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1. Introduction 

In this paper we continue the study of the contact process on a large finite set. The 

reader will find the motivation for such questions and relations to previous work discussed 

in the introductions of Durrett and Liu (1988) and Durrett and Schonmann (1988). For 

motivations coming from the physical problem of modeling metastability, the reader is 

referred to Cassandro, Galves, Olivieri, and Vares (1984) and to Schonmann (1985). For 

examples of other systems which have been studied on a finite set, see Lebowitz and 

Schonmann (i967), Cox (1967), and Cox and Greven (1967) and (1986). 

We begin by describing the model under consideration. For more details or facts 

that we cite without reference, see Griffeath (1981), Chapter -VI of Liggett (1985), or 

Chapter 4 of Durrett (198~)- The contact process is a Markov process with state space the 

subsets of I, and transition probabilities that satisfy 

(I.la) 

(1.lb) 

P( x t {t+s I {1 ) ""s 

P( x E {t+s I et) .. .\sl {t n {x-1,x+l} I 

as s-+ 0, where f(s) .. g(s) means f(s)/g(s) -+ 1 as s -+ 0. If we think of the sites in {t as 

occupied by pa~ticles, then the dynamics can be described ~: "particles die at rate one and_ 

are born at vacant sites at rate ,\ times the number of occupied neighbors." It is by now 

well known that there is a unique Markov process with the properties given above and 

there are several ways to construct it. We will introduce one of these (the graphical 

representation) in Section 2. 

We will use { {~ , t~O } to denote the contact process with (~ = A c I. For 

simplicity, we write {~ for e!x} and use similar abbreviations below. Let .,A = inf{ t~O : 

·{~ = ~ }, where inf ~ = Cl). Let p(..\) = P( {~ I ~ for all t!O ) = P( TO = 110 ), and let ,\c = 
inf { ,\ : p{,\) > 0 }. It is known that 1 < ,\c ~ 2 and tha~ p(,\) is cont\n~ous on C\,a,)_, but 

-2-



it is an open qu~tion whether p(..\c) = O. While we are still not able to settle the l~t 

question in this paper, our results can be used to prove some new facts about the critical 

rontact process on Z. 

The contact process on {l, ... N} h~ transition probabilities given by (1.1) for x e 

{l, ... N}. W~ denote by c; the process starting from {l, .•. N}, and let O'N = inf { t~O : r;, 
= ~ }. Since ~ is a Markov chain on a finite set, P( uN < C11 ) = 1 for all ,\. Differences 

between the ~•s appear when we let N ... 111. In Durrett and Liu (1988) and Durrett and 

Scbonmann (1988) the following results were proved: 

(1.2) If,\ < ,\c then there is a constant 11 {.\) e (0,111) so that 

. uN/(log N) .. lhl (..\) in probability as N ... 111. 

(l.~) If,\ > ,\c then there is a constant 12(..\) E (O,ac) so that 

(Jog O'N)/N ... 12(.\) in probability as N .. 111. 

The constants .71(~) and 72(.\) may be defined by 
I • 

(1.4) . 
\· 

11(..\) = - lim ¼log P( {~It), 
D"'CIC 

(1.5) 72(,\) = - I im ¼ log P( T{l, ... rq <cm). 
D◄ IID 

I 

In Durrett, Schonmann, and Tanaka (1988) we argue that LIi(..\) = 1/11(.,\) and 

, L J. (,\) = 1'72(.\) are reason~ble definitions for the temporal and spatial correlation lengths 

used in nonrigorous studies of the contact process and oriented percolation (see e.g., 

Grasr~ger_ and de la Torre (1979) and Kinzel and Yeomans (1981)). We will have more to 

say about these quantiti~ below. 
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(1.2) and (1.3) tell us that in the subcritical case "N grows logarithmically with N, 

and in the supercritical case c,N grows exponentially with N. From these two results the 

reader can probabJy guess that in the criticaJ case "N grows like a power of N. Indeed, we 

will show: 

(1.6) Theorem If,\ = ,\c and a,b E (0,.,) then P( aN S "N $ bN4 ) -+ I as N -1 •· 

The lower bound is essentially due to Griffeath (1981). He got a weaker resuJt (see p.179 of 

bis paper} because it , was not . known al. that time that 1.he edge speed o ( defined in the 

proof of (3.1} beJow) was O at the critical value. Our main contribution is to prove the.' 

upper bound. The keys to the proof are the following results concerning the right edge rt= 

sup {1-,o] and the survival time r0. 

f -v 2) 2/v (1.7) Let v > O. I t E(r t ◄ • as t -+ a:, then "N/N ◄ 0 in probability as N-+ ao. 

