

Low-Level Laser Therapy in Chronic Autoimmune Thyroiditis: A Pilot Study

Danilo B. Höfling, MD, MS,^{1,2*} Maria Cristina Chavantes, MD, PhD,² Adriana G. Juliano, MD,¹ Giovanni G. Cerri, MD,¹ Rossana Romão, MD,³ Elisabeth Mateus Yoshimura, PhD,⁴ and Maria Cristina Chammas, MD, PhD¹

¹Radiology Institute (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 255, 3^o andar, CEP 05403-001 São Paulo, Brazil

²Laser Medical Center of the Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44, 2^o andar, CEP 05403-900 São Paulo, Brazil

³Endocrinology and Metabolism Department, Thyroid Unit, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 255, CEP 05403-900 São Paulo, Brazil

⁴Physic Institute, Nuclear Physic Department, Universidade de São Paulo, Rua do Matão, Travessa R, 187, Cidade Universitária, CEP 05508-900 São Paulo, Brazil

Background and Objectives: Chronic autoimmune thyroiditis (CAT) remains the most common cause of acquired hypothyroidism. There is currently no therapy that is capable of regenerating CAT-damaged thyroid tissue. The objective of this study was to gauge the value of applying low-level laser therapy (LLLT) in CAT patients based on both ultrasound studies (USs) and evaluations of thyroid function and thyroid autoantibodies.

Study Design/Materials and Methods: Fifteen patients who had hypothyroidism caused by CAT and were undergoing levothyroxine (LT4) treatment were selected to participate in the study. Patients received 10 applications of LLLT (830 nm, output power 50 mW) in continuous mode, twice a week, using either the punctual technique (8 patients) or the sweep technique (7 patients), with fluence in the range of 38–108 J/cm². USs were performed prior to and 30 days after LLLT. USs included a quantitative analysis of echogenicity through a gray-scale computerized histogram index (EI). Following the second ultrasound (30 days after LLLT), LT4 was discontinued in all patients and, if required, reintroduced. Triiodothyronine, thyroxine (T4), free T4, thyrotropin, thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies levels were assessed before LLLT and then 1, 2, 3, 6, and 9 months after LT4 withdrawal.

Results: We noted all patients' reduced LT4 dosage needs, including 7 (47%) who did not require any LT4 through the 9-month follow-up. The LT4 dosage used pre-LLLT (96 ± 22 µg/day) decreased in the 9th month of follow-up (38 ± 23 µg/day; $P < 0.0001$). TPOAb levels also decreased (pre-LLLT = 982 ± 530 U/ml, post-LLLT = 579 454 U/ml; $P = 0.016$). TgAb levels were not reduced, though we did observe a post-LLLT increase in the EI (pre-LLLT = 0.99 ± 0.09, post-LLLT = 1.21 ± 0.19; $P = 0.001$).

Conclusion: The preliminary results indicate that LLLT promotes the improvement of thyroid function, as patients experienced a decreased need for LT4, a reduction

in TPOAb levels, and an increase in parenchymal echogenicity. Lasers Surg. Med. 00:1–8, 2010.

© 2010 Wiley-Liss, Inc.

Key words: autoimmunity; autoantibodies; Hashimoto's thyroiditis; hypothyroidism; laser therapy (LLLT); thyroid; treatment; ultrasonography

INTRODUCTION

Chronic autoimmune thyroiditis (CAT) is the most common cause of hypothyroidism in iodine-replete geographic areas [1]. An autoimmune dysfunction causes humoral and cellular responses that lead progressively to thyroiditis [2]. There is no effective therapy available that can change the natural history of CAT, which presents with a high incidence of hypothyroidism [1] and requires treatment with levothyroxine (LT4). Few reports exist of patients going into remission and thus no longer needing LT4 therapy [1]. An ideal therapy would be efficient in reestablishing immunological tolerance and regenerating

Disclosure of proprietary interests: I certify that I have no affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the manuscript (e.g., employment, consultancies, stock ownership, honoraria) except as discussed in an attachment.

Abstract presented at the 29th ASLMS Annual Conference: April 3–5, 2009; Photobiomodulation Session n. 194; National Harbor, Maryland, USA.

Edition^{Q1}: American Journal Experts Editorial Certification. Key: B31A-37CA-A588-C3D2-74C9.

Contract grant sponsor: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Contract grant sponsor: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Contract grant sponsor: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

*Correspondence to: Danilo B. Höfling, MD, MS, Rua Tabapuã, 111, 9^o andar, CEP 04533-010, Itaim-Bibi, São Paulo, Brazil. E-mail: dbhofling@uol.com.br

Accepted 4 May 2010

Published online in Wiley InterScience (www.interscience.wiley.com).

DOI 10.1002/lsm.20941

damaged thyroid tissue so that the patient could regain normal thyroid function and cease using LT4.

LT4 replacement and selenium treatment lower autoimmune activity by decreasing the patient's serum concentration of thyroid peroxidase antibodies (TPOAb) [3]. Neither steroid nor non-steroid anti-inflammatory drugs are recommended for minimizing the destruction of thyroid follicular cells [3]. In this context, laser light can be valuable because the local and systemic actions of low-level laser therapy (LLLT) have been shown to be effective in treating autoimmune diseases, such as rheumatoid arthritis and Sjogren's syndrome [4–6]. There is also evidence to suggest that LLLT can facilitate the regeneration of various tissues [4–7] and, in animal thyroids, can lead to improvements in microcirculation and increases in serum triiodothyronine (T3) and thyroxine (T4) levels [8–10]. Irradiation of the thymus, thyroid, and supraclavicular fossa (vascular irradiation) in patients with CAT has been found to lead to systemic immunomodulation [11]. Evaluating LLLT with respect to CAT is particularly interesting for the following reasons: (1) the thyroid is superficial, and the laser can easily access it transcutaneously; (2) the procedure is non-invasive and painless; (3) the procedure is low-risk because it does not involve the use of ionizing radiation [12]; and (4) the procedure is low cost. With these considerations in mind, the objective of this pilot study was to evaluate the effectiveness of LLLT in patients with hypothyroidism associated with CAT, based on patients' thyroid function, their concentration of thyroid autoantibodies, and the parameters of their ultrasound studies (USs).

