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ABSTRACT
This paper presents stellar mass functions and i-band luminosity functions for Sloan Digital Sky
Survey (SDSS) galaxies with i < 21 using clustering redshifts. From these measurements, we
also compute targeting completeness measurements for the Baryon Oscillation Spectroscopic
Survey (BOSS). Clustering redshifts is a method of obtaining the redshift distribution of
a sample of galaxies with only photometric information by measuring the angular cross-
correlation with a spectroscopic sample in different redshift bins. We construct a spectroscopic
sample containing data from the BOSS + eBOSS surveys, allowing us to recover redshift
distributions from photometric data out to z � 2.5. We produce k-corrected i-band luminosity
functions and stellar mass functions by applying clustering redshifts to SDSS DR8 galaxies in
small bins of colour and magnitude. There is little evolution in the mass function between 0.2
< z < 0.8, implying that the most massive galaxies form most of their mass before z = 0.8.
These mass functions are used to produce stellar mass completeness estimates for the BOSS,
giving a stellar mass completeness of 80 per cent above M� > 1011.4 between 0.2 < z < 0.7,
with completeness falling significantly at redshifts higher than 0.7, and at lower masses. Large
photometric data sets will be available in the near future (DECaLS, DES, Euclid), so this and
similar techniques will become increasingly useful in order to fully utilize these data.

Key words: methods: data analysis – surveys – galaxies: distances and redshifts – galaxies:
luminosity function, mass function .

1 IN T RO D U C T I O N

Large spectroscopic galaxy surveys are extremely useful tools
for studying galaxy evolution. They allow us to determine stellar
masses, star formation histories, and dynamics for large numbers of
galaxies. In particular, deep, small area surveys such as PRIMUS
(Coil et al. 2011), DEEP2 (Newman et al. 2013), and VIPERS
(Guzzo et al. 2014) contain data for galaxies over a broad range
of masses, colours, morphologies, and redshifts, allowing tests of
galaxy evolution on very different objects.

These surveys, however, are not ideal for investigating galaxy
evolution at the highest masses, since the number density of galaxies
above, for example, M� > 1011.5 M� is extremely low. Due to their

� E-mail: db217@st-andrews.ac.uk

small area, these pencil-beam surveys typically only target tens or
hundreds of galaxies above this mass, and are strongly affected by
sample variance.

An ideal approach to study galaxy evolution at these masses is
using large-volume cosmological redshift surveys, which typically
target the highest mass galaxies over very large regions of the sky.
The Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein
et al. 2011; Dawson et al. 2013) is the most extensive of these to date,
measuring spectra for roughly 1.5 million luminous red galaxies
(LRGs) over 10 000 deg2 of sky at z < 0.7. BOSS contains over
100 000 galaxies with stellar masses M� > 1011.5 M� (Maraston
et al. 2013), so it is able to study this end of the mass function
with very little shot noise. Ongoing and future surveys such as
eBOSS (Dawson et al. 2016; Blanton et al. 2017) and DESI (DESI
Collaboration 2016) will extend this study to higher redshifts and
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larger numbers of galaxies, providing additional data to better probe
these masses.

One limitation of these surveys, however, is that they are
optimized for cosmology, not galaxy science. Their target selection
therefore involves a number of complex colour cuts, leading to
samples of galaxies that are incomplete in both stellar mass and
colour. To study galaxy evolution at these masses, we must quantify
this incompleteness.

One method of determining incompleteness is by comparing the
distribution of galaxies as a function of mass in one sample to that
of another sample that is complete in stellar mass. In Leauthaud
et al. (2016), they characterize the stellar mass completeness of
BOSS using Stripe 82, a narrow region of the SDSS with deeper
ugriz photometry, as well as near-IR photometry from the UKIRT
Infrared Deep Sky Survey (Lawrence et al. 2007), allowing for more
accurate photometric redshifts and stellar masses.

Large-area broad-band photometric surveys such as the Sloan
Digital Sky Survey (SDSS; York et al. 2000) are complete, and
provide data over a large area (�14 000 deg2) for galaxies over a
range of magnitudes and colours, so would be ideal for this purpose.
One disadvantage, however, is that for SDSS-like data, photometric
redshifts can be unreliable (Rahman et al. 2016b). In this paper, we
outline a method of computing luminosity and mass functions (and
hence completeness) from broad-band surveys using a technique
known as clustering redshifts.

