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1 Introduction

This work is concerned with the smoothness properties with respect to delays of
the solution of a neutral differential-delay equation. By a neutral differential-delay
equation we mean an equation in which 5c(t) is expressed as a function of present
and past values of z, and past values of i. A very important point in the study of
these equations is the choice of an appropriate topological space for the solutions.
The basic normed linear space in this paper is W1’°°([a, b], R"), the set of absolutely
continuous functions taking the interval [a 6] into R" with essentially bounded

derivatives, endowed with the noun ”d’llhi,bl_—|¢(a)l + /b |¢((s.)|ds We refer to
Driver [1] (see also Melvin [5]) for useful remarks and examples motivating such
a choice. Notice that11] this linear space we can also define the (complete) norm
|I¢|lla°°bl“—|d>(a)| + esssupoelab1|¢(0)]. If [a, b] = [—- r ,0], we will denote W1°° =
W1'°°([—r, O],R"), and denote its norms simply by "d?”l'l and ||¢||1'°°.

We now formulate our problem in a more precise way. Let r _>_ 0, a Z 0 be
given real numbers, 1,0 6 [0,r], a > O, (15 G W1'°°. If FzR3" —> R" is Lipschitz
continuous, then the initial value problem

i(t) = F(z:(t),z(t - T),:i:(t — a)) if
_

t > o
(1z(t)=¢(t) if —r$t$0. )

has a unique solution z(¢, T, a), defined on a maximal interval [—r, b), for some 6 > 0
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(see, for example, [1] or [5]). We are concerned with the smoothness properties of
z(¢,r,a).

A basic result in this paper is the following formulation of the uniform contraction
principle, whose proof is essentially contained in [3] and [4]. In the statement of the
theorem and in everything that follows (unless otherwise stated), the expressions
open, continuous, etc, should be understood with respect to the norm || - H”.

Theorem 1.1 Suppose Y is a normed space, A is a topological space, V C Y and
U C H”'°°(([a, b],R"), are open subsets. and T: L7 x V x A —> E satisfy:

(a) For each (y,)\) 6 V x A there exists a unique 1 = g(y,/\) E E such that
g(y, A) = T(g(y,f\),yw\)-

(b) T(x,y, A) is a contraction in z uniformly with respect to (y, A) E V x A.

(c) For each a: E g(V x A), T(z,-,-) is continuous in V x A.

(d) For each A E A, T(-,-,)\) is C" in U x V.

(6) There exists q 6 [0,1) such that, for each (x,y,A) E U x V x A, we have
1.1 1,1 m mIIDzT($,3/J)hl|[a,bl S qllhll[a,b] and ||DzT($,y,/\)h|lia,b] S (Illhllian for all h 6

W1'°°(({a,b1,R“).

Then 9 is a continuous map on V x A and, for each /\ e A, the partial map g(-,)‘)
is C" in V.

2 Difi'erentiability of the Solutions.

The following notation will be used in this section: for each r > 0, a > 0, [9 > 0,
denote

W"°° == W1'°°([—r,0],R"), and Mill"1 == |¢(—r)| + i |¢3(s)| ds;

W375” := {¢ 6 W1'°°([—r,a],R“);¢(t) _=_ 0 on [—r,0]} with the norms

II¢II3;‘ := [0 nonds and "an“ == esssup.e[o,alli>(s)| for 45 e wigs;

2



A(a,fl) == {as e Wis; ||¢u1v°° 5 fl};

B(a,fl) == {¢ 6 W::3°; ||¢|I3.'1 < fl};

Bfl := w e w1-°°;||¢||“ < fl}-

-
For each a > 0 and 45 6 W1"? we define the element J) 6 W1'°°([—r,a],R") by

¢(t) := ¢(t), if —r S t S 0, and ¢(t) := ¢(0), if 0 5 t 5 a.

It is easy to see that Wig" is a closed subspace of W1'°°([—r,a],R") and that
for any a,fl > 0 we have A(o,5) C B(a,a,8).

g
It is easy to see that a function z(t) is a solution of (1) if and only if z(t) =

¢(t) + z(t) and z(t) satisfies

.~ ~
where u(s) = ¢(0) + z(s), v(s) = ¢(s — T) + z(s — T), w(s) = ¢(s — a) + é(s — a).

We first remark that if F is nonlinear in its third variable, then the solution
z(ci), T, a) may be discontinuous, as the next example (from [1]) shows.