MATERIALS AND METHODS

Patients

This research was designed as a pilot study. Fifteen patients (13 women and 2 men, with a mean age of 44.87 years and a mean disease duration of 4.57 years)

previously diagnosed with CAT-induced hypothyroidism (Table 1) were recruited from the Thyroid Outpatient Clinic of the Endocrinology and Metabolism Department at the Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP). LLLT was carried out at the Laser Medical Center of HC-FMUSP's Heart Institute. US were performed at the HC-FMUSP's Radiology Institute. The selection, treatment, and tracking of patients took place between January 2006 and March 2007.

The presence of hypothyroidism, a range of laboratory measurements, and particular US criteria were applied to diagnose CAT. The patients included in the study had significantly elevated concentrations of thyroid peroxidase and/or thyroglobulin (TgAb) antibodies ($> 100 \text{ U/ml}$, except for one patient), US results consistent with CAT, and a prior diagnosis of hypothyroidism established by the thyroid clinic. The patients were being treated with LT4 and therefore showed normal (or almost normal) levels of T3, T4, free T4, and thyrotropin (TSH). The only patient with undetectable thyroid autoantibodies was included in the study because, in addition to presenting hypothyroidism, her US revealed the typical characteristics of CAT (i.e., parenchyma with heterogeneous texture, hypoechogenicity, hypervascularization, and fibrous strands), and we were interested in studying her response to therapy. Thyrotropin receptor antibody (TRAb) was undetectable in all of the patients. HC-FMUSP's Research Ethics Committee approved this study and the patient consent forms. All patients signed their consent forms of their own free will.

Exclusion Criteria

The criteria for excluding potential research subjects included: (1) the use of immunosuppressants, immunostimulants, or other drugs that could interfere with the production, metabolism, and transport of thyroid

TABLE 1. Patient Characteristics, Fluence, SAEF, and LLLT Application Mode

Patient	Age	Gender	Disease endurance (years)	Body mass index	Fluence (J/cm ²)	SAEF (J/cm ²)	Application mode
1	47	Female	15	31.02	38	1.0	Sweep
2	32	Female	6	24.80	50	1.4	Sweep
3	51	Female	2	33.71	50	1.4	Sweep
4	42	Female	4	46.88	70	2.0	Sweep
5	30	Female	5	24.14	70	2.0	Sweep
6	53	Female	4	35.62	70	2.0	Sweep
7	28	Female	2.5	26.13	92	2.6	Sweep
8	59	Male	2	22.92	108	3.0	Sweep
9	54	Female	2	35.92	70	2.0	Punctual
10	30	Male	2	25.84	70	2.0	Punctual
11	41	Female	5	34.96	70	2.0	Punctual
12	34	Female	3	20.62	70	2.0	Punctual
13	58	Female	10	36.10	70	2.0	Punctual
14	60	Female	2	26.83	70	2.0	Punctual
15	54	Female	4	36.02	70	2.0	Punctual
Mean CI (95%)		44.87 (39.16–50.58)		4.57 (2.75–6.39)		30.77 (27.32–34.22)	
						69.2 (60.93–77.47)	
						1.96 (1.73–2.19)	

CI, confidence interval.

hormones; (2) a history of any other autoimmune disease; (3) CAT with normal thyroid function; (4) CAT with subclinical hypothyroidism; (5) thyroid nodules; (6) hypothyroidism stemming from postpartum thyroiditis (up to 18 months after gestation); (7) a history of Graves' disease; (8) prior treatment with radioiodine; (9) tracheal stenosis; (10) pregnancy; (11) a history of ionizing irradiation and/or neoplasia in the cervical area; (12) previous surgical intervention in the thyroid; (13) thyroid hypoplasia; (14) ectopic thyroid; and (15) serious illness (cancer, ischemic coronary artery disease, stroke, kidney or liver failure, etc.).

Low-Level Laser Therapy

A continuous wave (CW) diode laser (GaAlAs—830 nm) with a beam area of 0.02827 cm^2 (Thera LaseTM, DMC[®], São Carlos-SP, Brazil) was used under the following specifications: *emission mode*: continuous; *application method*: sweep in eight patients and punctual in seven patients, irradiating the whole thyroid; *dosimetry*: output power always at 50 mW. The sweep application method was used with fluence in the range of 38–108 J/cm² and spatial average energy fluence (SAEF) in the range of 1.0–3.0 J/cm² (Table 1), with the tip gliding along the skin's surface gently, continuously, and perpendicularly. The quantity of SAEF was used to better estimate energy distribution in the whole treated area. SAEF was calculated as the total energy delivered divided by the area of the lesion that was illuminated. The use of SAEF is based on the fact that as light diffuses through the tissue, the treated area will be larger than the tip area; at this wavelength, 1 cm² around the laser tip is a good estimation of the total illuminated area. The punctual application was performed with a fluence of 70 J/cm² for 40 seconds at the point of application, with the tip held in soft contact with and perpendicular to the skin surface (SAEF = 2.0 J/cm², Table 1). *Treatment*: a total of 10 applications of LLLT were given on a twice-weekly schedule. The laser was applied to the

thyroid, the boundaries of which were defined by a surgical pen aided by ultrasonography. For treatments using punctual application, an adhesive plastic mask (mold) was made for each patient, defining the boundaries of the gland (containing perforations 3 mm in diameter separated by 1 cm) between the jugular notch of the sternum and the patient's thyroid cartilage prominence. Because these two structures are easy to detect, affixing the mask to the correct skin area was easy to repeat in subsequent treatments, delineating the exact location of the gland every time. For patients treated with sweep irradiation, the contours of the gland were marked using permanent black ink. The laser equipment was calibrated prior to each application. The presence of adverse effects and the use of drugs during LLLT and the follow-up period were evaluated. A single researcher (D.B. Höfling) performed all LLLT procedures and patient tracking.

