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1 Introduction

This work is concerned with the smoothness properties with respect to delays of
the solution of a neutral differential-delay equation. By a neutral differential-delay
equation we mean an equation in which () is expressed as a function of present
and past values of z, and past values of . A very important point in the study of
these equations is the choice of an appropriate topological space for the solutions.
The basic normed linear space in this paper is W"**([a, b}, R"), the set of absolutely
continuous functions taking the interval [a,b] into R", with essentially bounded

by
derivatives, endowed with the norm ||¢||;:b] = |¢(a)| + / |p(s)|ds. We refer to

Driver [1] (see also Melvin [5]) for useful remarks and exaa.mples motivating such

a choice. Notice that in this linear space we can also define the (complete) norm
||¢||Ea:ﬁ = |¢(a)| + esssupyeey [6(6)|- I [a,b] = [-r,0], we will denote W' =
W1t ([—-r,0],R"), and denote its norms simply by ||¢||*! and ||8||**°.

We now formulate our problem in a more precise way. Let r > 0, a > 0 be
given real numbers, 7,0 € [0,r], 0 > 0,¢ € Wi, If F:R®> — R" is Lipschitz
continuous, then the initial value problem

z(t) = F(z(t),z(t — 7),z(t — o)) if i (1)
z(t) = ¢(t) if —r<t<0.

has a unique solution z(¢, 7,0), defined on a maximal interval [-r, ), for some b > 0
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(see, for example, [1] or [5]). We are concerned with the smoothness properties of
z(¢,7,0).

A basic result in this paper is the following formulation of the uniform contraction
principle, whose proof is essentially contained in [3] and [4]. In the statement of the
theorem and in everything that follows (unless otherwise stated), the expressions
open, continuous, etc, should be understood with respect to the norm || - ||*1.

Theorem 1.1 Suppose Y 1s a normed space, A 1s a topological space, V C'Y and
U c Wv(([a,b),R"), are open subsets, and T:U x V x A — E satisfy:

(a) For each (y,A) € V x A there ezxists a unique ¢ = g(y,A) € E such that
9(y,A) =T(g(y,2),9,4).

(b) T(z,y, ) is a contraction in z uniformly with respect to (y,A) € V x A.
(c) For each z € g(V x A), T(z,,-) is continuous in V x A.
(d) For each A € A, T(-,-,A) isC* inU x V.

(¢) There ezists ¢ € [0,1) such that, for each (z,y,\) € U x V x A, we have
ID-T(z,y, Mhllky < gllklly end [|D-T(z,y, M)Al < qllklis for all b €
wh>(([a,8],R").

Then g is a continuous map on V x A and, for each A € A, the partial map g(-, )

isCkinV.

2 Differentiability of the Solutions.

The following notation will be used in this section: for each r > 0, @ > 0, 8 > 0,
denote

Wi .= Whes((or, 0L R7), and [ = 18(-n)| + [ 18(s)lds;
Wo5 := {¢ € Wh°([-r,a],R");4(t) =0 on [-r,0]} with the norms

16127 = [ 16(s)] ds and [[glli= = esssup,epoe 14(5)] for & € WiE";
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A(a,B) = {¢ € W,; |IgllL < B);
B(a,B) := {¢ € W55 lI6lIL* < B}
Bp := {$ € W, ||y||** < B}.

_ For each a > 0 and ¢ € W we define the element ¢ € W'([-r,a],R") by
é(t) := ¢(t),if —r <t <0, and ¢(t) := ¢(0),if 0 < t < e

It is easy to see that W;:8° is a closed subspace of W'*([-r,e],R") and that
for any a, 8 > 0 we have A(e, ) C B(a,af).

It is easy to see that a function z(t) is a solution of (1) if and only if z(t) =
#(t) + z(t) and z(t) satisfies

~ =~

where u(s) = ¢(0) + 2(s), v(s) = (s —7) + 2(s — 7), w(s) = ¢(s — o) + 2(s — 7).

We first remark that if F' is nonlinear in its third variable, then the solution
z(@,7,0) may be discontinuous, as the next example (from [1]) shows.

