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Calcium hexaluminate (CA,) presents a wide application in high-temperature thermal insulation.
Despite the high porosity levels achieved, the use of carbonated precursors in its synthesis inevitably
produces CO, as a by-product. CA was produced by combining different sources of alumina (a-Al,O,
and p-Al,0,) and lime (CaCO,, Ca(OH), and CaO) in aqueous suspensions that were cast and sintered
to evaluate these routes on its physical properties. The products attained after sintering at 1550 and
1600 °C were characterized for crystal phases, real density, particle morphology, uniaxial compressive
strength, apparent porosity, and pore size distribution. Part of the samples sintered at 1600 °C was
subjected to a thermal shock test and was then evaluated for residual strength under diametrical
compression, apparent porosity, pore size distribution, and flexural elastic modulus. The CA  samples
produced from a-AlL O, presented lower pore fraction and higher mechanical strength and modulus
of elasticity. The superior properties of the materials produced with a-alumina were maintained after
thermal shock. The acicular geometry of the CA particles is related to their excellent thermal shock
resistance and mechanical performance. The results indicated a more environmentally friendly system
produced from a-Al,0,-CaO for industrial applications of high-temperature thermal insulation resistant
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to thermal shock damage.
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1. Introduction

Calcium hexaluminate (CaAl ,0 ,, Ca0.6AlL,0,, or CA ) is
an alumina-rich compound that contains 92 wt% of A1, O, and
7-8 wt% of CaO and presents high thermal stability and
refractoriness (melting point higher than 1800°C)'°. Due to
this, microporous CA -based materials are highly stable in
reducing atmospheres and present low solubility in alkaline
slag, allowing its contact with molten steel””. Besides this, its
low thermal conductivity (1-4 W.m'"K-" at 1300 °C)*'* and
densification®'"!” and thermal shock resistance®>%2*-22 point
out such porous structures as ideal candidates for application as
high-temperature thermal insulators'*'® and hot-air filters?>.

Due to their technological importance, during the past
30 years, several works studied the mechanism of porogenesis
and solid-state reactions involved in such structure production
employing different processing methods. In general terms,
CA, can be produced from the combination of several
sources of AIZO& for instance, calcined alumina (a-Al
,0,)561617.19:2632 " hydratable alumina (p-Al,0,)****, and
CaO, such as plain calcium oxide (CaO or lime)', calcium
carbonate (a-CaCO,, or calcite'”'*?!2233%33 and u-CaCO,, or
vaterite'?), calcium hydroxide (Ca(OH),)*, calcium chlorite
(CaCl,)**¥, and calcium aluminate cement (CAC)'+!%36%,
In these studies, frequently the raw materials were dry-

*e-mail: ivonero@univap.br

mixed and compacted by uniaxial pressing>¢16:17:.19.26-32
mixed with an organic compound and extruded*#**, or
prepared by chemical routes using sol-gel>* or gelcasting
techniques®’*** to produce monolith structures®®!3-14:3334)
spherical beads*, or porous aggregates®®!1:134446_ After the
consolidation of these particles, and during the initial heating
up to 900-1000°C, the decomposition of hydroxylated and
carbonated compounds generated empty spaces due to the
particles” density mismatch®'"°. Alternatively, foaming
agents** and freeze-casting-based techniques® were introduced
to increase initial pore content even further. In the 1000-
1350°C temperature range, the solid-state reactions involved
in the formation of CA begin at the interface between the
AlO, matrix and CaO domains, where the concentration of
Ca?" ions is higher! 117123 Consequently, low-melting point
CaO-rich phases (Ca,Al,O, or C,A, Ca Al O, or C A,
and CaAl,O, or CA) form firstly at these contact points'”'°.
As heating continues, these low-melting phases dissolve
the neighboring particles, and as the liquid is progressively
enriched in alumina, compounds with higher melting points
(CaAl,O, or CA, and CA)) crystallize. Because typical
CA, crystals are flat hexagonal plates of high aspect ratio,
their formation is expansive and the porosity generated
during the decomposition of precursors is partially preserved
during sintering!®!16:1°,
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Once produced and installed in steelmaking equipment,
CA, structures must withstand thermomechanical stresses
resulting from thermal cycling and temperature gradient
between the hot and cold faces®!>135!. As the material
undergoes successive cycles of thermal shock, its structure
accumulates damage, which is a determining factor in its useful
life. The increase in size and coalescence of cracks in the
material drastically reduces its mechanical strength so failure
can occur at stress levels much lower than that supported by
the undamaged material>*1821:22:263%5253 To minimize thermal
shock damage, mineralizer agents, such as SiO,, MgO, B,O,,
and SiC were added to the compositions to tune the geometry
of CA, crystals’*'. For instance, whereas SiO, additions
improved the compacting of the grains and reduced their
aspect ratio and inter-particle porosity>*3”%, the presence
of MgO and in situ formed magnesium aluminate spinel
(MgALO,) generate elongated crystals and compression forces
amongst particles that behaved as toughening mechanisms,
preventing the formation of long cracks and making this
insulating material resistant to thermal shock damage®%2.