Ultrasound Study

A single, independent, experienced investigator documented and compared the ultrasounds over the course of LT4 treatment prior to and 30 days after LLLT (M.C. Chavantes). The B-mode and real-time gray-scale computerized histograms (CH) were performed using a General Electric Voluson 730 PROTM device (General Electric Company, Ultrasound Business of Milwaukee, WI). Pulsed and power Doppler US were performed using a Philips HDI-5000TM device (ATL/Philips Medical Systems[®], Bothell, WA).

B-mode: In the B-mode ultrasound analysis, we estimated thyroid volume [13] and adopted reference values of 6–16 cm³ [14]. The gland texture was subjectively classified as either homogeneous or heterogeneous. Echogenicity was evaluated using CH, a quantitative technique that gives numerical values to the 256 gray-scale B-mode ultrasound tones (White = 0, Black = 255; Fig. 1) and calculates the mean and standard deviation of the gray-scale in each region of interest (ROI), lending objectivity,

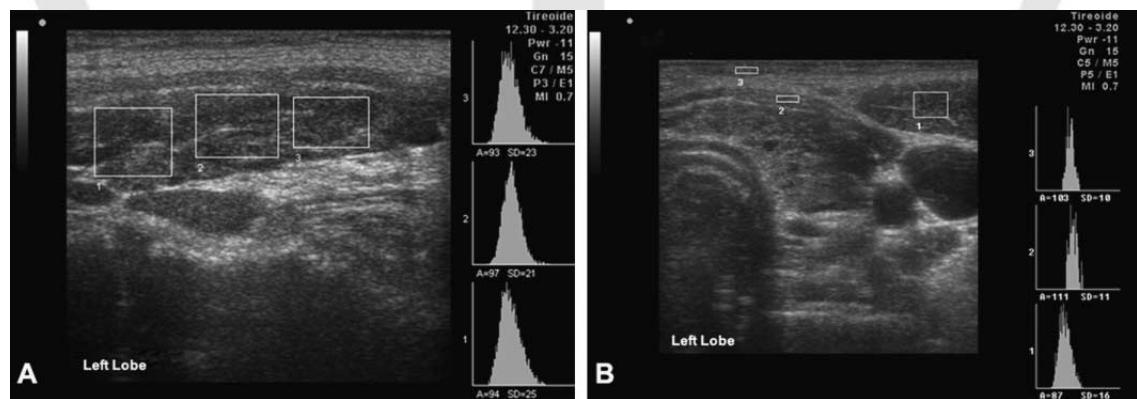


Fig. 1. Real-time gray-scale computerized histogram analysis of a longitudinal cut of the left lobe of the thyroid gland (A: region of interest—ROI—1, 2, and 3); transversal cut of the sternocleidomastoid muscle (B: ROI 1) and pre-thyroid musculature (B: ROI 2). The average and standard deviation of

the computerized histogram (echogenicity) within each ROI are presented to the right of the respective images. This method transformed a qualitative variable into a highly sensitive and replicable quantitative variable.

sensitivity, and reproducibility to the method [15–18]. The average CH values of the upper, middle, and lower thirds of the longitudinal cut of the thyroid lobes were obtained (Fig. 1A; ROI 1, 2, and 3), as were the average CH values for the pre-thyroid muscles (Fig. 1B; ROI 1 and 2). The echogenic index (EI) was calculated as a ratio of the average CH of the thyroid to that of the adjacent muscles (with the same gain in brightness for both). *Power Doppler*: vascularization was divided into three categories: (A) normal; (B) increased vascularization; and (C) increased vascularization that is particularly marked and diffuse [19]. *Pulsed Doppler*: Maximal systolic peak velocity (MSPV) and resistance index (RI) values for the superior and inferior thyroid arteries were obtained.

Laboratory Measurements

Using AutoDELFIA® kits (PerkinElmer™ Wallac Oy, Turku, Finland), we determined patients' levels of TSH (0.4–4.5 µU/ml), T3 (70–200 ng/ml), T4 (4.5–12.0 µg/dl), free T4 (0.7–1.5 ng/dl), TPOAb (reference value: <35 U/ml), and TgAb (reference value: <35 U/ml) both prior to LLLT and in the first, second, third, sixth, and ninth months after the suspension of LT4 treatment. LT4 was maintained at the same dose until the 30-day post-LLLT US was performed, at which time it was discontinued for all patients. LT4 was gradually reintroduced to patients with clinical and laboratory hypothyroidism until their hormones reached normal levels. Pre-LLLT TRAb levels (reference value <8%) were determined using a radio-receptor assay (RSR, Cardiff, UK).

Statistical Analysis

Values of $P < 0.05$ (*) were considered significant, while those ≥ 0.05 were considered non-significant. Data were expressed in terms of the average \pm confidence interval (95%), and the main results were examined using the Wilcoxon signed rank test and Friedman's analysis of variance (ANOVA). The following statistical programs were used: Statistical Package for the Social Sciences (SPSS) release 16.0, 2007 (SPSS, Inc., IBM Company Headquarters, Chicago, IL) and Number Cruncher Statistical System (NCSS statistical software, 2004; NCSS LLC, Kaysville, UT).

RESULTS

All patients received 10 applications of LLLT and were followed for 9 months after LT4 withdrawal. All individuals enrolled in the study were included in the final analysis. No adverse effects were observed when LLLT was performed. Patients did not use drugs that might have interfered with the results of the study.

