorphic simple subquotients of V (T (v)), and T (wj) ∈ Vj , then the

modules Loewy series components of V (T (v)) are precisely

Di = Di1 ⊕ · · · ⊕Di,ri ,

where {Dij}rij=1 is the set of all Vj such that |Ω+(wj)| = i.

Although Theorem 4.25 gives a nice relation between the category GT T (v) (see

Definition 4.10) and Ω(T (v)), it is not true that GT T (v) is completely determined

by Ω(T (v)) — see the following example.

Example 4.31. Consider the tableaux T (v) and T (v′) such that Ω(T (v)) =

Ω(T (v′)) but GT T (v) is not equivalent to GT T (v′). Take

a a a a a+ 1 a+ 2

T (v) = a y T (v′) = a y

z z

Then Ω(T (v)) = Ω(T (v′)). The Loewy series of T (v) is D3, D0, however, the Loewy

series of T (v′) is D3, D2, D1, D0.

4.4. Singular Gelfand–Tsetlin modules

The classical constructions of simple finite-dimensional modules and of generic mod-

ules presented in Secs. 4.2 and 4.3 have one common feature — an explicit basis

parameterized by a set of Gelfand–Tsetlin tableaux. In the finite-dimensional case

all the entries of the tableaux T (v) in the basis satisfy vki − vkj ∈ Z, while in the

generic case they satisfy vki − vkj /∈ Z for any k �= n. We may consider the stan-

dard and generic tableaux as the two extreme cases of the singular Gelfand–Tsetlin

tableaux where the latter are defined as follows.

Definition 4.32. A vector v ∈ Tn(C) will be called singular if there exist 1 ≤
s < t ≤ r ≤ n − 1 such that vrs − vrt ∈ Z. The vector v will be called 1-singular

if there exist k, i, j with 1 ≤ i < j ≤ k ≤ n − 1 such that vki − vkj ∈ Z and

vrs − vrt /∈ Z for all (r, s, t) �= (k, i, j), r �= n. If v is 1-singular, the tableau T (v)

will be called 1-singular tableau. A Gelfand–Tsetlin character χv associated to a

singular (respectively, 1-singular) tableau T (v) (see Remark 4.2) will be called a

singular (respectively, 1-singular) character.

4.4.1. Construction of 1-singular Gelfand–Tsetlin modules

In [21], an explicit construction of modules with a generalized tableaux realization

(see Definition 4.10) associated with any 1-singular Gelfand–Tsetlin tableau was

provided. In this section, we provide the main details of this construction.
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Set v a vector of variables with n(n+1)
2 entries indexed by (r, s) such that 1 ≤

s ≤ r ≤ n. By F we will denote the space of rational functions on vij , 1 ≤ j ≤ i ≤ n,

with poles on the hyperplanes vrs − vrt = 0. Note that V (T (v)) is defined for all

generic v and that V (T (v)) = V (T (v′)) whenever v − σ(v′) ∈ Tn−1(Z) for some

σ ∈ G. Thus, V (T (v)) is defined for elements v in the (generic) complex torus

T = Tn(C)/Tn−1(Z). Denote by Tn(C)gen the set of all generic vectors v in Tn(C)

such that V (T (v)) is simple, equivalently, vrs − vr−1,t /∈ Z for any r, s, t. Until the

end of this section we fix (i, j, k) such that 1 ≤ i < j ≤ k ≤ n− 1.

By H we denote the hyperplane vki − vkj = 0 in Tn(C), also by τ ∈ Sn−1 × · · ·
× S1 we denote the transposition on the kth row interchanging the ith and jth

entries. H stands for the subset of all w in Tn(C) such that wtr �= wts for all

triples (t, r, s) except for (t, r, s) = (k, i, j). Finally, by Fij denote the subspace of

F consisting of all functions that are smooth on H.

Let us fix v̄ in H such that v̄ki = v̄kj and all other differences vmr − vms are

non-integer. In other words, v̄ ∈ H and v̄ + Tn−1(Z) ⊂ H.

Remark 4.33. For any generic vector w we can choose a representative of the

class w + Tn−1(Z) of w in T = Tn(C)gen/Tn−1(Z) as “close” as possible to v̄ as

follows. Let mrs := �Re(v̄rs −wrs)� (the integer part of the real part of v̄rs −wrs),

m be the vector in Tn−1(Z) with components mrs, and v̄[w] := w + m. Then

S = {v̄[w] |w ∈ Tn(C)gen} is a set of representatives of T .

Our goal is construct a module V (T (v̄)) with Gelfand–Tsetlin support

{χv̄+m |m ∈ Tn−1(Z)}. We will refer to this module as the 1-singular univer-

sal tableaux Gelfand–Tsetlin module associated with v̄, or simply as the universal

module.

We formally introduce the complex vector space V (T (v̄)) as the one spanned

by vectors {T (v̄ + z),DT (v̄ + z) | z ∈ Tn−1(Z)} subject to the relations T (v̄ + z)−
T (v̄ + τ(z)) = 0 and DT (v̄ + z) + DT (v̄ + τ(z)) = 0. We will refer to T (u) as the

regular Gelfand–Tsetlin tableau associated with u and to DT (u) as the derivative

Gelfand–Tsetlin tableau associated with u.

Remark 4.34. Although {T (v̄ + z), DT (v̄ + z) | z ∈ Tn−1(Z)} is not a basis, we

have the following natural basis of V (T (v̄)):

B(T (v̄)) = {T (v̄ + z),DT (v̄ + w) | zki ≤ zkj , wki > wkj}.

Set Vgen =
⊕

v∈S V (T (v)) and V ′ = V (T (v̄))⊕ Vgen. Then F ⊗ Vgen is a gl(n)-

module with the trivial action on F . We next define a gl(n)-module structure on

V (T (v̄)).

The evaluation map ev(v̄) : Fij ⊗ V ′ → V ′ is the linear map defined by

ev(v̄)(fT (v + z)) = f(v̄)T (v̄ + z), ev(v̄)(fDT (v̄ + z)) = f(v̄)DT (v̄ + z). Fur-

thermore, Dv̄ : Fij ⊗ V (T (v)) → V (T (v̄)) will denote the linear map defined by

Dv̄(fT (v+z)) = Dv̄(f)T (v̄+z)+f(v̄)DT (v̄+z), whereDv̄(f) = 1
2

(
∂f
∂vki

− ∂f
∂vkj

)
(v̄),
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z ∈ Tn−1(Z), f ∈ Fij , and v ∈ S. We may think of Dv̄ as the map

Dv̄ ⊗ ev(v̄) + ev(v̄)⊗Dv̄.

This map extends to a linear map Fij ⊗Vgen → V (T (v̄)) which we will also denote

by Dv̄.

Theorem 4.35 ([21, Theorems 4.9 and 5.6]). V (T (v̄)) has structure of

Gelfand–Tsetlin module over gl(n) with action of the generators of gl(n) given by

Ers(T (v̄ + z)) = Dv̄((vki − vkj)Ers(T (v + z))), (7)

Ers(D(T (v̄ + w))) = Dv̄(Ers(T (v + w))), (8)

and action of the generators of Γ given by

crs(T (v̄ + z)) = Dv̄((vki − vkj)crs(T (v + z))), (9)

crs(Dv̄(T (v + w))) = Dv̄(crs(T (v + w))), (10)

where v is a generic vector in the set of representatives S, and z, w ∈ Tn−1(Z) with

w �= τ(w).

Remark 4.36. In the case of gl(3) we can give the following interpretation of the

basis elements of the module V (T (v̄)). Let T (v) be a generic tableau such that

V (T (v)) is simple, and let T (v̄) be such that v̄21 = v̄22:

v31 v32 v33 v̄31 v̄32 v̄33

T (v) = v21 v22 T (v̄) = v̄21 v̄22

v11 v̄11

Then T (v̄ + (m,n, k)) and DT (v̄ + (m,n, k)) can be considered as formal limits in

the following way:

T (v̄ + (m,n, k)) := lim
v→v̄

T (v + (m,n, k)), (11)

DT (v̄ + (m,n, k)) := lim
v→v̄

(
T (v + (m,n, k))− T (v + (n,m, k))

v21 − v22

)
. (12)

One essential property of generic Gelfand–Tsetlin modules described in Theorem

4.14 is that Γ “separates” the basis elements of B(T (v)), that is, for any two different

tableaux T1, T2 in B(T (v)) there exists an element γ ∈ Γ such that γ · T1 = T1

and γ · T2 = 0 (see Remark 4.15). In the case of 1-singular modules V (T (v̄)) this

is also true and follows from the fact that no derivative tableau D(T (v̄ +w)) is an

eigenvector for the action of ck2 ∈ Γ. A detailed proof can be found in [33, Sec. 5].

Theorem 4.37. Let v̄ be any 1-singular vector and B(T (v̄)) be as before. Then Γ

separates the tableaux in the basis B(T (v̄)).
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In the case of T3(C) (equivalently, Gelfand–Tsetlin tableaux of height 3) every

singular vector is a 1-singular vector. Therefore, in the case of gl(3) the 1-singular

modules exhaust all singular Gelfand–Tsetlin modules.

Example 4.38. The simple Verma sl(3)-module M =M(−1,−1) admits a

tableaux realization as a subquotient of the module V (T (v̄)), where v̄ is the singular

vector (−1,−1,−1,−1,−1,−1). This module contains Gelfand–Tsetlin characters

of dimension 2. For example, if χ is the Gelfand–Tsetlin character associated with

the tableaux T (v̄+(−1, 0,−1)) and DT (v̄+(0,−1,−1)), then dim(M(χ)) = 2 (see

Sec. 7.5 (C13) for details).

5. Gelfand–Tsetlin Modules of sl(3) and Modules of C(h)

From now on we focus on the case n = 3 and g = sl(3). We fix the standard Gelfand–

Tsetlin subalgebra Γ of g, that is the one corresponding to the chain whose second

component is generated by E12 and E21. The corresponding category of Gelfand–

Tsetlin modules GT (3) will be denoted simply by GT .

Let C(h) be the centralizer of the Cartan subalgebra h in U(g), where

h = SpanC{H1 := E11 − E22, H2 := E22 − E33}.

In this section, we collect some properties of modules in GT that are related to the

category of modules of C(h). The results are based on the works [3, 16, 17], but for

reader’s convenience we provide proofs for some statements.

The following result provides an important relation between the simple C(h)-

modules and the simple weight modules (for a proof, see for example, [15]).

Lemma 5.1. For any simple C(h)-module W there exists a simple weight g-module

M such that Mλ � W for some λ ∈ h∗. Conversely, if M is a simple weight g-

module then Mλ is a simple C(h)-module.

Denote A := E12E21, B := E23E32. Recall that the center of U(g) is generated

by c32 and c33, see Eq. (1). For convenience we will also use the following generators

of the center of U(g):

c1 =
1

12
c32 and c2 =

3

2
c32 − c33.

The following two lemmas provide important technical properties of C(h) and

the simple C(h)-modules.

Lemma 5.2 ([3, Lemma 1.1]). The centralizer C(h) is an associative algebra

generated by H1, H2, A, B, c1, and c2.
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Lemma 5.3 ([16]). Let W be a simple C(h)-module, and let Hi = hiId, ci = γiId

on W, for some constants hi, γi, i = 1, 2. Then the following identities hold on W :

aA = A2 +AB +BA+ABA− 1

2
A2B − 1

2
BA2 + rB + τI,

aB = B2 +AB +BA+BAB − 1

2
B2A− 1

2
AB2 + r1B + τ1I,

1

4
(AB −BA)2 = ABA +BAB +

1

2
rB2 +

1

2
r1A

2

−
(a
2
− 1
)
(AB +BA) + (τ + r)B + (τ1 + r1)A+ ηI,

where

r :=
1

2
(h2

1 − 2h1), r1 :=
1

2
(h2

2 − 2h2),

a := 6γ1 + h1 + h2 −
1

3
h2
1 −

1

3
h2
2 +

1

6
h1h2,

3p :=
1

9
(h1 − h2)

3 − γ2 + 6γ1(h2 − h1 + 3)− h2
1 − h2

2 − h1h2 + 2h1 − 2h2,

τ :=
1

2
h1p+ h1h2, τ1 = −1

2
ph2

2 +
1

3
h2(18γ1 − h2

1 − h2
2 − h1h2 + 3h1),

η :=
1

4
p2 +

1

6
p(h1h2 + h2

1 + h2
2 − 18γ1) +

1

4
h1h2(h1h2 + 4− 2a).

Let M be a simple module in GT . In particular, it is a weight module. Consider

any λ ∈ h∗ from the weight support of M . The central elements c1 and c2 act

on M , and hence on Mλ, as a multiplication by some complex scalars γ1 and γ2,

respectively. If λ(Hi) = hi, then Hi = hiId, i = 1, 2, on Mλ. Since M is a Gelfand–

Tsetlin module, then each component M(χ) is finite-dimensional. Hence, one can

choose a basis of Mλ with respect to which A|Mλ
has a Jordan canonical form Aλ.

Consider the following polynomial in two variables:

gλ(x, y) = (x− y)2 − 2(x+ y)− 2r.

Recall r = 1
2 (h

2
1 − 2h1). Note that gλ(x, y) depends only on h1 = λ(H1).

Definition 5.4. Let λ ∈ h∗.

(i) A sequence (μi)i∈J is λ-connected (or, simply, connected) if gλ(μi, μi+1) = 0

for all i ∈ J , for some connected subset J of Z. A subsequence (μj′ )j′∈J′ of

a connected sequence (μj)j∈J will be called a connected subsequence if J ′ is
connected.

(ii) A λ-connected sequence (μj)j∈J with μi �= μj for any i �= j, is called

λ-connected chain .

(iii) We will say that a set B is λ-connected if the elements of B can be ordered in a

λ-connected chain (μj)j∈J . We will call the sequence (μj)j∈J the λ-connected

chain associated to B.
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We note that if B is λ-connected, then there are at most two λ-connected chains

associated to B.

Lemma 5.5. Let M be a simple Gelfand–Tsetlin module and λ ∈ h∗ a weight of

M . Then the distinct eigenvalues of Aλ is a λ-connected set.

Proof. This lemma follows from [3, Lemmas 2.2 and 2.3], but for reader’s conve-

nience, a brief proof is written. Let [Aλ] = diag(Ai) be the matrix of Aλ in a fixed

Jordan canonical basis of Mλ, where Ai corresponds to the generalized eigenspace

with eigenvalue μi, and let [Bλ] = (Bij) be the block matrix of Bλ relative to this

basis, for which Bii and Ai are in the same position. If i �= j, looking at the (i, j)th

block of the matrix equation corresponding to the first relation in Lemma 5.3, we

obtain

0 = AiBij +BijAj +AiBijAj −
1

2
BijA

2
j −

1

2
A2

iBij + rBij .

Applying the above identity to suitable elements of the basis ofMλ, one can see that

Bij = 0 if (μi + μj)− 1
2 (μi − μj)

2 + r �= 0 (for details, see the proof of [3, Lemma

2.2]). Since M is simple, then Mλ is a simple C(h)-module. However, if the set of

eigenvalues of A is a union of two “disconnected” sets, then one easily can prove

that Mλ is a direct sum of two modules, which is a contradiction (for details, see

the proof of [3, Lemma 2.3]).

Until the end of this section we assume that M is a simple Gelfand–Tsetlin

module, λ ∈ Supp M .

Lemma 5.6. If (μj)j∈J is a λ-connected sequence with |J | ≥ 3, then the following

recurrence relation holds for any i:

μi+1 + μi−1 = 2μi + 2. (13)

Proof. As (μj)j∈J is a connected sequence, we have gλ(μi, μi−1) = 0 and

gλ(μi, μi+1) = 0. By solving both quadratic equations in terms of μi we have

{μi−1, μi+1} = {μi + 1±
√
1 + 4μi + h2

1 − 2h1}

therefore, μi+1 + μi−1 = 2μi + 2.

Definition 5.7. Let (μj)j∈J be a λ-connected sequence. We say that (μj)j∈J is

(i) degenerate if μi = − 1
2r for some i ∈ J ;

(ii) critical if μi = −1/4− 1
2r for some i ∈ J ;

(iii) singular if (μj)j∈J is a connected subsequence of a degenerate or a critical

connected sequence;

(iv) generic if it is not singular.
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Example 5.8. If λ = (0, 0), then the sequence {0, 2, 6, 12, . . .} = {n(n+1) |n ≥ 0}
is a degenerate connected chain and Ci := {n(n+ 1) |n ≥ i} is a connected chain

that is not degenerate for each i > 0.

Lemma 5.9. Let (μj)j∈J be a λ-connected sequence.

(i) If (μi)j∈J is degenerate, then μi ∈ {n(n+ 1)− r
2 |n ≥ 0} for all i ∈ J .

(ii) If (μi)j∈J is critical, then μi ∈ {n2 − 1
4 − r

2 |n ≥ 0} for all i ∈ J .

(iii) If (μi)j∈J is generic, then μi ∈ {n2 + n
√
1 + 4μ0 + 2r + μ0 |n ∈ Z} for all

i ∈ J, where
√
1 + 4μ0 + 2r is a fixed solution of x2 = 1 + 4μ0 + 2r.

Proof. By Lemma 5.6, in order to determine a connected sequence, it is enough to

know two connected values. In the case of a degenerate sequence we have μi = − 1
2r

for some i, and hence, μi+1 = μi or μi−1 = μi. Assume μi−1 = μi and i = 0

for simplicity. Then μn = n(n + 1) − r
2 , n ∈ Z, give the unique solution of the

recursive equation (13). Therefore, all μi are in the set {n(n+1)− r
2 |n ≥ 0}. This

proves part (i). For parts (ii) and (iii) we reason in the same manner. Namely, for

a critical chain, we use that μi = − 1
4 − 1

2r for some i, hence μi+1 = μi + 1 or

μi−1 = μi + 1, while in the generic case, given μi in the connected sequence, we

have μi+1 ∈ {μi + 1±
√
1 + 4μi + 2r}.

The properties of Aλ are described in the following theorem.

Theorem 5.10. Let M be a simple Gelfand–Tsetlin module. Then the following

hold :

(i) For every λ ∈ SuppM, every eigenvalue of Aλ has multiplicity at most two.

(ii) If (μi)i∈J is a connected chain of the set of distinct eigenvalues of Aλ = A |Mλ
,

then

(a) if the chain (μi)i∈J is generic, then all eigenvalues of Aλ are distinct ;

(b) if the chain (μi)i∈J is degenerate, then the chain can be chosen so that

μ1 = − r
2 , and if the multiplicity of μi equals 1 then the multiplicity of μi+1

is also 1;

(c) if the chain (μi)i∈J is critical then the chain can be chosen so that μ1+1 =

μ2, the multiplicity of μ1 is 1, and if the multiplicity of μi equals 1 for i > 1,

then the multiplicity of μi+1 also equals 1;

(d) if the chain (μi)i∈J is singular but not degenerate or critical, then all eigen-

values of Aλ are distinct.

Proof. The proof of all parts can be found in [15, 17]. The strategy is to apply the

relations from Lemma 5.3 to a Jordan form of Aλ. Proofs of parts (b) and (d) can

be also found in [3, Theorem 2.7].

As a consequence of Theorem 5.10, we have the following statement.
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Corollary 5.11. Let M be a simple weight g-module. Then for any λ ∈ h∗ and

any i �= j we have dim(ker(Eij |Mλ
)) ≤ 1.

