





1. Introduction

In this paper we continue the study of the contact process on a large finite set. The
reader will find the motivation for such questions and relations to previous work discussed
in the introductions of Durrett and Liu (1988) and Durrett and Schonmann (1988). For
motivations coming from the physical problem of modeling metastability, the reader is
referred to Cassandro, Galves, Olivieri, and Vares (1954) and to Schonmann (1985). For
examples of other systems which have been studied on a finite set, see Lebowitz and
Schonmann (1987), Cox (1967), and Cox and Greven (1987) and (1988).

We begin by describing the model under consideration. For more details or facts
that we cite without reference, see Griffeath (1981), Chapter. VI of Liggett (1985), or

Chapter 4 of Durrett (1988). The contact process is a Markov process with state space the

subsets of 1, and transition probabilities that satisfy

(1.1a) P(xlft+s|£t)~s ifxe{t
(1.1b) P(xeg |6 )~rslgn{x-1x+1}] ifxg§

as 5 - 0, where f(s) ~ g(s) means f(s)/g(s) = 1 as s = 0. If we think of the sites in £, as
occupied by particles, then the dynamics can be described as: "particles die at rate one and ‘
are born at vacant sites at rate A times the number of occupied neighbors." It is by now
well known that there is a unique Markov process with the propertics given above and
there are several ways to construct it. We will introduce one of these (the graphical
representation) in Section 2.

We will use { {‘t‘ , 120 } to denote the contact process with {‘3 = Acl For
simplicity, we write {’: for {Ex} and use similar abbreviations below. Let rA = inf{ 120 :
€8 =), where inf § = = Let p(A) = P( &) # ¢ for all 120 ) = P( 1" = ), and let A, =
inf { A: p(A) > 0 }. It is known that 1 < A, € 2 and that p(A) is continuous on (A o), but
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it is an open question whether p(,\c) = 0. While we are still not able to settle the last
question in this i)aper, our results can be used to prove some new facts about the critical
contact process on 1.

The contact process on {1,..N} has transition probabilities given by (1.1) for x €
{1,...N}. We denote by (T the process starting from {1,...N}, and let oy = inf {t20: (!:'
= ¢ }. Since (T is a Markov chain on a finite set, P( o)y < @ ) = 1 for all A. Differences
between the A's appear when we let N + . In Durrett and Liu (1988) and Durrett and

Schonmann (1988) the following results were proved:

(1.2) If A < A_ then there is a constant 7,()) € (0,x) so that
c 1
. aN/(log N) = 1/11(A) in probability as N = w.

(13) x> A then there is a constant 7,() € (0,x) s0 that
(log aN)/N - 1‘2(,\) in probability as N = .

The constants .71(X) and 72(A) may be defined by
' 1 0
(1.4) . 7(A) =-1limlog P(& #0)
D~e
(1.5) 1(0) = - lim Liog P( 1N} < ).
N=wo

1;1 Durrett,‘Schonmann, and Tanaka (1988) we argue that L“(A) = 1/7(}) and ’
L*(:\) =1/ 72(A) are reasonable definitions for the temporal and spatial correlation lengths
used in nonrigorous studies of the contact process and oriented percolation (see e.g.,
Gras: berger and de la Torre (1979) and Kinzel and Yeomans (1981)). We will have more to

' say about these quantities below.



(1.2) and (1.3) tell us that in the subcritical case oy grows logarithmically with N,
and in the supercritical case oy grows exponentially with N. From these two results the
reader can probably guess that in the critical case oy grows like a power of N. Indeed, we

will show:
(1.6) Theorem If A= A, and ab € (0) then P(aN <oy <bN')+1 asN .

The lower bound is essentially due to Griffeath (1981). He got a weaker result (see p.179 of
his paper} because it was not known at that time that the edge speed a (defined in the
~ proof of (3.1) below) was 0 at the critical value. Ovr main contribution is to prove the «
upper bound. The keys to the proof are the following results concerning the right edge r,

sup E(_‘”'Ol and the survival time 70

(1.7) Letv> 0.1 t™E(r) = ast+e, then op/N2/V 0 in probability as N +a.