Consider the equation
are) = i2(t — 1)

It is easy to see that the solution corresponding to the initial function 43 E 0 is

z(0)(t) E 0. Now, taking 11) defined by

ww>={ 59+” flew-Ha]
6 1f0 E l—1+62,0]_

we have

t
e+§ ifostse2
e+1 if62$t$lx(¢)(t) = {
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so that ||¢—¢||1-‘ = e, which can be made arbitrarily small, while ||:z(1/))—:c(q$)||}'1 =
1, which shows that a: does not vary continuously with (15.

We remark here that a continuous dependence result for a very general class of
functions F has been obtained by Melvin [7] in terms of the so called bag-topology.
However, that topology is not convenient for our purposes, since we need to work
in a normed space in order to make use of the uniform contraction principle. Thus,
we follow Driver [1] and assume that F is linear in its third variable, that is we
assume that F is given by F(z,y,z) = f(:r,y) + g(z,y)z, where szz" —-> R"
and ngz" —> R"2 are locally Lipschitz continuous. Thus, we will henceforth be
considering the initial value problem

f(:l:(t),x(t — T)) + g(:z:(t), m(t — T))i‘(t — a) if t > 0
2if —r St 5 0

( ),_/\_‘

(i

8-
AA

H-

0‘-

vv

II
H
g A H- v

and analyze the dependence with respect to (gt, 7,0) of the unique solution z(¢, T, o)
of (2).

For each a > 0, z 6 W3}, , ¢ 6 W1’°°, T e [0,r], o e (O,r], we define S(z,¢,'r,a)
and G(z, ¢,T, a) by

S(z ,¢,T = 0 if —r < t < 0
{S(z,<p M=f0tf ))ds if0<t<a (3)

G(z, ¢7770)(t) = 0 ift e l_rs0l
{ G(z,¢, 1', a)(t) = ./o g(u(s),v(s))<,i$(s — 0) ds if 0 5 t 5 a (4)

Then, a function x is a solution of (2) if and only if a: = $+z and z = S(z, o, T)+
G(z, ¢) T, 0).

For Eq. (2) we have the following result on continuous dependence of the solu-
tions. We include the proof in order to introduce the notation to be used later.

Theorem 2.1 Suppose f: R2" —> R" and 9:R" —+ R"2 are locally Lipschitz contin-
uous. Then the solution z(¢, 7,0)(t) is continuous in (43,130), fort in each compact
interval [—r,a] C [—r, b).



Proof. It suffices to prove the Theorem for t in a small interval [0,0]. If B C
W"°° is any bounded set, take an open set 0 C R” such that ¢ 6 B implies
¢(0) x ¢([—-r,0]) C 0. Then, choose L = L(O) > 0 such that

lf($?y)l1lg(x’y)l S L
If(=c,y) — f(w’,y’)l S L(I-'c — rc’l + Iy — y’l) (5)
Ig(z,y) — g(x',y’)| S L(Iz — 1’| + Iy — y’l)

Now we choose K > 0,a > 0 such that 2L(g + fo" W3 — T)|ds) < 1 and such that
for any 5 E B(a,K) we have (¢(0) + £(s),¢(s — T) + {(s -— T)) 6 O for t 6 [0,0].
Then, for 2,11) 6 B(a,K), (15,11? 6 B, T,p 6 [0,r], 0,1/ 6 (0,r] we have

use, >+ Ge, as, no) — sun, ¢, 7) — Gm, as, 7,0)Ill" =

=/°|f(u(s)H»-f()¢<0)+w<s),<is(s—f)+w<s—r)>|ds++/ |g<u —gs(¢<o>+w< ms—r)+w<s—T))u¢(s~a)|ds
<2L<a+/°<|¢<s—a>1ds)||z—w||3,‘

MW)+G(z ¢,ra>— S(z,¢,p>— G(W, >||z.‘=
=/|f(us) v(s—)) f<¢<0>+z(s),¢<s— p<p>+zs— >ds>|

+/:(|g(u we) —g(¢(o>+z(s),¢¢(s—p)+z(s—p))|l¢3(s—o)|ds+

|g(¢ (0)+2(3) wls— p)+2(s—p))||é(s—a)—z/3(s—V)lds
L2< (a+ ||¢||“>||¢— ¢u“++(2+K(¢) +K(z))n¢||"1|-r —p|)+

+L/|¢(s—a)— d>(s—V)|ds

Thus, S(z, d), T)+G(Z, 45,1, 0) is a contraction in z uniformly with respect to (¢, T, a),
and is continuous in (d), T, 0). Then, Theorem 1 implies that z(¢, ‘r, a) is continuous.