Thyroid Function

There was a reduction in the required LT4 dosage for all patients (100%), with 7/15 (47%) not needing LT4 at the time of the 9-month follow-up. The mean dose of LT4 used pre-LLLT (96 ± 22 µg/day) was significantly reduced 9 months post-LLLT (38 ± 23 µg/day; $P < 0.0001$). The mean concentrations of T3 ($P = 0.155$), T4 ($P = 0.164$), free T4 ($P = 0.268$), and TSH ($P = 0.433$) were not statistically different before LLLT and 9 months after LT4 withdrawal (Table 2).

TABLE 2. Serum T3, T4, Free T4, TSH, TPOAb, and TgAb Concentrations Before LLLT (Pre-LLLT) and Following LLLT, 9 Months After Withdrawal of LT4 (Post-LLLT)

Patients	T3		T4		Free T4		TSH		TPOAb		TgAb	
	Pre-LLLT		Post-LLLT		Pre-LLLT		Post-LLLT		Pre-LLLT		Post-LLLT	
	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT
1	143	134	12.1	9.7	1.48	0.89	0.5	3.2	678	223	966	35
2	103	107	10.2	9.2	1.35	1.02	1.2	2.09	35	35	35	35
3	123	110	9.0	8.4	1.01	1.06	6.37	3.94	2299	1621	50	94
4	136	135	10.8	7.9	1.05	1.09	1.05	4.3	195	123	397	257
5	160	102	11.6	7.6	0.95	1.24	6.41	1.67	677	961	2587	3000
6	139	134	8.3	9.7	0.82	0.85	1.63	3.76	3000	3000	410	375
7	109	111	7.2	8.7	0.87	0.99	6.48	2.97	1621	426	35	35
8	109	96	9.8	10.7	1.1	1.66	6.42	0.24	1462	350	3000	3000
9	115	134	10.1	9.7	1.3	0.89	4.47	3.2	330	223	35	35
10	148	134	8.2	6.8	0.87	0.71	5.35	4.29	55	62	177	111
11	90	82	8.5	7.5	1.08	0.97	0.8	2.33	148	35	235	38
12	162	89	10.2	11.2	1.22	1.14	4.15	1.15	2854	135	78	35
13	135	135	13.5	13.2	1.42	1.21	3.42	1.65	1092	1175	1111	487
14	127	122	9.7	8.8	1.02	0.93	2.77	3.23	150	49	601	184
15	120	125	10.5	9.9	1.18	1.14	3.95	4.02	641	268	35	35
Mean (CI 95%)	126.13 (114.3–137.93)	116.6 (106.35–126.85)	9.98 (9.07–10.89)	9.27 (8.36–10.17)	1.11 (1.0–1.23)	1.05 (0.93–1.18)	3.66 (2.16–5.17)	2.8 (2.12–3.49)	982.447 (452.33–1512.6)	579.07 (124.83–1033.3)	650.13 (130.92–1169.4)	517.07 (0.016–0.433) (–46.46–108.6)
P-value	0.155											0.074

CI, confidence interval.

$P < 0.05$.

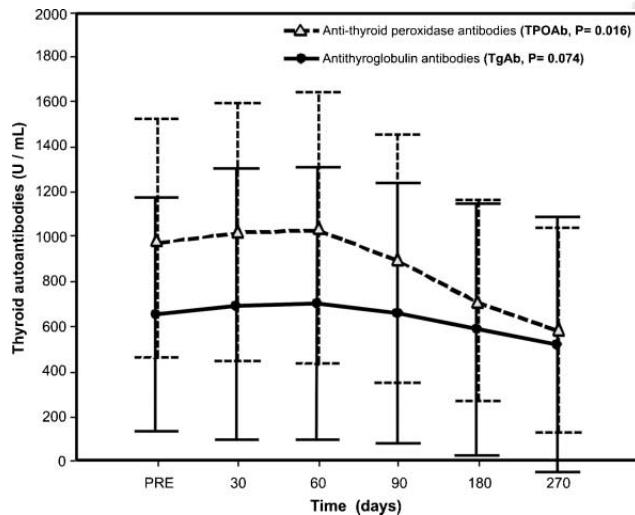


Fig. 2. Tracking of thyroid peroxidase and thyroglobulin antibodies pre- and post-LLLT. A significant reduction in TPOAb concentration was observed 9 months after LT4 withdrawal (* $P=0.016$). There was no reduction in TgAb concentration ($P=0.074$).

Thyroid Autoantibodies

Prior to treatment, elevated concentrations of TPOAb were observed in 14 of the 15 patients evaluated. A significant reduction in TPOAb (Fig. 2) was verified in the 9 months following LT4 withdrawal (pre-LLLT, 982 ± 530 U/ml and post-LLLT, 579 ± 454 U/ml; * $P=0.016$; Table 2). Nine patients showed elevated concentrations of

TgAb before treatment, with a trend toward reduction by the time of the examination 9 months post-LT4 withdrawal ($P=0.074$; Fig. 2). In the patient with undetectable levels of TPOAb and TgAb prior to LLLT, these antibodies remained absent after LLLT.

Ultrasound Studies

In the US performed prior to commencing LLLT, 3/15 (20%) patients had a reduced thyroid volume, 4/15 (27%) had an increased volume, and 8/15 (53%) had a normal volume. The mean thyroid volume was not statistically different before and after LLLT, although a normalization of thyroid volume was observed in the post-LLLT US in 3/7 (43%) of the patients with abnormal thyroid volume (Table 3). Two other patients presented a considerable improvement in volume (patient nos. 12 and 14), reaching near-normal values subsequent to LLLT (Table 3). No alteration in the texture of the thyroid parenchyma was observed post-LLLT, which remained heterogeneous and showed no evidence of nodules.

LLLT led to an increase in EI in 13/15 (87%) patients (Table 3). Patient EI values were significantly higher 30 days post-LLLT (1.21 ± 0.19) relative to pre-LLLT values (0.99 ± 0.09 ; * $P=0.001$; Table 3).