(1.8) For any A > 0 there is a constant C > 0 so that Var(rt) 2 C[t] P( >t ) wherei

[t] = the greatest integer < t. . [
(19) 112 = A, then t//2P(0>1)vmasta

The last result is (8) in Section 4b of Durrett (19588). When plugged into (1.8) it shows
¢71/2 Var(r,) = », which with (1.7) gives the upper bound in the theorem.

We believe that nothing is lost in (1.7). The other two results are not the best
possible results. The nonrigorous studies quoted above suggest P( st )= =161 As for
(i.8), which generaiizes a result of Galves and Presutti (1987), we believe that when A =
A E(rf)/ 1€, & for some ¢ > 0, and hence that the correct power of N is less than 2. The

pext result makes it clear that 4 is far from the right answer: .

» . e
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(110) 1 A = A, and > 2.5 then limsup P( ey < Ny=1.

Proof: On { "1;1 2 n? }, some point of the form (x,N/2) with 1 ¢ x & N must have paths in
the graphical representation connecting it to 1 x 0 and to T x {N}. (This is the key to the
proof of (1.9).) So if (1.10) is false
‘ lminf NP( 3 N2)2 >0

N0

Changing variables t = N/2 and using (1.8) shows (1.7) is true when v < 1~(1/26), but
this is a contradiction unless @ < 2/(1—(1/26)), i.e., 8 < 2.5. To get the last conclusion
observe that the left hand side is increasing, the right hand side is decreasing on (1/2,@),

and they are equal when # = 2.5.

We believe that for finite range growth models on I (i.e. translation invariant
attractive systems in which ¢ is a trap), aN/r\'2 is tight. In support of this conjecture we
observe that (i) if we consider the biased voter model on a finite set (as in Durrett and Liu
(1988)) then UN/N2 has a limiting distribution, and (ii) if the contact process survives at
the citical value then (1.8) and a modification of (1.7) show that aN/N2 is tight. For the
contart process, scaling theory predicts (V.Privman, private communication) that the right
power is u“/ v R 1.74/1.10 = 1.58, where the v's are critical e-xponents defined by

L= A=A L,(A)= | A=A |
He:z L“(A) and L*(A) are the correlation lengths defined above and f(A) = |,\—,\c|—”

means log f(}) / log [A=A | =~V as A=A (To complete the picture here we would have

_ to define L"(A) for A > A, and L (A)for A < A We will give the definition of the second

quantity in Section 5. In Durrett, Schonmann, and Tanaka (1988) other definitions are
given and their relationships are discussed.)
(1.9) gives a lower bound on the survival time for the critical contact process.

Combining this with (1.6) and (1.10) gives a lower bound on its spatial spread.
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(L11) Let R = sup(u €0). It A= ) thenas 7o
£20

2 (log 1')1/2 P( RO>r ) = ®, and

1.25+¢ P( RO

limsup r >r)=wo forany ¢> 0.

I=o

When our results are combined with an idea from Chayes, Chayes, Fisher, and
Spencer (1986), who proved the analogue of (1.12) for ordinary percolation and other
systems, we can get bounds on the correlation lengths defined above. In all the results

below ¢ is an-arbitrary positive number.
(112) AsAT A, liminf L, (A) / (A=r s 0

(1.12) is proved by using the lower bound in (1.6). If we could improve the lower bound to
NHJthen we would show that v" > 1, its "mean field” value. As we remarked above, the
right power is supposed to be v" = 1.74.

Using the lower bound in (1.6) and (1.10) gives

(113) As A L A liminf L (A) / (A=2) @/9*¢5 0,
and timsup L (3) / (A-2, ) 4/D+¢5 0,

The second result shows that v, does not take its mean field value 1/2, but is still far from
" the right answer v, = 1.10. Using (1.11) we can get results for L, in the subcritical regime.
Our result is worse than in the supercritical case although it is implicit in the definition

( L (A= (A—Ac)— 1 ) that the exponent should not depend upon the direction in which we
approach A ¢

(114) AsA 1A, ' timinf L (\)/(A—3)3/9+¢ 5 o,
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. .and , limsup L*(A)/(,\é—,\)"(ll 3+e 5 .

Having seen three of the four possible combinations in { A > A, A < '\c} x«{l,1} the
reader should be wondering what we know about LII(A) as Al '\c' 1t follows easily from the
definitions in Durrett, Schonmann, and Tanaka (1988) that L“(A) 2 LL(,\). Combining the
last observation with (1.13) gives bounds for Y but does not come close to beating the

mean field value.