{1.8} For any ,\ > 0 there is a constant C > 0 so that Var(r1) ~ C [t] P( r0 > t ), .,..here
1 

It] = the greatest integer S t. I 

l , 

The last result is (&) in Section 4b of Durrett (1988). When plugged into (1.S) it shows 

c 1/ 2 Var(rt) .. •• which with (1.7) gives the upper bound in the theorem. 
\ 

We believe that nothing is Jost In (1.7). The other two results are not the best 
I 

possibJe results. The nonrigorous studies quoted above suggest P( r0 > t ) s:s c·161. As for 

(i.8), which generalizes a result or Galves and Presutti (1987), we believe that when ,\ = 
,\c E(r:)/t1+f ◄ ao for some, > 0, and hence that the correct power of N is less than i The 

. _ ..... 
next result makes It clear that 4 Is far from the right answer: . 
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(1.10) If..\ a: .\c and I> 2.5 then limsup P( .,,N < N1 ) = 1. 
N-. 

Proof: On { "~ ~ N1 }, some point of the form (x,N/2) with 1 S x SN must have paths in 

the graphical representation connecting it to I• 0 and to l • {N}. (Thia is the key to the 

proof or (1.9).) So if (1.10) Is false 

\ li~ infN P( TO~ NS/2 )2 > O 
N-

Changlng variables t = N6/2 and ~sing {1.8) shows (1.7) Is true when v < 1-(1/26), but 

. this is a contradiction unless I $ 2/(1-(1/26)), I.e., I $ 2.5. To get the last conclusion 

'observe that the left hand side is increasing, the right hand side is decreasing on (l/2PJ), 

and they are equal when I= 2.5. 

J 

We believe that for finite range growth models on l (i.e. translation invariant 

attractive systems in which~ is a trap), "N/N2 is tight. In support of this conjecture we 

observe that (i) if we consider the biased voter model on a finite set (as in Durrett and Liu 

{1988)) then r,N/N2 has a limiting distribution, and (ii) if the contact process survives at 

the c-:itica.1- value then (1.6) and a modification of (1. 7) s~ow that "r/N2 is tight. For the 

contar.t process, scaling theory predicts (V.Privman, private con:imunication) that the right 

ooi·er is v
11
/vJ. r; 1.74/1.!0 = l.SS, where the 11's are critical exponents defined by 

Lu{>.) i= IA-Acl-"11 LJ.(..\) == IA->.cl-"J.. 

He;:- LIi(..\) and L J. (>.) are the correlation lengths defined above and f(,\) r; P->.c ,-~ 

means log f(,\) / log I >.->.c I .. -11 as ..\ .. -'c· (To complete the picture here we would hB\·e 

to define Lu(-') for .A .> ..\c and LJ. (>.) for ,\ < >.c. We will gh·e the definition of the second 

quantity in Section .5. In Durrett, Schonmann, and Tanaka (1988) other definitions are 
. 

. 

given and their relaiionships are discussed.) 

(1.9) gives a ·1ower bound on the survival time for the critical contact process. 

Combining this with (1.6) and (UQ) gl\·es a lower bound on Its spatial spread . 

.. 



· (1.11) Let RO= sup( u (~ ). If,\= ,\c then~ r-+ ao 
t~O 

r2 (log r)1l2 P( RO > r ) ~ ao, and 

limsup rl.25+f P( RO> r·) ... ao for any f > O. 
r-+ao 

When our results are combined with an idea from Chayes, Chayes, Fisher, and 

Spencer (1986), who proved the analogue of (1.12) for ordinary percolation and other 

systems, we can get bounds on the correlation lengths defined above. In all the results 

below , Is an arbitrary positive number. 

(1.12) is proved by using the lower bound in (1.6). If we_ could improve the lower bound t.o 

N1 + 6 then we would show that "II > I, its "mean field" value. As we remarked above, the . . 
right power is supposed to be "II= 1.74. 

Using the lower bound in (1.6} and (1.10) gives 

(1.13) As ,\ ! ,\c 

and 

liminfL/,\) / (,\-,\c)-{2/ 5}+c > o, . 
limsup L (,\) / (,\-,\ )-{4/7}+t > 0. 

. J. C . 