We now analyze the difierentiability of the solution z(¢, T, a) of (2). First, we
note that the dependence of x with respect to a is not somewhat complicated.
The next example shows that, even for a very simple equation, the solution is not
differentiable with respect to 0.

Consider the equation



x(t) = 5c(t -— a)

with a 6 (0,1]. Choose do 6 (0,1) and fix the following initial function

_ 0 lf—ISOSO’Q¢(9)‘{ o+ao if—aogogo

Denote z(a) = x(¢,a), and fix a = 00. It is easy to see that for a 5 (70, we have
x(0)(t) = t + 00, so that D;:c(cro) = 0.

On the other hand, for any 6 > 0, 1:(<70 + {)(t) is given by

_ a ifOStS§u%+Om—{11%_giugtga

Thus we have

x(oo+£)(t) —z(ao)(t) =1{t £0955f6 5 H€St§a

whence
1 1 £

EHMUO + E) — $(Uo)]||(1,’1 = Z jo dt=1.
Then it follows that D,z(ao) does not exist.

Let us also use this equation to show that the derivative D¢z(¢, T, a) can be discon-
tinuous in 0. Indeed, a simple computation shows that D¢z(¢,a)h(t) = h(t — a)
and, though this function is continuous in a, the continuity is not uniform in h, for
”It”;1 S 1. Let, for 0 < a <1/2, h be defined by

0 H—lSOS—U2
l——0 12 if—12<0<—

hwy: 1—?(+'/) /_ — a

--1-—_-%(0+20—1/2) if—aSOSl/2—2a
0 H1fl—2050$&



Then it follows that

I|D¢$(0,a)h ~ D¢.37:(0,1/2)h||c1;l 2
1/2—0 , .

2]; lh(3—U)_h(S—1/2)|d3=

=(1/2—-a)1_220
=1

which implies that ||D¢x(0,o) — D¢x(0, b”; 2 2 (here, || - ”3, denotes the operator
norm)

Based on this example, we will search smoothness with respect to (¢,T), of the
solution z(¢, 7,0) of (2).

We now analyze the difierentiability properties of the operators G and 5 defined
by (3) e (4), respectively. We only write down the computations for the operator
G. The corresponding computations for the operator 5 are analogous and thus are
omited. Since we are interested in the diflerentiability for 7‘ > 0, we assume that
T e [6, r], for some 6 > 0. This being the case, we can choose 0 < a < 5, so that,
for O S t S a, we have G(z, (15,7, a)(t) z/o g(¢(0) + z(s),¢(s — T))¢(s -— r)ds. To

shorten notation, we denote u(s) = ¢(0) + z(s), v(s) = ¢(s — T).

Lemma 2.1 Suppose szZ" —> R" and 9:11“ —> R’12 are continuously differen-
tiable functions. Then S is continuously differentiable with respect to (z, ¢,T). For
each fixed a, G(z,¢, 1,0) is differentiable with respect to (z,¢,‘r). Furthermore, if
g does not depend upon the second variable, then G is continuously difi'erentiable in
(z, ¢, 7).

Proof. The candidate to D,G(z, 45, T, a) is obviously, the operator given by

D,G(z,¢>,‘r,a)h(t) = Lthg(¢(0) + z(s),¢(s — T))h(3)<i§(s — 0) ds, for 0 S t S a.
We have



”G(Z + h,a¢, T, 0) _ G(Z, ¢a T? U) — D2G(Z, ¢$ Ta “Vi”?
= / |g(u(s)++h<s> v(s)) — guts), v(s)) — D,g(u(s),v<s))h(s)||¢(s — an ds

s
0

sup |D=y(u (s )+ Aht ), v<s>> — D=y(u(s),v(s))lh(s)ll<i3(s — a): as

<L/ Ih(s)()|’I¢(s—ands
SL(IIhIIL‘) /0°|¢¢(s—a)lds
= oanwm as uh”? A 0

which shows that Dsz, 923, T, 0) exists. We now show that D,G(z, gs, 7,0) is contin-

||D,G(°z,¢,m>h— mmW, )hllbl=
Z/|D,g(u(s),v(s)>h(m)<—

a)— BMW>+wts),¢(s—p))h(s)¢<s—u)|ds

|ng<¢(0)++z(s),¢(s-r))||¢<s—a>— tbts—unds

Off; wtgttsuo +zts), ¢(s—r))—D ”(wow)”
wip—t

p))H¢(s—v)lds

|¢<s~o>— ¢(s—v)|ds+Ln¢— ¢II”+LI¢(0) /||¢(>s—u1ds+
+th |z(s) Ms)ll¢(s—V)Ids+Lll¢— ¢||“/° wtts—undstu