) (1.7) Is proved in Section 3, and (1.8) in Section 4. The main idea‘s of the proof of
the second result are due to Galves and Presutti (1987) but our proof is simpler and
extends the result to the critical case. (1.11)—(1.14) are proved in Section 5. The astute
reader will have noticed that we bave not mentioned Section 2. The title below should

indicate what we study there.



2. Limiting Bebavior of y/Eoy,

From the proofs of (1.2) and (1.3) one can easily get the corresponding statements -
about expected valuyes:

(21) Ifi< A, then Eoy/(log N) - 1/1(}) asN - a.
(22) HA> ’\c then log(EaN)/ N« 72(A) as N e

" From (1.2) and (2.1) it follows that

(2.3) on/Eoy ~ 1 in probability for A < A_.
We also know that
(2.4) _ P(on/Eoy >t)-€ for A> A

This result was first proved by Cassandro, Galves, Olivieri, and Vares (1984) for large A,
and extended to A > A; by Schonmann (1985). A simple proof is given in Durrett and )
Schonmann (1988). ‘ )

Comparing (2.3) and (2.4) we see that if we let y be the limit of aN/EaN then x is
deterministic in the subecritical case, and is unpredictable in the supercritical case, that is,

X has the lack of memory property
(2.5) P(x>t4s| x>8)=P(x>1t).

In the critical case we expect that the limiting distribution is something in between these

' | -8



two extremes. To be precise, we expect x to be random but the = in (2.5) will be replaced
by <. s
To support the speculation in the last paragraph we will now describe a related
result for ordinary (i.e. mot oriented) bond percolation. As explaiped in Durrett and
Schonmann (1988), there is a similarity between results for the contact process on a finite
set and the results in Grimmett (1981) for sponge crossings in two dimensional bond
percolation. To describe the connection, consider bond percolation in [1,N] x [0,0) and let
3er {
\ oy =sup{ £20: there is a path of open bonds from [1,N] x {0}
to [1,N] = {¢} inside [1,N] = [0,0) }.

Grimmett (1981) showed that
(2.6) Ifp<1/2then oy [ (log N)-1/1(p) in probability.
(27) 1p > 1/2then (logTy) / N - 7(p) in probability.

Here 7(p) !s a positive constant which in the subcritical case can be defined as

—1lim % log P( (0,0) = (n,0) ),

n- o
where x - y stands for *there is an open path from x to y." To define 2(p) for p > 1/2 we
set 7(p) = Y1-p). By analogy with the contact process, the reader should guess:

(2.8) Hfp<1/2then FN/E?N -1 in probability.

(2.9) Ifp> 1/2then P(Ty/Eoy >t)~ et



The first conclusion is an easy consequence of Grimmett's proof. The second is proved in
" Durrett and Schonmann (1988). To investigate the critical case p = 1/2 we observe that by
the self—duality of bond percolation (see Kesten (1982) or Durrett (1988) Section 6a)

) '
(2.10) - ° P( ;N 2N)=1/2, .
It iseasy;.o see that
(2.11)' - P(oN2L4K)<¢P(oy2L)P(oy2K),

since to cross [1,N]x[0,L+K] there must be crossings of [1,N]=[0,L] and [1,N]x[L,L+K]} and
the last two events are independent. From the last observation it follows that P( TrN 2kN)
< P( 'EN' >N )k, 80 E?N | N is bounded and EN/N is tight. With a little more work one

can show

(2.12) Theorem. No subsequential limit of EN/N is degenerate or exponential.

Proof: We use two well known properties of sponge crossings (see (2) and (3) in Section 6a
of Durrett (1988)).

(213 PGy 23N/2)2 (1-0-PGRN) 28
(2.14) . P( Ty 2 kN ) 2 P( Gy 2 (k+1)N/2 P for k2 1

The first inequality and (2.10) shows that no limit is degenerate. Combining (2.13) and
(2.14) one gets easily )

’
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(2.15) P( crossings of [1,N] x [0,N] and [1,N] x [N,2N]
exist but there is no crossing of [1,N] » [0,2N] ) 2 ¢ > 0.