The second result shows that 11 .1. does not take !ts mean field value 1/2, but is still far from 

· the right answer 11 = 1.10. Using (1.11) we can get results for L in the subcritical regime. J. J. 

i ·, 
I 

Our result is worse than in the supercritical case although it is implicit in the definition 

( L .1. (,\) st: (,\-,\c)-".1. ) that the exponent should not depend upon the directitJn in which we 

approach ,\c. 

' ' 

(1.14) As,\ l ,\c 



.. "' ; 

and 
t.· l •• f .• 

llmsup L (.\)/(.\ ·-A)-{l/J}+< > O. 
l •• , J. C 

Having seen three of the four possible combinations in { .\ > ,\c , ,\ < ,\c } • { II , .1. }, the 

reader should be wondering what we know about LIi(.\) as.\ l -'c· It follows easily from tbe 

definitions.in Durrett, Schonmann, and Tanaka (1988) that LIi(.\) ~ L.L(.\). Combining the . 

last observation with (1.13) gives bounds for "II but does not come close to beating the 

mean field value. 

(1.7) Is proved in Section 3, and (1.8) in Section 4. The main ideas of the proof of 

the second result are due to Galves and Presutti (1987) but our proof is· simpler '-nd 

extends the result to the critical case. (I.llHl.14) are proved in Section 5. The astute 

reader will have noticed that we have not mentioned Section 2. The title below should 

indicate what we study there. 

' I 
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2. Limiting Behavior of "N/E"N 

From the proofs of (1.2) and (1.3) one can easily get the corresponding statements ~ 

about expected values: 

· From (1.2} and (2.1) i\ follows that 

(2.3) "N/Et1N-+ l in probability for,\< ,\c· 

We also know that 

(2.4) 

This result was first proved by Cassandro, Galves, Olivieri, and Vares (1984) for large ,\, 
' and extended to ,\ > ,\c by Sch~nmann (1985). A simple proof is given In Durrett arid 

.Schonmann (1988}. / 

Comparing (2.3} and (2.4) we see that if we let X be the limit of t1N/Et1N then Xis 
deterministic in the subcritical case, and is unpredictable in the supercritical case, that is, 
x has the lack of memory property 

(2.5) P( X > Hs I X > 11 ) = P( X > t ). 

In the critical case we expect that the limiting distribution is something in between· these 



.. . 

t.wo extremes. To be precise, we expect x to ·be random but the= jo (2.S) will be replaced 

by<. 

To support ·t.be speculation in the lMt paragraph we will now describe a. related 

result (or ordinary (i.e. not oriented) bond percolation. As explained in Durrett and 

Schonmann (1988), there is a similarity between results for the contact. process on a finite 

\ 

Bet and the results in Grimmett. (1981} for sponge crossings in two dimensional bond 

percolat.lon. To describe the connection, consider bond percolation in [1,N) • [O,m) and let 

iN = sup{ l ~ 0 : there is a path of open bonds from [l ,N] • { 0} 

t.o (1,N) • {l} inside (1,N) • (O,oo) }. 

Grimmett (1981) showed that • 

(2.6) If p < 1/2 then iN / (log N) .. 1/'){p) in probability. 

(2.,7). 1£ p > 1/2 then (log oN) / N .. 1(p) in probability. . . 

!ltte '){p) !s a positive constant y,•bich in the subcritical case can be defined as 

- 1 im ¼ log P( (0,0) ◄ (n,0) ), 
D◄ IID 

where x ... y stands for !'there is Ill open path from x to y." To define 'l(p) for p > 1/2 we 

eet ,(p)-= 7(1-p). By analogy 9,•lth the contact process, the reader should guess: 

• I 

. -t 
(2.9) I_f p > 1/2 then P( iN/FAN > t ) ... e . 

.,, 



The first· conclusion is an easy consequence of Grimmett's proof. The second is proved in 

• Durrett and _Schonmann {1988). To investigate the critical case p = 1/2 we observe t.h~t by 

the aelf-iiuality of bond percolation (see Kesten (1982) or Dunett. (1988) ~ion 6a} 

,. 
(2.10) 

It Is easy to see that 

(2.11) 

since to cross [l,N)•(O,L+K) there must be crossings of (l,N)•(O,L) and (l,NJ-(L,L+K) and 
. . . 

the last two events are independent. From the last observation it follows that P( iN ~ kN } 

~ P( uN· ~ N )k, so EiN / N·ls bounded and iN/N is tight. With a little more work one 

can show 

' (2.12) Theorem. No subsequential limit of uN/N is degenerate or exponential. 