Consider the equation

#(t) = #%(t — 1)

It is easy to see that the solution corresponding to the initial function ¢ = 0 is
z(0)(t) = 0. Now, taking ¢ defined by

T R
€ if & [_1 +€2,0].

we have

: t
= i <1< 2
z(¢)(t)={e+e2 ffO_t_e
e+l ife2<t<1
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so that ||¢—||"! = €, which can be made arbitrarily small, while ||z(s)) —z(¢)||}" =
1, which shows that  does not vary continuously with ¢.

We remark here that a continuous dependence result for a very general class of
functions F has been obtained by Melvin (7] in terms of the so called bw}-topology.
However, that topology is not convenient for our purposes, since we need to work
in a normed space in order to make use of the uniform contraction principle. Thus,
we follow Driver [1] and assume that F' is linear in its third variable, that is we
assume that F is given by F(z,y,2) = f(z,y) + ¢(z,y)z, where f:R* — R"
and g:R?™ — R™ are locally Lipschitz continuous. Thus, we will henceforth be
considering the initial value problem

f(z(t),z(t — 7)) + g(z(t),z(t — 7))z(t —0) ft>0 5
if —r<t<0 (2)
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and analyze the dependence with respect to (¢, 7,0) of the unique solution z(¢, 7, o)

of (2).

Foreacha >0, z € W§:8°, ¢ € Wb 7 €[0,r], o € (0,r], we define S(z, ¢, 7,0)
and G(z,¢,7,0) by

S(2,6,7)(t) =0 if —r<t<0
{ S(z,6,7)(t) = [ f(u(s).v(s))ds HOSt<a (3)
G(z,¢,7,0)(t) =0 t if t € [-r,0]
{ G(z,¢,7,0)(t) = /0 g(u(s),v(s))d(s —o)ds f0<t<a (4)

Then, a function z is a solution of (2) if and only if z = ¢+ 2 and z = S(z, ¢, 7)+
G(Z, ¢, T, 0’).

For Eq. (2) we have the following result on continuous dependence of the solu-
tions. We include the proof in order to introduce the notation to be used later.

Theorem 2.1 Suppose f:R?*" — R" and g: R*® — R™ are locally Lipschitz contin-
uous. Then the solution z(¢,7,0)(t) is continuous in (¢,7,0), fort in each compact
interval [-r,a] C [-r,b).



Proof. It suffices to prove the Theorem for ¢ in a small interval [0,e]. If B C
Wb is any bounded set, take an open set O C R such that ¢ € B implies
#(0) x ¢([-r,0]) C O. Then, choose L = L(O) > 0 such that

lf(z’ y)lalg(x’y)l <L
|f(z,y) = f(=",¥")| S L(lz — 2’| + [y — ¥'|) (5)
l9(z,y) — 9(z',y")| < L(|lz — 2| + |y - ¢'])

Now we choose K > 0, > 0 such that 2L(a + f5 |¢(s — 7)|ds) < 1 and such that
for any ¢ € B(a, K) we have (8(0) + £(s),é(s —7) + &(s = 7)) € O for t € [0, 0.
Then, for z,w € B(a, K), ¢,¥ € B, 7,p € [0,7], 0,v € (0,7] we have

”S 7)+ G(2,4,7, o) — S(w, ¢aT)~_ G(w, ¢, T,U)“l'l e

/If(() o(s)) = £(9(0) +w(s), (s = 7) + (s = )| ds

+ [ lo(u(s),0()) = 9(6(0) + w(s), dls = 7) + (s — 7)) l1g(s — o)l ds
<2u(a+ [ 1d(s - o)l ds)lz — wly?

I15(z,6,7) + G(2,6,7,0) = S(z,%,p) = G(z, %, pv)lla" =
= If(U()v(s)) ( (0) + 2(s), (s = p) + 2(s — p))] ds
+ / l9(u — 9(¥(0) + =(s), ¥ (s—p)+z(s—p))|l¢3(s—o)lds+
lg(u <>+z() ¥(s = p) + (s = p))lI6(s — 0) = (s = v)] ds
(a+||¢u“)||¢ YIM + 2+ K () + K@)l - pl)+
+L [ 19(s = o) = (s~ v)l ds

Thus, S(z,¢,7)+G(z, ¢, 7,0) is a contraction in z uniformly with respect to (¢,7,0),
and is continuous in (¢, 7,0). Then, Theorem 1 implies that z(@,7,0) is continuous.