Prior to LLLT, thyroid analysis by power Doppler showed normal vascularization in 3 (20%) of the patients and hypervascularization in the other 12 (80%) patients. Following LLLT, 3/12 (25%) patients exhibited normal vascularization (Table 3) without significant variations in TSH concentrations as long as LT4 treatment was maintained (Fig. 3A,B). The pulsed Doppler variables (MPVS and RI) did not differ pre- and post-LLLT.

TABLE 3. Thyroid Volume, Echogenic Index, Vascularization and LT4 Dose Pre- and 30 Days Post-LLLT

Patient	Volume reference values (6–16 cm ³)		Echogenic index		Vascularization		LT4 dose (μg/day)	
	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT	Pre-LLLT	Post-LLLT
1	5.8	11.1	0.78	0.88	↑	↑	150	100
2	3.6	3.8	1.15	1.14	↑	↑	75	25
3	18.7	15	0.98	1.26	↑	↑	50	0
4	9.7	12	1.00	1.40	↑	↑	100	0
5	14.9	16	0.87	1.02	↑	↑	75	50
6	26.6	15.7	0.88	0.93	↑	Normal	50	0
7	11.6	10.9	0.93	0.99	↑	↑	125	50
8	9.5	10.1	0.95	1.05	↑	↑	150	112
9	12.1	9.7	1.10	1.06	↑	Normal	50	0
10	5.9	5.9	1.31	1.57	Normal	Normal	50	0
11	6.3	4.4	1.28	1.95	↑	Normal	150	0
12	29.3	19.7	1.15	1.84	↑	↑	75	0
13	13.7	12.2	0.84	0.93	Normal	Normal	150	88
14	25.2	16.7	0.83	0.96	↑	↑	100	75
15	6.2	9.2	0.81	1.16	Normal	Normal	100	75
Mean	13.27	11.5	0.99	1.21			96.67	38.33
(CI 95%)	(8.73–17.82)	(8.95–14.11)	(0.9–1.09)	(1.02–1.39)			(74.55–118.78)	(14.88–61.79)
P-value		0.272		0.001*				<0.0001*

↑, Increased vascularization (B and C pattern).

* $P<0.05$.

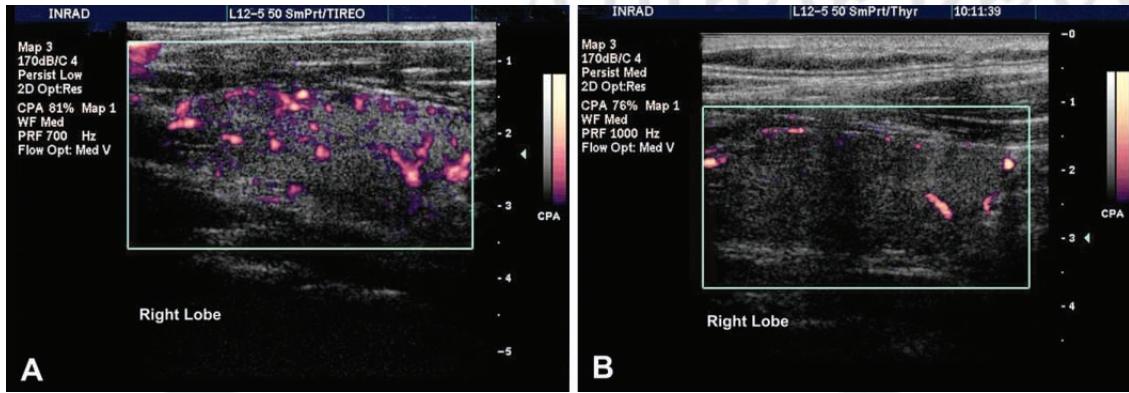


Fig. 3. Power Doppler of the right lobe of a thyroid gland. Note the visible normalization of vascularization post-LLLT. **Panel A** shows increased vascularization compatible with chronic autoimmune thyroiditis pre-LLLT, whereas **panel B** shows normal vascularization post-LLLT.

DISCUSSION

Accumulating evidence in the literature suggests that LLLT works through photochemical actions at a biomolecular level in animal and human tissues [12,20], and various studies have worked to clarify its mechanism of action. The laser light is absorbed by the photoacceptors of the mitochondrial respiratory chain via the cytochrome *c* oxidase enzyme and promotes an increase in reactive oxygen species (ROS), adenosine triphosphate (ATP), and/or cyclic adenosine monophosphate (cAMP). These effects initiate a complex signaling cascade, which is essential for the proliferation, regeneration, and protection of various cells and tissues [20–24], likely including the thyroid. Irradiation of the thyroid gland in healthy rats has demonstrated that an infrared laser can stimulate microcirculation [9,10], which may contribute to the regeneration of the gland's follicular cells. An increase in serum levels of T3 and T4 in healthy mice observed 7 days after irradiation suggests the treatment's role in stimulating thyroid function [8].

A significant decline was found in patients' need for LT4 even 9 months post-LT4 withdrawal, at which point free T4 and TSH concentrations were found to be similar to their baseline levels. This finding indicated a significant improvement in thyroid function, likely associated with the regenerative activity of LLLT. All patients exhibited a reduction in LT4 doses, with 7/15 (47%) not needing LT4 by the end of the study period. We attribute these improvements to the use of this simple, non-invasive, well-tolerated, and cost-effective therapy. Of those seven patients, three still do not require LT4, three needed to resume LT4 after 12 months of tracking (but with lesser doses than they were utilizing before LLLT), and one patient moved away and was unavailable for follow-up study.

Although replacement doses of LT4 can fluctuate in patients with hypothyroidism, it is unlikely that such fluctuations explain the present results, which were also

corroborated by a drop in patients' TPOAb levels and an enhancement in echogenicity (Table 3). A future study using an appropriate control group would be able to confirm this outcome.