To prove (2.15), notice that the desired event occurs if !
* (a) there are open crossings S
from bottom to top in Ay = [LN/3] x [0,N],
and from bottom to top in By= [2N/3,N] x [N,2N],
and
(b) there are closed crossings on the dual graph ‘
from right side to left side in Cy = (N/3,N) = [0,N],
from right side to left side in Dy = (0,2N/3) x [N,2N],
and from bottom to top in-Ep = (N/3,2N/3) = [0,2N].

See Figure 1. There the solid wavy lines are open paths and the dotted ones are closed.
Harris' inequality implies that the existence of the three paths wé want in (b) is positively
correlated. Since AN, BN' and CN U DN v EN are disjoint, the occurence of paths in those '
regions are independent. Combining the last two observations with (2.15) we see that for

large N ;

/

P(Gy2N)2=P(5y22N)2¢>0

%0 no limits are exponential.
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3. Proof of (1.7)

The first thing we have to do is to introduce the usual construction of the oontact
process. (See the sources cned in the introduction for more details.) To each x e 1 we
associate three independent Poisson processes with rates 1, A, and X respectively. Let
{Tx’ n2l} k = 1,2,3 be the arrival times for these processes. Foreachx€Zandn21,
we write a § at each point (x,Tx ) and draw arrows from (x,Tx 2) to (x+1, 'I‘x 2) and from
(x,T:’s) to (x—l,’I‘:’a). The effect of a & is to kill a particle (if one is present), while the

\ arrows cause a birth to occur if they point from an occupied site to one which is vacant.

To formalize the intuition we say there is a path from (x,5) to (y.t) if it is possible
to go from (x,5) to (y,t) by a path which goes up and across arrows in the direction of their
orientation without 'crossing any &'s. Using the "percolation structure" introduced above we

can define all the processes we are interested in
dA,s) = { y : for some x € A there is a path from (x,5) to (y.t) }
A_ (A,
£ = f(t 3

(!: = {y:forsomex € {1,...N} there is a path from (x.5)
[ to (y.t) inside [1,...N] x [0.t] }

‘We will now prove the lower bound in (1.8):
B1)IA= Acanda<wthenP( oN <aN)-+0asN-w

Proof: We begin by recalling some facts about the right edge, T, = sup (ﬁ"‘”ol. It is known
thal 1./t~ o)) as. a3 ¢ < o, where o{A) = —w if A < Ay, ofA ) = 0, and of-) i strictly
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increasing and continuous on [/\c,w). LetA={xel:x<2N/3} and r‘: = sup.{‘:. Then
r't bas the same distribution as r, + [2N/3]. Let G = { r': € (N/3,N) for all t € [0,aN] }.
Since a(A;) = 0, it follows from the limiting behavior of the right edge recalled above that
P(G)+18sN-~w.

On G there is a path from (—w,2N/3] x {0} to [N/3,x) x {aN} which does not cross
the vertical line {N} = [0,aN]. To finish the proof we have to argue that with high
probability the path does not touch {0} = [0,aN]). To do this, we observe that by the
symmetry of the Poisson process with respect to time reversal (i.e. the seli—duality of the
contact vprocess), the probability of having a path touch {0} = [0,aN] and end up in [N/3,x) -
, * {aN} is the same as the probability of a path from [N/3,s) x {0} to {0} = [0,aN], which
by the left—right symmetry of the model is more unlikely than G°. Combining the last

observation with results in the last paragraph we have shown

P( oy >aN)21-2P(G%)

rs
T

and the proof is complete.

!
!

Remark Larry Gray invented the trick used in the second paragraph of the proof above to
snmphfy the renormalized bond construction of Durrett and Griffeath (1983).

!
0
/

We turn now to the proof of the upper bound on oy

(32)1f 2= A and b> 0 then P( op > bN* ) 40 as N + .