We now analyze the differentiability of the solution z(¢,7,0) of (2). First, we
note that the dependence of z with respect to ¢ is not somewhat complicated.
The next example shows that, even for a very simple equation, the solution is not
differentiable with respect to o.

Consider the equation



z(t) = z(t — o)

with o € (0,1]. Choose go € (0,1) and fix the following initial function

_ 0 1f—-150$ao
W)‘{ 0+00 if ~00< <0

Denote z(o) = z(¢,0), and fix @ = 0y. It is easy to see that for 0 < oy, we have
z(o)(t) =t + oo, so that D] z(ag) = 0.

On the other hand, for any £ > 0, z(oo + £)(t) is given by

I f0<t<¢
z(o0 +&)(t) = {t(-)}-Uo—ﬁ if¢ <t<a

Thus we have

z(o0+&)(t) —z(oo)(t) 1t if0<t<E
¢ TEl € ifE<t<La

whence
—Illx(oo+£) ~ z(o0)]|I2* / dt=1.
Then it follows that D,z(ao) does not exist.

Let us also use this equation to show that the derivative Dyz(4,7,) can be discon-
tinuous in 0. Indeed, a simple computation shows that Dyz(¢,0)h(t) = h(t — o)
and, though this function is continuous in o, the continuity is not uniform in A, for

|R]|2* < 1. Let, for 0 < 0 < 1/2, h be defined by

(0 if—1<0<-1/2

1
woy={ o500 2<0s

_m(0+2a—1/2) f-0<0<1/2-20
0 if1/2-20<6<0.




Then it follows that

|| Dgz(0,0)h — Dgz(0,1/2)R1* >
1/2-0 . .
> [ (s = o) ~ (s~ 1/2)] ds =

=(1/2—0)1—220
=1

which implies that || Dgz(0,0) — Dez(0,3)|l} > 2 (here, || - ||% denotes the operator
norm)

Based on this example, we will search smoothness with respect to (¢, 7), of the
solution z(@, 7,0) of (2).

We now analyze the differentiability properties of the operators G and S defined
by (3) e (4), respectively. We only write down the computations for the operator
G. The corresponding computations for the operator S are analogous and thus are
omited. Since we are interested in the differentiability for 7 > 0, we assume that
T € [6,r], for some é6 > 0. This being the case, We ca choose 0 < a < 4, so that,

for 0 <t < a, we have G(z,¢,7,0)(t) = /0 9((0) + 2(s),é(s — 7))d(s — 7)ds. To
shorten notation, we denote u(s) = ¢(0) + z(s), v(s) = ¢(s — 7).

Lemma 2.1 Suppose f:R*™ — R" and g:R** — R™ are continuously differen-
tiable functions. Then S is continuously differentiable with respect to (z,¢,7). For
each fized 0, G(z,9,7,0) is differentiable with respect to (z,¢,7). Furthermore, if
g does not depend upon the second variable, then G is continuously differentiable in

(2,9,7).

Proof. The candidate to D,G(z, @, 7, o) is obviously, the operator given by

D.G(z,¢,7,0)h(t) = /ot D.g(#(0) + z(s),é(s — 'r))h(s)q'5(s —o0)ds,for 0 <t < a.
We have



1G(= + h, 6,7, o) - G(z,¢,7,0) — D,G(z,¢,7,0)h|1!
=/ lg(u(s) + h(s), v(s)) — g(u(s), v(s)) — D.g(u(s),v(s))h(s)||d(s — o)| ds
< sup Ing( ( ) =1 Ah( ),U(S)) — D,g(u(s),v(s))lh(s)”ég(s _ U)Ids