Thyroid autoantibodies are considered to be organ-specific markers of autoimmunity [2], and the reduction in their numbers suggests a decrease in autoimmune activity directed at the thyroid. The fall of TPOAb and TgAb levels was slow and progressive from the second month after LT4 withdrawal until the ninth month of follow-up, at which point TPOAb levels were significantly reduced (Fig. 2). TgAb levels did not exhibit a significant reduction, perhaps due to the fact that only 9 of the 15 study patients showed elevated levels of TgAb pre-LLLT. The observed decline in TPOAb levels suggests that LLLT had suppressive effects on thyroid-specific autoimmunity. The maximization of the antioxidant effects of the glutathione peroxidase enzymes promoted by LLLT may play a role in TPOAb suppression [25]; this possibility has also been suggested as an explanation for the action of selenium in the reduction of these antibodies [3]. In addition, in vitro and in vivo studies in rats have demonstrated that LLLT (red or near-infrared light) inhibits gene expression and/or reduces plasma levels of important pro-inflammatory cytokines (e.g., tumor necrotic factor- α (TNF- α), interleukin (IL)-1 β , IL-2, IL-6, IL-8, and interferon- γ (IFN- γ)), while stimulating the expression of genes encoding growth factors with immunosuppressant actions (e.g., transforming growth factor- β —TGF- β) [20,26–29]. Elevated plasma levels of pro-inflammatory cytokines exhibiting the secretory profile of Th1 cells, such as IFN- γ , TNF- α , IL-2 [30,31], and IL-6 [30], as well as a decrease in TGF- β levels [32], may play a role in CAT pathogenesis. Hence, LLLT's direct or indirect actions on inflammatory and/or suppressor cytokines may result from the local and systemic immunoregulatory effects of laser irradiation.

The optimal time for post-LLLT ultrasonography has not been empirically determined. The choice to perform the

follow-up US 30 days after treatment was based on two factors. First, we surmised that the LLLT's peak effects would likely not be reached immediately after the final application [8], and we thus expected that some delay would be needed. Second, the ultrasound equipment used to perform the computerized histogram had limited availability, and the 30-day interval between the pre- and post-LLLT ultrasounds could be accommodated by the facility.

Echogenicity is inversely related to both lymphocyte infiltration [33] and the lesion size of the thyroid's follicle structure [34]. Normal follicle structure, characterized by a large colloid volume with a relatively small cellular portion, represents the main acoustic interface that provides the gland with high echogenicity. The lymphocyte infiltration and destruction of thyroid follicles found in CAT reduce echogenicity. Thus, it follows that an increase in EI, an objective and a quantitative variable that is highly sensitive and reproducible [15–18], suggests a decrease in lymphocyte infiltration and/or the regeneration of the follicle structure, allowing partial restoration of the cell-colloidal acoustic interface. Thirteen patients presented an increase in EI, and 6 (86%) of the 7 patients who remained off LT4 after LLLT exhibited EI increases (Table 3). No alteration in the texture of the parenchyma was observed after LLLT, though it should be noted that parenchymal texture is a subjective variable with low sensitivity to subtle differences.

LT4 was maintained at a steady dose until the post-laser treatment US to avoid an augmentation in TSH levels, which could induce enlargement of the thyroid gland and increased vascularization. We observed variations in thyroid volume in the direction of normality, independent of whether the patient's initial thyroid volume was abnormally high or low. This finding suggests that photobiomodulation promotes tissue homeostasis. It is noteworthy that two patients with goiters and one with reduced thyroid volume achieved normalization of gland volume in just 30 days post-LLLT. Two other patients with goiters exhibited significant volume reduction post-LLLT (Table 3). Of the 12 patients who had thyroid hypervasculatization pre-LLLT, 3 returned to normal vascularization at the same doses of LT4 without significant changes in TSH concentrations (Table 3, Fig. 3).

The limitations of this initial study include its small sample size and the lack of a control group. We also used different dosimetry methods to determine the best response to LLLT, which was obtained with a fluence of 70.0 J/cm² and an SAEF of 2.0 J/cm². We found that the punctual method of treatment was more practical and reproducible, and it reduced LT4 by at least as much as the sweep method (Table 3). To confirm these findings, a randomized placebo-controlled clinical trial is currently underway, and the data obtained to date suggest that all of the results in this pilot study indicating the efficacy of LLLT in CAT will be corroborated.

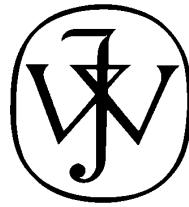
In conclusion, these preliminary data imply that LLLT, a safe, cost-effective, and non-invasive procedure, is successful for improving thyroid function, reducing TPOAb levels,

and increasing thyroid echogenicity. As a result, LLLT appears to promote a regeneration of the follicle structure and a reduction of the thyroid autoimmune response in patients with CAT-induced hypothyroidism.

ACKNOWLEDGMENTS

We would like to thank Professor Berenice B. Mendonça, MD, Meyer Knobel, MD, PhD, Suemi Marui MD, PhD, Professor Noedir Antônio G. Stolf, MD, Mikiya Muramatsu, PhD, Rosangela Itri, PhD, Professor Alberto R. Ferraz, MD, Professor Claudio Leone, MD, and Arnaldo Zanotto, MD, PhD, for helping with and contributing to this study.