Proof: We use two well known properties of sponge crossings (see (2) and (3) in Section 6a . 

of Durrett (1988)). 

: 
(2.13) 

{2.14) . 

'I:he first inequality and · (2.10} shows that no limit is degenerate. Combining (2.13} and 

(2.14) one gets easily ,\ . 
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(2.15) P( crossings of [l,N] 11 [O,N) and [I,N) • [N,2N] 

exist. but there is no crossing of (I,N) • (0,2N) ) ~ , > O. 

To prove (2.15), notice that. the desired event occurs if 

and 

(a) there are open crossings 

from bottom to top In AN = [l,N/3] • [O,N), 

and from bottom to top in BN = (2N/3,N) • [N,2N), 

(b) there are closed crossings on the dual graph 

from right side to left side in CN = (N /3,N) 11. (O,N), 

from right side to left side in DN = (0,2N/3) 11 (N,2N], ' 

and from bottom to top in.EN"." (N/3,2N/3) 11 (0,2N). 

See Figure 1. There the solid wavy lines are open paths and the dotted ones are closed. 
Harris' inequality implies that the existence of the three paths we want in (b) is positively 

l correlated. Since AN, BN, and CN U DN U EN are disjoint, the occurence of pat.hs in those 1 

regions are independent. Combining the last two observations with (2.15) we see that Cor
1 · large N · 1. ] 1 f 

J 
P( iN ~ N )2 - P( iN ~ 2N ) ~ < > o· • . -, . 

so no limits are exponential. 
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s. Proof of (1.7) 

The first thing we have to do is to Introduce the usual construction of _the contact 

proc.ess. (See the sources cited in the introduction for more details.) To each x e I we 

· associate. three independent Poisson processes with rates 1, .\, and .\ respectively. Let 

{ ~,k, n ·? 1 } k = 1,2,3 be the arrival limes for these processes. For each x e land n ~ 1, 

we write a 6 at each point (x,~•1) e.nd draw arrows from (x,~•2) to (x+l,~•2) and from 

(x,~13) to (x-1, r:•3). The effeci. of a 6 is to kill a particle (if one is present), while the 

\ arro\i:s cause a birth t~ occur If the)~point from an occupied site to one which is vacant. 

To formalize the intuition we say there is a path from (x,s) to (y,t) if it is possible 

to go from (x,s) to (y,t) by a path which goes up and across arrows in the direction of their 

orientation without ·crossing any 6's. Using the "percolation structure" introduced abo\'e we 

can define all the processes we are interested in 

ftA,s) = { y: for some x e A there is a path from (x,s) to (y,t)} 

· r:, = { y : for some x e {l, ... N} there is a path from· (x,s) '-

to (y,t) inside (l, ... N] • (O,t) } 

We will now prove the lower bound in (1.8): 
I 

(3.1) ID=•\ and a< ao then P( crN < aN ) ... 0 as N ... ao. 

PrtA>f: W~ begin by recalling some facts about the.right edge, rt= sup 4-u,O}_ ll is kn~wn 

tL~l rt/t ... o(.\) LS, as t ... ao, where o(.\) = -ao if.\ <· -'c• o(.\c) = 0, and o( ·) is strictly 

l 
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increasing and-~ntinuous on (,\c,m). Let A·= { x E I : x ~ 2N/3 } and r~ = sup (~. Then 

r: has the same distribution as rt+ {2N/3}. Let G = { r~ e (N/3,N) for all t E [0,aNJ }. 

Since o(,\c) == 0, it follows from the limiting behavior or the right edge recalled above that 

P(G) ◄ 1 as N ... 1111. 

On G there is a path from (..,.,,2N/3] • {0} to (N/3,ao) • {aN} which does not cross 

the vertical line {N} • (0,aNJ. To finish the proof we have to argue that with high 

' probability the path does not touch {O} • [0,aN]. To do this, we observe that by t,ie 

symmetry of the Poisson process with respect to time reversal (i.e. the self-duality of the 

contact process), the probability of having a path touch {0} • [0,aN) and end up in [N/S,e1>) 

• {aN} is the same as the probability of a path from [N/3,m) • {O} to {0} • [O,aN], which , 
r 

by the left-right symmetry or the model is more unlikely th~ Ge. Combining the last ·. . ' 

observation with results in the last paragraph we have shown 

P( uN > aN) ~ l -2P(Gc) . ... ; 
r-

and the proof is complete. 