Proof. Suppose that ker(Eij |Mλ
) �= 0. Consider the Lie subalgebra a of sl(3) iso-

morphic to sl(2) that is generated by Eij and Eji. Then M is a Gelfand–Tsetlin

a-module with respect to the Gelfand–Tsetlin subalgebra generated by h, the center

of U(sl(3)), and the center of U(a). The statement follows from Theorem 5.10.

Remark 5.12. In what follows, we give an interpretation of the eigenvalues of Aλ

in terms of tableaux and the Gelfand–Tsetlin formulas. Set for i ∈ Z

a b c

T (vi) = x+ i y − i

z

The set of all tableaux in B(T (v0)) with fixed g-weight λ ∈ h∗ (see Definition

4.5) is {T (vi) | i ∈ Z}. Moreover, the Gelfand–Tsetlin formulas imply that A =

E12E21 acts on T (vi) as multiplication by μi := −(x + i − z)(y − i − z), and

r = 1
2 ((2z − x− y − 1)2 − (2z − x− y − 1)). We have:

(i) (μi)i∈Z is degenerate with μj = − 1
2r if and only if x− y ∈ {2j − 1, 2j + 1}.

(ii) (μi)i∈Z is critical with μj = − 1
4 − 1

2r if and only if x− y = 2j.

In particular, (μi)i∈Z is singular if and only if the tableau T (v0) (respectively, χv0)

is singular and {μi} is generic if and only if T (v0) (respectively, χv0) is generic.

Note also that χ(A) = − 1
4 − 1

2r if and only if χ = χw with w21 = w22. Finally,

χ(A) = − 1
2r if and only if χ = χw with |w21 − w22| = 1.

Definition 5.13. We say that a Gelfand–Tsetlin character χ is critical (respec-

tively, degenerate) if χ = χv for some v such that v21 = v22 (respectively,

|v21 − v22| = 1).

Since A ∈ Γ, we can extend the concepts of generic and singular chains to

Gelfand–Tsetlin modules.

Definition 5.14. A Gelfand–Tsetlin module M is called generic if every Gelfand–

Tsetlin character of M is generic. A Gelfand–Tsetlin module M is called singular

if it has a singular Gelfand–Tsetlin character.

Note that any finite-dimensional module is a singular Gelfand–Tsetlin module,

moreover, any 1-singular module as defined in Sec. 4.4 is a singular Gelfand–Tsetlin
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module. Also, generic modules as defined in Sec. 4.3 are generic Gelfand–Tsetlin

modules.

Proposition 5.15. If a simple Gelfand–Tsetlin g-module M is singular, then each

Gelfand–Tsetlin character of M is singular.

Proof. The statement follows by a direct computation. Let χ be a singular

Gelfand–Tsetlin character of M , v ∈ M(χ), v �= 0. If E12v �= 0 then we easily

check that E12v ∈ M(χ′) for a singular χ′. Similar reasoning applies for E21v.

Suppose now E23v �= 0. Then E23v ∈ M(χ′) ⊕M(χ′′), where χ′ and χ′′ are both

singular (one of the subspaces can be zero). Moreover, if χ belongs to a critical

(respectively, degenerate) connected chain, then χ′ and χ′′ belong to a degenerate

(respectively, critical) connected chain. We reason similarly for E32.

Definition 5.16. Given a Gelfand–Tsetlin character χ and M a Gelfand–Tsetlin

module, we say that M is a simple extension of the character χ if M is simple and

χ ∈ SuppGT(M) (i.e. M(χ) �= 0).

Lemma 5.17. Let M be a simple Gelfand–Tsetlin module, χ ∈ SuppGT(M) and

λ = χ|h. If there exists a basis {wi}i∈I of Mλ such that the action of Bλ on this

basis is completely determined by the eigenvalues of Aλ and χ, then M is the unique

simple extension of χ.

Proof. Under these conditions, the simple C(h)-module Mλ is defined uniquely,

moreover, as M
(1)
λ � M

(2)
λ implies M (1) � M (2), the uniqueness follows.

The generic Gelfand–Tsetlin modules are completely determined by any of their

characters, as the following result shows.

Theorem 5.18. If M is a generic simple Gelfand–Tsetlin module then for any

χ ∈ SuppGT(M) the subspace M(χ) is one-dimensional and M is the unique simple

extension of χ.

Proof. The result can be found in [15, 17], but for the sake of completeness we

provide a proof. Let χ ∈ SuppGT(M) and let λ = χ|h be the associated to χ weight.

Let μ0 ∈ C be an eigenvalue of the operator Aλ = A|Mλ
. Then all eigenvalues of

Aλ form a connected chain, i.e. belong to a sequence μi = i2+ i
√
1 + 4μ0 + 2r+μ0,

i ∈ Z for some choice of the square root (see Lemma 5.9(iii)).

Using relations between A and B we can choose a basis {wi | i ∈ Z} (this set

can be finite or bounded from one side or unbounded) of Mλ such that

Aλwi = μiwi; and Bλwi =

⎧⎪⎪⎨⎪⎪⎩
wi−1 + biwi + di+1wi+1, i < 0,

w−1 + b0w0 + w1, i = 0,

diwi−1 + biwi + wi+1, i > 0
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with

bi :=
aμi − μ2

i − τ

2μi + r
,

di :=
ξ(μi−1)(3 + μi−1 − μi)− θ(μi−1)

(
7
2μi−1 − 3

2μi + 3 + r
)

4(μi−1 − μi + 1)
(
μi−1 − 3

4 + 1
2r
) ,

ξ(μi) :=
1

2
(2μi + r)b2i − (2μi + r)bi −

1

2
r1μ

2
i − (r1 + τ1)μi − η,

θ(μi) := (a− 2μi)bi − b2i − r1μi − τ1,

where r, r1, η, τ , and τ1 are defined in Lemma 5.3.

Hence, in this case Bλ is completely determined by χ and Aλ. The uniqueness

follows from Lemma 5.17.

Note that in singular cases the subspace M(χ) can be two-dimensional (see

Example 4.38). Also, in these cases for a given χ ∈ Γ∗ there can exist two non-

isomorphic simple extensions of χ. Such examples were first constructed in [16].

6. Simple Extensions of Singular Gelfand–Tsetlin Characters

In this section, we provide sufficient conditions for a singular Gelfand–Tsetlin char-

acter to admit a unique simple extension.

Theorem 6.1. If χ is a critical Gelfand–Tsetlin character then χ admits a unique

simple extension.

Proof. By Theorem 4.9, there exist at most two simple modules M (1) and M (2)

such that χ ∈ SuppGT(M
(i)) for i = 1, 2. Assume that we have two such modules

and let λ ∈ Supp(M (1)) ∩ Supp(M (2)) such that λ = χ|h. For i = 1, 2, consider the

restriction A
(i)
λ of A = E12E21 on M

(i)
λ . Since M (i) are Gelfand–Tsetlin modules,

then we can choose bases B1 = {w0, . . . , wm}, 0 ≤ m ≤ ∞ and B2 = {w′
0, . . . , w

′
k},

0 ≤ k ≤ ∞ of M
(1)
λ and M

(2)
λ such that the matrix [A

(i)
λ ] of A

(i)
λ with respect to Bi

is in a Jordan normal form and each eigenvalue of A
(i)
λ has algebraic multiplicity

at most two.

By Theorem 5.10(ii)(c), the eigenvalue χ(A) of A
(1)
λ and A

(2)
λ has multiplicity 1.

Suppose first that all eigenvalues of both A
(1)
λ and A

(2)
λ have multiplicity 1. Then

they can be ordered in connected chains {μn | 0 ≤ n ≤ m} and {μm | 0 ≤ m ≤ k}
with

μ0 = χ(A) = −1

4
− 1

2
r

and μi = i2 − 1
4 − 1

2r for i ≥ 1 (see Lemma 5.9(ii)).
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Applying the relations from Lemma 5.3 we obtain

Awi = μiwi, i ≥ 0, Bwi =

{
b0w0 + w1, i = 0,

ciwi−1 + biwi + wi+1, 0 < i ≤ m,

Aw′
i = μiw

′
i, i ≥ 0, Bw′

i =

{
b0w

′
0 + w′

1, i = 0,

ciw
′
i−1 + biw

′
i + w′

i+1, 0 < i ≤ k,

(14)

where

c1 =
θ(μ0)

2
,

c2 =

⎧⎪⎨⎪⎩
θ(μ1)

(1 + μ2 − μ1)
, n = 1,

d2, n > 1,

ci = di, i > 2,

and

2ξ(μ0) =

(
3

2
+ 2μ0 + r

)
θ(μ0).

If m < k, then cm+1 = 0 implying that M (2) is reducible. Similarly, if m > k, then

ck+1 = 0 and M (1) is reducible. It follows that k = m. But then formulas (14)

define uniquely a simple C(h)-module M
(1)
λ � M

(2)
λ . Therefore, M (1) � M (2).

Suppose now that the algebraic multiplicity of some μi is two in M
(1)
λ . For

simplicity assume that

[A
(1)
λ ] =

⎛⎜⎜⎜⎜⎜⎝
μ0 | 0 0

|
0 | μ1 1

0 | 0 μ1

⎞⎟⎟⎟⎟⎟⎠; [B
(1)
λ ] =

⎛⎜⎜⎜⎜⎝
b11 | b12 b13

|
b21 | b22 b23

b31 | b32 b33

⎞⎟⎟⎟⎟⎠,

where [B
(1)
λ ] stands for the matrix of B|

M
(1)
λ

relative to B1. Applying the relations

from Lemma 5.3 we obtain b32 = 0. Note that due that M
(1)
λ is simple as a C(h)-

module we have b12 �= 0 and b31 �= 0. Hence, using row operations, one can change

the basis B1 so that b13 becomes 0.
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Now, applying the relations from Lemma 5.3 we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b22 = b33,

1

2
b11 +

3

2
b22 = a− 2μ0 − 1,

1

2
b12b31 = −ab22 + b222 + 2μ1b22 + r1μ1 + τ1,

3

2
b23 = −1− b11 − 2b22,

2b12b21 = −(2μ0 + 1− a)(4μ0 + 1)− 3r1μ1 + r1 − 3τ1,

1

2
b31b12 = (4μ0 + 3)(2μ0 + 1− a) + r1μ1 + τ1,

(b11 + b22)b31 = 0.

By changing the basis if needed, we can assume b12 = 1. Therefore, the matrix

[B
(1)
λ ] is completely determined by χ and the matrix [A

(1)
λ ]. We can show that the

latter holds for any Jordan normal form [A
(1)
λ ].

Consider now the matrix [A
(2)
λ ]. If this Jordan normal form is not equivalent to

[A
(1)
λ ], then one of the modules M

(1)
λ or M

(2)
λ will not be simple. Indeed, this can be

immediately seen from the form of matrices [B
(1)
λ ] and [B

(2)
λ ]. On the other hand,

if [A
(1)
λ ] = [A

(2)
λ ] then M

(1)
λ � M

(2)
λ as C(h)-modules and hence M (1) � M (2).

If χ is a singular Gelfand–Tsetlin character in a critical connected chain and

χ is not critical then there might exist two simple extensions of χ (see [16] for

examples). On the other hand we have.

Corollary 6.2. Suppose that χ is a singular character in a critical connected chain

and χ is not critical. If λ = χ|h, then there exists a unique simple extension M of

χ with diagonalizable Aλ.

Proof. Indeed, if Aλ is diagonalizable then Bλ is determined uniquely. As it was

shown in the proof of Theorem 6.1, it is sufficient to know one eigenvalue of Aλ to

reconstruct the whole Aλ in a simple module. Hence, the statement follows.

Lemma 6.3. Let M be a simple Gelfand–Tsetlin module, χ a degenerate character

of M associated with the weight λ ∈ h∗. Let ρ1 = − 1
2r, and ρ2 = 2− 1

2r be connected

eigenvalues of Aλ with χ(A) = ρ1. Suppose that both ρ1 and ρ2 have multiplicity 2.

Then the Gelfand–Tsetlin support of M contains a critical character χ′.

Proof. Let u1, u2, u3, u4 be nonzero elements of M such that

Aλu1 = ρ1u1, Aλu2 = u1 + ρ1u2,

Aλu3 = ρ2u3, Aλu4 = u3 + ρ2u4.
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Suppose that Mλ+ε2−ε3 does not contain a critical character. Then the eigen-

values {μk, μk+1, . . . , μm}, k > 1, of Aλ+ε2−ε3 form a part of a critical connected

chain but without the critical character μ1. By Theorem 5.10 these eigenvalues are

of multiplicity 1. Let v1, v2 be eigenvectors of Aλ+ε2−ε3 . Then we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E23(u1) = a1v1,

E23(u2) = a2v1,

E23(u3) = a3v1 + a4v2,

E23(u4) = a5v1 + a6v2.

Since u1, u2, u3, and u4 are linearly independent and their images span at least a

two-dimensional space we have that dim(ker(E23 |Mλ
)) ≥ 2 which is impossible by

Corollary 5.11.

From Lemma 6.3, we immediately have the following.

Corollary 6.4. Let χ be a degenerate Gelfand–Tsetlin character such that μ1 =

χ(A) and λ = χ|h. If {μ1, μ2} is a λ-connected set, then there exists at most one

simple extension of χ such that both μ1 and μ2 have multiplicity 2.

Proof. Indeed, any such simple module M will contain a critical character χ′

determined by the condition E23(M(χ)) ⊂ M(χ′) +M(χ′′). But, by Theorem 6.1,

χ′ defines M uniquely.

Lemma 6.5. Let M be a simple Gelfand–Tsetlin module such that M is singular

but has no critical characters. Then A is diagonalizable on M .

Proof. Fix λ ∈ SuppM , then the distinct eigenvalues of Aλ form a singular

λ-connected chain. If this chain is critical then Aλ is diagonalizable since there

is no critical eigenvalue, see Theorem 5.10(ii)(d). Suppose that the chain is degen-

erate. Then by Theorem 5.10(ii)(b) one can order the distinct eigenvalues of Aλ in

the following way: {μ1, μ2, . . . , μm}, where μ1 = − 1
2r, and if the multiplicity of μi

equals 1 then the multiplicity of μi+1 is also 1. Suppose that M has a character χ̃

such that χ̃(A) = μ1 and μ1 has multiplicity 2. If μ2 has multiplicity 2, then by

Lemma 6.3 there exists a critical character χ′ in the Gelfand–Tsetlin support of

every simple extension of χ̃, and we obtain a contradiction.

Assume now that μ1 has multiplicity 2 but μ2 has multiplicity 1. Consider the

weight subspace M ′ = Mλ+ε2−ε3 and A′ = A|M ′ . Observe that M ′ �= 0, since

otherwise dim(kerE23|Mλ
) ≥ 2 which is a contradiction by Corollary 5.11. If A′ has

no critical eigenvalue, then neither does Aλ+ε2−ε3+k(ε1−ε2), for all integer k. In this

case all these subspaces Mλ+ε2−ε3+k(ε1−ε2), k ∈ Z can generate only one eigenvector

of A′ with eigenvalue μ1 and, hence, produce only multiplicity 1 eigenvalue μ1

of A′. But this contradicts to the simplicity of M . Therefore, A′ must contain a
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critical eigenvalue giving a contradiction again. Therefore, Aλ is diagonalizable,

which completes the proof.

The proof of Lemma 6.5 implies also the following statement.

Corollary 6.6. Let M be a simple Gelfand–Tsetlin module and χ a Gelfand–

Tsetlin character of M associated with λ ∈ h∗ and such that dim(M(χ)) = 2.

Then M has a critical character χ′ associated with the weight λ+ ε2 − ε3.

Theorem 6.7. Let M be a simple Gelfand–Tsetlin module and χ be a Gelfand–

Tsetlin character such that dim(M(χ)) = 2. Then M is the unique simple extension

of χ.

Proof. Let λ = χ|h. Since dim(M(χ)) = 2, the distinct eigenvalues of Aλ form

a singular λ-connected chain {μ1, . . . , μm}, m ≤ ∞. Moreover, there exists μi of

multiplicity 2. We proceed with two cases.

Case 1. The chain {μ1, . . . , μm} is critical. By Theorem 5.10 all distinct eigenvalues

can be ordered in the following way: {μ1, μ2, . . . , μm}, where μ1+1 = μ2, multiplic-

ity of μ1 is 1, and if the multiplicity of μi equals 1 for i > 1 then the multiplicity

of μi+1 is also 1. Therefore, the module M has a critical character χ′ such that

χ′(A) = μ1. Thus, every simple extension of χ contains χ′ in its Gelfand–Tsetlin

support. Applying Theorem 6.1, we conclude that M is unique.

Case 2. The chain {μ1, . . . , μm} is degenerate. By Theorem 5.10 one can order

the distinct eigenvalues of Aλ in the following way: {μ1, μ2, . . . , μm}, where μ1 =

− r
2 , and if the multiplicity of μi equals 1 then the multiplicity of μi+1 is also 1.

Therefore, M has a character χ̃ such that χ̃(A) = μ1 and μ1 has multiplicity 2. By

Corollary 6.6, A|Mλ+ε2−ε3
must contain a critical eigenvalue. Thus, M is unique by

Theorem 6.1. This completes the proof.

Theorem 6.8. Let M be a simple Gelfand–Tsetlin module such that M is singular

but has no critical characters. Then for each character χ ∈ SuppGT(M), M is the

unique simple extension of χ with the property that it has no critical characters.

Proof. Let as usual λ = χ|h and Aλ = A|Mλ
. It follows from Lemma 6.5 that Aλ

is diagonalizable. We proceed in two steps.

Step I. Suppose that χ belongs to a critical connected chain. As M does not have

critical characters, χ(A) belongs to a critical connected chain μi = i2 − 1
4 − 1

2r,

1 ≤ n ≤ i ≤ m ≤ ∞ for some integers n and m. Then as in Theorem 6.1, there

exists a basis {wi, n ≤ i ≤ m} such that

Awi = μiwi, Bwi =

⎧⎪⎪⎨⎪⎪⎩
bnwn + wn+1, i = n,

diwi−1 + biwi + wi+1, i > n,

dmwm−1 + bmwm, i = m.

(15)
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Hence, Bλ = B is determined uniquely by χ and Aλ. The uniqueness follows

from Lemma 5.17.

Step II. Suppose that χ(A) belongs to a degenerate chain {μ1, μ2, . . .} where μn =

n(n−1)− 1
2r, n ≥ 1 (see Lemma 5.9(i)). We proceed considering two cases depending

on the connected chain {μ1, μ2, . . .}.

Case 1. The chain {μ1, μ2, . . .} does not contain a degenerate character, that is

the eigenvalues of Aλ are {μk, μk+1, . . . , μs} for some k > 1 and some s ≤ ∞.

Applying relations from Lemma 5.3 one can choose a basis {wk, . . . , ws} of Mλ

such that the matrix of Aλ is diagonal and the matrix of Bλ has a tridiagonal

form as in the generic case. Suppose there exists another simple extension W of

χ satisfying the conditions of the theorem such that the eigenvalues of A|Wλ
are

{μd, μd+1, . . . , μt} for some d > 1 and some t ≤ ∞. If d = k and s = t, then the

diagonal matrices [A|Mλ
] = [A|Wλ

] will give the same matrix of Bλ, hence M � W

by Lemma 5.17.

Suppose d < k (note that in this case k ≤ t). Then applying relations from

Lemma 5.3 we obtain that Wλ has a C(h)-submodule U such that the eigenval-

ues of A|U are {μk, μk+1, . . . , μt}. Hence, M has a nontrivial proper submodule

M̃ such that the eigenvalues of A|
˜Mλ

are {μk, μk+1, . . . , μt}. This contradicts the

irreducibility of M . The case d > k is treated analogously.