5
Our argument is divided into several steps. In the first one we use a "renormalized bond
construction” which has its roots in the work of Russo (1981), and which has appeared in

various forms in a number of papers. Here we introduce yet another variation on the
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theme. As in most treratments the renormalized lattice is
.£'={(m,n)elz:m7&—niseven,n20}

Fix two positive integers N and L, and to each site (m,n) in & associate the rectangles
R(m,n), S(m,n), and T(m,n) defined by

R(0,0) = [1,N] x [0,2L]
" R(m,n) = R(0,0) + (Nm,2Ln) = { (x,t) : (x~Nm,t—2Ln) € R(0,0) }

5(0,0) = [1,2N] x [L,2L]
S(m,n) = §(0,0) + (Nm,2Ln)

T(0,0) = [-N+1,N] x [L,2L] = §(0,0) + (-N,0)
T(m,n) = T(0,0) + (Nm,2Ln)

We also define events

F(m,n) = { there is a path in R(m,n) from its bottom to its top, i.e., from
[Nm+1,N(m+l)j x {2Ln} to [Nm+1, N(m+1)] = {2i.(n+1)} )

G(m,n) = { there is a path in S(m,n) from its left side to its right, i.e., from
{Nm+1} » [L(20+1),L(2042)] to {N(m+2)} = [L(20+1),L(2n+2)] }

Hkm,n) = { there is a path in T(m,n) from its left side to its right, i.e., from

{N(m-1}+1} = [L(2n+1),L(2n+2)] to {N(m+1)} = [L(20+1),L(2n+2)] }

We will write R for R(0,0), F for F(0,0), etc. Figure 2 may help explain the definitions. In
this picture a bold line surrounds the T—shaped region R U S U T. Points of the form
.(N/2.L) + (Nm,Ln) with (m,n) € ¢ are indicated by crosses. The wavy lines are paths in

—14—



the graphical representation of the contact process. In this picture F, G, H, F(1,1), G(1,1),
and H(1,1) occur.

We will say that the renormalized site (m,n) € ¥ is open and set n{m,n) =1 if
. F(m,n), G(m,n), and H(m,n) all happen, otherwise we say that (m,n) is closed and set
n(m,n) = 0. It is easy to see that the random variables n{m,n) are 1-dependent, that is, if
“we lot ||(t;1,n)|l = (|m|+|n|)/2 and if (mymy), ... (my.n, ) are points with || (m,.n.) -
(mj,nj) [| > 1 for i#j, then "(ml'"l)' ”(mk’“k) are independent.

By translation invariance P( n{m,n) =1 ) is independent of (m,n). Denote this
brobability by I(N,L,A). We will say that “(oriented) percolation occurs in the 7 system
starting from (0,0)" if there is an infinite sequence of open snm (0,0) = (mO’“O) (my.n 1),
... With nk = k and ImH_l-—mkl = 1 for k20; and we will let &N,L,A) denote the
probability of that event. A result in Section 10 of Durrett (1984) implies

(3.3) T TI(N,L,A) > 1 — 3756 then 4(N,L,A) > 0.

The critical relationship between the renormalized and original process is

34 If percolauon occurs in the n system starting from (0,0) then r{ N o « in the

contact process.

Using (3.3), (3.4), and an argument of Russo (1981) we get

(3.5) Lemma. For any N and L, TI{N,L,A ) ¢ 1= 3736,

Proof: Suppose for some N and L that I(N,L,A,) > - { n(0,0) = 1} is defined in
terms of the finite region RUS U T, 50 A + II(N,L.A) is continuous and there is a Ao < '\c

.
Al
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with H(N,L,Ao) > 1-37%6, Byt then by (3.3) and (3.4), p(Ao) > 0 contradicting the

definition of A -
P(F) = P( oy2L ) is the event we are interested in. To control G and H we use:

(3.6) Suppose A = A andv>0.1f t'vE(r%) “@ast = o, then aN/N2I V - 0 in probability

as N .
The proof will be easy once we show:

(3.7) For any § > 0 limsup P( oy > agn2/V )<1- 3738
| N =%

Proof: Suppose (3.7) is félse, andlet A=1- 3—37. Then for some sequence N;
(3.8) f(N;) = P( F(Ni,Li) )> A,

where L, = 6N?/ V. From lefi—right symmetry : . "

L

BN = P G(N,L;) ) = PCH(N,L,))
Set theory and symmetry tell us that 1 — P( F n G n-H ) < 1-P(F) + 2(1-P(G)), or
rearranging '

B(N;) € (1/2) (2=-10N;) + TN L) ).