0 0< <1
<L [")PIdls - o)l ds
LI [ 16(e - o) ds
O((IRIEY)?),  as |k =0

ll I/\I

which shows that D,Gz, ¢, 7, 0) exists. We now show that D,G(z, ¢, 7,0) is contin-
ID.G(z,6,7,0)h = D.Glw, 6, p, v)h|1* =
/ ID-g(u(s),v(s))h(s)d(s— ) — Deg((0) + w(s), ¥(s—p) (s} (s—»)|ds
ID2g(6(0) + 2(s), 6(s = )9l = o) = (s — »)] ds
+ / ID.g(6(0) + 2(s), 6(s = 7)) — Dag((0) + u(s), ( P)ls — v)lds
19(s - o) - ¢(s—u)|ds+L||¢ S + L16(0) = $(0)| [ (s = »)] ds+
+L/ 2(5) = w(s)lI¥(s = V)l ds + Llig - wn“/ |¢s—u|ds+
+L] w(s—r) ¥(s = p)ll(s = v)] ds

<L([ 18(s = 0) = (s~ v)l ds + 16 = I +2]6 I ]+
= B+ (o — gl

and hence D,G(z,¢,7,0) is continuous.

Now we show that DyG(z, @, 7,0) exists and is continuous. The computations are
similar to the ones made above, except for a lengthier notation. The candidate to

D4G(z, ¢,7,0) is the operator given by DyG(z, ¢, 7,0)n(t) = /(:((D,g(u(s), v(s))n(0)+
D, g(u(s),v(s))n(s — 7))é(s — o) + g(u(s), v(s))i(s — 0))ds, for 0 <t < @



IG(z, ¢+ 1,7,0) = G(2,6,7,0) — DsGlz, 6,7, O)nlly" =
= [ lg(u(s) +n(0), v(s) + (s = 7)) — g(u(s),(s)) ~ Daglu(s), o(s))n(0) -
— Dyg(u(s),v(s))n(s — 7)l|¢(s — o) ds+
+ [ lg(u(s) +n(0),(s) 4 nls = 7)) = (uls), o(s)li(s - 7) ds
< [ sup (IDzg(uls) + Mn(0),0(s) + Mn(s = 7)) = Daglu(s), (s n(0)1+
+ Dy9(u(e) + 2(0) v(s) + M=)~ Dyglu(s) (s lals — PI)I6(s — o)l s
+ [ lotu(s) + 7(0),0(s) + nls = 7)) - o(u(6) (sl - 7) d
<L / (In(0)1 + In(s = 7)*Ié(s = 7)] ds
+ L[ lnfs = IO+ s — 7)) s

< LUl [ 18(s = o)l ds + 2l

< 2L(|ImlIXM)2 (1 + 2]|9l*?)
= O(|Inll2")?, as |[p][at — 0

which shows the differentiability of G with respect to ¢. The continuity of DyG is
a consequence of the following inequality



|1DsG(z2, 6, 7,0)n — DyG(w, ¥, p, o)ll" <

< [ 1D2g(u(s), (s)dls = In(0) = Dog(b(0) +w(s), ¥(s = p))ils — O)n(O)] ds
+ [ I1Dyg(u(s), o(s))n(s = 7)é(s — @) = Dyg($(0) + w(s), ¥(s - o))
_n(s = p)bls — )l ds
/|g(<>,v< 5)) - 9(4(0) + w(s), ¥(s — )lli(s — o)) ds

< [ 1D2g(u(s), v(s) = Deg((0) +w(s), (s - ) llé(s — o)n(0)] ds
¥ / [D.g($(0) + u(s), ( P)In(O)d(s = o) = (s = o)) ds
IDyg(u(s),0(5)) = Dyg($(0) + w(s), (s - p))n(s = 7)(s — o)l ds
+ [ 1D,(4(0) + w(s),bls = pIIdls = o)als = 7) = (s — oJals = ] ds
" g(u(s), 0(5)) = 9(6(0) + w(s), (s = p)llils — )] ds
<2L/ (16(0) = $(0)| +2(s) = w(s)] + 16(s = 7) = ¥(s = ) )|(s = o)] ds
+2Llg =9I + L [ 16(s = )lln(s = 7) - n(s = ) ds

/ (16(0) = %(0)] + |2(s) — w(s) + |¢(s — 7) — %(s = p)|)I7(s — o)l ds
< L(4(||¢>H‘ T Dl =M + @l + Dllz = wlle? + 20l (16l + 1) - pl)

)
v(

We now show that DG exists and is the operator given by D.G(z,¢,7,0)(1) =
t ! !