+LZ ltb(s-T)— tbs—t p)||tb(s—v)lds

su/ |¢(s—)— ~/>(s—u)|ds+||¢—¢n“+2n¢—¢||1v‘||¢u”+
+ nz — wIIL’IIrbII” + (lwummr — pl)

and hence D,G’(z, 45, T, a) is continuous.

Now we show that D¢G(z, 43, T, 0) exists and is continuous. The computations are
similar to the ones made above, except for a. lengthier notation. The candidate to

t
D¢G(z, 45, T, a) is the operator given by D¢G(z, 45, T, a)r](t) = A; ((D,g(u(s), v(s))17(0)+

Dug("(8),v(8))n(8 - T))$(s — 0) + 9048), v(8))fl(s — 0)) ds, for 0 S t S a



||G(z,g>+ 17,130) — G(z,¢,1', a) — D¢G(z,¢, T, a)17||‘1;l =
= fo Ig(u(8) + n(o>,v(s> + fl(s 7 ,)) — g<u<s>,v(s)) — D=g(u(6),v(8))n(0)—

— 01,9028H( ),v(8))n(8 — T)|I¢(s — 0)I 018+

+/ |g(u (s )+n(0) v(8)+n(s—T))- gu( (s),v(s ))|r7(s—r)ds

< f’o sup<(uIng( (s )+An(0),v(s)+An(s— ))— Dg(u(s,) vs0())|n( )|+
+1D§g<u( )+/\n(0),v(8)+)\n(s—T))—D Momv<s>>|n<s—r)l>|¢(s—a>|ds

+/°|g(us()+n<0) vs—()+r/(S~T)) g<M()v())|n<s—r>ds

< L/ (I71(0)|+I17(S —f)|)2 |¢<s —f)|ds

+L/°(|17( s-T)I(In(0 )I+ID(S—T)I)ds

SL[4(IIDII3,1)2 [0 |¢<s—a>lds+2(nnu3,2)21

s 2L(|In||3;1)2(1 + 2l|¢ll1 1)
= 0(I|17|I3;‘)2, as IIDIIZ;l ~2 0

which shows the differentiability of G with respect to ¢. The continuity of DéG is
a consequence of the following inequality



IID¢G(2,¢,T,0)17 — mmm smug]-<

</ |ng<uu(s),v(s))¢(s— «no—H) Do+,g(¢() w<s),¢(s—p))¢<s—a)n(o>|ds

+/ my“ u(s),v_¢(s)),,(s_f)) (s— )—Dyg(¢(0)+w(s>,w(s—p))-
ns( -p))¢ (s— ands

+/|g<us—(>,v(s)) g<¢<o+) w<s),¢<s— p))llf7(s— mats

</ |D;g( U))(8),v(s —¢ng( (0+) ws—(sw p))ll¢(s—U)n(0)lds

+/: |ng(¢(0>++w(s),¢(— P))Hn(0)ll<i5(s—0)— ¢(s—a)lds

|Dg<u<s>v<s>) Dygwm w<s>w nus—was-onds
°|D,g(¢(o>+w(s,> w— p))||¢(s—0)n~(s—T) ¢(s—0)ns—( mus
°u|g< < > v<s>>— gwmmm — mums—anus

< 2L/ (|¢o>ws<o>1+|z( )— ws< )|+|¢<s~r>—¢<s—p)|)1¢<s-a)|ds

+2Ln¢— ¢||H+Lj |¢()—s—T|In(s—T) ns<~p>|ds

+L/0(I¢(0—) l/)()s-()|+I2() w(3)| + I¢( s-T) —¢(s —P)I)|7'7(s—0)Ids

S L(4(Il<15lll'l +1)II¢> - 1M!” + (2Hd>l|1’1 +1)l|z — lull};1 + 2||<25I|1"(H<25II"l +1)|T — pl)