. Hence from (3.5) and (3.8) we get
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(3.9) g <1/ (1433 4+1-36)=1-37"=8

(Yes B = A, but for future clarity we igoore this accident.) Now if r(L) 2 2Nil then each
of the rectangles [(2Nik)+l,2Ni(k+1)] x [O,Li] k=0,1,....~1 must be crossed from left to
right by paths. So (3.9) implies P( r(Li) 22N0) ¢ B‘, and it follows that

N

610 E(lyBin)20)= E o)) P(r(t)2n)
n=

[ ]
< I WNm-b;: P(x(L;) 2 2N,(m-1) ) € C; N2

a0
where C; = T omB™1,
m=1

On the other hand if r(Li) < -Nil, then each of the rectangles [—Ni(k+l)+l,—1\'ik] x
[0,L,;) cannot be crossed from bottom to top by a path. So from (3.8), P( r(L;) ¢ N;{) <
(1-A )l and repeating the computation in (3.10) shows

@) - E( r(Li-)2;r(Li)<o)502N§,
where Cy = & 2m(1-A)™ Y. Combining (3.10) and (3.1) gives
m=1

LY E((L;)? ) € (C;+Cy) N2 LY = (C,+Cy) ¥ <

N i
contradicting the hypothesis of the lemma.

]
f

" Proof of (3.6): Let b > 0 and K be a positive integer.
P P( o > N2V ) <Py > (b/K)N2/V K,
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‘Using (3.7) now with 26 = b/K shows

timsup P( oy > b2V ) ¢ (1 -3738)K,
bl

which proves (3.6) since b and K are arbitrary.

At this point we have proved the result called (1.7) in the introduction. (1.8) is proved in
the next section, and (1.9) is proved in Durrett (1988) so we are done with the proof of the
upper bound. ’



4. Galves and Presutti (1987) revisited

In this section we will prove (1.8). The proof is based on the argument of Galves
and Presutti (1987), but .uses a countable partition of the sample space instead of what
they call a "measurable partition." This modification allows us to give a simple proof of the
crucial conditional independence property that they state without proof. We give the proof
here only for r, = sup {&"”’0] but the argument works whenever the initial configuration is
i {n:0€n 7N (0 =, |7l =o)

1 " Let ng,s) denote the contact process starting with x occupied at time s, and let

%8 = sup gxs),
rxg) = inf { 285 € = ).

Forn=0,1,2,... and s> n+llet

. _ A(n) = { there is no § at r, from time n to n+1 }
B(n,s) = { r(rn+l,n+i) 25}
C(n,s) = A(n) n B(n,s)

v—1
D(u,v)= N C(n,v)c.
=u

Let T0 = =1 and for 120 let

[}

T = inf {n: T, +1<0¢[t]1, Cln,t) occurs }

wheeinf¢=o. Let N=sup { I : T; <w }. For what follows it is convenient to redefine

Ty = ¢ and to define random variables on { N 2i}by
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5,(w) = £(Ty1) = (Ty+1) for 20
B,(w) = £(T;+1) - 1(T;) for i21.

Let (Q1,F ,P) be the probability space on which the graphical representation is
defined, and let I1 be the partition of Q defined by considering two outcomes wj and w, to

be in the same atom if and only if

(8) Ti(“’l) = Ti(“’z) for all i, in particular N(wl) = N(wz), and
(b) Si(“’l) = 8,(w,y) for 0< ¢ N(w).

1t is clear that °

N
@1 - =1 5+ I A

We will now show that conditioned on TI, the random variables Ai are independent and
have the same distribution as ( r? | 951 ) where r? = sup 5(1)' The key observation is
that if A(n) occurs but B(n,t)?oes not, then we must wait until at least (r_ +1,n+l) to
get the next T;, since until that tirpp:the right edge is part ‘lof a prbcess which will die out..
If we let '
/
= ¢: . (xliti+1) =
Fi= D(‘i+"‘i+(1) n § TR 2 4 0T Gy ) =)
= Xisbi 1
G, = A(ti)n{r . (ti'H') 6i}

then a little thought reveals
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" =P(FynG,nF;..nG,NF,)

and the events in the right hand side are independent since they depend on the graphical

representation in disjoint regions. The conditional probability
N

(4..3) R(Ak=6kl$k$n|N=n, T,=t1<i<n, Sj=sj0$j5n)
P(Fg NG, N F ..nG nF)
TP(Fgn A NF ..n A NF)