Case 2. The chain {μ1, μ2, . . .} does contain a degenerate character, that is the

eigenvalues of Aλ are {μ1, μ2, . . . , μs} for some s ≤ ∞. Let χ′ be the character

associated with μ1. Using relations from Lemma 5.3, we see that r2 +2ar+4τ = 0

and there exists a basis {wi, 1 ≤ i ≤ s} of Mλ such that

Awi = λiwi, 1 ≤ i ≤ s, Bwi =

⎧⎪⎪⎨⎪⎪⎩
Tw1 + w2, i = 1,

qiwi−1 + biwi + wi+1, 1 < i < s,

qsws−1 + bsws, i = s,

(16)

where

q2 =
1

3

(
−1

8
r1r

2 +
1

2
(r1 + τ1)r − η

)
,

qi = di, i > 2

and T is a root of the equation

x2 − (r + a)x+ τ1 −
1

8
r1r

2 +
1

2
rτ1 − η = 0.

Let W be another simple extension of χ. Then μ1 must be an eigenvalue of A|Wλ
,

otherwise M is not simple. In fact, the quadratic equation on T shows that there

might exist two non-isomorphic simple modules with the same degenerate chain

{μ1, . . . , μs}. We will show that only one such module will satisfy the conditions of

the theorem.
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The hypothesis that there is no critical characters in all connected chains

implies that E23(M(χ′)) ⊂ M(χ̃), where χ̃ is a character such that χ̃(A) be-

longs to a critical connected chain (without critical characters by hypothesis).

Also, E23(W (χ′)) ⊂ W (χ̃). If both E23(M(χ′)) and E23(W (χ′)) are nonzero then

M(χ̃) �= 0 and W (χ̃) �= 0. We immediately conclude that M � W by Theorem 6.1.

Suppose E23(M(χ′)) = E23(W (χ′)) = 0. Apply the same arguments for E13. If

both E13(M(χ′)) and E13(W (χ′)) are nonzero, then M � W as above. On the

other hand, if E13(M(χ′)) = E13(W (χ′)) = 0, then M and W are simple quotients

of the same generalized Verma module generated by a weight vector v such that

E23v = E13v = 0. But such generalized Verma module has a unique simple quotient

implying M � W . Hence, it remains to consider mixed cases. We finish the proof

considering three subcases. Recall that a weight module is pointed if all its nonzero

weight spaces are one-dimensional. All other cases are considered analogously.

Case 2(a). Suppose E23(M(χ′)), E13(M(χ′)) �= 0, and E23(W (χ′)), E13(W (χ′)) =
0. Then W is a quotient of the generalized Verma module M1 generated by an

element v ∈ M1 such that E23v = E13v = 0. Suppose E32(W (χ′)) �= 0 and

E31(W (χ′)) �= 0. If one of E32(M(χ′)) or E31(M(χ′)) is nonzero then we are done.

Suppose E32(M(χ′)) = E31(M(χ′)) = 0 and thus M is a quotient of generalized

Verma module M2 generated by v′ such that E32v
′ = E31v

′ = 0. In order not to

have critical characters both M and W must be pointed modules, that is all weight

spaces have dimension 1. Let χ′(H1) = h1, χ
′(H2) = h2. Comparing the values of

Casimir elements on M and W we obtain h1 = −2h2. This condition guarantees

that M and W have common degenerate character χ′. Let us find the condition

when W is a pointed module. It is sufficient to check when the following system

has a nontrivial solution:

0 = E23(αE32v + βE31E12v) = h2αv + βE21E12,

0 = E13(αE32v + βE31E12v) = αE12v + β(h1 + h2 + 1)E12.

Assume that E12v �= 0. Then we have h2α − βh1 − 1
2βr = 0, and α + β(h1 +

h2 + 1) = 0. If h1 = 0, then M � W � C. If h1 �= 0 then h1 = 2, h2 = −1, and

χ′(A) = 0. It follows that E23v = E13v = E21v = 0 with h1 = 2, h2 = −1 or

E23v = E13v = E12v = 0 with h1 = −2, h2 = 1.

Consider first the case h1 = −2, and let μ ∈ h∗ be such that μ(H1) = μ(H2) =

−1. Then Wμ is one-dimensional and E12Wμ = 0. Hence, Wμ is a Gelfand–Tsetlin

subspace and A|Wμ = −Id. But, this is a critical value and, thus,W contains critical

characters, which is a contradiction.

Suppose now that h1 = 2 and consider μ ∈ h∗ such that μ(H1) = 1, μ(H2) = −2.

Then Wμ is one-dimensional and E21Wμ = 0. Hence, Wμ is a Gelfand–Tsetlin

subspace and A|Wμ = 0. Again, this is a critical value which is a contradiction.

Suppose now that E32(W (χ′)) = 0. Then E12(W (χ′)) = 0 and W is a highest-

weight module of highest weight χ′|H and χ′(H2) = h2 = 0. Since χ′ is degenerate
we have h1 = 0 or h1 = −2. In the case h1 = 0, we obtain M � W � C.
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Now suppose h1 = −2 and A|W (χ′) = −2Id. This highest-weight module has no

critical characters. Since E31W (χ′) �= 0 we have E31M(χ′) = 0, otherwise M � W

as before. Since A|M(χ′) = −2Id and all characters have multiplicity 1, we have

E12M(χ′) = 0. Thus, in addition we have E32M(χ′) = 0. Consider a weight μ ∈ h∗

such that μ(H1) = −1, μ(H2) = 1. The subspace Mμ is one-dimensional. In fact,

this is a critical Gelfand–Tsetlin subspace, since A|Mμ = −Id. Hence, M does not

satisfy the conditions of the theorem and W again is a unique required module.

Case 2(b). Suppose E23(M(χ′)), E13(W (χ′)) �= 0, and E23(W (χ′)), E13(M(χ′)) =
0. Now, we act by E32 and E31. Suppose first that E32(M(χ′)) = 0 and

E31(W (χ′)) = 0. Hence, M contains a nonzero vector v such that E13v =

E32v = E12v = 0. On the other hand, W contains a nonzero vector v′ such that

E31v
′ = E23v

′ = E21v
′ = 0. Moreover, H1v = H1v

′ = 0. But, since A is diagonaliz-

able on M and on W , we have E21v = E12v
′ = 0. Thus, M � W � C.

Suppose now E31(M(χ′)) = 0 and E32(W (χ′)) = 0. Hence, M contains a

nonzero vector v such that E13v = E31v = 0, and W contains a nonzero vec-

tor v′ such that E32v
′ = E23v

′ = 0. We obtain that H1v = H1v
′ = 0 and

H2v = H2v
′ = 0. Moreover, Av = Av′ = 0. Since A is diagonalizable on M

and W we have E12v = E12v
′ = 0 and E21v = E21v

′ = 0. Thus, M � W � C.

Finally, let E31(M(χ′)) = 0 and E32(M(χ′)) = 0. Hence, M contains a nonzero

vector v such that E13v = E31v = E32v = 0, implying E12v = 0. So, either

H1v = H2v = 0 and M � W � C, or H1v = −2 and H2v = 2. In the latter case W

contains a nonzero vector v′ such that E23v
′ = 0, H1v

′ = −2v′, and Av′ = −2v′.
Hence, E12v

′ = 0 and E13v
′ = 0 since A is diagonalizable. We have c1v = c1v

′

implying H2v = H2v
′ = 0 which is a contradiction.

Case 2(c). Suppose E23(M(χ′)) �= 0, and E23(W (χ′)), E13(M(χ′)), E13(W (χ′)) =
0. Now, we act by E32 and E31 on M(χ′) and W (χ′). Without loss of generality

we may assume that E32(M(χ′)) = 0 and E31(W (χ′)) = 0. Therefore, E21W (χ′) =
[E23, E31]W (χ′) = 0 and AW (χ′) = 0. Hence, we have either H1w = H2w = 0 or

H1w = 2w, H2w = −2w for any w ∈ W (χ′). In the first case, we obtain M � W �
C. Consider the second case. Since AM(χ′) = 0, we must have E21(M(χ′)) = 0

(otherwise A will not be diagonalizable on Mμ), where E21(M(χ′)) ⊂ Mμ. Thus,

E23(M(χ′)) = [E21, E13]M(χ) = 0, which is a contradiction.

We next state the main theorem in this section.

Theorem 6.9. Let M be a simple Gelfand–Tsetlin g-module and χ ∈ SuppGT(M).

Consider the following conditions :

(i) χ is non-critical and dimM(χ′) ≤ 1 for any χ′ ∈ Γ∗;
(ii) χ is non-critical and dim(M(χ)) = 2;

(iii) χ is critical ;

(iv) M has no critical characters.
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If any of (ii)–(iv) holds, then M is the unique simple extension of χ. If (i) holds, then

M is the unique simple extension of χ with property (i), but χ may have another

simple extension with two-dimensional Gelfand–Tsetlin multiplicities.

Proof. Let χ be a non-critical character of M . Suppose first that M is generic.

Then M is the only simple extension of χ by Theorem 5.18. Suppose now that

M is singular and satisfies the conditions in (i). Assume first that χ(A) belongs

to a critical chain but χ(A) itself is non-critical. Then M is the unique simple

extension of χ by Corollary 6.2. Assume now that χ(A) belongs to a degenerate

chain {μ1, μ2, . . .} where μn = n(n − 1) − 1
2r, n ≥ 1 (see Lemma 5.9(i)). Suppose

that M (1) and M (2) are two simple extensions of χ satisfying the conditions of (i).

If μ1 is not an eigenvalue of A
(i)
λ := A|

M
(i)
λ

, where λ = χ|h, then M (1) � M (2) since

A
(i)
λ (and thus M (i)) is uniquely determined by χ(A) in this case. Assume that μ1

is an eigenvalue of both A
(i)
λ , i = 1, 2. Consider the weight λ̃ := λ + ε2 − ε3 and

the eigenvalues of A
(i)

λ̃
. They belong to the same critical chain. If both A

(i)

λ̃
have

a common non-critical eigenvalue then M (1) � M (2) by Corollary 6.2. Hence, may

assume that A
(i)

λ̃
have distinct eigenvalues. This is only possible if dimM

(i)
λ = 1 and

dimM
(i)

λ̃
≤ 1, i = 1, 2. Let B|

M
(i)
λ

= biId. Recall that a weight module is torsion

free if all root vectors act injectively on the module. Now consider the following

cases.

Case 1. χ(A) − kχ(H1) �= 0, bi −mχ(H2) �= 0 for i = 1, 2 and k,m ∈ Z. In this

case both M (1) and M (2) are pointed torsion-free modules. Set λ̃(Hi) = h̃i, i = 1, 2.

Then we have A
(1)

λ̃
= μ̃1Id, A

(2)

λ̃
= μ̃2Id, B

(1)
ρ = b̃1Id, and B

(2)

λ̃
= b̃2Id, where we

can assume that μ̃1 = − 1
4 − 1

4 h̃
2
1 + h̃1 and μ̃2 = μ̃1 + 1. Using the second identity

in Lemma 5.3 we also have

ab̃i = 2μ̃ib̃i + b̃2i + r1μ̃i + τ1, i = 1, 2. (17)

Keeping in mind that τ1 and a depend of h̃1 and h̃2, r depends of h̃1 and bi, r1
depend of h̃2, (a − 2μ̃1)b̃1 − b̃21 − r1μ̃1 − τ1 can be express as a polynomial in h̃1,

h̃2. Let us consider the two-variable polynomial

fi(x, y) = (a(x, y)− 2μi(x))b̃i(y)− b̃2i (y)− r1(y)μi(x)− τ1(x, y), i = 1, 2.

Then by (17), fi(h̃1, h̃2) = 0. An easy calculation shows that

A
(1)

λ̃+2ε2−2ε3
= μ̃2(h̃1 − 2)Id, A

(2)

λ̃+2ε2−2ε3
= μ̃1(h̃1 − 2)Id,

B
(1)

λ̃+2ε2−2ε3
= b̃2(h̃2 + 4)Id, B

(2)

λ̃+2ε2−2ε3
= b̃1(h̃2 + 4)Id.

Then fi(h̃1−2, h̃2+4) = 0, i = 1, 2. Similarly, using the operator E2
12 we obtain

fi(h̃1 + 4, h̃2 − 2) = 0. Hence, fi(h̃1 + 6, h̃2) = 0. If we repeat this argument again

we will obtain fi(h̃1 + 12, h̃2) = 0 and so on. Hence, if g(x) = f1(x, h̃2), we have

shown that g(t) = 0 implies g(t+6) = 0, so g has infinitely many roots, thus g = 0,

which is impossible.
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Case 2. χ(A) − kχ(H1) = 0, bi − mχ(H2) �= 0 for some k ∈ Z and all i = 1, 2,

m ∈ Z. Without loss of generality we may assume that χ(A) = 0. Since A is

diagonalizable on both modules, then this immediately implies that both M (1)

and M (2) are quotients of generalized Verma modules (induced from an infinite-

dimensional simple sl(2)-module W ) that have the same central character and the

same weight support. Since the generalized Harish-Chandra homomorphism defines

W uniquely we conclude that M (1) � M (2).

Case 3. χ(A) − kχ(H1) = 0, b1 − m1χ(H2) = 0, b2 − m2χ(H2) �= 0, for some

k,m1 ∈ Z and all i = 1, 2, m2 ∈ Z. This case is handled in a similar way as Case 2.

Case 4. χ(A) − kχ(H1) = 0 and bi = miχ(H2) for some integer k,mi, i = 1, 2.

Therefore, as in Case 2, both M (1) and M (2) are quotients of the same generalized

Verma module. Hence, m1 = m2 and M (1) � M (2). This completes the proof of (i).

If χ is a non-critical character such that dim(M(χ)) = 2, then M is a unique

simple extension of χ by Theorem 6.7 implying the result for (ii). The uniqueness

of the extension if (iii) holds follows immediately from Theorem 6.1. It remains to

consider (iv). Suppose M is generic. Then the uniqueness of simple extension for

any character of M again follows from Theorem 5.18. If M is singular but without

critical characters, then we apply Theorem 6.8.

7. Realizations of all Simple Gelfand–Tsetlin Modules for sl(3)

In this section, we give an explicit realization of all simple Gelfand–Tsetlin modules

of sl(3). For this purpose, we consider any Gelfand–Tsetlin character χ ∈ Γ∗ and

construct a Gelfand–Tsetlin module M such that any simple extension of χ is

isomorphic to some subquotient of M (recall that, by Theorem 4.9, the number of

non-isomorphic simple extensions is at least one and at most two).

Remark 4.2 provides a natural correspondence between the Gelfand–Tsetlin

characters and the Gelfand–Tsetlin tableaux. Hence, given a character χ we can

associate a tableau T (v) and the problem of constructing simple extensions of χ is

reduced to the problem of finding simple modules with tableaux realization contain-

ing T (v) as a basis element. Recall that any Gelfand–Tsetlin tableau T (v) of height

3 is either generic (v21−v22 /∈ Z) or 1-singular (v21−v22 ∈ Z), and the constructions

in Sec. 4 allow us to describe an explicit Gelfand–Tsetlin module V (T (v)) for any

T (v). This, combined with Theorem 6.9, implies that for the desired classification,

it is sufficient to describe all simple subquotients of the modules V (T (v)).

7.1. Structure of generic sl(3)-modules V (T (v))

In this section, we consider all possible generic Gelfand–Tsetlin tableaux T (v) and

describe all simple subquotients of the sl(3)-module V (T (v)). The description in-

cludes an explicit basis for each simple subquotient, its weight support and its

Loewy decomposition. Since g = sl(3), the action of E11 + E22 + E33 is zero, thus
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w31 + w32 + w33 + 3 = 0 for any Gelfand–Tsetlin tableaux T (w). We first rewrite

Theorem 4.14 in the case of sl(3).

Theorem 7.1. If T (v) is a generic Gelfand–Tsetlin tableau of height 3, then the

vector space V (T (v)) spanned by the set of tableaux B(T (v)) has a structure of

a Gelfand–Tsetlin sl(3)-module with the action of sl(3) on V (T (v)) given by the

Gelfand–Tsetlin formulas :

E12(T (w)) = −(w21 − w11)(w22 − w11)T (w + δ11),

E21(T (w)) = T (w − δ11),

E32(T (w)) =
w21 − w11

w21 − w22
T (w − δ21)− w22 − w11

w21 − w22
T (w − δ22),

E23(T (w)) =
(w31 − w21)(w32 − w21)(w33 − w21)

w21 − w22
T (w + δ21)

− (w31 − w22)(w32 − w22)(w33 − w22)

w21 − w22
T (w + δ22),

E13(T (w)) =
(w21 − w31)(w21 − w32)(w21 − w33)(w22 − w11)

w21 − w22
T (w + δ21 + δ11)

+
(w31 − w22)(w32 − w22)(w33 − w22)(w21 − w11)

w21 − w22
T (w + δ22 + δ11),

E31(T (w)) =
1

w21 − w22
T (w − δ21 − δ11)− 1

w21 − w22
T (w − δ22 − δ11),

H1(T (w)) = (2w11 − (w21 + w22 + 1))T (w), (18)

H2(T (w)) = (2(w21 + w22 + 1)− w11)T (w). (19)

By Theorem 5.18, a generic character admits a unique simple extension. In order

to describe such simple extension, given a tableau T (w) ∈ B(T (v)) we will describe
explicit basis of tableaux for the simple subquotient of V (T (v)) that contains T (w).

By (18) and (19), it is clear that B(T (v)) is an eigenbasis for the action of the

generators of the Cartan subalgebra h. In particular, any subquotient of V (T (v)) is

a weight module. The following proposition describes explicit bases for the weight

subspaces of the subquotients of V (T (v)).

Proposition 7.2. Let M be a Gelfand–Tsetlin module with basis of tableaux BM ⊂
B(T (v)) for some generic tableau T (v). If T (w) ∈ BM is a tableau of weight λ, then

the weight space Mλ is spanned by the set of tableaux {T (w+(i,−i, 0)) | i ∈ Z}∩BM .

Proof. As B(T (v)) = B(T (w)), we just need to characterize tableaux of the form

T (w + (m,n, k)) in BM with the same weight λ of T (w). By the Gelfand–Tsetlin
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formulas we have

H1(T (w + (m,n, k))) = (2(w11 + k)− (w21 +m+ w22 + n+ 1))T (w + (m,n, k)),

H2(T (w + (m,n, k))) = (2(w21 +m+ w22 + n+ 1)− (w11 + k))T (w + (m,n, k)).

In particular, the weight of T (w) is

λ = (2w11 − (w21 + w22 + 1), 2(w21 + w22 + 1)− w11).

Furthermore, a tableau T (w+(m,n, k)) in BM has weight λ ifm,n, k satisfym+n =

0 and k = 0.

In this section, we will use Theorem 4.25 to describe all simple subquotients of

the generic sl(3)-modules V (T (v)). Let us recall this result.

Let T (v) be a generic Gelfand–Tsetlin tableau of height 3 and T (w) ∈ B(T (v))
and Ω+(T (u)) = {(r, s, t) |urs − ur−1,t ∈ Z≥0}. The complex vector space with

basis N (T (w)) = {T (w′) ∈ B(T (v)) |Ω+(T (w)) ⊆ Ω+(T (w′))} is a submodule of

V (T (v)) containing T (w). Moreover, I(T (w)) := {T (w′) ∈ B(T (v)) |Ω+(T (w)) =

Ω+(T (w′))} is a basis of the unique simple extension of χw, where χw ∈ Γ∗ is given

by χw(crs) = γrs(w).

By Theorem 4.25, bases of the subquotients of V (T (v)) can be described by

subsets of Z3. In order to describe these bases, we introduce the following notation.