Remark. Larry Gray invented the trick used in the second paragraph or the proof above to • . 1 
simplify the renormalized bond construction of Durrett and Griffeath (1983). 

/ 
We turn now '? ~he proof or the upper bound on uN: 

(3.2) If ,\ ~ >.c and b > 0 then P( uN > bN4 ) -◄ 0 as N ◄ Cl), 

Our argument is divided into several steps. In the first one we use a "renormalized bond 

construction" which has its roots in the work of Russo (1981), and which has appeared in 

various forms In a number or papers. Here we . introduce yet another variation OD the 
I • 
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· theme. As in most treatments the renormalized lattice is 

j = { (m,n) e 12 : m+n is even, n ~ O} 

Fix two positive integers N and L, and to each site (m,n) In ~ associate the rectangles 

R(m,n), S(m,n}, and T(m,n) defined by 

! 
• 

R(0,0) = (l,N] • (0,2L], 

R(m,n) = R(0,0) + (Nm,2Ln) = { (x,t) : (x-Nm,t-2Ln) E R(0,0) } 

S(0,0} = [1,2N] • (L,2L] 

S(m,n) = S(0,0} + (Nm,2Ln) 

T(0,0) = (-N+I,N) • [L,2L) = S(0,0) + (-N,0) 

T(m,n) = T(0,0) + (Nm,2Ln) 
1 

We also define events 

F(m,n) = { there is a path iil R(m,n) from its bottom to its top, i.e., from 

INm+l,N(m+l)] • {2Ln} to INm+l, N(m+l)] • {2L(n+l)}} . , • 

G(m,n) = { there is a path in S{m,n) from its left side to its right, i.e., from 

{Nm+l} • (L(2n+l),L(2n+2)] to {N(m+2l} " (L(2n+l),L(2n+2)] } 

H(m,n) == { there Is a path in T(m,n) from Its len side to its right, i.e., from 

{N(m-1)+1} • (L(2n+l),L(2n+2)] to {N(m+l)} "(L(2n+l),L(2n+2)]} 

We will l't'Tite R for R(0,O}, F for F(0,O), etc. Figure 2 may help explain the definitions. In 

this picture a bold line surrounds the T-shaped region. R U S U T. Points of the form 

(N/2,L) + (Nm,Ln) with (m,n) E ~ are indicated by crosses. The wavy lines are paths In 

. -14-



the graphical repre.sentation of the contact process. In this picture F, G, H, F(l,l), G(J,l), 

and H(l,l) occur. 

We will say that the renormalized site (m,n) e ~ is open and set r,(m,n) =l if 

F(m,n), G(m,n), and H(m,n) all happen, otherwise we say that (m,n) is closed and set 

'l(m,n) • O. It Is easy to see that the random variables r,(m,n) are l~ependent, that is, if 

' . we l<!t ll(m,n)II = (lml+lnl)/2 and if (ml'n1), ... (mk,nk) are points with II (mi,ni) -

_(mj'n;) II > 1 for i#j, then r,(m1 ,n1 ), .•. 'l{mk,nk) are independent. 

By translation_ invariance P( r,(m,n) = 1 ) is independent of (m,n). Denote this 

probability by Il(N,L,~)- We will say that "(oriented) percolation occurs in the '1 system 

starting f~om (0,0)" if th~e is an infinite sequence of open ~ites (0,0) = (m0,n0), (m1 ,n1 ), 

... with nk = k and lmk+l-mkl = 1 for k~O; and we will let l(N,L,.\) denote the 

probability of that event. A result in Section 10 of Durrett (1984) implies 

(3.3) If Il(N,L,.\) >-1 - 3-36 then 8(N,L,,q > 0. 

The critical relationship between the renormalized and original process is 

(3.4) If percol~ti~n occurs In the '1 system starting from (O,O) then r{l,2, ... N} = c in the 

contact pr~ess. 

Using (3.3}, (3.4), and an argument of Russo (1981) we get 

(3.5) Lemma. For_any N and L, Il(N,L,.\c) s 1 - 3-36. 

P~f: Suppose for some N and L that Il(N,L,,\c) > 1-3-36• { '1(0,0) • 1 } is defined. in 

' _terms of the finite region R 1., Su T, so.\ ... Il(N,L,>.} is continuous and there is a .\0 
< .\c 
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with II(N,L,.\
0

) > ~-3-36. But then by (3.3) and (3.4), p(.\
0

) > 0 contradicting the 

definition of ,\c. 