Although the use of calcium carbonate (CaCO,) as a
CaO precursor contributes to increasing the porosity, this
compound inevitably produces CO, as a by-product (between
590 and 753°C)>'""%. Studies show that CaO and Ca(OH), are
strategic sources of calcium for the production of CA, as
they release a lower percentage of toxic gases in the final
system. In previous works, combinations of a-Al,O, and
different calcium oxide sources have been evaluated mainly in
processing routes based on uniaxial pressing'®!”". However,
they can also be formed by liquid-based routes, such as direct
casting. To produce “in situ” CA,, direct casting requires the
production of a stable aqueous co-dispersion of AL O, and
CaO sources’ particles after pH adjustment (above 9, to
prevent CaCO, dissolution and avoid aluminas’ isoelectric
point) and proper dispersion (using poly(sodium-ammonium
acrylate)-based dispersants)®**. The high flowability of such
suspensions facilitates the casting of parts into complex
shapes with large volumes, or even direct application on hot
linings'>'3, Due to this, such a process would present fast
application and energy saving'>'>%. Because a-Al O, does
not react with water, the addition of a hydraulic binder,
such as calcium aluminate cement and hydratable alumina
(p-Al0,), is necessary to set the suspension before sintering.
In both cases, the Al,O,-CaO ratio in their particles affects
the amount of CA formed'+*-.

In comparison, to other processing routes, direct casting
was less explored in literature despite its technological
importance. In this context, the objective of this work

Table 1. Conditions for preparing aqueous suspensions.
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was to produce microporous in situ CA, by direct casting
combinations of alumina (a-Al,O, and p-Al,O,) and lime
sources (CaCO,, Ca(OH), and CaO) and to investigate the
combined effect of different raw materials and sintering
temperature on physical properties (density, crystal phases,
microstructure, compressive strength, porosity, pore size
distribution, thermal shock resistance).

2. Materials and Methods

2.1. Raw materials and samples preparation

The raw materials used in this work were: calcined alumina
(a-ALO,, 3.9 g/lem®, A1000SG, Almatis, USA), hydraulic
alumina (p-ALO,, 3.2 g/cm’, Alphabond 300, Almatis, USA),
calcium carbonate (CaCO,, 2.7 g/cm?, Vetec, Brazil), calcium
oxide (Ca0, 3.5 g/cm?, Vetec, Brazil) and calcium hydroxide
(Ca(OH),, 2.2 g/cm?, Synth, Brazil). The binder used was
calcium aluminate cement (CAC, Secar 71, Kerneos).
The dispersant additives used were polyglycol) derivative
(Castament FS60, Basf) and sodium polymethacrylate
(Darvan 7NS, Vanderbilt Minerals). The raw materials were
mixed in stoichiometric proportions to produce calcium
hexaluminate (CaAl ,0,,, CA,), represented by Equations
1-3 and defined in Table 1:

641,03+ CaCOy — 641,03+ CaO + COy — Cadljn0p9 (1)

6A1203+ CaO —> CaAllelg (2)