Definition 7.3. Let T (w) be a tableau and B be a subset of Z3. Assume that

M is a Gelfand–Tsetlin module with basis {T (w+ (m,n, k)) | (m,n, k) ∈ B}. Then
we will denote M by M(B, T (w)), or simply by M(B) if T (w) is fixed. If M(B) is
simple, then we will write L(B) for M(B).

Example 7.4. With the notation of Definition 7.3, the simple module from Ex-

ample 4.27 can be written as follows:

L

⎛⎜⎜⎝
m ≤ 0

k ≤ m

n > −2

⎞⎟⎟⎠ = M

⎛⎜⎜⎝
m ≤ 0,

k ≤ m,

n > −2,

T (v)

⎞⎟⎟⎠,
where v = (a, b, c, a, b+ 2, a).

7.2. Realizations of all simple generic Gelfand–Tsetlin

sl(3)-modules

In this section, we describe all simple objects in every generic block GT T (v) (see

Definition 4.12 and Remark 4.2). Such description will include an explicit tableaux

basis of each simple subquotient M in GT T (v) and the weight support of M . For

the weight support we will use Proposition 7.2 and the explicit basis. If the weight

multiplicities are finite, a picture of the weight support along with the multiplicities

is provided. We also present the components of the Loewy series of the universal

2130001-39

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

08
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

April 20, 2021 16:29 WSPC/1664-3607 319-BMS 2130001

V. Futorny, D. Grantcharov & L. E. Ramirez

module V (T (v)). A rigorous proof based on Theorem 4.25, Proposition 7.2, and

Theorem 4.29 is given for Case (G6) only, however, for all other cases the reasoning

is the same.

Until the end of this section we use the following convention. The entries of

the Gelfand–Tsetlin tableaux will be integer shifts of some of the complex numbers

a, b, c, x, y, z. We also assume that if any two of a, b, c, x, y, z appear in the same

row or in consecutive rows of a given tableau, then their difference is not integer.

Remark 7.5. By Theorem 5.18, any generic character has a unique simple exten-

sion. In particular, if T (v) is generic, the number of simple subquotients of V (T (v))

is equal to the number of simple modules in GT T (v). This number depends only on

Ω(T (v)) (see [20, Theorem 7.6]).

(G1) Consider the following Gelfand–Tsetlin tableau:

a b c

T (v)= x y

z

The module V (T (v)) is simple, and GT T (v) has unique (up to isomorphism)

simple module. This module has infinite-dimensional weight multiplicities.

Module Basis

L1 L(Z3)

(G2) Let T (v) be the tableau:

a b c

x y

x

I. Simple subquotients.

In this case, the module V (T (v)) has two simple subquotients and they

have infinite-dimensional weight multiplicities:

Module Basis

L1 L(k ≤ m)

L2 L(m < k)

II. Loewy series.

L1, L2.
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(G3) Consider the tableau:

a b c

T (v) = a y

z

I. Simple subquotients.

In this case, the module V (T (v)) has two simple subquotients and they

have infinite-dimensional weight multiplicities:

Module Basis

L1 L(m ≤ 0)

L2 L(0 < m)

II. Loewy series.

L1, L2.

(G4) Consider the tableau:

a b c

T (v) = a y

y

I. Simple subquotients.

In this case, the module V (T (v)) has four simple subquotients. The bases

and corresponding weight lattices are given by

(i) Modules with infinite-dimensional weight multiplicities:

Module Basis

L1 L

(
m ≤ 0

k ≤ n

)
L4 L

(
0 < m

n < k

)
(ii) Modules with unbounded finite weight multiplicities:

Module Basis

L2 L

(
0 < m

k ≤ n

)
L3 L

(
m ≤ 0

n < k

)

2130001-41

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

08
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

April 20, 2021 16:29 WSPC/1664-3607 319-BMS 2130001

V. Futorny, D. Grantcharov & L. E. Ramirez

The origin of the picture above corresponds to the sl(3)-weight as-

sociated to the tableau T (v).

II. Loewy series.

L1, L2 ⊕ L3, L4.

(G5) Let T (v) be the generic tableau:

a b c

a y

a

I. Simple subquotients.

In this case, the module V (T (v)) has four simple subquotients. The bases

and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L2 L

(
m ≤ 0

m < k

)
L3 L

(
0 < m

k ≤ m

)
(ii) Two modules with unbounded finite weight multiplicities. In this

case, the origin of the weight lattice corresponds to the sl(3)-weight

associated to the tableau T (v + δ11):

Module Basis

L1 L

(
m ≤ 0

k ≤ m

)
L4 L

(
0 < m

m < k

)
2130001-42
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II. Loewy series.

L1, L2 ⊕ L3, L4.

(G6) Consider the tableau:

a b c

T (v) = a b

a

I. Simple subquotients.

In this case, the module V (T (v)) has eight simple subquotients. The

bases and corresponding weight lattices are given by

(i) Two modules with infinite-dimensional weight spaces

Module Basis

L4 L

⎛⎝ 0 < m

n ≤ 0

k ≤ m

⎞⎠
L5 L

⎛⎝m ≤ 0

0 < n

m < k

⎞⎠
(ii) Six modules with unbounded finite weight multiplicities. In this

case, the origin of the weight lattice corresponds to the sl(3)-weight
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associated to the tableau T (v + δ11 + δ21):

Module Basis

L1 L

⎛⎝m ≤ 0

n ≤ 0

k ≤ m

⎞⎠
L2 L

⎛⎝m ≤ 0

n ≤ 0

m < k

⎞⎠
L3 L

⎛⎝m ≤ 0

0 < n

k ≤ m

⎞⎠
L6 L

⎛⎝ 0 < m

n ≤ 0

m < k

⎞⎠
L7 L

⎛⎝ 0 < m

0 < n

k ≤ m

⎞⎠
L8 L

⎛⎝ 0 < m

0 < n

m < k

⎞⎠
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II. Loewy series.

L1, L2 ⊕ L3 ⊕ L4, L5 ⊕ L6 ⊕ L7, L8.

Proof. If M denotes the universal module V (T (v)), we proceed as follows:

first prove that L1 is a simple submodule of M , then that M1 := M/L1 has

simple submodules isomorphic to L2, L3, and L4, then prove that M2 :=

M1/(L2 ⊕ L3 ⊕ L4) has simple submodules isomorphic to L5, L6, and L7,

and finally show that L8 = M2/(L5 ⊕ L6 ⊕ L7) is a simple module.

By Theorem 4.25, we see that, L1 (respectively, L2, L3, L4, L5, L6,

L7, and L8) is a simple subquotient of V (T (v)) containing the tableau T (v)

(respectively, T (v+(0, 0, 1)), T (v+(0, 1, 0)), T (v+(1, 0, 1)) , T (v+(0, 1, 1)),

T (v + (1, 0, 2)), T (v + (1, 1, 1)), and T (v + (1, 1, 2))). To find the layers of

the Loewy series decomposition for V (T (v)) we apply Theorem 4.29 and

Remark 4.30. We describe these layers in four steps.

Step 1. L1 is a simple submodule of M . By Theorem 4.25(i), the module

with basis N (T (v)) = {T (w) |Ω+(T (v)) ⊆ Ω+(T (w))} is a submodule of

M , but Ω+(T (v)) = {(3, 1, 1), (3, 2, 2), (2, 1, 1)} = Ω(T (v)), thus N (T (v)) =

I(T (v)). Hence, L1 is a simple submodule of M .

Step 2. M1 := M/L1 has simple submodules isomorphic to L2, L3, and L4.

For these modules we have that

Ω+(T (v + (1, 0, 1))) = {(3, 2, 2), (2, 1, 1)},

Ω+(T (v + (0, 0, 1))) = {(3, 1, 1), (3, 2, 2)},

Ω+(T (v + (0, 1, 0))) = {(3, 1, 1), (2, 1, 1)}.

Hence, by Theorem 4.25(i) the modules with bases I(T (v + (1, 0, 1))) ∪
I(T (v)), I(T (v + (0, 0, 1))) ∪ I(T (v)) and I(T (v + (0, 1, 0))) ∪ I(T (v)) are

submodules of M . Therefore, the modules with bases I(T (v + (1, 0, 1)));

I(T (v + (0, 0, 1))), and I(T (v + (0, 1, 0))) are submodules of M1 := M/L1

since L1 is has basis I(T (v)).
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Step 3. M2 := M1/(L2 ⊕ L3 ⊕ L4) has simple submodules isomorphic to

L5, L6, and L7. For these modules we have

Ω+(T (v + (0, 1, 1))) = {(3, 1, 1)},

Ω+(T (v + (1, 1, 1))) = {(2, 1, 1)},

Ω+(T (v + (1, 0, 2))) = {(3, 2, 2)}.

Hence, by Theorem 4.25(i) the modules with bases I(T (v + (1, 0, 1))) ∪
I(T (v)); I(T (v + (0, 0, 1))) ∪ I(T (v)) and I(T (v + (0, 1, 0))) ∪ I(T (v)) are

submodules of M . Therefore, the modules with bases I(T (v + (1, 0, 1)));

I(T (v+(0, 0, 1))) and I(T (v+(0, 1, 0))) are submodules of M2 := M1/(L2⊕
L3 ⊕ L4) because L1 has a basis I(T (v)).

Step 4. M3/(L5 ⊕ L6 ⊕ L7) � L8. In fact, Ω+(T (v + (1, 1, 2))) = ∅ so the

submodule of V (T (v)) generated by T (v+(1, 1, 2)) is V (T (v)) and the simple

subquotient containing T (v+(1, 1, 2)) has the same basis as M3/(L5⊕L6⊕
L7) so, we have M3/(L5 ⊕ L6 ⊕ L7) � L8.

(G7) Consider the tableau:

a b c

T (v) = a b

z

I. Simple subquotients.

In this case, the module V (T (v)) has four simple subquotients.

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L2 L

(
0 < m

n ≤ 0

)
L3 L

(
m ≤ 0

0 < n

)
(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L1 L

(
m ≤ 0

n ≤ 0

)
L4 L

(
0 < m

0 < n

)
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The origin of the picture above corresponds to the sl(3)-weight associ-

ated to the tableau T (v + δ11 + δ21).

II. Loewy series.

L1, L2 ⊕ L3, L4.

(G8) Set t ∈ Z>0 and consider the following Gelfand–Tsetlin tableau:

a a− t c

T (v) = a y

z

I. Simple subquotients.

In this case, the module V (T (v)) has three simple subquotients.

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L1 L
(
m ≤ −t

)
L3 L

(
0 < m

)
(ii) A cuspidal module with t-dimensional weight spaces:

Module Basis

L2 L
(
−t < m ≤ 0

)
II. Loewy series.

L1, L2, L3.
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(G9) For each t ∈ Z>0, let consider the following generic tableau:

a a− t c

T (v) = a y

a

I. Simple subquotients.

In this case, the module V (T (v)) has six simple subquotients. The bases

and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L2 L

(
m ≤ −t

m < k

)
L5 L

(
0 < m

k ≤ m

)

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L1 L

(
m ≤ −t

k ≤ m

)
L6 L

(
0 < m

m < k

)

2130001-48

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

08
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

April 20, 2021 16:29 WSPC/1664-3607 319-BMS 2130001

Classification of simple Gelfand–Tsetlin modules of sl(3)

(iii) Two modules with weight multiplicities bounded by t:

Module Basis

L3 L

(
−t < m ≤ 0

k ≤ m

)
L4 L

(
−t < m ≤ 0

m < k

)

The pictures above correspond to the case t = 2, and the origin is the

sl(3)-weight associated to the tableau T (v − 2δ21).

II. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5, L6.

(G10) For each t ∈ Z>0, let T (v) be the following Gelfand–Tsetlin tableau:

a a− t c

a y

y

I. Simple subquotients.

In this case, the module V (T (v)) has six simple subquotients. The bases

and corresponding weight lattices are given by:

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L1 L

(
m ≤ −t

k ≤ n

)
L6 L

(
0 < m

n < k

)
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(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L3 L

(
m ≤ −t

n < k

)
L4 L

(
0 < m

k ≤ n

)

(iii) Two modules with finite weight multiplicities bounded by t.

Module Basis

L2 L

(
−t < m ≤ 0

k ≤ n

)
L5 L

(
−t < m ≤ 0

n < k

)

The pictures above correspond to the case t = 2, and the origin is the

sl(3)-weight associated to the tableau T (v − δ22).

II. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5, L6.
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(G11) For any t ∈ Z>0, let T (v) be the tableau:

a a− t c

a c

a

I. Simple subquotients.

In this case, the module V (T (v)) has 12 simple subquotients. We provide

pictures of the weight lattice corresponding to the case t = 2, and with

origin at the sl(3)-weight associated to the tableau T (v).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L5 L

⎛⎝m ≤ −t

0 < n

m < k

⎞⎠
L8 L

⎛⎝ 0 < m

n ≤ 0

k ≤ m

⎞⎠
(ii) Six modules with unbounded finite weight multiplicities:

Module Basis

L1 L

⎛⎝m ≤ −t

n ≤ 0

k ≤ m

⎞⎠
L2 L

⎛⎝m ≤ −t

n ≤ 0

m < k

⎞⎠
L3 L

⎛⎝m ≤ −t

0 < n

k ≤ m

⎞⎠
L10 L

⎛⎝ 0 < m

n ≤ 0

m < k

⎞⎠
L11 L

⎛⎝ 0 < m

0 < n

k ≤ m

⎞⎠
L12 L

⎛⎝ 0 < m

0 < n

m < k

⎞⎠
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(iii) Four modules with finite weight multiplicities bounded by t:

Module Basis

L4 L

⎛⎝−t < m ≤ 0

n ≤ 0

k ≤ m

⎞⎠
L6 L

⎛⎝−t < m ≤ 0

0 < n

k ≤ m

⎞⎠
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Module Basis

L7 L

⎛⎝−t < m ≤ 0

n ≤ 0

m < k

⎞⎠
L9 L

⎛⎝−t < m ≤ 0

0 < n

m < k

⎞⎠

II. Loewy series.

L1, L2 ⊕ L3 ⊕ L4, L5 ⊕ L6 ⊕ L7 ⊕ L8, L9 ⊕ L10 ⊕ L11, L12.

(G12) Consider t ∈ Z>0, and T (v) to be the Gelfand–Tsetlin tableau:

a b b− t

T (v) = a b

a

I. Simple subquotients.

In this case, the module V (T (v)) has 12 simple subquotients. We provide

pictures of the weight lattice corresponding to the case t = 2, and with

origin at the sl(3)-weight associated to the tableau T (v + δ11).
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(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L4 L

⎛⎝ 0 < m

n ≤ −t

k ≤ m

⎞⎠
L9 L

⎛⎝m ≤ 0

0 < n

m < k

⎞⎠
(ii) Six modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎝ m ≤ 0

n ≤ −t

k ≤ m

⎞⎠
L2 L

⎛⎝ m ≤ 0

n ≤ −t

m < k

⎞⎠
L5 L

⎛⎝m ≤ 0

0 < n

k ≤ m

⎞⎠
L6 L

⎛⎝ 0 < m

n ≤ −t

m < k

⎞⎠
L11 L

⎛⎝ 0 < m

0 < n

k ≤ m

⎞⎠
L12 L

⎛⎝ 0 < m

0 < n

m < k

⎞⎠
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(iii) Four modules with finite weight multiplicities bounded by t:

Module Basis

L3 L

⎛⎝−t < n ≤ 0

m ≤ 0

k ≤ m

⎞⎠
L7 L

⎛⎝ m ≤ 0

−t < n ≤ 0

m < k

⎞⎠
L8 L

⎛⎝ 0 < m

−t < n ≤ 0

k ≤ m

⎞⎠
L10 L

⎛⎝ 0 < m

−t < n ≤ 0

m < k

⎞⎠
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II. Loewy series.

L1, L2 ⊕ L3 ⊕ L4, L5 ⊕ L6 ⊕ L7 ⊕ L8, L9 ⊕ L10 ⊕ L11, L12.

(G13) Consider t ∈ Z>0. Set T (v) to be the following Gelfand–Tsetlin tableau:

a a− t c

a c

z

I. Simple subquotients.

In this case, the module V (T (v)) has six simple subquotients. We provide

pictures of the weight lattice corresponding to the case t = 2, and with

origin at the sl(3)-weight associated to the tableau T (v + δ11).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L3 L

(
m ≤ −t

0 < n

)
L4 L

(
0 < m

n ≤ 0

)
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(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L1 L

(
m ≤ −t

n ≤ 0

)
L6 L

(
0 < m

0 < n

)

(iii) Two modules with finite weight multiplicities bounded by t:

Module Basis

L2 L

(
−t < m ≤ 0

n ≤ 0

)
L5 L

(
−t < m ≤ 0

0 < n

)

II. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5, L6.
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(G14) Set t, s ∈ Z>0 with t < s and let T (v) be the following Gelfand–Tsetlin

tableau:

a a− t a− s

T (v) = a y

a

I. Simple subquotients.

In this case, the module V (T (v)) has eight simple subquotients. We

provide pictures of the weight lattice corresponding to the case t = 1,

s = 2, and with origin at the sl(3)-weight associated to the tableau T (v).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L3 L

(
m ≤ −s

m < k

)
L6 L

(
0 < m

k ≤ m

)

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L1 L

(
m ≤ −s

k ≤ m

)
L8 L

(
0 < m

m < k

)
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(iii) Four modules with finite weight multiplicities. The modules L4 and

L7 have multiplicities bounded by t, and L2, L5 have multiplicities

bounded by s− t:

Module Basis

L2 L

(
−s < m ≤ −t

k ≤ m

)
L4 L

(
−t < m ≤ 0

k ≤ m

)
L5 L

(
−s < m ≤ −t

m < k

)
L7 L

(
−t < m ≤ 0

m < k

)

II. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5, L6 ⊕ L7, L8.
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(G15) Set t, s ∈ Z>0 with t < s and let T (v) be the following tableau:

a a− t a− s

T (v) = a y

y

I. Simple subquotients.

In this case, the module V (T (v)) has eight simple subquotients. We

provide pictures of the weight lattice corresponding to the case t = 1,

s = 2, and with origin at the sl(3)-weight associated to the tableau

T (v − δ22).

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L1 L

(
m ≤ −s

k ≤ n

)
L8 L

(
0 < m

n < k

)

(ii) Two modules with unbounded finite weight multiplicities:

Module Basis

L3 L

(
m ≤ −s

n < k

)
L6 L

(
0 < m

k ≤ n

)

(iii) Four modules with bounded weight multiplicities. The modules

L4 and L7 have multiplicities bounded by t, and L2, L5 have
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multiplicities bounded by s− t:

Module Basis

L2 L

(
−s < m ≤ −t

k ≤ n

)
L4 L

(
−t < m ≤ 0

k ≤ n

)
L5 L

(
−s < m ≤ −t

n < k

)
L7 L

(
−t < m ≤ 0

n < k

)

II. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5, L6 ⊕ L7, L8.

(G16) For any t, s ∈ Z>0 with t < s let T (v) be the following tableau:

a a− t a− s

T (v) = a y

z
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I. Simple subquotients.

In this case, the module V (T (v)) has four simple subquotients. The bases

and corresponding weight multiplicities are given by

(i) Two modules with infinite-dimensional weight multiplicities:

Module Basis

L1 L
(
m ≤ −s

)
L4 L

(
0 < m

)
(ii) Two cuspidal modules; L2 with weight multiplicities s − t and L3

with weight multiplicities t:

Module Basis

L2 L
(
−s < m ≤ −t

)
L3 L

(
−t < m ≤ 0

)
II. Loewy series.