We now show that D,G exists andIS the operator given b) DG(z, Ta)(t) :
—/ DyG (u(s), v(s))¢ (s — T)¢(s — a)ds. First, we note that, if we define, for 6 >

0 A¢(s ):—_ ¢(s — T — §)— ¢(s — T) and w5(s):= ¢(s — T) + A¢(s)/£, then we
have |w€(3)| S 2K(¢) and adds) -—+ 0, almost everywherem s, as 6 —> 0 and that
|A¢(s)| S K (¢)|{|, in which K (45) is a Lipschitz constant of 45. It follows that
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||G< ,a—«s,~r+e,> G<z,«s,r,a)—DsG(z,«s,«,a)euz;1=
=/0° |g<u<s> «s(s — r — a» — g<u(s),«s(s — «))+

+ Digs(> «s(s — was — «ms — am «is

</ |g<u (s) «Mm—e» —g<u(s> ¢(s—T))+
+Dyg(u (s) «s(s—r))A¢(s«s>¢'s—( >|ds+
+|£|/ |Dyg(u(s) «ss(s—r>>||w<( >||«s(s— )|ds

</ |A«s(s) Isup mm s,) v<s>+mas»—g<u<s>,v(s))||«'s<s—a)|ds

+L|5|K(«s )/|w£(3)|d8

3LK(¢)(/ IA¢(s)()|2ds+/° Ms)
s LK<¢> |£|2a+LK(¢)I£|

0
MM!“

The Lebesgue Dominated Convergence implies that /a |w5(s)| ds —-+ 0, as 5 —> 0,
and therefore we have

0

IlG'(z, 45,7 + 6,0) — G(z,¢>,7,0) - DTG(2,¢, 7,0)élll'1 = 0061), as |§| —* 0

For each fixed ¢ , DTG(z, 4), 7,0) is continuous in (2, 7,0)

”we, «s, f, a) — D«G(w, «sp, «our 3
</0°|Dyg(u(s),«s«s(s—«))||«is(s—f)«is<s— a)— ‘(s—p>«is(s—u)1ds+

+/° |D,g(u<s)¢(s—r))— Dyg(«s(o>+w(s>«s(s—,p))n«'s<s—p)«s<s—u>|ds

5LK(¢)</ |«s(s—a>— $(s—v)|ds+/ |«‘s(s—r)— «s(s— p)|ds+
+ aK(«s)(||z — wnz‘ + K<¢>|r — pm

which shows the continuity claimed.

The computations made above imply that, for each fixed a, G(z, ¢, T, a) is dif-
ferentiable in (2,4), T). For the case that g(z,y) E g(z), then, obviously, G does not
depends on ‘r and we have D,.G continuous. Thus it follows that G is continuously
differentiable.
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Lemma 2.1 and the Uniform Contraction Principle imply the following results

Theorem 2.2 Suppose the functions f: R2" ._, R" and ngz" -—i R"2 are Ck, k 2
1, and that the k—th order derivatives k, Dkf, Dkg, are locally Lipschitz continuous.
Then, the unique solution z(¢,‘r,0)(t) of (2) is continuous in (it, r, 0); and, for each
fixed 0° > 0, a:(¢,‘r,0) is differentiable in (¢,'r), fort on each compact subinterval
of [—r,b). Furthermore, for each fixed (70,00), with To > 0, 0° > 0, rc(d>, 1,0)(t) is
CI“ in 45.

If g(:r,y) is not independent of y, then the derivative may be discontinuous, as the
next example shows. Consider the equation

i(t) = z(t — T):b(t—1/2)

and, for any 0 S T < 1/2, take the initial function

0, if ~1 S 0 S —1/2;
¢T(0)= ( +1/2)/(1/2—T), if—l/QSGS—T;

1, if —-7'§0S0;

Th'en7 we have, for 0 [S P S T <1/25ll‘r(¢:riT)Tx(¢p3p.)lll(i,ll/2—p]= 2(T_p)/(1/2_p)3
which shows that x(<p,7) is not locally Llpschltz cont1nuous in (¢,T).

However, if g(.7:, y) E g(x), that is, g does not depend on the second variable, then
the conclusion of the above theorem may be improved to the following result.