—/ D,G(u(s),v(s))¢(s — 7)¢(s — o) ds. First, we note that, if we define, for £ >
0

0, Ad(s):= ¢(s — 7 — €) — ¢(s — 7) and we(s):= ¢(s — 7) + Ag(s)/¢, then we
have |we(s)] < 2K(¢) and wg(s) — 0, almost everywhere in s, as { — 0 and that
|Ad(s)] < K(¢)|€], in which K(¢) is a Lipschitz constant of ¢. It follows that
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1G(z, 6,7 +€,0) — G(z,,7,0) = D,G(z,4, 7, 0 )e[I1" =
= [ lo(u(s), é(s = 7= ©)) = glu(s), é(s - 1)+
 + Dyg(u(s), ¢ls — 1))(s = 7)(s — 0)¢l ds
< [ lgtuls), ¢l = 7 = €)) - glu(s), (s = 7))+
+ Dyg(u(s), ¢(s =~ 7))A¢(s)(s — o)] ds+
41l [ 1Dyg(u(s),6(s = T)lwe(o)lId(s - o)l ds
< [[186()] sup D,g(u(s). v(s) + A2¢(s)) — gluls),v()IId(s — o)l ds
+ LIEIK(9) /0 (ol ds
< LK@)([ 186(s)P ds + [ lwe(s))) ds
< LK(8)"lela+ LK(@)i] | lwe(s)] ds

The Lebesgue Dominated Convergence implies that / ) lwe(s)]ds — 0, as £ — 0,
and therefore we have X

1G(2,¢,7 +£,0) — G(2,¢,7,0) — D:G(z,¢,7,0)la" = o([¢]), as [{] — 0

For each fixed ¢ , D,G(z, ¢,7,0) is continuous in (z,7,0)

1D-G(z, 9, 7,0) = D:G(w, 6, p, )|I}" <
< [ IDyg(u(s), 6(s = T)lidls — 1)d(s — @) = §(s = p)(s — v)|ds+
+ [ 1Dyg(u(s), (s = 7)) = Dyg(9(0) + w(s), 4(s — p)IId(s — p)a(s — )] ds

SLK(¢)(/ 9(s = o) = bs = v)lds + [ 19(s = ) - §(s — p) ds+
+ aK(@)(llz - wllk* + K(8)I7 - o))

which shows the continuity claimed.

The computations made above imply that, for each fixed o, G(z, ¢,7,0) is dif-
ferentiable in (2,4, 7). For the case that g(z,y) = g(z), then, obviously, G does not
depends on 7 and we have D,G continuous. Thus it follows that G is continuously
differentiable.
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Lemma 2.1 and the Uniform Contraction Principle imply the following results

Theorem 2.2 Suppose the functions f: R?** — R" and g:R?** — R™ are C*, k >
1, and that the k—th order derivatives k, D* f, D*g, are locally Lipschitz continuous.
Then, the unique solution z(¢,7,0)(t) of (2) is continuous in (¢,7,0); and, for each
fized 0° > 0, z(¢,7,0) is differentiable in (¢,7), for t on each compact subinterval
of [-r,b). Furthermore, for each fized (7°,0°), with 7° > 0, 0° > 0, z(4,7,0)(t) is
C* in ¢.

If g(z,y) is not independent of y, then the derivative may be discontinuous, as the
next example shows. Consider the equation

z(t) =z(t — 7)z(t — 1/2)

and, for any 0 < 7 < 1/2, take the initial function

0, if —-1<6<-1/2;
¢7(0) =14 (6+1/2)/(1/2—7), f -1/2<6 < —7;
1, if —7<0<0;

Then, we have, for 0 < p < 7 < 1/2, ||2(¢7,7)—2(¢*, p)lligh o-y = 2(T—p)/(1/2—p),
which shows that z(¢,7) is not locally Lipschitz continuous in (¢, 7).

However, if g(z,y) = g(z), that is, g does not depend on the second variable, then
the conclusion of the above theorem may be improved to the following result.