6A45L,03 + Ca(OH ), — 645,03 + 3)
CaO + H,O — Cadlj50y

The suspensions were prepared and poured under
vibration into cylindrical (16 mm diameter * 18 mm height)
and prismatic (75 mm length x 12.5 mm width x 12.5 mm
height) molds. After casting, samples were subjected to
curing processes (50 °C, 24 h in a saturated environment),
drying (110 °C, 24 h), and sintering (1 °C/min up to 1000 °C,
1 h plateau, 5 °C/min. up to 1550 °C or 1600 °C, 2 h plateau,
10 °C/min cooling rate). Such conditions were employed
to maximize the binding effect of hydratable alumina and
reduce the likelihood of explosive spalling®.

Samples sintered at 1600 °C also underwent a thermal
shock procedure using the thermal fatigue by multiple cycle
method, in which the specimens are subjected to several
cycles of sudden heating and cooling, keeping the temperature
difference fixed at values higher than that necessary to

Compositions Binder (wt%) Dispersant (wt%) Solid content (%)
a-Al,0,-CaCO, 25 Polyglycol (0.2) 78.0

a-ALO,-CaO 25 Sodium polymethacrylate (2.0) 75.8
a-Al,0,-Ca(OH), 25 Sodium polymethacrylate (1.0) 74.0
p-Al,0,-CaCO, - Polyglycol (1.4) 66.0

p-ALO,-Ca0 - Polyglycol (1.6) 57.0
p-ALO,-Ca(OH), - Polyglycol (2.8) 54.0
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nucleate cracks (AT > AT). Each sample was inserted for
15 min into an oven at 1025 °C and quickly cooled to room
temperature, with a AT of approximately 1000 °C. For each
sample, 10 cycles were carried out, with a complete cycle
being the process of heating and cooling the specimen®.

2.2. Samples’ characterization

The products attained after sintering were characterized
for crystal phases, real density, particle morphology, uniaxial
compressive strength, apparent porosity, and pore size
distribution. Part of the samples sintered at 1600 °C after
the thermal shock test were then evaluated for residual
strength under diametrical compression, apparent porosity,
pore size distribution, and flexural elastic modulus. All tests
were carried out on cylindrical samples except for the elastic
modulus (in rectangular bars).

X-ray diffraction (XRD-6000, Shimadzu; Cu-Ko radiation =
1.54439 A) was performed to identify the phases formed
and the real density was assessed using an Upyc - 1200,
v5.04 (Quantachrome) helium pycnometer. The microstructure
at the external surface of the sintered samples was investigated
using scanning electron microscopy (SEM, EVO MAI10,
Zeiss, previously covered by thin gold coating).

The compressive strength (o, MPa) was calculated as the
average of 5 specimens of the different CA, samples under
uniaxial compression, according to ABNT NBR 6224:2001,
using a universal testing machine (EMIC DL10.000) with
a displacement speed of 0.15 mm/min. The rupture stress
of each sample was calculated according to Equation 4:

oy = 4P / nD? (4)

where P (N) is the load recorded at the fracture of each sample
and D is the average diameter of each sample. The diametral
compression (c,, MPa) test was carried out according to
ABNT NBR 7222:2011 using the same equipment and the
displacement speed was 0.05 mm/min. The reported value
was an average of 5 samples, which residual strength was
calculated according to Equation 5:

op= 2P /7hD ®)

where h (mm) is the average height of each sample.

The apparent porosity (AP) and volumetric density
(VD) were evaluated following the method based on the
Archimedes principle (ASTM C 830). The samples (both
green and sintered) in triplicate were initially dry-weighed
(M,). The green and sintered samples were then soaked in
kerosene (p=0.8 g/cm?) or water (p=1.0 g/cm?), respectively,
under vacuum for 1 h. The immersed (M,) and wet (M, ) weights
were then recorded. The apparent porosity and volumetric
density were calculated according to Equations 6 and 7.

AP =100 %x[(My — Mg) / (My — M;)] (6)
VD = 100 %x[ Mg/ (My — M;)] @)

The total porosity (TP) was calculated from the ratio
between volumetric density (VD) and real density (RD),

according to Equation 8, where VD is the ratio between the
mass and the external volume and RD was measured by He
picnometry, as previously described.