L1, L2, L3, L4.

7.3. Structure of singular sl(3)-modules V (T (v̄))

In this section, we describe all simple singular Gelfand–Tsetlin sl(3)-modules. Like

in the generic case it is enough to explicitly present all simple subquotients of

V (T (v̄)) for every 1-singular vector v̄.

7.3.1. Singular Gelfand–Tsetlin formulas

Recall the construction of the 1-singular sl(3)-modules V (T (v̄)) in Sec. 4.4. We

adapt this construction to g = sl(3). Since the singularity appears in row 2, we fix

v̄ ∈ T3(C) such that v̄21 = v̄22. Also, we denote by τ the permutation in S3×S2×S1

that interchanges the (2, 1)th and (2, 2)th entries and is identity on rows 1 and 3.

Recall that V (T (v̄)), as a vector space, is generated by the set of tableaux

{T (v̄+z),DT (v̄+z′) | z, z′ ∈ Z3} satisfying the relations T (v̄+z)−T (v̄+τ(z)) = 0

and DT (v̄ + z) +DT (v̄ + τ(z)) = 0. As explained in Remark 4.34,

B(T (v̄)) = {T (v̄ + z),DT (v̄ + w) | z21 ≤ z22 and w21 > w22}

is a basis of V (T (v̄)).

Definition 7.6. Given w ∈ Z3, the tableau associated to w with respect to B(T (v̄))
is defined by

Tab(w) :=

{
T (v̄ + w) if w21 ≤ w22,

DT (v̄ + w) if w21 > w22.

In particular, B(T (v̄)) = {Tab(w) |w ∈ Z3}.
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We next write explicitly the formulas for the action of sl(3) on V (T (v̄)). We

again use the conventions v = (v31, v32, v33, v21, v22, v11), v̄ = (a, b, c, x, x, z), and

w = (0, 0, 0,m, n, k). For any rational function f in {vij}1≤j≤i≤3, ∂
v̄
vij (f) will stand

for ∂f
∂vij

(v̄).

Recall that by Proposition 4.22, the Gelfand–Tsetlin formulas for generic mod-

ules can be written as follows:

Hi(T (v + z)) = hi(v + z)T (v + z),

ErsT (v + z) =
∑

σ∈Φrs

ers(σ(v + z))T (v + z + σ(εrs)),

where h1(w) = 2w11− (w21+w22+1), h2(w) = 2(w21+w22+1)−w11, and ers(w),

εrs are defined in Example 4.23.

Using the relations T (v̄+z)−T (v̄+τ(z)) = 0 and DT (v̄+z)+DT (v̄+τ(z)) = 0

(see Sec. 4.4) we can write the above formulas in a simpler form. Set for convenience

w̄ = v̄ + w. Then

Hi(Tab(w)) = hi(v̄ + w)Tab(w) for i = 1, 2, (20)

E21(Tab(w)) = Tab(w + ε21), (21)

E12(Tab(w)) = e12(v̄ + w)Tab(w + ε12). (22)

If E = Eij ∈ {E32, E23, E31, E13}, ε denotes the corresponding εij , and ẽ(w) :=

(v21 − v22)e(w), then the action of E on Tab(w) is given by

2(ẽ(w̄)DT (w̄ + ε) +Dv̄(ẽ(v + w))T (w̄ + ε)) if w21 = w22, (23)

e(w̄)T (w̄ + ε) + e(τ(w̄))T (w̄ + τ(ε)) if w21 < w22, (24){
Dv̄(e(v + w))T (w̄ + ε) +Dv̄(e(τ(v + w)))T (w̄ + τ(ε))

+e(w̄)DT (w̄ + ε) + e(τ(w̄))DT (w̄ + τ(ε))
if w21 > w22. (25)

Remark 7.7. Note that the Gelfand–Tsetlin formulas for singular tableaux have

the same coefficients as in the classical formulas for tableaux of the same type (see

formulas (20)–(25)). More precisely, the action of the generators Eij on a regular

tableau is a linear combination of regular tableaux with the same coefficients as

those that appear in the classical Gelfand–Tsetlin formulas. On the other hand,

the corresponding action on a derivative tableau is a linear combination of both

regular and derivative tableaux, and the coefficients of the derivative tableaux are

the same as those that appear in the classical formulas.

7.3.2. Explicit formulas and computations

Some explicit computations are included in the following example.
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Example 7.8. For any complex numbers a and vij , 1 ≤ j ≤ i ≤ 3, consider the

following Gelfand–Tsetlin tableaux:

v31 v32 v33 a a a

T (v) = v21 v22 T (v̄) = a a

v11 a

Consider w = (0, 1, 0) = δ22 and w′ = (1, 0, 0) = δ21 in Z3. Then the following

hold:

(i) Using (24), E32(T (v̄ + w)) = Dv̄((v21 − v22)E32(T (v + w))) which equals to

Dv̄

(
(v21 − v22)

(
v21 − v11

v21 − (v22 + 1)
T (v + w − δ21)

+
(v22 + 1)− v11
(v22 + 1)− v21

T (v + w − δ22)

))
= Dv̄

(
(v21 − v22)(v21 − v11)

v21 − (v22 + 1)

)
T (w̄ − δ21)

+ ev(v̄)

(
(v21 − v22)(v21 − v11)

v21 − (v22 + 1)

)
DT (w̄ − δ21)

+Dv̄

(
(v21 − v22)((v22 + 1)− v11)

(v22 + 1)− v21

)
T (v̄)

+ ev(v̄)

(
(v21 − v22)((v22 + 1)− v11)

(v22 + 1)− v21

)
DT (v̄)

= ev(v̄)

(
v21 − v11

v21 − (v22 + 1)

)
T (w̄ − δ21) + ev(v̄)

(
(v21 − v22)(v21 − v11)

v21 − (v22 + 1)

)
×DT (w̄ − δ21) + ev(v̄)

(
(v22 + 1)− v11
(v22 + 1)− v21

)
T (v̄)

= T (v̄).

(ii) Using (25), E32(DT (v̄ + w′)) = Dv̄(E32(T (v + w′))) which equals to

Dv̄

(
v21 + 1− v11
v21 + 1− v22

T (v + w′ − δ21)

)
+Dv̄

(
v22 − v11

v22 − (v21 + 1)
T (v + w′ − δ22)

)
= Dv̄

(
v21 + 1− v11
v21 + 1− v22

)
T (v̄) + ev(v̄)

(
v21 + 1− v11
v21 + 1− v22

)
DT (v̄)
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+Dv̄

(
v22 − v11

v22 − (v21 + 1)

)
T (v̄ + δ21 − δ22)

+ ev(v̄)

(
v22 − v11

v22 − (v21 + 1)

)
DT (v̄ + δ21 − δ22)

= Dv̄

(
v21 + 1− v11
v21 + 1− v22

)
T (v̄) +Dv̄

(
v22 − v11

v22 − (v21 + 1)

)
T (v̄ + δ21 − δ22)

=
1

2
T (v̄)− 1

2
T (v̄ + δ21 − δ22).

The computations made in the last example can easily be applied to the formulas

(20)–(25). As a result we have the following set of formulas.

Action of the generators on regular tableaux:

E21(T (w̄)) = T (w̄ − δ11),

E12(T (w̄)) = −(x+m− z − k)(x+ n− z − k)T (w̄ + δ11).

E32(T (w̄)) =

⎧⎨⎩
T (w̄ − δ21) + 2(x+m− z − k)DT (w̄ − δ21) if m = n,

x+m− z − k

m− n
T (w̄ − δ21)− x+ n− z − k

m− n
T (w̄ − δ22) if m �= n,

E23(T (w̄)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ v̄
v21

(
3∏

i=1

(v3i − v21 −m)

)
T (w̄ + δ22)

− 2(a− x−m)(b − x−m)(c− x−m)DT (w̄ + δ22) if m = n,

(a− x−m)(b − x−m)(c− x−m)

m− n
T (w̄ + δ21)

− (a− x− n)(b− x− n)(c− x− n)

m− n
T (w̄ + δ22) if m �= n.

Action of the generators on derivative tableaux (recall that we assume m > n):

E21(DT (w̄)) = DT (w̄ − δ11),

E12(DT (w̄)) = −(x+m− z − k)(x + n− z − k)DT (w̄ + δ11)

+
m− n

2
T (w̄ + δ11),

E32(DT (w̄)) =
x+m− z − k

m− n
DT (w̄ − δ21)− x+ n− z − k

m− n
DT (w̄ − δ22)

+
1

2

(
1

m− n
− 2(x+m− z − k)

(m− n)2

)
T (w̄ − δ21)
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− 1

2

(
1

m− n
− 2(x+ n− z − k)

(n−m)2

)
T (w̄ − δ22),

E23(DT (w̄)) = − (a− x−m)(b − x−m)(c− x−m)

n−m
DT (w̄ + δ21)

− (a− x− n)(b− x− n)(c− x− n)

m− n
DT (w̄ + δ22)

− ∂ v̄
v22

(∏3
i=1(v3i − v22 − n)

m− n

)
T (w̄ + δ22)

− 2
(a− x− n)(b − x− n)(c− x− n)

(m− n)2
T (w̄ + δ22)

− ∂ v̄
v21

(∏3
i=1(v3i − v21 −m)

n−m

)
T (w̄ + δ21)

− 2
(a− x−m)(b − x−m)(c− x−m)

(m− n)2
T (w̄ + δ21).

Lemma 7.9. The action of Γ on V (T (v̄)) is given by the formulas :

crs(T (v̄ + w)) = γrs(v̄ + w)T (v̄ + w), (26)

crs(DT (v̄ + w)) = γrs(v̄ + w)DT (v̄ + w) +Dv̄(γrs(v + w))T (v̄ + w). (27)

Proof. The identities follow from Theorem 4.35. Indeed,

crs(T (v̄ + z)) = Dv((v21 − v22)crsT (v + z))

= Dv((v21 − v22)γrs(v + z)T (v + z))

= Dv((v21 − v22)γrs(v + z))T (v̄ + z)

+ ev(v̄) ((v21 − v22)γrs(v + z))DT (v̄ + z)

= γrs(v̄ + z)T (v̄ + z),

crs(DT (v̄ + z)) = Dv(crs(T (v + z)))

= Dv(γrs(v + z)T (v + z))

= Dv(γrs(v + z))T (v̄ + z) + ev(v̄) (γrs(v + z))DT (v̄ + z)

= Dv(γrs(v + z))T (v̄ + z) + γrs(v̄ + z)DT (v̄ + z).

7.3.3. Submodules generated by singular tableaux

In this section, we obtain an analogous to Theorem 4.25(i) for 1-singular tableaux.

Recall that B(T (v̄)) = {Tab(z) | z ∈ Z3} is a basis of V (T (v̄)).
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Definition 7.10. Let v̄ be a fixed critical vector, Tab(w) ∈ B(T (v̄)), and w̄ = v̄+w.

Define

Λ+(Tab(w)) =

{
Ω+(Tab(w)) if w21 ≤ w22,

Ω+(Tab(τ(w))) if w21 > w22.

Lemma 7.11. Assume that w21 �= w22. Then T (v̄ + w) belongs to U · DT (v̄ + w).

Proof. The action of c22 − γ22(v̄ + w) on DT (v̄ + w) is given by the formula (27)

and can be easily check that is a nonzero multiple of (w21 − w22)T (v̄ + w).

Lemma 7.12. Suppose Tab(w) is a critical tableau. If Tab(w′) is a derivative

tableau such that Λ+(Tab(w)) ⊆ Λ+(Tab(w′)), then Tab(w′) ∈ U · Tab(w).
In particular, the simple subquotient M of V (T (v̄)) containing Tab(w) satisfies

dim(Mχw ) = 2.

Proof. The statement follows from Remark 7.7 and formulas (21)–(23). In fact,

the numerators of the coefficients of the derivative tableaux appearing in the de-

composition of gT (v̄ + w) as linear combination of basis elements, are either zero

(if g is a product of generators of the form E21, E12, or Eii) or the same as the

numerators of the coefficients that appear in the classical Gelfand–Tsetlin formu-

las. In the latter case Tab(w′) is a derivative tableau, hence we cannot have zero

coefficients. Therefore, we can use the same arguments as in the proof of Lemma

4.25(i).

Definition 7.13. For any tableau Tab(w) ∈ B(T (v̄)) define

A(Tab(w)) := {Tab(w′) ∈ B(T (v̄)) |Λ+(Tab(w)) ⊆ Λ+(Tab(w′))}.

By C(w) we will denote the set of all critical tableaux in A(Tab(w)) and by

R(w) we will denote the set of all regular tableaux in A(Tab(w)). Also, set

N (Tab(w)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R(w) ∪

⎛⎝ ⋃
w′∈C(w)

A(Tab(w′))

⎞⎠ if w21 < w22,

A(Tab(w)) if w21 ≥ w22.

Lemma 7.14. For any tableau Tab(w) we have N (Tab(w)) ⊆ U · Tab(w).

Proof. The statement follows from Remark 7.7, Lemmas 7.11, and 7.12. More

precisely, as the Gelfand–Tsetlin formulas for singular tableaux have the same co-

efficients as in the classical formulas for tableaux of the same type, we can use the

reasoning in [20, Proof of Theorem 6.8] and adapt it to the singular case.

The following lemma together with Lemma 7.11 gives a sufficient condition in

order to have modules with Gelfand–Tsetlin multiplicity 2.
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Lemma 7.15. Suppose that Tab(w) is a regular tableau such that Ω+(Tab(w)) =

Ω+(Tab(w′)) for some critical tableau Tab(w′), then Tab(τ(w)) ∈ U · Tab(w).

Proof. The statement follows directly from Lemma 7.12.

Corollary 7.16. Let Tab(w) be a regular tableau associated to a Gelfand–Tsetlin

character χ. If {Tab(w′) |Ω+(Tab(w′)) = Ω+(Tab(w))} does not contain critical

tableaux, then any simple subquotient N of V (T (v̄)) satisfies dim(Nχ) ≤ 1.

Proof. Since Tab(w) is regular, w21 < w22. Then Tab(τ(w)) is a derivative tableau

such that Tab(w) ∈ U · Tab(τ(w)) (see Lemma 7.11). Therefore, it is enough to

prove that Tab(τ(w)) /∈ U · Tab(w). However, this follows from Theorem 4.35

and the fact that we cannot obtain critical tableaux from Tab(w) with the same

Ω+(Tab(w)), in particular we cannot obtain derivative tableaux Tab(w′) such that

Ω+(Tab(w′)) = Ω+(Tab(w)).

Remark 7.17. By definition of N (Tab(w)), any Tab(w′) in N (Tab(w)) satis-

fies the relation |Ω+(Tab(w))| ≤ |Ω+(Tab(w′))|. However, it is possible to have

Tab(w′) ∈ U · Tab(w) with |Ω+(Tab(w′))| = |Ω+(Tab(w))| − 1. For instance, con-

sider v̄ = (a, b, c, x, x, x) such that {a−x, b−x, c−x}∩Z = ∅ and w = (0, 0, 0), then

|Ω+(Tab(w))| = 2 while E32 Tab(w) = Tab(w − δ21) and |Ω+(Tab(w − δ21))| = 1.

Let us write Tab(w′) ≺g Tab(w) if Tab(w′) appears with non-zero coefficient in

the decomposition of g · Tab(w) for some generator g ∈ gl(n).

Lemma 7.18 ([33, Lemma 7.4]). Suppose that Tab(w′) ≺g Tab(w) with g ∈
gl(n) of the form Ek,k+1 or Ek+1,k, then |Ω+(Tab(w′))| ≥ |Ω+(Tab(w))| − 1.

Moreover, the complete list of Gelfand–Tsetlin tableaux Tab(w) and Tab(w′) such

that Tab(w′) ≺g Tab(w), and |Ω+(Tab(w′))| = |Ω+(Tab(w))| − 1 is as follows :

(i) a b c a b c

Tab(w) = x x− t Tab(w′) = x− t x

x x+ 1

for t ∈ Z>0.

(ii) a b c a b c

Tab(w) = x x− t Tab(w′) = x− t x− 1

x x

for t ∈ Z>0.
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(iii) a b c a b c

Tab(w) = x x Tab(w′) = x− 1 x

x x .

(iv) x b c x b c

Tab(w) = x x− t Tab(w′) = x− t x+ 1

z z

for t ∈ Z>0, b �= x, and c �= x.

(v) x b c x b c

Tab(w) = x x Tab(w′) = x x+ 1

z z

for b �= x and c �= x.

Remark 7.19. For the tableaux in Lemma 7.18(iv) and (v), one may consider x

at positions 3i, i = 1, 2, 3, obtaining the same property for Ω+.

Definition 7.20. We will say that a tableau Tab(w) is of type (I) if it can be

written in the form of one of the tableaux Tab(w) of parts (i), (ii), or (iii) of

Lemma 7.18 for some x, a, b, c, t, z. We also say that the tableau is of type (II)i if

can be written in the form of one of the tableaux Tab(w) of parts (iv) or (v) of

Lemma 7.18 for some x, b, c, t, z, and x appear in the top row in position 3i.

Remark 7.21. With the notation of Lemma 7.18 for tableaux of type (I) we

have Ω+(Tab(w′)) = Ω+(Tab(w))\{(2, 1, 1)} and for tableaux of type (II)i we have

Ω+(Tab(w′)) = Ω+(Tab(w))\{(3, i, 2)}.

Definition 7.22. Let Tab(w) ∈ B(T (v̄)) and (r, s, t) ∈ Ω+(Tab(w)). Set

N(r,s,p)(Tab(w)) := N (Tab(w)) ∪ N (Tab(w′)),

where Tab(w′) is any tableau such that Ω+(Tab(w))\{(r, s, p)} = Ω+(Tab(w′)).
Also, define

N (1)(Tab(w)) :=

{
N(2,1,1)(Tab(w)) if Tab(w) is of type (I),

N (Tab(w)) otherwise,
(28)

N (2)(Tab(w)) := {N(3,i,2)(Tab(w)) if Tab(w)is of type (II)i,

N (Tab(w)) otherwise, (29)

Â(Tab(w)) := N (1)(Tab(w)) ∪ N (2)(Tab(w)). (30)
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Lemma 7.23. Let Tab(w) be any Gelfand–Tsetlin tableau and Tab(w′) ∈
N (Tab(w)). We have Â(Tab(w′)) ⊆ U · Tab(w).

Proof. As Tab(w′) ∈ N (Tab(w)), by Lemmas 7.14, 7.18, and Remark 7.21 we have

N (i)(Tab(w′)) ⊆ U · Tab(w) for i = 1, 2.

The following theorem summarize the results of this section.

Theorem 7.24. Let Tab(w) ∈ B(T (v̄)). The submodule U ·Tab(w) has the follow-

ing basis of tableaux :

N̂ (Tab(w)) :=
⋃

Tab(w′)∈N (Tab(w))

Â(Tab(w′)).

Proof. The statement follows from Lemmas 7.18 and 7.23.

Definition 7.25. Let M be a Gelfand–Tsetlin module with basis BM ⊆ B(T (v̄))
for some 1-singular vector v̄. We say that Tab(w) ∈ BM is Ω+-maximal in M if

|Ω+(Tab(w))| is maximal for all Tab(w) in BM . Also, denote by U ·M Tab(w) the

submodule of M generated by Tab(w).

The next two corollaries follow from Theorem 7.24 and will be useful when

describing the simple subquotients of V (T (v̄)).

Corollary 7.26. Let M be a Gelfand–Tsetlin module with basis BM ⊆ B(T (v̄)) for
some 1-singular vector v̄. If Tab(w) ∈ BM is a regular tableau that is Ω+-maximal

in M, then U ·M Tab(w) is a simple submodule of M .