Theorem 2.3 Suppose the functions f:R” —+ R" are ng“ —» R"2 C", k 2 1,
and that the k — th order derivatives D"f, Dkg, are locally Lipschitz continuous
functions. Then, the unique solution z(¢, T, 0)(t) of

{ i“) = f($(t),1'(t — T)) + g($(t))-"C(t — 0) ift > 0
(6z(t) = ¢(t) if —r 5 t 5 0 l

is continuous in (d), r, 0); and, for each fixed 0° > 0, z(¢,'r, 0) is continuously
difierentiable in (45,1), fort on each compact subinterval of [—r, b). Furthermore,
for each fixed (7°,0°), with 7° > 0, 00 > 0, z(¢,‘r,0)(t) is C" in (35, and if ¢° is any
fixed function Wk'°° (that is, the k — th order derivative of ii, D"¢, belongs to L“),
then x(¢°,‘r, 0°) is C" in r.
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4

For the case g(a:) E 0, the previous theorem gives one of the main results of [4]

(actually, we present it slightly modified, with some minor change in the statement).

Corollary 2.1 Suppose the function f: R271 —> R" is C", k 2 1, and its k - th
order derivative D"f , is locally Lipschitz continuous. Then, the unique solution
$(¢,T,0)(t) Of

:'r(t) = f(:t:(t),:r(t — r)) set > 0

z(t) = ¢(t) se —r St S 0 (7)

is continuous in (on); z(¢,r) is continuously differentiable in. (¢,r), fort in each

compact subinterval of [—r, b). Furthermore, for each fixed T0 > O,x(¢, r, o)(t) is C"
in d, and if ¢o is any fixed in Wk'°° (that is, the k — th order derivative of d), Dkd),
is in L°°), then m(¢°,r) is Ck in T.

3 Some Remarks and Extensions.

The results of Theorems 3 and 4 above remain valid for equations with finitely many
delays, that is, equations of the form

in) = f(x(t),X(t - r)) + H(r(t),X(t - T) - 5m — a)

in which

X(t — r) = (x(t — Tl),...,z(t — T,))

H(z(t),X(t — r» - X0 — a) = 23:1 grow), we — n),...,x(t — row — of)

Let (Tf,...,r£), (of, . . . ,0'?) be fixed. For each j, 1 Sj 5 p, the proofof Lemma
2.1 applies to the operators

0 0 0 0S(zi¢a711°“77-j_1a7j,7j +1,...,Tp
O 0 0 0 0 0G(za¢a7’17-°-7Tj—1,Tj,7j +1,-.-,Tp,0'1,...,0').

For example, in the case of Theorem 4, we have that, for each fixed (03, . . . ,a‘,’),
z(¢,‘rl, .. .,'r,,, of, . . . ,09) is continuously differentiable in (45,71, . . . ,'r,); for each
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fixed (71°, .. . , 73), it is C" in 43, for each fixed 430 in W*'°°, z(¢°,-rl, . . . ,T,,, of, . . , 0°)C
is C" in (Tf,...,1':).

The computations made above also apply to the case in which the delays are func-
tions of t. In order to simplify notation, we describe this result for the equation

W) = f(z(t), $(t - T(t))) + 9(w(t))i(t — 0(t))

where T(t) e a(t) are continuously differentiable functions of t. Consider, for a > 0,
the Banach space C([0,a],R). The set V = {T, a e C([0,a],R);T(t),a(t) 6 (0,0),
for t G [0,a]} is open in C([0, a], R). The computations of Lemma 2.1 remain valid
here, and we can prove that, for T, 0° 6 V (0° fixed), (15 E W1'°°, the solution
m(¢,r,a°) of the above equation is continuously differentiable in (d), T); if 7° 6 V
is fixed, then 1:(¢,1'°, do) is C’t is d); and if ¢ is any fixed function in W"’°°, then
x(¢°, T, 0°) is C" in 7'.

For the retarded equation (7), we also remark that, the solutions of (7) become
smoother at each interval of length r. Thus, if a solution of (7) is defined and is
bounded in R, then it is as smooth in t as f is. So, the initial function of (7) for such
a solution is C", if f is Ck, and therefore, the solution will be Ck in T. In the case
f is dissipative, Equation (7) has an attractor. If f is analytic, then the elements
of the attractor are analytic functions of t. Then we can conclude that 17(¢,T) is

analytic in (d),'r). This property is no longer true for the neutral type equation
(2), since the solutions of this equation, in general, do not become smoother as t
increases (the examples given above show this).
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