I P(G,|A)= T P(:P=4 |Ag)
— = I, =
(I PGlAY = T PCr =& [ A9

This completes the proof of the claim about the conditional independence of the A. The
rest of the argument is easy (and a slight improvement of the calculation on p.1143 of

Galves and Presutti). By (4.1)

(44) - - E((rgBry? | ) 2 E((r-ECry J)° | 1)

= E({T & -E&m)* 1)

. N :
=E( L 8 —E(4,/m)? | M) =CN
i=
| where C > 0 is the variance of ’(1’ given A(0). Taking expected values now gives
. [t}l:—l ] [t{-—l 41
(45)  Var(r)2CEN=C Z, P(C(i1)=C L ¢ P( r{xi+1) > t)
" which proves the desired result since P( r(x,i+1) >t ) 2 P( ¥51).

.
b
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5. Bounds on Correlation Lengths

The key to the developments below is the following result, which is the analogue for
Poisson processes of a result of Chayes, Chayes, Fisher, and Spencer (1986) for indpendent

Bernoulli variables.

(5.1) Consider independent Poisson processes Tl, TM with rate A and To, T'N with
rate 1. If A is an event which is determined by the arrivals in [0,t] then

2 pa) < (Myn2

The proof is a little messy and is postponed to the end of the section. We will now
demonstrate (1.12), (1.13), (1.11), and (1.14) in-that order. As in the introduction the ¢'s
which appear in the statements of (5.2)—(5.5) are arbitrary positive numbers. Cl and 02

are positive finite constants whose values are unimportant.
(52) AsA 1A, liminf Ly()/ (AN 0.

Proof: Let Gy = { oy 2 N%} (3.6) impl;es that when a =1
)

() P Gy )1,

where the subscript on P indicates we are considering A = A . When A < A, a result from
Durrett (1984) gives

o PA(Gyy) §NP(2N%) ¢ Nexp( =N Ly (1) )

g
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~where P X indicates we are considering the contact process with parameter A. Using (5.1)

now we have

() P( Gy )2 Pg( Gy ) ~C; (A-2) N{1+0)/2

\\
\

for A > Ac/2. Let §= AC-A and

N = (1/3c, 57/ (1+9),
)

Using (a), (b), and (c) .now gives that for this choice of N
(@ 13 ¢Nep(= Nl ()
© when.§=A—Ais small. Rearranging the last inequality gives
(e : i Ly(A) 2 N%1og(3X)
which implies that for small §
® ‘ L) 2 Gy s 72/0*e) o 6.
Setting a = 1 now gives the desired result.
(53)As )] '\c
timinf L (A)] (A=A /¢ > 0,

- and
timsup L (3)f (A=A /¥ > 0.
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Proof: Let Gy = { oy ¢ N%} (1.6) implies that when a =4
(a) P, (Gy)-1

" When A > A, combining Lemma 1 with the proof of Lemma 4 in Section 3 of Durrett and

Schonmann (1988) gives

(b) Py( Gy ) SN2 exp(~N/L,(N)).

=

(Lemma 1 implies that the probabiiity of a "dual path" from x on the right side of
(1/2,N+1/2) = [6,N% to y on the left side is smaller than exp(—N/L,(A)). Integrating over
the possible x and y and using () in the proof of Lemma 4 now gives (b).) Using (5.1) now

we have
(©) p A Gy) ; P, (Gy)~C, (A-3) NO+O2
for A> A Let §= A=A and
.
N = (1/3c,92/(%e),
Using (a), (b), and (c) now gives that for this choice of N
@ 1/3 ¢eNexp(~N/L ()

when §= AC—A is small. Rearranging the last inequality gives

© o L,(%) 2 N/log(3e®N29)

T =24~



which implies that for small §
® L 20, U0 jieys),

Setting a = 4 gives the first result. To prove the second, notice that when a < 2.5 we have
limsup Pcr(GN) = 1 by (1.10), and apply the argument above to a sequence N, + » for
which Pcr(GN ‘) -1