Proof. It is enough to proof that Tab(w) belongs to U ·M Tab(w′) for any Tab(w′)
in U ·M Tab(w). As Tab(w′) in U ·M Tab(w) and Tab(w) is a regular tableau, we

have Ω+(Tab(w)) ⊆ Ω+(Tab(w′)) ∪ {(r, s, t)} for some (r, s, t). As Tab(w) is Ω+-

maximal, we should have Ω+(Tab(w)) = Ω+(Tab(w′))∪ {(r, s, t)} for some (r, s, t).

Therefore, U ·M Tab(w) ⊆ U ·M Tab(w′) and, then we have Tab(w) ∈ U ·M Tab(w′).

Corollary 7.27. Let M be a Gelfand–Tsetlin module with basis BM ⊆ B(T (v̄))
for some 1-singular vector v̄. If {Tab(w) ∈ BM | Tab(w) is Ω+-maximal} does not

contain regular tableaux, then for any Ω+-maximal tableau Tab(w) the submodule

U ·M Tab(w) is a simple submodule of M .

Proof. The proof is analogous to the proof of Corollary 7.26.

In order to describe the basis of the simple subquotients of V (T (v̄)) we modify

Definition 7.3 to singular vectors.
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Definition 7.28. Let v̄ be any 1-singular vector and B be a subset of Z3. By Tab(B)
we will denote the set of tableaux {Tab(m,n, k) | (m,n, k) ∈ B} ⊆ B(T (v̄)). Assume

that M is a Gelfand–Tsetlin module with basis Tab(B). Then we will denote M by

M(B, v̄), or simply by M(B) if v̄ is fixed. If M(B) is simple, we will write L(B) for
M(B).

Example 7.29. Let v̄ = (a, b, c|a, a|z). Below we give a basis for the submod-

ule of V (T (v̄)) generated by Tab(0, 0, 0). In this case B(T (v̄)) does not contain

tableaux of type (I), (II)2, or (II)3. However, the set of all tableaux of type (II)1 is

{Tab(0, n, k) |n ∈ Z≤0}. By definition we have

N̂ (Tab(0, 0, 0)) = Â(Tab(0, 0, 0)) = A(Tab(0, 0, 0))

= {Tab(m,n, k) |m ≤ 0, n ≤ 0},

N̂ (Tab(0,−1, 0)) = Â(Tab(0,−1, 0)) = N (2)(Tab(0,−1, 0))

= {Tab(m,n, k) |m ≤ 0}.

Therefore, by Theorem 7.24, the submodule of V (T (v̄)) generated by Tab(0, 0, 0)

has basis:⋃
N (Tab(0,0,0))

Â(Tab(w′)) = Â(Tab(0, 0, 0)) ∪ Â(Tab(0,−1, 0)) = Tab(m ≤ 0).

7.4. The singular block containing L(−ρ)

In this section, we describe all simple subquotients of the module V (T (v̄)) with

v̄ = (a, a, a|a, a|a).
Next, we give an algorithm, which based on Theorem 7.24 and Corollaries 7.26

and 7.27, provides an explicit basis of all simple subquotients of a module M with

basis BM ⊆ B(T (v̄)).

Step 1. If there is an Ω+-maximal regular tableau in BM , choose any such tableau

Tab(w). By Corollary 7.26, U ·M Tab(w) is a simple submodule of M .

Step 2. If there are no Ω+-maximal regular tableaux in BM , consider any Ω+-

maximal (derivative) tableau Tab(w). By Corollary 7.27, the module U ·M
Tab(w) will be a simple submodule of M .

Step 3. Using the bases of M and U ·Tab(w) (see Theorem 7.24), we find a basis

of M/(U ·M Tab(w)).

Step 4. Start over the procedure with the module M ′ := M/(U ·M Tab(w)).

Example 7.30. Set v̄ = (a, a, a|a, a|a). Below we define explicit bases of all simple

subquotients of V (T (v̄)).
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Note that none of the tableaux in B(T (v̄)) can be of type (II)i, i = 1, 2, 3.

Therefore, N (2)(Tab(w)) = N (Tab(w)) for any Tab(w) ∈ B(T (v̄)). Moreover, the

set of all tableaux of type (I) is {Tab(m,n, k) |n ≤ m = k}. Now, we apply Steps 1–4

described above to the module V (T (V̄ )).

(1) The tableau Tab(0, 0, 0) is Ω+-maximal on V (T (v̄)). By Corollary 7.26,

U · Tab(0, 0, 0) is a simple submodule of V (T (v̄)) and by Theorem 7.24, the

submodule U · Tab(0, 0, 0) has a basis

N̂ (Tab(0, 0, 0)) = Â(Tab(0, 0, 0))

= N (1)(Tab(0, 0, 0))

= Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎟⎠.
Denote this module by L1, and M1 = V (T (v̄))/L1.

(2) Now, the derivative tableau Tab(0,−2,−1) is Ω+-maximal inM1. By Theorem

7.24, U · Tab(0,−2,−1) has a basis

N̂ (Tab(0,−2,−1)) = Â(Tab(0, 0, 1))

= N (1)(Tab(0,−2,−1))

= Tab

(
m ≤ 0

n ≤ 0

)
.

Moreover, by Corollary 7.27, U ·M1 Tab(0,−2,−1) is a simple submodule of

M1 and has a basis

Tab

(
m ≤ 0

n ≤ 0

)∖
Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎟⎠

= Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

n < k

⎞⎟⎟⎠.
Denote by L3 this module and M2 = M1/L3.

(3) The tableau Tab(0, 1, 0) is Ω+-maximal in M2 and U ·Tab(0, 1, 0) has a basis

Â(Tab(0, 1, 0)) ∪ Â(Tab(0, 0, 0)) which is equal to

Tab

⎛⎜⎜⎜⎜⎝
m ≤ n

m ≤ 0

k ≤ m

k ≤ n

⎞⎟⎟⎟⎟⎠
⋃

Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎟⎠.
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Therefore, U ·M2 Tab(0, 1, 0) has basis⎛⎜⎜⎜⎜⎝Tab
⎛⎜⎜⎜⎜⎝

m ≤ n

m ≤ 0

k ≤ m

k ≤ n

⎞⎟⎟⎟⎟⎠
⋃

Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠
∖⎛⎜⎜⎝Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎟⎠⋃Tab

⎛⎜⎜⎝
m ≤ 0

n ≤ 0

n < k

⎞⎟⎟⎠
⎞⎟⎟⎠

= Tab(k ≤ m ≤ 0 < n),

call this module L2 and M3 = M2/L2.

(4) There are not Ω+-maximal regular tableaux in M3, so we choose the derivative

tableau Tab(1, 0, 0) which is Ω+-maximal inM3. By Corollary 7.27, the module

U ·M3 Tab(1, 0, 0) is a simple submodule of M3 with basis

Tab(k ≤ n ≤ 0 < m)

call this module L5 and M4 = M3/L5.

(5) The tableau Tab(0, 1, 1) is Ω+-maximal inM4 and U ·M4Tab(0, 1, 1) is a simple

submodule of M4 with basis

Tab

(
m ≤ 0 < n

m < k ≤ n

)

call this module L4 and M5 = M4/L4.

(6) The derivative tableau Tab(1, 0, 1) is Ω+-maximal in M5. Therefore, by Corol-

lary 7.27, U ·M5 Tab(1, 0, 1) a simple submodule of M5 with basis

Tab

(
n ≤ 0 < m

n < k ≤ m

)

call this module L7 and M6 = M5/L7.

(7) The tableau Tab(0, 1, 2) is Ω+-maximal in M6 so, U ·M6 Tab(0, 1, 2) is a simple

submodule of M6 and has a basis

Tab(m ≤ 0 < n < k)

call this module L6 and M7 = M6/L6.

(8) The tableau Tab(1, 0, 2) is Ω+-maximal inM7 and U ·M7Tab(1, 0, 2) is a simple

submodule of M7 with a basis

Tab(n ≤ 0 < m < k)

call this module L9 and M8 = M7/L9.
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(9) The tableau Tab(1, 1, 0) is Ω+-maximal in M8. The module U ·M8 Tab(1, 2, 2)

is a simple submodule of M8 with a basis

Tab

⎛⎜⎜⎝
0 < m

0 < n

k ≤ n

⎞⎟⎟⎠
call this module L8 and M9 = M8/L8.

(10) The tableau Tab(1, 1, 2) is Ω+-maximal in M9 and U ·Tab(1, 1, 2) has a basis

Tab(Z3). Therefore, U ·M9 Tab(1, 1, 2) is has a basis

Tab

⎛⎜⎜⎝
0 < m

0 < n

n < k

⎞⎟⎟⎠
call this module L10.

Remark 7.31. The reasoning in Example 7.30 can be applied also when find-

ing the Loewy series decomposition of V (T (v̄)). More precisely, the Loewy series

decomposition of V (T (v̄)) for v̄ = (a, a, a|a, a|a) is

L1, L2 ⊕ L3, L4, L5 ⊕ L6, L7, L8 ⊕ L9, L10.

7.5. Realizations of all simple singular Gelfand–Tsetlin

sl(3)-modules

In this section, we will describe all simple objects in every block GT T (v) defined by

a singular Gelfand–Tsetlin character χv (see Definition 4.12 and Remark 4.2). Such

description will include an explicit tableaux basis of each simple subquotient M in

GT T (v) and the weight support ofM . For the weight support we will use Proposition

7.32 and the explicit basis to give a description of the weight multiplicities, when the

multiplicities are finite, a picture of the weight lattice is provided. We also present

the components of the Loewy series of the universal module V (T (v)). A rigorous

proof based on Theorem 7.24, and Corollaries 7.26 and 7.27 is given for Case (C13),

see Sec. 7.4, Example 7.30. For all other cases the reasoning is the same.

The simple subquotients will be defined by their corresponding subsets of Z3,

equivalently, by their bases in B(T (v̄)). We should note that all subsets of Z3 that

define a simple subquotient are defined by a set of inequalities of the form a ≤ b or

a < b where a, b are elements in the set {m,n, k, 0,−t,−s}.
As we did for the description of generic blocks we will characterize the weight

spaces for subquotients of the singular module V (T (v̄)).

Proposition 7.32. Let M be a singular Gelfand–Tsetlin module with basis of

tableaux BM ⊆ B(T (v̄)). If Tab(z) ∈ BM is a tableau of weight λ, then the weight

space Mλ is spanned by the set of tableaux {Tab(z + (i,−i, 0)) | i ∈ Z} ∩ BM .
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Proof. The action of the generators of h in M is given by the same expressions

as in the case of generic modules, therefore, we can use the same argument of the

proof of Proposition 7.2.

We now describe the sets B ⊆ Z3 that define all simple subquotients of V (T (v̄)).

For convenience, the modules listed in one row are isomorphic. Recall that τ de-

note the transposition (id, (1, 2), id) ∈ S3 × S2 × S1. It is worth noting that all

isomorphisms between simple subquotients of V (T (v̄)) are τ -induced, that is all

isomorphisms between simple subquotients are given by L(B) �→ L(τ(B)).

Remark 7.33. In general it is not true that if B ⊆ Z3 defines a subquotient of

V (T (v̄)) then τ(B) defines also a subquotient of V (T (v̄)).

Remark 7.34. We should note that for singular sl(3)-modules we may have char-

acters with unique simple extension or with two non-isomorphic simple extensions.

In particular, the number of simple subquotients of the singular blocks in general

will not coincide with the number of non-isomorphic modules in the block.

Until the end of this section we use the following convention. The entries of the

Gelfand–Tsetlin tableaux we will use will be integer shifts of some of the complex

numbers a, b, c, x, z. We also assume that if any two of a, b, c, x, z appear in the same

row or in consecutive rows of a given tableau, then their difference is not integer. For

convenience, in the description of basis of simple subquotients, isomorphic modules

are listed in the same row.

(C1) Consider the Gelfand–Tsetlin tableau:

a b c

T (v̄) = x x

z

In this case the module V (T (v̄)) is simple and all its weight spaces are

infinite-dimensional:

Module Basis

L1 L(Z3)

(C2) Consider the following Gelfand–Tsetlin tableau:

a b c

T (v̄) = x x

x
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I. Number of simples in the block: 2

II. Simple subquotients.

In this case, the module V (T (v̄)) has two simple subquotients and they

have infinite-dimensional weight multiplicities:

Module Basis

L1 L(k ≤ n)

L2 L(n < k)

III. Loewy series.

L1, L2.

(C3) Consider the following Gelfand–Tsetlin tableau:

a b c

T (v̄) = a a

z

I. Number of simples in the block: 2

II. Simple subquotients.

We have two simple subquotients and they have infinite-dimensional

weight spaces:

Module Basis

L1 L(m ≤ 0)

L2 L(0 < m)

III. Loewy series.

L1, L2.

(C4) Consider the Gelfand–Tsetlin tableau:

a b c

T (v̄) = a a

a

I. Number of simples in the block: 5

II. Simple subquotients.

In this case, we have six simple subquotients. The origin of the

weight lattice corresponds to the sl(3)-weight associated to the tableau
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T (v̄ + δ11 + δ21).

(i) Modules with unbounded finite weight multiplicities:

Module Basis

L1 L

⎛⎝⎧⎨⎩
m ≤ 0

0 < n

k ≤ m

⎫⎬⎭⋃
⎧⎨⎩

m ≤ 0

n ≤ 0

k ≤ n

⎫⎬⎭
⎞⎠

L3 L

(
m ≤ 0

n < k

)
L4 L

(
0 < m

k ≤ n

)

L6 L

⎛⎝⎧⎨⎩
0 < m

0 < n

n < k

⎫⎬⎭⋃
⎧⎨⎩

0 < m

n ≤ 0

m < k

⎫⎬⎭
⎞⎠
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(ii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L2 L

(
m ≤ 0 < n

m < k ≤ n

)
L5 L

(
n ≤ 0 < m

n < k ≤ m

)

III. Loewy series.

L1, L2, L3 ⊕ L4, L5, L6.

(C5) For any t ∈ Z>0, consider the following Gelfand–Tsetlin tableau:

a a− t c

T (v̄) = a a

a

I. Number of simples in the block: 11

II. Simple subquotients.

We have 16 simple subquotients. In this case, the origin of the weight

lattice corresponds to the sl(3)-weight associated to the tableau T (v̄−
δ21). The pictures correspond to the case t = 2.

(i) Six modules with weight multiplicities bounded by t, two pairs of

isomorphic modules and two more modules:

Module Basis Module Basis

L2 L

⎛⎝m ≤ −t < n

n ≤ 0

m < k ≤ n

⎞⎠ L8 L

⎛⎝n ≤ −t < m

m ≤ 0

n < k ≤ m

⎞⎠
L7 L

⎛⎝−t < m ≤ 0

0 < n

m < k ≤ n

⎞⎠ L15 L

⎛⎝−t < n ≤ 0

0 < m

n < k ≤ m

⎞⎠

Module Basis

L4 L

⎛⎝⎧⎨⎩
−t < m ≤ 0

0 < n

k ≤ m

⎫⎬⎭⋃
⎧⎨⎩

−t < m ≤ 0

n ≤ 0

k ≤ n

⎫⎬⎭
⎞⎠

L13 L

⎛⎝⎧⎨⎩
m ≤ n

−t < m ≤ 0

n < k

⎫⎬⎭⋃
⎧⎨⎩

−t < m ≤ 0

n ≤ −t

m < k

⎫⎬⎭⋃
⎧⎨⎩

m ≤ 0

−t < n

n < k

⎫⎬⎭
⎞⎠
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(ii) Modules with unbounded weight multiplicities:

Module Basis Module Basis

L3 L

⎛
⎝m ≤ −t

0 < n
k ≤ m

⎞
⎠ L10 L

⎛
⎝n ≤ −t

0 < m
k ≤ n

⎞
⎠

L9 L

⎛
⎜⎝

m ≤ −t

0 < n

n < k

⎞
⎟⎠ L14 L

⎛
⎜⎝

n ≤ −t

0 < m

m < k

⎞
⎟⎠

Module Basis

L1 L

⎛
⎜⎝
{

m ≤ −t < n ≤ 0

k ≤ m

}⋃
⎧⎪⎨
⎪⎩

m ≤ −t

n ≤ −t

k ≤ n

⎫⎪⎬
⎪⎭
⎞
⎟⎠

L6 L

⎛
⎜⎝
{

m ≤ −t < n ≤ 0

n < k

}⋃
⎧⎪⎨
⎪⎩

m ≤ −t

n ≤ −t

n < k

⎫⎪⎬
⎪⎭
⎞
⎟⎠

L11 L

⎛
⎜⎝
⎧⎪⎨
⎪⎩

m ≤ n

0 < m

k ≤ n

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎨
⎪⎩

0 < m

−t < n ≤ 0

k ≤ n

⎫⎪⎬
⎪⎭
⎞
⎟⎠

L16 L

⎛
⎜⎝
⎧⎪⎨
⎪⎩

m ≤ n

0 < m

n < k

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎨
⎪⎩

0 < m

−t < n ≤ 0

m < k

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎨
⎪⎩

n < m

0 < n

n < k

⎫⎪⎬
⎪⎭
⎞
⎟⎠
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(iii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L5 L

⎛⎝ m ≤ −t

0 < n

m < k ≤ n

⎞⎠ L12 L

⎛⎝ n ≤ −t

0 < m

n < k ≤ m

⎞⎠
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III. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5 ⊕ L6, L7 ⊕ L8 ⊕ L9 ⊕ L10, L11 ⊕ L12 ⊕ L13,

L14 ⊕ L15, L16.

(C6) Set t ∈ Z>0 and consider the following Gelfand–Tsetlin tableau:

a a− t c

T (v̄) = a a

z

I. Number of simples in the block: 4

II. Simple subquotients.

In this case, we have five simple subquotients. The origin of the weight

lattice corresponds to the sl(3)-weight associated to the tableau T (v̄−
δ21). We provide the pictures corresponding to the case t = 2.

(i) Two modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎝⎧⎨⎩
m ≤ n

m ≤ −t

n ≤ 0

⎫⎬⎭⋃
{

n < m

m ≤ −t

}⎞⎠
L5 L

⎛⎝{m ≤ n

0 < m

}⋃⎧⎨⎩
n < m

0 < m

−t < n

⎫⎬⎭
⎞⎠

(ii) A cuspidal module with t-dimensional weight multiplicities:

Module Basis

L3 L
(
−t < m ≤ 0

)
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(iii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L2 L

(
m ≤ −t

0 < n

)
L4 L

(
n ≤ −t

0 < m

)
III. Loewy series.

L1, L2, L3, L4, L5.

(C7) Consider the following Gelfand–Tsetlin tableau:

a a c

T (v̄)= a a

a

I. Number of simples in the block: 7

II. Simple subquotients.

The module V (T (v̄)) has 10 simple subquotients. In this case, the origin

of the weight lattice corresponds to the sl(3)-weight associated to the

tableau T (v̄ + δ21 + δ11).