TP = 100 %x[1 — (VD / RD)] ®)

Pore size distribution was evaluated using the mercury
porosimetry technique (Autopore IV 9500, Micromeritics,
USA). The diameter of the pore into which mercury penetrates
relates to the applied pressure through the Washburn equation
(Equation 9), valid for cylindrical pores, where D is the pore
diameter, P is the applied pressure, v is the surface tension
of the mercury and ¢ is the contact angle (130°) between the
mercury and the sample. The volume of mercury (V) that
penetrates the pores is measured directly, as a function of
the applied pressure (P). From the curve of the cumulative
volume of mercury intruded into the sample after successive
pressure increases, the average pore size and pore size
distribution can be extracted.

D = (~4ycos($)) / P 9

The flexural elastic modulus was obtained by the non-
destructive impulse excitation method (Sonelastic, ATCP,
ASTMC 747, Brazil) using bar-shaped samples.

3. Results and Discussion

The solid-state reaction that forms CA, is a double-
diffusion mechanism, where Ca?*, AI*, and O* ions are
mutually exchanged between particles. Since the diffusion
rates of Ca* in ALO, and AP* in CaO are significantly
different, the overall reaction kinetics is slow, and several
intermediate compounds may be formed and decomposed
before reaching the equilibrium composition'%!”"°. The density
of the intermediate compounds (C,A = 3.15 g.cm?, CA =
2.9 g.cm?, and C,A, = 2.6 g.cm”) have lower values than
the reactants (AL,O, = 3.9 g.cm?®, CaO = 3.5 g.cm™ and
CA, = 3.2 g.cm™) and the volumetric expansion resulting
from its formation tends to separate the grains and make
densification slower. Due to this aspect and to the large
plate-like morphology of CA, crystals, such structures are
intrinsically densification-resistant'®'?.

In the samples produced with a-AlO,, dehydration
of the CAC hydrates occurs first (up to 400 °C), causing
initial shrinkage'®. As the temperature increases to 1500 °C,
there is gradual volume expansion, as the formation of the
CaAl,0, (CA,) phase is completed. Eventually, some shrinkage
occurs between 1500 and 1650 °C due to densification. This
result suggests that all the samples were well crystallized, and
their formation process was completed, as shown in Figure 1

The CA, samples produced in this work showed very
similar real density values (~3.8 g.cm?), as shown in Table 2

3.1. Uniaxial compression resistance and
apparent porosity
The uniaxial compressive strength and apparent porosity

results (Figure 2) show that the samples produced with
p-Al O, presented higher apparent porosity, both for green
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Figure 1. DRX pattern for samples CA obtained by direct molding from compositions of a-Al,O, and p-Al,O, with different calcium
sources sintered at 1600 °C. Identified phases CaAl ,0 , (JCPDS 38-0470) and CaAl,O, (JCPDS 36-0367).

Table 2. Real density of CA samples obtained by direct molding from a-Al,0, and p-Al,O, compositions with different calcium sources

sintered at 1550°C and 1600°C.

CaO Precursors

AL O, Precursors Ca(OH), (g.cm?)
B CaCO, (g.cm?) CaO (g.cm?) ?
a-ALO, (1550/1600) 3.79/3.79 3.80/3.80 3.78/3.79
p-Al0, (1550/1600) 3.78/3.79 3.78/3.79 3.78/3.78

or sintered samples and, consequently, a lower uniaxial
compressive strength than those prepared with a-AlO,.
Regarding the alumina source, all samples prepared with
p-Al O, presented higher apparent porosity (approximately
65%) than those prepared with a-Al,O, (approximately
25%, Figure 2). The p-Al,O, composition has some peculiar

characteristics that affect its density, such as a significantly
lower packing efficiency than a-Al,0,, lower density, and the
presence of 10-15 wt.% of chemically bound water, generating
green bodies with higher porosity than those obtained with
a-AlO,. This behavior can be explained by the greater water
consumption in the preparation of p-Al,O, suspensions
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Figure 2. (a) Uniaxial compression strength and (b) apparent porosity of samples CA, obtained by direct molding from compositions of
0-Al0, and p-Al,O, with different calcium sources sintered at 1550 °C and 1600 °C.