P(F) = P( uN ~ L } is the event we are interested in. To control G and H we use: 

{3.6) Suppose ,\ = ,\c and v > O. If CvE(r~) ... mas t ... m, then uN/N2/v ... 0 in probability 

asN-tOD. 

The proof will be easy once we show: 

(3.7) For any ~ > 0 limsup P( uN > 26N2/v) ~ I - 3-38. 
n~ 

~roof: Suppose (3.7) is false, and let A= J - 3-37_ Tb~n for some sequence Ni 

(3.8) 

..-here Li = 6Ni/v_ From left-right symmetry 

I 

Set th~!J' and symmetry tell us that 1 - P( F n G n ·H ) S l.:_P(F) + 2(1-P(G)), or 

rearranging 

Hence from (3.5) and (3.8) we get 
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' 

(3.9) 

• 
(Yes B = A, but for futur~ clarity we ignore this accident.) Now if r(Li) ~ 2Nil then each 

of the rectangles l(2Nik)+l,2Ni(k+l)} x [O,LiJ k=O,l, ... l-1 must be crossed from left to 

right by p~ths. So (3.9) implies P( r(Li) ~ 2Nit) S B1, and it follows 'that 
\ 

(3.10) _E( r(L/; r(Li) ~ 0) = t (2o-l) P( r(Li) ~ n) 
. n=l 

~ E 2Nim • Ni • P( r(½) ~ 2Ni(m-l)) S c1 Ni 
111=1 

a, m-1 
where c1 = t 2n_lB • 

m=l 
On the other hand if r(Li) S -N/, then each of the rectangles (-Ni(k+l)+l,-Nik] • 

{O,Li} cannot be crossed from bottom to top by a path. So from (3.8), P( r(Li) S N/ ) S 

· (1-A)1 and repeating the computation in (3.10) shows 

I 

(3.11) 

where c2 = t 2m(l-A)m-l_ Combining (3.10} and (3.11} gives 
m=l -

rontradicting the hypothesis of the lemma. 

• Proof of (3.6): Let b > 0 and K be a positive integer. 

-17-



-Using (3.7) now with 26 = b/K shows 

which proves (3.6) since band Kare arbitrary. 

At this point we have proved the result called (1.7} in the Introduction. {l.S) is proved in ·r , 

the next section, and (1.9) Is proved in Durrett (1988) so we are done with the proof of the 

upper bound. 

' it ' ' 

f 
. . I 

I 

/ 

. -lS-



4. Galves and Pres~ttl (1987) revisited 

In this section we will prove (1.8). The proof is based on the &rgument of Galves 

and Presutti (1987), but uses a countable partition of the sample space instead 0£ what 

they call a "measurable partition." This m:>dification allows us to give a simple proof of the 

aucial conditional independence property that they state without proof. We give the proof 

here only for _rt= sup {{-,OJ but the argument works whenever the initial configuration is 

' in { 'I: O E r,, '1 n (Oi00) = ~. I 'II • m } 

~ eix,s) denote the contact "process starting with x occupied at times, and let 

i~i&) = sup i?), 
r(x,s) ·= inf { t~s; {{x,s) -= ~ }. 

For n = 0,1,2,... and s ~ n+ 1 let 

A(n) = { there is no 6 at r
0 

from time o to n+l } 

B(n,s) = { T(rn+l'n+l) ~ s} 

C(n,s) = A(n) n B(n,s) 
v-1 

D(u,v) = n C(o,vf 
n=u 

~ T0 = -1 and for i~O let 

· Ti+l = inf { n: T1 + 1 ~ o·~ [tJ;_l , C(n,t) occurs} 
I -

whM! inf t = m. Let N • sup { I : T, < m }. For ,.-bat follows it is convenient to redefine 
. . . I 

TN+ 1. = t and to define random variables on { N i i } b~· 
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. . 

'· 

Si(w) = r(Ti+l) - r(T1+1) for i~O 

Ai(w) = r(Tj+l) - r(Ti) for i~l. 

. ' 

Let (n,.,- ,P) be the probability space on which the graphical representation is 

defined, and let n be the partition of n defined by considering two outcomes w1 and "'2 to 

be in the same l tom if and only if • ~ 

(a) T1(w1) = T1(w2) for all i, in particular N(w1) = N(w2), and 

(b) Si(w1) = Si(w2) for O ~I~ N(w1). 