(5.4) Let RO = sup( gogf ). T A=A thenasro
2
r (logr)ll2 P( RO > r)=m

and

limsup r >r)=uw

T =0

Pn"oof. Let a = 4. Now

P(° >1%logr) < P( Oy pq > logr) +2P( RO> 1, Ogrpq ST l0gT ),

and {;.6) implies
P( 02r+1 > I_O log r ) < P( 021._” 2 r(l’ )llOS f] < (e"'l[’)[log r]
" for large r. Combining the last two equations gives
P(RY>r, Oty S 1%log i) 2 P(0p ;> ®logr)—1"
for large 1, g0 it follows from (1.9) that
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liminf r"’/2 (log r)ll2 P( R? >‘r ) 2 liminf (ra.log r)l/2 P( 9 21%ogr) = .
I~ - ¥ -w

To prove the second conclusion we repeat the proof with a > 2.5 and use (1.10) in place of
(1.6).

(5.5)1f A < A, then
timinf L (3) / (=05 0,
and

timsup L, (3) / (A3 /3F€5 0.

Proof: Let Gy = 4 ROS N : 10 <N® log N } From the proof of (5.3) we see that when

a=4 . ’
@t nyl/2
(a) (N®log N2 P _( Gy )~ .
Our next step is to observe that when A < A,
(b) - Py(Gy ) ¢Py(RY> N) cexp(~N/L,(A) ).

- The second inequality is trivial since L*(,\) is defined in Durrett, Schonmann, and Tanaka
(llQSS) to be

lim{%logP(R°>n)}=inf{:nl-logP(R°>n)}.

Using (5.1) now we have -
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© | Py( Gy ) 2 Pg( Gy )= C; (A=Ao) (N 950 N)1/2
for A> A f2.Let = A A, €> 0, and pick

N = £1-0/(5+a)

AN

80 that Yvhen §issmall (N>t %10g N) ¢ 67 and hence

§ (N 10g N)1/2 ¢ (N 1og N)™1/2
Using (a), (b) and (c) now gives that for this choice of N
@ (N®1og N) /2 ¢ exp(—N/L_ (3))

when §= A —A is small. Rearranging the last inequality gives
/ L}
(e). _ L (A2 2N/log(N® log N),

or since ¢ is arbiirary

) L0/ Pw forall < 1/(5+a)

. Setting a = 4 gives the first result. Letting @ < 2.3 and modifying the proof slightly as in

(5.3) gives the second conclusion.

Proof of (5.1): We begin by proving the result when there is one rate A Poisson process
{Tn,n?_l]andnoratelprocesm.betNt=sup{k:TkSt}.szland0=to<t1

s
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< '2 w < tk < t then with an obvious abuse of notation we can write

\ k i
PN =k Ty =t Ty = 4 )= {1 Aepl-Mtirt;y) } exp(-A(t—4,)) = Ak €7,

If A is any event concerning the Poisson process in [0,t} and k2 1 then AN {N =k } =
| (Tl'Tz:";Tk) € By } forsome By C { (bt )0ty <<ty }, and we have

P(AN{N, =k])=2ke™ |B,|

where |B, | denotes the k dimensional- Lebesgue measure of By.. The last formula also holds
when k = 0 if we consider |Bgl = 1 or 0 according as {N =0 } ¢ Aorc AS,

Differentiatmg now gives
ZP(An{N =k})= [%-t] P(AN{N =k}).

The right hand sid;a is smaller than | (k/A) —t | P( N, = k ), and hence the sum on k |
converges uniformly on compact subsets of (0,»). From this it follows easily (see p.1034 of

" Durett (1984) for details) that the derivative of the sum is the sum of the derivatives, and

hence B
. ‘ ) /
; :
| PA)| SE (KM=t |
A P(A)| SE (N - ,
" L) ~
To bound the right hand side we observe » At
EI N, =M | ¢ (BN, -2 92 = ot/? ,



| p)| s @2
The proof for the general case is almost the same. We begin by observing that
P(NT = k(m), T] = ], . Ty = thm) N ¢ m M) = 2 e AME —{N+1)t
where x = k(1) + ... + k(m). Now if A is any event involving the Poisson processes in [0,t]
then
!

A5, =)= 2 00

where - indicates a vector indexed by —N, ... M, and ¢(K) is a constant which only depends -

on k. Differentiating with respect to A, and summing over K gives
M
d m 11 /2
P(A)| <E| T (N,/A)-Mt | <(tM/A)"/S,
|?)X()| |m=l(t/) l (tM/2)

proving the desired result.
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