(Table 1) as well as the dehydroxylation of the binder
because pores formed spontaneously as the mixing water
is vaporized and the hydrated phases decompose during
calcination. It is worth mentioning that the transformation
from p-Al O, to a-Al,O, at higher temperatures involves the
formation of other transition phases. For example, above
250 °C p-Al O, transforms firstly into boehmite and other
metastable phases as temperature rises. Similar results were
observed for other CaO-free p-Al,O,-bonded castable systems.
During such phase transitions, the increase in density (from
3.2 g.cm?to 3.8 g.cm) behaves as a porogenic mechanism,
whereas the decomposition of alumina hydrates creates an
additional porosity in the matrix. It has been reported that the
open porosity of CA, produced from p-Al,O, compositions
is approximately 60%%. Specifically, for the p-AlLO,-
CaCO, composition sintered at 1600 °C, the open porosity
reached 62.7%.

Some reactions occur in an 0-Al0O,-CaCO, matrix with
increasing temperature, leading to the formation of pores and
intermediate phases, following a few steps. At room temperature
(T = 25 °C), the suspension consists of the main matrix
(0-ALO,) and CaCO, aggregates that contain closed pores.
In the temperature range of 500 - 900 °C, CaCO, decomposes,

releasing carbon dioxide (CO, ), forming the first open pores'”".
Between 1100 and 1362 °C, the C ,A_ and CA phases are formed,
along with a small amount of liquid phase at the interface with
the alumina matrix due to the melting of the C|,A_ phase. As the
temperature rises to 1400 °C, more alumina dissolves into the
CA phase and the formation of the CA, phase begins. Between
1400 and 1500 °C, CA, reacts with the alumina excess, and
the CA, phase is formed. At temperatures above 1500 °C, the
CA phase stabilizes in terms of microstructure and pore volume.

According to the literature, the total porosity (TP) of
CA, produced by the a-Al,0,~CaCO, route was 50.5 +
0.5%. For the samples sintered at 1600 °C produced in
this work, the results of volumetric density (VD), and total
porosity (TP) are presented in Table 3. The samples produced
with a-Al O, presented porosity of around 40%, while the
samples produced with a-bond reached around 67% of
porosity, except for the sample produced with CaO, which
displayed 62% porosity.

3.2. Pore size distribution

Figure 3 shows the pore size distribution of samples
produced with the compositions containing 0-Al,O, and
p-Al0,.
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Figure 3. Pore size distribution of CA samples obtained by direct molding from a-Al,O, and p-Al,O, compositions with different calcium
sources after sintering at 1550°C and 1600°C.

Table 3. Volumetric density (VD), and total porosity (TP) of the CA, samples sintered at 1600 °C.

- VD TP
Compositions (g.cm?) %)
a-AL0,-CaCO, 2.285 41.2
a-AL,0,-CaO 2.367 39.1
a-Al0,-Ca(OH), 2.382 38.8
p-Al,0,-CaCO, 1.295 66.7
p-ALO,-Ca0 1.462 62.4
p-AlL,O,-Ca(OH), 1.261 67.6

CA,, when produced with compositions a-AlO,,
presented a smaller average pore diameter (APD), in the
range of 0.75 and 1.15 um, when compared to p-AlLO,, in
the range of 2-3 um. This occurs due to the packing of the
particles, which is facilitated by the size of the grains and
the intertwining between them in the crystalline structure,

resulting in a smaller percentage of pore volume compared
to p-ALO,. This can be explained by the greater difference
in particle size between p-Al,O, and CaO when compared
to the significantly smaller particle size difference between
a-Al,O, and CaO. Because hydratable alumina presents a
larger average particle size compared to the CaO, its packing
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from compositions of a-Al,0, and p-Al,O, with different calcium sources, sintered at 1600 °C before and after thermal shock procedure.

efficiency is significantly lower which generates higher pore
size in the samples. Another factor that contributes to the
quantity and size of pores is the percentage of water in the
composition during sample preparation, which is released as
vapor during the sintering process leaving voids and small
pores. Samples a-Al,O,-CaCO, presented a platelet structure,
whereas for the p-Al,0,-CaCO, ones, a more equiaxial
morphology in grains with curved boundaries and higher
porosity and consequently lower mechanical properties.