(i) Eight modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎜⎝m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎠
L2 L

⎛⎜⎝m ≤ 0

n ≤ 0

n < k

⎞⎟⎠
L9 L

⎛⎜⎝0 < m

0 < n

k ≤ n

⎞⎟⎠
L10 L

⎛⎜⎝0 < m

0 < n

n < k

⎞⎟⎠
Module Basis Module Basis

L3 L
(
k ≤ m ≤ 0 < n

)
L5 L

(
k ≤ n ≤ 0 < m

)
L6 L

(
m ≤ 0 < n < k

)
L8 L

(
n ≤ 0 < m < k

)
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(ii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L4 L

(
m ≤ 0 < n

m < k ≤ n

)
L7 L

(
n ≤ 0 < m

n < k ≤ m

)

III. Loewy series.

L1, L2 ⊕ L3, L4, L5 ⊕ L6, L7, L8 ⊕ L9, L10.
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(C8) Consider the following Gelfand–Tsetlin tableau:

a a c

T (v̄) = a a

z

I. Number of simples in the block: 3

II. Simple subquotients. The module V (T (v̄)) has four simple subquo-

tients. In this case, the origin of the weight lattice corresponds to the

sl(3)-weight associated to the tableau T (v̄ + δ21 + δ11).

(i) Modules with unbounded weight multiplicities:

Module Basis

L1 L

(
m ≤ 0

n ≤ 0

)
L4 L

(
0 < n

0 < m

)

(ii) Two isomorphic modules with infinite-dimensional weight multi-

plicities:

Module Basis Module Basis

L2 L
(
m ≤ 0 < n

)
L3 L

(
n ≤ 0 < m

)
III. Loewy series.

L1, L2 ⊕ L3, L4.
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(C9) Let s, t ∈ Z>0 be such that t < s. Consider the following Gelfand–Tsetlin

tableau:

a a− t a− s

T (v̄) = a a

z

I. Number of simples in the block: 7

II. Simple subquotients. The module V (T (v̄)) has 10 simple subquo-

tients. In this case, the origin of the weight lattice corresponds to the

sl(3)-weight associated to the tableau T (v̄ − δ22). The pictures corre-

spond to the case t = 1, s = 2.

(i) Two modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎝⎧⎨⎩
m ≤ n

m ≤ −s

n ≤ −t

⎫⎬⎭⋃
⎧⎨⎩

n < m

m ≤ −s

n ≤ −t

⎫⎬⎭
⎞⎠

L10 L

⎛⎝{m ≤ n

0 < m

}⋃⎧⎨⎩
n < m

0 < m

−t < n

⎫⎬⎭
⎞⎠

(ii) Three modules with weight multiplicities bounded by t:

Module Basis Module Basis

L2 L

(
m ≤ −s

−t < n ≤ 0

)
L6 L

(
n ≤ −s

−t < m ≤ 0

)
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Module Basis

L8 L

(
−t < m ≤ 0

−s < n

)

(iii) Three modules with weight multiplicities bounded by s− t:

Module Basis Module Basis

L5 L

(
−s < m ≤ −t

0 < n

)
L9 L

(
−s < n ≤ −t

0 < m

)

Module Basis

L3 L

⎛⎜⎝
⎧⎪⎨⎪⎩

m ≤ n

−s < m ≤ −t

n ≤ 0

⎫⎪⎬⎪⎭⋃
{
−s < m ≤ −t

n ≤ −s

}⎞⎟⎠

(iv) Two isomorphic modules with infinite-dimensional weight spaces:
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Module Basis Module Basis

L4 L

(
m ≤ −s

0 < n

)
L7 L

(
n ≤ −s

0 < m

)
III. Loewy series.

L1, L2, L3 ⊕ L4, L5 ⊕ L6, L7 ⊕ L8, L9, L10.

(C10) Let t, s ∈ Z>0 be such that t < s. Consider the following Gelfand–Tsetlin

tableau:

a a− t a− s

T (v̄) = a a

a

I. Number of simples in the block: 20

II. Simple subquotients.

The module V (T (v̄)) has 32 simple subquotients, two of them are iso-

morphic to the simple finite-dimensional module with highest weight

λ = (t−1, s−t−1). Also, there are two isomorphic modules with infinite-

dimensional weight spaces. In this case, the origin of the weight lattice

corresponds to the sl(3)-weight associated to the tableau T (v̄ − δ22).

We provide the pictures corresponding to the case t = 1, s = 2 (i.e. the

principal block).

(i) Two isomorphic finite-dimensional modules with weight multiplic-

ities of degree min{t, s−t} and highest weight λ = (t−1, s−t−1):

Module Basis Module Basis

L8 L

⎛⎜⎝−s < m ≤ −t

−t < n ≤ 0

m < k ≤ n

⎞⎟⎠ L20 L

⎛⎜⎝−s < n ≤ −t

−t < m ≤ 0

n < k ≤ m

⎞⎟⎠
(ii) Twenty weight modules with weight multiplicities bounded by t or

s − t. There are eight pairs of isomorphic modules and four more

modules in the list:

Module Basis Module Basis

L2 L

⎛⎜⎝ m ≤ −s

−t < n ≤ 0

k ≤ m

⎞⎟⎠ L9 L

⎛⎜⎝ n ≤ −s

−t < m ≤ 0

k ≤ n

⎞⎟⎠
L3 L

⎛⎜⎝m ≤ −s < n

n ≤ −t

m < k ≤ n

⎞⎟⎠ L12 L

⎛⎜⎝n ≤ −s < m

m ≤ −t

n < k ≤ m

⎞⎟⎠
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Module Basis Module Basis

L6 L

⎛⎜⎝ m ≤ −s

−t < n ≤ 0

m < k ≤ n

⎞⎟⎠ L15 L

⎛⎜⎝ n ≤ −s

−t < m ≤ 0

n < k ≤ m

⎞⎟⎠
L10 L

⎛⎜⎝ m ≤ −s

−t < n ≤ 0

n < k

⎞⎟⎠ L22 L

⎛⎜⎝ n ≤ −s

−t < m ≤ 0

m < k

⎞⎟⎠
L11 L

⎛⎜⎝−s < m ≤ −t

0 < n

k ≤ m

⎞⎟⎠ L23 L

⎛⎜⎝−s < n ≤ −t

0 < m

k ≤ n

⎞⎟⎠
L16 L

⎛⎜⎝−s < m ≤ −t

0 < n

m < k ≤ n

⎞⎟⎠ L27 L

⎛⎜⎝−s < n ≤ −t

0 < m

n < k ≤ m

⎞⎟⎠
L21 L

⎛⎜⎝−t < m ≤ 0

0 < n

m < k ≤ n

⎞⎟⎠ L30 L

⎛⎜⎝−t < n ≤ 0

0 < m

n < k ≤ m

⎞⎟⎠
L24 L

⎛⎜⎝−s < m ≤ −t

0 < n

n < k

⎞⎟⎠ L31 L

⎛⎜⎝−s < n ≤ −t

0 < m

m < k

⎞⎟⎠

Module Basis

L7 L

⎛
⎜⎜⎜⎝
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m ≤ n

−s < m ≤ −t

n ≤ 0

k ≤ m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⋃
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n < m

−s < m ≤ −t

n ≤ −t

k ≤ n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

L14 L

⎛
⎜⎜⎜⎝
⎧⎪⎨
⎪⎩

−t < m ≤ 0

0 < n

k ≤ m

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎨
⎪⎩

m ≤ n

−t < m ≤ 0

k ≤ n ≤ 0

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n < m

−t < m ≤ 0

−s < n ≤ 0

k ≤ n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

L17 L

⎛
⎜⎜⎜⎝
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m ≤ n

−s < m ≤ −t

n ≤ 0

n < k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⋃
⎧⎪⎨
⎪⎩

n ≤ −s < m

m ≤ −t

m < k

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎨
⎪⎩

−s < n < m

m ≤ −t

m < k

⎫⎪⎬
⎪⎭

⎞
⎟⎟⎟⎠

L26 L

⎛
⎜⎜⎜⎝
⎧⎪⎨
⎪⎩

m ≤ n

−t < m ≤ 0

n < k

⎫⎪⎬
⎪⎭

⋃
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n < m

−t < m ≤ 0

−s < n ≤ 0

m < k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

The following picture describes the weight support of the above

listed modules. Recall that for the modules listed in the left pic-

ture, the weight multiplicities are bounded by t, while for the mod-

ules in the right picture, the multiplicities are bounded by s− t.
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In the pictures above, the point in the middle is the sl(3)-weight

associated to the tableau T (v− δ22) and corresponds to the trivial

(i.e. the finite-dimensional) module.

(iii) Eight simple Verma modules (with unbounded set of weight mul-

tiplicities). There are two pairs of isomorphic modules and four

more modules in the list:

Module Basis Module Basis

L5 L

(
k ≤ m ≤ −s

0 < n

)
L18 L

(
k ≤ n ≤ −s

0 < m

)

L19 L

(
m ≤ −s

0 < n < k

)
L29 L

(
n ≤ −s

0 < m < k

)

Module Basis

L1 L

⎛⎜⎝
⎧⎪⎨⎪⎩

m ≤ −s < n

n ≤ −t

k ≤ m

⎫⎪⎬⎪⎭⋃
⎧⎪⎨⎪⎩

m ≤ n

n ≤ −s

k ≤ n

⎫⎪⎬⎪⎭⋃
⎧⎪⎨⎪⎩

n < m

m ≤ −s

k ≤ n

⎫⎪⎬⎪⎭
⎞⎟⎠

L4 L

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m ≤ n

m ≤ −s

n ≤ −t

n < k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n < m

m ≤ −s

n ≤ −s

n < k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

L28 L

⎛⎜⎜⎜⎝
⎧⎪⎨⎪⎩

m ≤ n

0 < m

k ≤ n

⎫⎪⎬⎪⎭⋃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n < m

0 < m

−t < n

k ≤ n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

L32 L

⎛⎜⎝
⎧⎪⎨⎪⎩

m ≤ n

0 < m

n < k

⎫⎪⎬⎪⎭⋃
⎧⎪⎨⎪⎩

n < m

0 < n

n < k

⎫⎪⎬⎪⎭⋃
⎧⎪⎨⎪⎩

0 < m

−t < n ≤ 0

m < k

⎫⎪⎬⎪⎭
⎞⎟⎠
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The weight supports are listed as follows:

(iv) Two weight modules with infinite weight multiplicities. In this

case, we have one pair of isomorphic modules:

Module Basis Module Basis

L13 L

⎛⎜⎝
⎧⎪⎨⎪⎩

m ≤ −s

0 < n

m < k ≤ n

⎫⎪⎬⎪⎭
⎞⎟⎠ L25 L

⎛⎜⎝
⎧⎪⎨⎪⎩

n ≤ −s

0 < m

n < k ≤ m

⎫⎪⎬⎪⎭
⎞⎟⎠
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III. Loewy series.

L1, L2 ⊕ L3, L4 ⊕ L5 ⊕ L6 ⊕ L7, L8 ⊕ L9 ⊕ L10 ⊕ L11 ⊕ L12 ⊕ L13,

L14 ⊕L15 ⊕L16 ⊕L17 ⊕L18 ⊕L19, L20 ⊕L21 ⊕L22 ⊕L23 ⊕L24 ⊕L25,

L26 ⊕ L27 ⊕ L28 ⊕ L29, L30 ⊕ L31, L32.

(C11) Set t ∈ Z>0 and consider the following Gelfand–Tsetlin tableau:

a a a− t

T (v̄) = a a

a

I. Number of simples in the block: 13

II. Simple subquotients.

The module V (T (v̄)) has 20 simple subquotients. In this case, the origin

of the weight lattice corresponds to the sl(3)-weight associated to the

tableau T (v̄). The pictures correspond to the case t = 1.

(i) Six modules with finite-dimensional weight spaces of dimension at

most t, given by

Module Basis

L4 L

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

m ≤ n

−t < m ≤ 0

−t < n ≤ 0

k ≤ m

⎫⎪⎪⎬⎪⎪⎭
⋃{−t < m ≤ 0

k ≤ n ≤ −t

}⎞⎟⎟⎠

L8 L

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

m ≤ n

−t < m ≤ 0

−t < n ≤ 0

m < k

⎫⎪⎪⎬⎪⎪⎭
⋃⎧⎨⎩

−t < m ≤ 0

n ≤ −t

m < k

⎫⎬⎭
⎞⎟⎟⎠

Module Basis Module Basis

L2 L

⎛⎜⎝m ≤ −t < n

n ≤ 0

m < k ≤ n

⎞⎟⎠ L7 L

⎛⎜⎝n ≤ −t < m

m ≤ 0

n < k ≤ m

⎞⎟⎠
L9 L

⎛⎜⎝−t < m ≤ 0

0 < n

k ≤ m

⎞⎟⎠ L12 L

⎛⎜⎝−t < n ≤ 0

0 < m

k ≤ n

⎞⎟⎠
L10 L

⎛⎜⎝−t < m ≤ 0

0 < n

m < k ≤ n

⎞⎟⎠ L19 L

⎛⎜⎝−t < n ≤ 0

0 < m

n < k ≤ m

⎞⎟⎠
L14 L

(
−t < m ≤ 0

0 < n < k

)
L17 L

(
−t < n ≤ 0

0 < m < k

)
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In the pictures above, the highest weight of L4 corresponds to the

sl(3)-weight associated to the tableau T (v̄).

(ii) Six modules with unbounded finite weight multiplicities:

Module Basis Module Basis

L3 L

(
k ≤ m ≤ −t

0 < n

)
L13 L

(
k ≤ n ≤ −t

0 < m

)

L11 L

(
m ≤ −t

0 < n < k

)
L18 L

(
n ≤ −t

0 < m < k

)

Module Basis

L1 L

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m ≤ n

m ≤ −t

−t < n ≤ 0

k ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃⎧⎪⎨⎪⎩

m ≤ n

n ≤ −t

k ≤ n

⎫⎪⎬⎪⎭⋃
⎧⎪⎨⎪⎩

n < m

m ≤ −t

k ≤ n

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

L5 L

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m ≤ n

m ≤ −t

n ≤ 0

n < k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃⎧⎪⎨⎪⎩

n < m

m ≤ −t

n < k

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

L16 L

⎛⎜⎝0 < m

0 < n

k ≤ n

⎞⎟⎠
L20 L

⎛⎜⎝0 < m

0 < n

n < k

⎞⎟⎠

2130001-92

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

08
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

April 20, 2021 16:29 WSPC/1664-3607 319-BMS 2130001

Classification of simple Gelfand–Tsetlin modules of sl(3)

(iii) Two isomorphic modules with infinite-dimensional weight multi-

plicities:

Module Basis Module Basis

L6 L

⎛⎜⎝ m ≤ −t

0 < n

m < k ≤ n

⎞⎟⎠ L15 L

⎛⎜⎝ n ≤ −t

0 < m

n < k ≤ m

⎞⎟⎠
III. Loewy series.

L1, L2 ⊕ L3 ⊕ L4, L5 ⊕ L6 ⊕ L7, L8 ⊕ L9 ⊕ L10 ⊕ L11 ⊕ L12 ⊕ L13,

L14 ⊕ L15 ⊕ L16, L17 ⊕ L18 ⊕ L19, L20.
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(C12) For any t ∈ Z>0 consider the tableau:

a a a− t

T (v̄) = a a

z

I. Number of simples in the block: 4

II. Simple subquotients.

We have five simple subquotients. In this case, the origin of the weight

lattice corresponds to the sl(3)-weight associated to the tableau T (v̄). We

provide pictures of the weight lattice corresponding to the case t = 1.

(i) Two modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎝⎧⎨⎩
m ≤ n

m ≤ −t

n ≤ 0

⎫⎬⎭⋃
{

n < m

m ≤ −t

}⎞⎠
L5 L

⎛⎝{m ≤ n

0 < m

}⋃⎧⎨⎩
n < m

0 < m

−t < n

⎫⎬⎭
⎞⎠

(ii) A cuspidal module with t-dimensional weight multiplicities:

Module Basis

L3 L
(
−t < m ≤ 0

)
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(iii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L2 L

(
m ≤ −t

0 < n

)
L4 L

(
n ≤ −t

0 < m

)

III. Loewy series.

L1, L2, L3, L4, L5.

(C13) Consider the following Gelfand–Tsetlin tableau:

a a a

T (v̄) = a a

a

I. Number of simples in the block: 7

II. Simple subquotients.

The module V (T (v̄)) has 10 simple subquotients. In this case, the origin

of the weight lattice corresponds to the sl(3)-weight associated to the

tableau T (v̄ + δ21 + δ11).

(i) Modules with unbounded weight multiplicities:

Module Basis

L1 L

⎛⎜⎝m ≤ 0

n ≤ 0

k ≤ n

⎞⎟⎠
L3 L

⎛⎜⎝m ≤ 0

n ≤ 0

n < k

⎞⎟⎠
L8 L

⎛⎜⎝0 < m

0 < n

k ≤ n

⎞⎟⎠
L10 L

⎛⎜⎝0 < m

0 < n

n < k

⎞⎟⎠
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Module Basis Module Basis

L2 L

(
k ≤ m ≤ 0

0 < n

)
L5 L

(
k ≤ n ≤ 0

0 < m

)

L6 L

(
m ≤ 0 < n

n < k

)
L9 L

(
n ≤ 0 < m

m < k

)
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(ii) Two isomorphic modules with infinite-dimensional weight spaces:

Module Basis Module Basis

L4 L

(
m ≤ 0 < n

m < k ≤ n

)
L7 L

(
n ≤ 0 < m

n < k ≤ m

)
III. Loewy series.

L1, L2 ⊕ L3, L4, L5 ⊕ L6, L7, L8 ⊕ L9, L10.

(C14) Consider the following Gelfand–Tsetlin tableau:

a a a

T (v̄) = a a

z

I. Number of simples in the block: 3

II. Simple subquotients.

The module V (T (v̄)) has four simple subquotients. In this case, the

origin of the weight lattice corresponds to the sl(3)-weight associated

to the tableau T (v̄ + δ21 + δ11).

(i) Modules with unbounded weight multiplicities:

Module Basis

L1 L

(
m ≤ 0

n ≤ 0

)
L4 L

(
0 < n

0 < m

)
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(ii) Two isomorphic modules with infinite-dimensional weight multi-

plicities:

Module Basis Module Basis

L2 L(m ≤ 0 < n) L3 L(n ≤ 0 < m)

III. Loewy series.

L1, L2 ⊕ L3, L4.

8. Localization on Gelfand–Tsetlin Modules

8.1. Localization and twisted localization functors

We first recall the definition of the localization functor of U -modules. For details,

we refer the reader to [6, 50].

For every root α ∈ Δ the multiplicative set Fα := {fn
α |n ∈ Z≥0} ⊂ U satisfies

Ore’s localizability conditions because ad fα acts locally nilpotent on U . By DαU we

denote the localization of U relative to Fα. For every weight module M , DαM =

DαU ⊗U M is the α-localization of M . If fα is injective on M , then M can be

naturally viewed as a submodule of DαM . Furthermore, if fα is injective on M ,

then it is bijective on M if and only if DαM = M .

For x ∈ C and u ∈ DαU we set

Θx(u) :=
∑
i≥0

(
x

i

)
(ad fα)

i(u) f−i
α , (31)

where
(
x
i

)
= x(x−1)···(x−i+1)

i! . Since ad fα is locally nilpotent on Uα, the sum above

is actually finite. Note that for x ∈ Z we have Θx(u) = fx
αuf

−x
α . For a DαU -module

M by Φx
αM we denote the DαU -module M twisted by the action

u · vx := (Θx(u) · v)x,

where u ∈ DαU , v ∈ M , and vx stands for the element v considered as an element

of Φx
αM . Since vn = f−n

α · v whenever n ∈ Z it is convenient to set fx
α · v := v−x in

Φ−x
α M for x ∈ C.

In what follows we set Dx
αM := Φx

α(DαM) and refer to it as a twisted localization

of M . One easily check that if M is a weight g-module, then Dx
αM is a weight

module as well, in particular, vx ∈ Mλ+xα whenever v ∈ Mλ. Furthermore, one

easily verifies the following proposition.