REFERENCES


1. Vanderpump MP, Tunbridge WM. Epidemiology and prevention of clinical and subclinical hypothyroidism. *Thyroid* 2002;12(10):839–847.
2. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. *N Engl J Med* 1996;335(2):99–107.
3. Turker O, Kumanlioglu K, Karapolat I, Dogan I. Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. *J Endocrinol* 2006;190(1):151–156.
4. Bjordal JM, Couppe C, Chow RT, Tuner J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. *Aust J Physiother* 2003;49(2):107–116.
5. Brosseau L, Welch V, Wells G, Tugwell P, de Bie R, Gam A, Harman K, Shea B, Morin M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: A metaanalysis. *J Rheumatol* 2000;27(8):1961–1969.
6. Basford JR. Low-energy laser therapy: Controversies and new research findings. *Lasers Surg Med* 1989;9(1):1–5.
7. Karu T. Photobiology of low-power laser effects. *Health Phys* 1989;56(5):691–704.
8. Azevedo LH, Aranha AC, Stolf SF, Eduardo CP, Vieira MM. Evaluation of low intensity laser effects on the thyroid gland of male mice. *Photomed Laser Surg* 2005;23(6):567–570.
9. Vidal L, Ortiz M, Perez de Vargas I. Ultrastructural changes in thyroid perifollicular capillaries during normal postnatal development and after infrared laser radiation. *Lasers Med Sci* 2002;17(3):187–197.
10. Parrado C, Carrillo de Albornoz F, Vidal L, Perez de Vargas I. A quantitative investigation of microvascular changes in the thyroid gland after infrared (IR) laser radiation. *Histol Histopathol* 1999;14(4):1067–1071.
11. Mikhailov VA, Denisov IN, Aleksandrova O, Poliakov AV. The treatment of autoimmune thyroiditis using low-intensity laser radiation. *Vopr Kurortol Fizioter Lech Fiz Kult* 1998; (3):15–16.
12. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. *Cochrane Database Syst Rev* 2005; (4):CD002049.
13. Brunn J, Block U, Ruf G, Bos I, Kunze WP, Scriba PC. Volumetric analysis of thyroid lobes by real-time ultrasound. *Dtsch Med Wochenschr* 1981;106(41):1338–1340.
14. Tramalloni J, Monpeyssen H. Thyroïde normale et variants. In: Tramalloni J, Monpeyssen H, editors. *Écographie de la thyroïde*. Issy-les-Moulineaux: Elsevier Masson, SAS; 2006: 1–30.
15. Loy M, Cianchetti ME, Cardia F, Melis A, Boi F, Mariotti S. Correlation of computerized gray-scale sonographic findings with thyroid function and thyroid autoimmune activity in patients with Hashimoto's thyroiditis. *J Clin Ultrasound* 2004;32(3):136–140.
16. Mazzotti G, Sorvillo F, Iorio S, Carbone A, Romeo A, Piscopo M, Capuano S, Capuano E, Amato G, Carella C. Grey-scale analysis allows a quantitative evaluation of

thyroid echogenicity in the patients with Hashimoto's thyroiditis. *Clin Endocrinol (Oxf)* 2003;59(2):223–229.

- 17. Schiemann U, Avenhaus W, Konturek JW, Gellner R, Hengst K, Gross M. Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto's thyroiditis. *Med Sci Monit* 2003;9(4):MT13–MT17.
- 18. Vitti P. Grey scale thyroid ultrasonography in the evaluation of patients with Graves' disease. *Eur J Endocrinol* 2000; 142(1):22–24.
- 19. Macedo TA, Chammas MC, Jorge PT, Souza LP, Farage L, Watanabe T, Santos VA, Cerri GG. Differentiation between the two types of amiodarone-associated thyrotoxicosis using duplex and amplitude Doppler sonography. *Acta Radiol* 2007;48(4):412–421.
- 20. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. *J Biomed Sci* 2009;16: 4.
- 21. Minatel DG, Frade MA, França SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. *Lasers Surg Med* 2009; 41(6):433–441.
- 22. Chen CH, Hung HS, Hsu SH. Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. *Lasers Surg Med* 2008;40(1):46–54.
- 23. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d'Hoedt B. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. *Lasers Surg Med* 2002;30(5):365–369.
- 24. Stadler I, Evans R, Kolb B, Naim JO, Narayan V, Buehner N, Lanzafame RJ. In vitro effects of low-level laser irradiation at 660nm on peripheral blood lymphocytes. *Lasers Surg Med* 2000;27(3):255–261.
- 25. Kao MJ, Sheen LY. Effects of infrared and low-power laser irradiation on cell viability, glutathione and glutathione-related enzyme activities in primary rat hepatocytes. *J Formos Med Assoc* 2003;102(7):486–491.
- 26. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. *Lasers Surg Med* 2009;41(4):282–290.
- 27. Mafra de Lima F, Costa MS, Albertini R, Silva JA, Jr., Aimbre F. Low level laser therapy (LLLT): Attenuation of cholinergic hyperreactivity, beta(2)-adrenergic hyporesponsiveness and TNF-alpha mRNA expression in rat bronchi segments in *E. coli* lipopolysaccharide-induced airway inflammation by a NF-kappaB dependent mechanism. *Lasers Surg Med* 2009;41(1):68–74.
- 28. Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR. Anti-Inflammatory effects of low-level laser therapy (660nm) in the early phase in carrageenan-induced pleurisy in rat. *Lasers Surg Med* 2008;40(7):500–508.
- 29. Novoselova EG, Glushkova OV, Cherenkov DA, Chudnovsky VM, Fesenko EE. Effects of low-power laser radiation on mice immunity. *Photodermatol Photoimmunol Photomed* 2006; 22(1):33–38.
- 30. Drugarin D, Negru S, Koreck A. Th1 cytokines in autoimmune thyroiditis. *Roum Arch Microbiol Immunol* 1998; 57(3–4):309–319.
- 31. Díez JJ, Hernanz A, Medina S, Bayón C, Iglesias P. Serum concentrations of tumour necrosis factor-alpha (TNF-alpha) and soluble TNF-alpha receptor p55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. *Clin Endocrinol (Oxf)* 2002;57(4): 515–521.
- 32. Akinci B, Comlekci A, Yener S, Bayraktar F, Demir T, Ozcan MA, Yuksel F, Yesil S. Hashimoto's thyroiditis, but not treatment of hypothyroidism, is associated with altered TGF-beta1 levels. *Arch Med Res* 2008;39(4):397–401.
- 33. Yoshida A, Adachi T, Noguchi T, Urabe K, Onoyama S, Okamura Y, Shigemasa C, Abe K, Mashiba H. Echographic findings and histological feature of the thyroid: A reverse relationship between the level of echo-amplitude and lymphocytic infiltration. *Endocrinol Jpn* 1985;32(5):681–690.
- 34. Müller HW, Schröder S, Schneider C, Seifert G. Sonographic tissue characterisation in thyroid gland diagnosis. A correlation between sonography and histology. *Klin Wochenschr* 1985;63(15):706–710.