Theorem 2.3 Suppose the functions f:R?" — R" are g:R" — R™ C* k > 1,
and that the k — th order derivatives D*f, D*g, are locally Lipschitz continuous
functions. Then, the unique solution z(¢,7,0)(t) of

#(t) = f(z(t),z(t — 7)) + 9(z(¥))z(t — o) ift>0 (6
z(t) = ¢(t) if—r<t<0 )

is continuous in (¢,7,0); and, for each fized 0° > 0, z(¢,7,0) is continuously
differentiable in (¢,7), for t on each compact subinterval of [-r,b). Furthermore,
for each fized (7°,0°), with 7° > 0, 0° > 0, z(¢, 7, 0)(t) is C* in ¢, and if ¢° is any
fized function W*> (that is, the k — th order derivative of ¢, D*¢, belongs to L),
then z(4°,7,0°) is C* in 7.

12



4

For the case g(z) = 0, the previous theorem gives one of the main results of [4]
(actually, we present it slightly modified, with some minor change in the statement).

Corollary 2.1 Suppose the function f:R>® — R" is C*, k > 1, and its k — th
order derivative D*f, is locally Lipschitz continuous. Then, the unique solution
z(¢,7,0)(t) of

z(t) = f(z(t),z(t — 7)) set>0

z(t) = é(t) se —r<t<0 (7
is continuous in (¢,7); z(@,7) is continuously differentiable in (¢,7), for t in each
compact subinterval of [—r,b). Furthermore, for each fized 7° > 0,z(¢,7,0)(t) is C*

in ¢, and if ¢° is any fired in W5 (that is, the k — th order derivative of ¢, D* 4,
is in L), then z(¢° 1) is C* in 7.

3 Some Remarks and Extensions.

The results of Theorems 3 and 4 above remain valid for equations with finitely many
delays, that is, equations of the form

z(t) = f(z(t),X(t - 7))+ H(z(t),X(t —7)- X(t — o)

in which

Xt-1)=(z(t —n),...,2(t — 7))

H(z(t),X(t— 1)) X(t — 0) = Ty g;(z(t), 2(t — 10),...,2(t — 7))&(t — ;)

Let (17,...,70), (09,...,07) be fixed. Foreach j, 1 < j < p, the proof of Lemma

2.1 applies to the operators

0 0 0 0
Sz 0t T T Ty =)

0 0 0 0 .0 0
G(2,8, 7159 T5o1sT5x T T | PR o R

For example, in the case of Theorem 4, we have that, for each fixed (o9,...,0?),
Z(PyT1y-- -y Tpy 0%5...,0%) is continuously differentiable in (¢,7?,...,7,); for each

13



fixed (70,...,70), it is C* in ¢, for each fixed ¢° in Whe 2(4°71,...,7, 0%,...,0)

8
8 G AR (T =T )

The computations made above also apply to the case in which the delays are func-
tions of ¢. In order to simplify notation, we describe this result for the equation

&(t) = f(2(t), 2(t — 7(t))) + 9(2(1))2(t - o (1))

where 7(t) e o(t) are continuously differentiable functions of ¢. Consider, for a > 0,
the Banach space C([0,a],R). The set V = {7, o € C([0,a],R);7(t),o(t) € (0,a),
for t € [0,a]} is open in C([0,a],R). The computations of Lemma 2.1 remain valid
here, and we can prove that, for T, a® eV (o° fixed), ¢ € Wh*>, the solution
z(¢,7,0°) of the above equation is continuously differentiable in (¢,7); if 7% € V
is fixed, then z(¢,7° 0°) is CF is ¢; and if ¢ is any fixed function in W*>, then
z(¢°,7,0°) is C* in 7.

For the retarded equation (7), we also remark that, the solutions of (7) become
smoother at each interval of length r. Thus, if a solution of (7) is defined and is
bounded in R, then it is as smooth in t as f is. So, the initial function of (7) for such
a solution is C¥, if f is C*, and therefore, the solution will be C* in 7. In the case
f is dissipative, Equation (7) has an attractor. If f is analytic, then the elements
of the attractor are analytic functions of {. Then we can conclude that z(@,7) is
analytic in (¢,7). This property is no longer true for the neutral type equation
(2), since the solutions of this equation, in general, do not become smoother as ¢
increases (the examples given above show this).
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