3.3. Diametral compression strength, apparent

porosity, and elastic modulus after thermal
shock

Samples’ diametric compression strength, apparent porosity,
average pore size, and elastic modulus measured before
and after 10 cycles of heating and cooling are presented in
Figures 4 and 5. Samples showed very similar levels of total
porosity, apparent density, and average pore diameters before
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Figure 5. Pore size distribution of samples CA  obtained by direct molding from a-Al,O, and p-Al,O, compositions with different calcium
sources, sintered at 1600 °C before and after thermal shock procedure.

and after the procedure. The porous structure of the material
proved to be very stable and was not significantly affected
by thermal shock. The small diameter pores contributed to
the material’s low thermal conductivity and its resistance
to thermal shock!%12:13:33.63,

The lamellar shape of crystals CA, can behave as a
toughening mechanism, promoting crack deflection and
grain interlocking to reduce damage by thermal shock?*921-22,
The results attained for a-Al,O,-containing compositions
corroborate this information, as there was no significant
strength variation before and after the thermal shock cycles.
On the other hand, samples produced with p-AlO, had
significant thermal shock damage, which is characterized as
a strength reduction after thermal cycling. This behavior may
be associated with the arrangement of the crystals in a house
of cards, a structure that is not favorable to heat transport
by radiation and results in low thermal conductivity at high

temperatures (> 1000 °C), and the higher porosity and the
reduced pore dimensions, as verified through Hg porosimetry

tests. Scanning electron microscopy for samples sintered at
1600 °C is shown in Figure 6.

Assessment of the elastic modulus of ceramics using
non-destructive tests is useful in determining its structural
integrity®>. This property is significantly affected by the
presence of cracks or laminations and by the degree of
connection between them. The employed technique involves
the determination of resonance frequencies of harmonic
waves induced in a bar employing a quick mechanical
excitation. According to the literature, the reduction in
elastic modulus after a thermal shock cycle is associated
with the spontaneous formation of microscopic cracks in
ceramic samples. However, when the pores are randomly
distributed, the effects of porosity interfere as little as possible
with elastic modulus, which explains why the samples did
not show changes in modulus after thermal shock®>-66:686°,

Thermal shock damage, when not catastrophic, is more
intense at the surface of the material. This explains the
reduction of mechanical strength after the thermal shock
cycles since surface cracks control this property. On the other
hand, porosity and elastic modulus are associated with the
bulk sample, in which microstructure remained practically
unchanged after thermal shock cycles.
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A /
UNIVAP - IP&D

B
a-Al,0;-Ca(OH),

UNIVAP - IP&D @

p-Al,04-Ca(OH),

Figure 6. Scanning electron microscopy of samples CA, obtained by direct molding from 0-Al,O, and p-Al,O, compositions with different

calcium sources, sintered at 1600 °C before thermal shock procedure.

4. Conclusions

Calcium hexaluminate (CA,) samples prepared with
p-AlL O, present much lower uniaxial and diametral compression
strength and elastic modulus when compared to those prepared
with a-AlO,, regardless of the calcium source, which is by
the higher apparent porosity (approximately 65%) verified
for these samples when comparing the a-Al,O, compositions
(approximately 25%), which can be correlated to the higher
water consumption in the preparation of p-Al O, suspensions.
Such samples CA, also have larger pores (in the range of
2 to 3 um) when compared to a-Al,O, compositions (in the
range of 0.8 to 1.2 um). The same behavior about the raw

materials used was verified after the thermal shock procedure
and it was verified that the samples produced were resistant
to the procedure. The lamellar shape of particles CA (mainly
in a-ALO,) favors anchoring, improving mechanical
performance, with the route with CaO being the one with
the highest values, showing that it is possible to synthesize
CA, using a more environmentally friendly system.
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