Q1: Please check the article footnote.

Q2: Please check the suitability of the short title on the odd-numbered pages. It has been formatted to fit the journal's 45-character (including spaces) limit.

WILEY

Publishers Since 1807

111 RIVER STREET, HOBOKEN, NJ 07030

ELECTRONIC PROOF CHECKLIST, LASERS IN SURGERY & MEDICINE

IMMEDIATE RESPONSE REQUIRED

Please follow these instructions to avoid delay of publication.

READ PROOFS CAREFULLY

- This will be your only chance to review these proofs.
- Please note that the volume and page numbers shown on the proofs are for position only.

ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)

- Mark all corrections on the proof file. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

CHECK FIGURES AND TABLES CAREFULLY

- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

COMPLETE REPRINT ORDER FORM

- Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

COLOR CHARGE FORM

- Fill out the attached color charge form even if you do not have color figures. Please indicate if you want to pay for color in print or color online only at no charge.

RETURN

- PROOFS**
- REPRINT ORDER FORM**
- CTA (If you have not already signed one)**
- COLOR CHARGE FORM**

RETURN WITHIN 48 HOURS OF RECEIPT VIA EMAIL TO Sarah Whalen at swhalen@wiley.com.

QUESTIONS?

Sarah Whalen, Production Editor

Phone: 201-748-8818

E-mail: swhalen@wiley.com

Refer to journal acronym and article production number

(i.e., LSM 00-001 for *Lasers in Surgery and Medicine* ms 00-001).

COPYRIGHT TRANSFER AGREEMENT

Date: _____ Contributor name: _____

Contributor address: _____

Manuscript number (Editorial office only): _____

Re: Manuscript entitled _____

(the "Contribution")

for publication in _____ (the "Journal")

published by _____ ("Wiley-Blackwell").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal's instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. **Publication cannot proceed without a signed copy of this Agreement.**

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.
2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue, Copyright © [year], copyright owner as specified in the Journal). Links to the final article on Wiley-Blackwell's website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. **Submitted Version.** Wiley-Blackwell licenses back to the Contributor in the version of the Contribution as originally submitted for publication:

a. After publication of the final article, the right to self-archive on the Contributor's personal website or in the Contributor's institution's/employer's institutional repository or archive. This right extends to both intranets and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].

b. The right to transmit, print and share copies with colleagues.

2. **Accepted Version.** Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use, are set forth at the following website: <http://www.wiley.com/go/funderstatement>. NIH grantees should check the box at the bottom of this document.

3. **Final Published Version.** Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

- a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserve, website or automated delivery.
- b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.
- c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.
- d. Oral presentations. The right to make oral presentations based on the Contribution.

4. **Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).**

a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.

b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:

- (i) Full and accurate credit must be given to the Contribution.
- (ii) Modifications to the figures, tables and data must be noted. Otherwise, no changes may be made.
- (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.
- (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.
2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end)

ment purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

Contributor-owned work

ATTACH ADDITIONAL SIGNATURE
PAGES AS NECESSARY

Contributor's signature

Date

Type or print name and title

Co-contributor's signature

Date

Type or print name and title

Company/Institution-owned work
(made-for-hire in the
course of employment)

Company or Institution (Employer-for-Hire)

Date

Authorized signature of Employer

Date

U.S. Government work

Note to U.S. Government Employees

A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

U.K. Government work
(Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via <http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm>

Other Government work

Note to Non-U.S., Non-U.K. Government Employees

If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

NIH Grantees

Note to NIH Grantees

Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.

Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided:

<https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=LSM>

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about 'Pay-Per-View and Article Select' click on the following link: <http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html>

Softproofing for advanced Adobe Acrobat Users - NOTES tool

NOTE: ACROBAT READER FROM THE INTERNET DOES NOT CONTAIN THE NOTES TOOL USED IN THIS PROCEDURE.

Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.
2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0 and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.
3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.
4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**
5. Go through your entire article using the NOTES tool as described in Step 4.
6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).
7. **When closing your article PDF be sure NOT to save changes to original file.**
8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.
9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.

COLOR REPRODUCTION IN YOUR ARTICLE

Color figures were included with the final manuscript files that we received for your article. Because of the high cost of color printing, we can only print figures in color if authors cover the expense.

Please indicate if you would like your figures to be printed in color or black and white. Color images will be reproduced online in Wiley *InterScience* at no charge, whether or not you opt for color printing.

Failure to return this form will result in the publication of your figures in black and white.

JOURNAL Lasers in Surgery and Medicine VOLUME _____ ISSUE _____

TITLE OF MANUSCRIPT _____

MS. NO. _____ NO. OF COLOR PAGES _____ AUTHOR (S) _____

No. Color Pages	Color Charges	No. Color Pages	Color Charges	No. Color Pages	Color Charges
1	950	5	3400	9	5850
2	1450	6	3900	10	6350
3	1950	7	4400	11	6850
4	2450	8	4900	12	7350

Please contact the Production Editor (swhalen@wiley.com) for a quote if you have more than 12 pages of color

Please print my figures in black and white

Please print my figures in color

\$ _____

**International orders must be paid in currency and drawn on a U.S. bank

Please check one: Check enclosed

Bill me

Credit Card

If credit card order, charge to: American Express

Visa

MasterCard

Credit Card No _____ Signature _____ Exp. Date _____

BILL TO:

Name _____ Purchase Order No. _____

Institution _____ Phone _____

Address _____

Fax _____

E-mail _____