Proposition 8.1. Let α be a root and x ∈ C.

(i) Dx
α is an exact functor from the category of U -modules to the category of DαU -

modules.
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(ii) If M ⊂ N are U -modules such that M is fα-injective and N is fα-bijective,

then N = DαM .

In the case when fα acts injectively on M , set QDαM := DαM/M . Also, if

α = εi − εj we will write Dij , Dx
ij , and QDij for Dα, Dx

α, and QDα, respectively.

8.2. Localization functors in the case of sl(3)

From now on, we consider U = U(sl(3)). In this section, we study the relation

between the tableaux bases of a module and its localized module.

Our goal is to apply localization functors to Gelfand–Tsetlin sl(3)-modules and

realize all simple Gelfand–Tsetlin sl(3)-modules as subquotients of twisted localized

modules.

With this in mind, our first step is to obtain conditions on the bases of the

modules that guarantee injectivity or surjectivity of the operator fα. For simplicity,

we will work with α = ε1 − ε2, hence fα = E21.

8.2.1. Injectivity and surjectivity of the operator E21

In this section, we assume that V is the generic module V (T (v)), or the singular

module V (T (v̄)). By B we denote the lattice of tableaux B(T (v)) (or B(T (v̄))).
Also, the tableaux basis of a Gelfand–Tsetlin module M that is a subquotient of V

will be denoted by BM ⊆ B.

Remark 8.2. Since V is a weight module, every subquotient M of V is a weight

module. Hence, in order to check injectivity or surjectivity of E21 on M , it is

enough to check those properties on weight spaces of M . Also, recall that for a

weight λ = (λ1, λ2) in the weight support of M , E21(Mλ) ⊆ M(λ1−2,λ2+1).

To unify the notation, in the case of a generic tableau T (v) it will be convenient

to write Tab(w) := T (v+w). Then, the action of E21 on Tab(w) (generic or singular)

is given by the formula:

E21(Tab(w)) = Tab(w − δ11). (32)

From Propositions 7.2 and 7.32, if Tab(w) ∈ BM is a weight vector of weight

λ, then the weight space Mλ is spanned by {Tab(w + (i,−i, 0)) | i ∈ Z} ∩ BM . If

wi denotes the vector w + (i,−i, 0) ∈ Z3, any element of Mλ will be of the form

u =
∑

i∈I aiT (wi) for some finite subset I of Z.

Lemma 8.3. The operator E21 acts injectively on M if and only if Tab(w) ∈ BM

implies Tab(w − δ11) ∈ BM .

Proof. Suppose first that there exists Tab(w) ∈ BM such that Tab(w−δ11) /∈ BM ,

then E21(Tab(w)) = Tab(w − δ11) = 0 (on M), which implies that E21 is not
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injective. On the other hand, suppose u :=
∑

i∈I aiTab(wi) ∈ Mλ with Tab(wi) ∈
BM for any i. If u is such that 0 = E21(u) =

∑
i∈I aiTab(wi − δ11), then aiT (wi −

δ11) = 0 for any i ∈ I. Since by hypothesis T (wi − δ11) ∈ BM , we have ai = 0 for

any i ∈ I.

Lemma 8.4. The operator E21 acts surjectively on M if and only if T (w) ∈ BM

implies T (w + δ11) ∈ BM .

Proof. Any element of M(λ1−2,λ2+1) is of the form u′ =
∑

i∈I ai Tab(wi− δ11) and

a direct computation using (32) shows that E21(
∑

i∈I aiTab(wi)) = u′.

8.2.2. Twisted localization with respect to E21

Recall that for x ∈ C and u ∈ D12U we have

Θx(u) :=
∑
i≥0

(
x

i

)
(adE21)

i(u)E−i
21 . (33)

Lemma 8.5. Let {cij}1≤j≤i≤3 be the generators of Γ defined in (1). Then

Θx(cij) =

{
cij if (i, j) �= (1, 1),

c11 + x if (i, j) = (1, 1).

Proof. We first note that if u commutes with E21, then Θx(u) = u. Since the

generators {cij}2≤j≤i≤3 commute with E21, the first part of the lemma is proven.

For the second part, we use that c11 = E11 and (adE21)
2(E11) = 0.

As an immediate consequence of Lemma 8.5 we have the following corollary

that will be frequently applied.

Corollary 8.6. Let M be any Gelfand–Tsetlin module on which E21 acts injec-

tively.

(i) The twisted localized module Dx
12M is also a Gelfand–Tsetlin module.

(ii) If v ∈ M has Gelfand–Tsetlin character χ = (a11, a21, a22, a31, a32, a33), then

vx ∈ Dx
12M has Gelfand–Tsetlin character χ̃ = (a11 + x, a21, a22, a31, a32, a33).

Next, for a Gelfand–Tsetlin module M with tableaux basis BM and injective

action of E21, we explicitly describe the tableaux basis of Dx
12M . For this, we

introduce some notation.

For B ⊆ Z3, denote by B + δ11 the region {(m,n, k) | (m,n, k − 1) ∈ B}. Set
B + tδ11 = (B + (t− 1)δ11) + δ11 for t ∈ N and B + Nδ11 =

⋃∞
t=0(B + tδ11).

Recall Definition 7.3 for L(B; v).

Proposition 8.7. Let B ⊂ Z3 and L(B) = L(B; v) be a simple Gelfand–Tsetlin

module. Assume that E21 acts injectively on L(B; v). Then Dx
12L(B; v) � M(B +
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Nδ11; v+xδ11) and QDx
12L(B; v) � M((B+Nδ11)\B; v+xδ11). In particular, if x

is an integer we have D12L(B) � M(B + Nδ11) and QDL(B) � M((B + Nδ11)\B).

Corollary 8.8. Let M be a simple module in GT , generated by a tableau Tab(w)

and such that E21 acts injectively on M . Then for any x ∈ C, Dx
12M has a

subquotient isomorphic to a simple sl(3)-module in GT generated by the tableau

Tab(w + xδ11).

8.3. Simple Gelfand–Tsetlin modules and localization functors

In this section, we will describe the simple Gelfand–Tsetlin sl(3)-modules via local-

ization functors and subquotients starting with some simple E21-injective Gelfand–

Tsetlin module. In order to give such description we rely on Lemmas 8.3, 8.4, and

Proposition 8.7. In fact, in order to use Proposition 8.7 we have to check if the

corresponding module defined in such region is E21-bijective.

For convenience, we denote by L
(Gj)
i the simple module Li in the jth generic

block from the list in Sec. 7.2, and by L
(Cj)
i the simple module Li in the jth

singular block in the list in Sec. 7.5. For example, L
(G2)
1 stands for the module

L({k ≤ m};T (a, b, c|x, y|x)).
Below we list of all simple modules which are E21-injective.

(i) Simple E21-injective generic modules:

L
(G2)
1 L

(G4)
1 L

(G4)
2 L

(G5)
1 L

(G5)
3 L

(G6)
1

L
(G6)
3 L

(G6)
4 L

(G6)
7 L

(G9)
1 L

(G9)
3 L

(G9)
5

L
(G10)
1 L

(G10)
2 L

(G10)
4 L

(G11)
1 L

(G11)
3 L

(G11)
4

L
(G11)
6 L

(G11)
8 L

(G11)
11 L

(G12)
1 L

(G12)
3 L

(G12)
4

L
(G12)
5 L

(G12)
8 L

(G12)
11 L

(G14)
1 L

(G14)
2 L

(G14)
4

L
(G14)
6 L

(G15)
1 L

(G15)
2 L

(G15)
4 L

(G15)
6

(ii) Simple E21-injective singular modules:

L
(C2)
1 L

(C4)
1 L

(C4)
4 L

(C5)
1 L

(C5)
3 L

(C5)
4 L

(C5)
10 L

(C5)
11

L
(C7)
1 L

(C7)
3 L

(C7)
5 L

(C7)
9 L

(C10)
1 L

(C10)
2 L

(C10)
5 L

(C10)
7

L
(C10)
9 L

(C10)
11 L

(C10)
14 L

(C10)
23 L

(C10)
28 L

(C11)
1 L

(C11)
3 L

(C11)
4

L
(C11)
9 L

(C11)
12 L

(C11)
13 L

(C11)
16 L

(C13)
1 L

(C13)
2 L

(C13)
5 L

(C13)
8

Finally, we apply (twisted) localization functors on the modules above and

obtain all simple modules in the block as shown in the following tables. Set
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QDx := QDx
12, and Dx = Dx

12.

Block Module Subquotient of E21-localization

G1 L
(G1)
1 D(z−x)(L

(G2)
1 )

G2 L
(G2)
2 QD(L

(G2)
1 )

G3 L
(G3)
1 D(y−z)(L

(G4)
1 ) � D(z−a)(L

(G5)
1 )

L
(G3)
2 D(y−z)(L

(G4)
2 ) � D(z−a)(L

(G5)
3 )

G4 L
(G4)
3 QD(L

(G4)
1 )

L
(G4)
4 QD(L

(G4)
2 )

G5 L
(G5)
2 QD(L

(G5)
1 )

L
(G5)
4 QD(L

(G5)
3 )

G6 L
(G6)
2 QD(L

(G6)
1 )

L
(G6)
5 QD(L

(G6)
3 )

L
(G6)
6 QD(L

(G6)
4 )

L
(G6)
8 QD(L

(G6)
7 )

G7 L
(G7)
1 D(z−a)(L

(G6)
1 )

L
(G7)
2 D(z−a)(L

(G6)
4 )

L
(G7)
3 D(z−a)(L

(G6)
3 )

L
(G7)
4 D(z−a)(L

(G6)
7 )

G8 L
(G8)
1 D(z−a)(L

(G9)
1 ) � D(y−z)(L

(G10)
1 )

L
(G8)
2 D(z−a)(L

(G9)
3 ) � D(y−z)(L

(G10)
2 )

L
(G8)
3 D(z−a)(L

(G9)
5 ) � D(y−z)(L

(G10)
4 )

G9 L
(G9)
2 QD(L

(G9)
1 )

L
(G9)
4 QD(L

(G9)
3 )

L
(G9)
6 QD(L

(G9)
5 )

G10 L
(G10)
3 QD(L

(G10)
1 )

L
(G10)
5 QD(L

(G10)
2 )

L
(G10)
6 QD(L

(G10)
4 )
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Block Module Subquotient of E21-localization

G11 L
(G11)
2 QD(L

(G11)
1 )

L
(G11)
5 QD(L

(G11)
3 )

L
(G11)
7 QD(L

(G11)
4 )

L
(G11)
9 QD(L

(G11)
6 )

L
(G11)
10 QD(L

(G11)
8 )

L
(G11)
12 QD(L

(G11)
11 )

G12 L
(G12)
2 QD(L

(G12)
1 )

L
(G12)
6 QD(L

(G12)
4 )

L
(G12)
7 QD(L

(G12)
3 )

L
(G12)
9 QD(L

(G12)
5 )

L
(G12)
10 QD(L

(G12)
8 )

L
(G12)
12 QD(L

(G12)
11 )

G13 L
(G13)
1 D(z−a)(L

(G11)
1 )

L
(G13)
2 D(z−a)(L

(G11)
4 )

L
(G13)
3 D(z−a)(L

(G11)
3 )

L
(G13)
4 D(z−a)(L

(G11)
8 )

L
(G13)
5 D(z−a)(L

(G11)
6 )

L
(G13)
6 D(z−a)(L

(G11)
11 )

G14 L
(G14)
3 QD(L

(G14)
1 )

L
(G14)
5 QD(L

(G14)
2 )

L
(G14)
7 QD(L

(G14)
4 )

L
(G14)
8 QD(L

(G14)
6 )

G15 L
(G15)
3 QD(L

(G15)
1 )

L
(G15)
5 QD(L

(G15)
2 )

L
(G15)
7 QD(L

(G15)
4 )

L
(G15)
8 QD(L

(G12)
6 )

G16 L
(G16)
1 D(z−a)(L

(G14)
1 ) � D(y−z)(L

(G15)
1 )

L
(G16)
2 D(z−a)(L

(G14)
2 ) � D(y−z)(L

(G15)
2 )

L
(G16)
3 D(z−a)(L

(G14)
4 ) � D(y−z)(L

(G15)
4 )

L
(G16)
4 D(z−a)(L

(G14)
6 ) � D(y−z)(L

(G15)
6 )
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Block Module Subquotient of E21-localization

C1 L
(C1)
1 QD(z−x)(L

(C2)
1 )

C2 L
(C2)
2 QD(L

(C2)
1 )

C3 L
(C3)
1 QD(z−a)(L

(C4)
1 )

L
(C3)
2 QD(z−a)(L

(C4)
4 )

C4 L
(C4)
2 � L

(C4)
5 soc(QD(L

(C4)
1 ) � soc(QD(L

(C4)
4 ))

L
(C4)
3 QD(L

(C4)
1 )/L

(C4)
2

L
(C4)
6 QD(L

(C4)
4 )/L

(C4)
5

C5 L
(C5)
2 � L

(C5)
8 soc(QD(L

(C5)
1 )) � soc(QD(L

(C5)
4 ))/L

(C5)
7

L
(C5)
5 � L

(C5)
12 soc(QD(L

(C5)
3 )) � soc(QD(L

(C5)
10 ))

L
(C5)
6 QD(L

(C5)
1 )/L

(C5)
2

L
(C5)
7 � L

(C5)
15 soc(QD(L

(C5)
4 ))/L

(C5)
8 � soc(QD(L

(C5)
11 ))

L
(C5)
9 � L

(C5)
14 QD(L

(C5)
3 )/L

(C5)
5 � QD(L

(C5)
10 )/L

(C5)
12

L
(C5)
13 QD(L

(C5)
4 )/(L

(C5)
7 ⊕ L

(C5)
8 )

L
(C5)
16 QD(L

(C5)
11 )

C6 L
(C6)
1 QD(z−a)(L

(C5)
1 )

L
(C6)
2 � L

(C6)
4 QD(z−a)(L

(C5)
3 ) � QD(z−a)(L

(C5)
10 )

L
(C6)
3 QD(z−a)(L

(C5)
4 )

L
(C6)
5 QD(z−a)(L

(C5)
11 )

C7 L
(C7)
2 QD(L

(C7)
1 )

L
(C7)
4 � L

(C7)
7 soc(QD(L

(C7)
3 )) � soc(QD(L

(C7)
5 ))

L
(C7)
6 � L

(C7)
8 QD(L

(C7)
3 )/L

(C7)
4 � QD(L

(C7)
5 )/L

(C7)
7

L
(C7)
10 QD(L

(C7)
9 )

C8 L
(C8)
1 QD(z−a)(L

(C7)
1 )

L
(C8)
2 � L

(C8)
3 QD(z−a)(L

(C7)
3 ) � QD(z−a)(L

(C7)
5 )

L
(C8)
4 QD(z−a)(L

(C7)
9 )

C9 L
(C9)
1 QD(z−a)(L

(C10)
1 )

L
(C9)
2 � L

(C9)
6 QD(z−a)(L

(C10)
2 ) � QD(z−a)(L

(C10)
9 )

L
(C9)
3 QD(z−a)(L

(C10)
7 )

L
(C9)
4 � L

(C9)
7 QD(z−a)(L

(C10)
2 ) � QD(z−a)(L

(C10)
9 )

L
(C9)
5 � L

(C9)
9 QD(z−a)(L

(C10)
2 ) � QD(z−a)(L

(C10)
23 )

L
(C9)
8 QD(z−a)(L

(C10)
14 )

L
(C9)
10 QD(z−a)(L

(C10)
28 )
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Block Module Subquotient of E21-localization

C10 L
(C10)
3 � L

(C10)
12 soc(QD(L

(C10)
7 /L

(C10)
8 ) � soc(QD(L

(C10)
1 ))

L
(C10)
4 QD(L

(C10)
1 )/L

(C10)
3

L
(C10)
6 � L

(C10)
15 soc(QD(L

(C10)
2 ) � soc(QD(L

(C10)
9 ))

L
(C10)
8 � L

(C10)
20 soc(QD(L

(C10)
7 )/L

(C10)
3 ) � soc(QD(L

(C10)
14 )/L

(C10)
21 )

L
(C10)
10 QD(L

(C10)
2 )/L

(C10)
6

L
(C10)
13 soc(QD(L

(C10)
5 ))

L
(C10)
16 soc(QD(L

(C10)
11 ))

L
(C10)
17 QD(L

(C10)
7 )/(L

(C10)
8 ⊕ L

(C10)
12 )

L
(C10)
19 QD(L

(C10)
5 )/L

(C10)
13

L
(C10)
21 � L

(C10)
30 soc(QD(L

(C10)
14 )/L

(C10)
20 ) � soc(QD(L

(C10)
28 ))

L
(C10)
22 QD(L

(C10)
9 )/L

(C10)
15

L
(C10)
24 QD(L

(C10)
11 )/L

(C10)
16

L
(C10)
25 soc(QD(L

(C10)
18 ))

L
(C10)
26 QD(L

(C10)
14 )/(L

(C10)
20 ⊕ L

(C10)
21 )

L
(C10)
27 soc(QD(L

(C10)
23 ))

L
(C10)
29 QD(L

(C10)
18 )/L

(C10)
25

L
(C10)
31 QD(L

(C10)
23 )/L

(C10)
27

L
(C10)
32 QD(L

(C10)
28 )/L

(C10)
21

C11 L
(C11)
2 � L

(C11)
7 soc(QD(L

(C11)
1 )) � soc(QD(L

(C11)
4 ))

L
(C11)
5 QD(L

(C11)
1 )/L

(C11)
2

L
(C11)
6 � L

(C11)
15 soc(QD(L

(C11)
3 )) � soc(QD(L

(C11)
13 ))

L
(C11)
8 QD(L

(C11)
4 )/L

(C11)
7

L
(C11)
10 � L

(C11)
19 soc(QD(L

(C11)
9 )) � soc(QD(L

(C11)
12 ))

L
(C11)
11 � L

(C11)
18 QD(L

(C11)
3 )/L

(C11)
6 � QD(L

(C11)
13 )/L

(C11)
15

L
(C11)
14 � L

(C11)
17 QD(L

(C11)
9 )/L

(C11)
10 � QD(L

(C11)
12 )/L

(C11)
19

L
(C11)
20 QD(L

(C11)
16 )

C12 L
(C12)
1 QD(z−a)(L

(C11)
1 )

L
(C12)
2 � L

(C12)
4 QD(z−a)

12 (L
(C11)
3 ) � QD(z−a)(L

(C11)
13 )

L
(C12)
3 QD(z−a)(L

(C11)
3 ) � QD(z−a)(L

(C11)
13 )

L
(C12)
5 QD(z−a)(L

(C11)
16 )
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Block Module Subquotient of E21-localization

C13 L
(C13)
3 QD(L

(C13)
1 )

L
(C13)
4 � L

(C13)
7 soc(QD(L

(C13)
2 )) � soc(QD(L

(C13)
5 ))

L
(C13)
6 � L

(C13)
9 QD(L

(C13)
2 )/L

(C13)
4 � QD(L

(C13)
5 )/L

(C13)
7

L
(C13)
10 QD(L

(C13)
8 )

C14 L
(C14)
1 QD(z−a)(L

(C13)
1 )

L
(C14)
2 � L

(C14)
3 QD(z−a)(L

(C13)
2 ) � QD(z−a)(L

(C13)
5 )

L
(C14)
4 QD(z−a)(L

(C13)
8 )

Corollary 8.9. Every simple Gelfand–Tsetlin module can be obtained via a com-

position of a twisted localization functor and taking a subquotient from a simple

E21-injective Gelfand–Tsetlin module.
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