It is clear that · 

N N 
rt=l:S.+t~ •. 

i=O I i=l l 

• I 

We will now show that conditioned on n, the random variables Ai are independent and 

_ have the same distribution as ( r~ I r0 > 1 ) where r~ = sup {~- '!he key observation l_s 

that if A(n) occurs but B(n,t)T,~ not. then we must wait until at least r(rn+l'n+l) to 
. . 

get the next Ti' since until that tiJ?l.~-~he right edge is part 
1
0£ a process which will die ,out .. 

If we let 
J 

then a little thought reveals • J ' I > · I 

_..,. 
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(4.2) P( Nt = n, Ti = t1 1 S i 5 n, SJ= sj OS J Sn, Ak = 6ic 1 5 k Sn) 

. = P( F O n G l n Fl •.. n GD n F 
O 

) 

. 
and the events in the right hand side ue independent since they depend on the graphical 

representation in disjoint regions. The conditional probability 

" 

(4.3) ~( Ak • ~ 1 .S k .Sn I N = n, Ti = ti 1 .SI 5 n, Sj ='Jo 5 J 5 n) 

P( .Fo n Gl n Fl ... n Gn n Fn) =-___;_ ________ _ 
P( F O n Al n Fl ... n An n FD) 

n n 0 
= n P(GklAk)= n P(rl =~I Ao) 

k=l k=l 

This completes the proof of the claim about the conditionaJ independence of the Ak. The 

rest o( the argument is easy (and a slight improvement or the calculation on p.1143 or 

Galves and Presutti) .. By (4.1) 

(4.4) 

wh_ere C > O Is the ,·ariance or r~ given A(O). Taking expected values now gives 

. . [t 1-1 [t l -1 1 
(4.5} . Var(rt) ~ C EN= C t P( C(i,t)) = C t e- P( r(xi,l+l) > t) 

-· . , , . l=O i=O 

, which prcwes the desired result since P( r(xi1i+l) > t) ~ P( TO> t ). 

,,I -21-



' 5. Bounds on Correlation Lengths 

The key to the developments below is the following result, which is the analogue for 

Poisson processes of a result of Chayes, Cbayes, Fisher, and Spencer (1986~ for lndpendeot 

Bernoulli variables. 

(5.1) Consider .independent Poisson processes T1, •.• TM with rate~ and To, ... T-N with 

rate 1. If A is an event which Is determined by the arrivals in (O,t) then 

Ix P{A) f (Mt/..\)112. 

The proof is a little messy and is postponed to the end of the section. We will now 

demonstrate (1.12}, (1.1~}. (1.11), and {1.14) in·that order. As in the introduction the f
1
S 

which appear in the &tatements of (5.2)-(5.5) are arbitrary posit.Ive numbers. c1 and c2 

are positive finite constants whose values are unimportant. 

Proof: Let GN = { 11N ~ N° } (J.6) lmptl'es that when o = 1 
I .. 

(a) 

' ' 

. I . 

I 

,.,-here the subscript on P indicates we are considering ,\ a:: ..\c. When A < ,\ca result from 

DurreU (1984) gives 

(b) 
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. where P ,x Indicates we are considering the contact process with parameter ,\. Using ( 5.1) 

now we have 

{c) 

\ 
\ 

for,\> .\J2. Let 6 • ,\c-.\ and 

Using (a), (b), and (c) now gives that for this choice of N 

(d) 

when .6 = -'c-,\ is small. Rearranging the Jast Inequality gives 

(e)' 

which implies t~at.for smaJJ 6 

(f) 

Setting o a: 1 now gives the desired result. 

and 
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, . 

Proof: Let GN • { O'N S N° } (1.6) implies that when o -= 4 

(a) 

When ;\ > Ac• combining Lemma 1 with the proof of Lemma 4 In Section 3 of Durrett and 

Schonmann (1988) gives 

(b) 

•'i 

(Lemma 1 implies that the probabiiity of a "dual path" from x on the· right side of 

(1/2,N+l/2) • [O,N°j toy on ihe left side is smaller than exp(-N/L (,\)). Integrating over 
. . • J. 

the possiblex and y and using(•) ib the.proof of Lemma 4 now gives (b).) Using (5.1} now 

we have 

(c) 

I •· 

\ 

. I . 

/ 
Using (a}, (b), and (c) now gives that for this choice of N 

(d) . 1/3 s eN° exp( - N/LJ. (,\)) 
I 

when 6 = ,\c-,\ is small. Rearranging the last inequality gives 

(e) 
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• 
which Implies that for small ~ 

(f) L_i<,~) ~ c2 o
2/(l+o) / log(o1). 

• 

Setting o = 4 gives the first result. To prove the second, notice that when o < 2.5 we have 
. . 

limsup P cr(GN) • 1 by (1.10), and apply the argument. above to a sequence Ni ... 111 for 

which P cr(GN
1
) .. 1. 

. 0 ..0 
1(5.4) Let. R = sup( u t, ). If.\ = .\c then as r .. 111 

· . t~O 

r2 (log r)1/2 P( RO > r ) "'111 

and 

limsup r1·25+c P( RO > r ) = ac. 
r-. 

Proof. Let o = 4. Now 
\ 

' 
. P( To~-r0 Jog r) SP( 0'2r+l > r0 log r) + 2 P( a0 > r, 0'2I+~ S r0 log r ), 
·b, 

P( O' > Io log r ) < P( O' > Io )[log r] < (e-IO)[log I] 
2I+l - - 2I+l - -

. · for larger. Combining the last two equations gives 

for larger, so it ~allows from (1.9) that 

-25-



li~inf r012 (Jog r)1/ 2 P( RO,. ·r) ~ liminf (r0 _log r)1/2 P( r0 ~ r0 log r) a: oo. 
r~ - r~ ' 

To prove the second conclusion we repeat the proof with o > 2.5 and use (1.10) in place of 

(1.6). 

I' 

(5.5) If). _< ~c then 

and 

Proof: Let GN = .{ Ro > N , r0 S N° Jog N } From the proof of (5.3) we see that when 

(a) 

-Our next step ls to observe that when ~ < ~c 

(b) 

T~e second inequality is trivial since L (~) Is defined in Durrett, Scbonmann, and Tanaka 
' ,l • . 
' . 

(196S) to be 

lim { ~l log P( Ro > D ) } "" inf { -=-J. tog P( Ro > D ) }. 
,, . 

Umng (5.1} now we have " ' 1 
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(c) 

\ 
'\ 

~ that when 6 is 1n1all (N·5+o log N) ~ o1 and hence 

i 

Using (a), (b) and (c) now gives that for this choice of N 

(d) 

when I = .\c-.\ Is small. Rearranging the la.~l inequality gi\'es 

(e) . 

or since < is arbitrary 

(() L (.\) / ;-/J ◄., for all P < 1/(.S+o) 
.I. 

., 
Setting o- = 4 gives the first result. Letting o < 2.5 and modifying the proof slightly as in 

(5.3) gl\'es th~ second conclusion. 

Proof of (5.1): We begin by proving the result y,•ben there is one rate l Poisson process 
. . . 

{ Tn, n?l } and no rate 1 processes. Let N1 = sup { k : Tk ~ t }. If k ~ 1 and O = t0 < t1 

' 
-27-



. < ,2 ... < 'k < t then with an obvious abuse or_ notation we can write 

J£ A is any ~ent concerning the Poisson process in (O,t) and k ~ 1 then A n { N, = k } = .. 
· { (T1,T2, ... Tk) E Bk} for some Bk c { (tl' ... tk): 0 < t1 < ... < tk }, and we have 

where I Bk I denotes the k dimensional-Lebesgue meas~re of Bk. ~he last formula also bolds .• 

when· k = 0 if we· consider IBol = 1 or O according as { N, = O } , c Ao~ c Ac. 

Differentiating now gives 

The right band side is smaller than I {k/ ~) - t I P( N1 = k ), and hence the sum on k i 
converges uniformly on compact subsets of (O,a,). From this it follows easily (see p.1034 of 

i 

Durrett (1984) for details) that the derivative of the sum is the sum of the derlvatives, and . 
1

. · 

. . 
hence 

To bound the right hand side we observe 

80 

-28-
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The proof for the general case is almost the same. We begin by observing that 

where"• k{l) + .. ; + k(m). Now If A is any event involving the Poisson processes in [O,t) 

then 
) . 

P( An { Nt = 1t} ) • c(lt) >." e->.Mt e-{N+l)t 

where .. indicates a vector indexed by -N, ... M, and c(k) is a constant which only d~nds • 

on U. Differentiating with respect to >., and summing over , gives 

·' 
proving_ the desired result. 

) 
' 
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