Clustering redshifts is a method of obtaining the redshift distri-
bution of a set of galaxies via cross-correlation with a spectroscopic
sample (Newman 2008). A number of slightly different techniques
have been proposed; however, the main idea is the same: the two-
point angular cross-correlation is measured between a photometric
sample of galaxies and different redshift bins of a spectroscopic
sample. If the photometric sample overlaps in redshift with a
particular bin of the spectroscopic sample, then the measured cross-
correlation will have a positive amplitude. Combining this cross-
correlation with bias information of the two samples, it is possible to
accurately measure the redshift distribution of a photometric sample
of galaxies.

In this paper, we use clustering redshifts to recover the redshift
distributions of samples of galaxies from the SDSS photometric
survey in small bins of magnitude and colour, isolating galaxies
of similar type. After recovering redshift distributions of bins,
we use these colours and redshifts to compute stellar masses and
luminosities by examining simulated galaxies in the same bins of
colour-redshift space. Finally, we compute targeting completeness
for the BOSS spectroscopic sample.

The layout of this paper is as follows. Section 2 describes both
the real and mock data used in this study. Section 3 presents the
clustering redshifts method and bias correction, and our method
of computing stellar masses. In Section 4, we test our clustering
redshifts method on mock data, and determine how accurately mass
and luminosity functions can be recovered using this technique.
In Section 5, this technique is applied to real SDSS photometry
to produce real mass and luminosity functions. Section 6 presents
completeness measurements for BOSS using these computed mass
and luminosity functions. Finally, in Section 7, we discuss these
results, and outline possible extensions of this work.

2 DATA

This study uses data from two main sources. We seek to compute
mass functions from photometric data. In order to perform this
task, we apply the clustering redshifts technique, which requires

Figure 1. The comoving number density of three different spectroscopic
galaxy samples described in Section 2.1: at low redshift, BOSS DR12
LRGs (blue), intermediate redshifts, eBOSS DR14 LRGs (magenta), and
higher redshifts, eBOSS DR14 quasars (red). The number density for the
combination of these three samples is shown as the black dotted line.

both an ‘unknown sample’ (i.e. a photometric sample of unknown
redshifts) and a ‘reference sample’ (a sample over the same region
of sky but with spectroscopic redshifts). The unknown sample is
cross-correlated with the reference sample to recover the redshift
distribution.

2.1 BOSS and eBOSS reference sample

As a reference sample, we use data from both the SDSS-III: BOSS
(Gunn et al. 2006; Eisenstein et al. 2011; Dawson et al. 2013; Smee
et al. 2013) and SDSS-IV: eBOSS (Gunn et al. 2006; Smee et al.
2013; Dawson et al. 2016; Blanton et al. 2017) surveys. BOSS
is a cosmological redshift survey that has measured spectra for
∼1.5 million LRGs out to z = 0.7, over roughly 10 000 deg2

of sky. Its primary aim is to map the spatial distribution of the
highest mass galaxies over large volumes in order to measure the
scale of baryon acoustic oscillations in the clustering of galaxies.
eBOSS is the extension of this programme, ongoing at the moment,
targeting ∼375 000 LRGs (Prakash et al. 2016) at 0.7 < z < 0.8,
and ∼740 000 quasars (Myers et al. 2015) over the range 0.9 < z <

3.5 both over 7500 deg2 of sky.
These samples are ideal for a reference sample, as they cover a

large area and provide continuous, large numbers of redshifts over
the range 0 <z < 3. The reference sample is therefore a combination
of BOSS DR12 (Alam et al. 2015) LRGs in the North Galactic Cap
(NGC) covering 6851 deg2 and eBOSS DR14 data (Abolfathi et al.
2018), containing both the LRG and quasar samples, covering 1011
and 1214 deg2, respectively, within the BOSS NGC area. The total
sample is then 1.1 million galaxies. The number density of both
the individual and combined samples is shown in Fig. 1. When
computing correlation functions in later sections, we use large-
scale structure catalogues from Reid et al. (2012) for the BOSS
LRG sample, Bautista et al. (2017) for eBOSS LRGs, and Ata et al.
(2018) for eBOSS quasars, using 10x randoms for all samples.

2.2 SDSS photometric survey

Our photometric survey (i.e. the sample for which we wish to
compute redshift distributions, along with masses and luminosities)
consists of data from the SDSS photometric survey (Gunn et al.
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1998; York et al. 2000). We use photometry from DR8 (Aihara
et al. 2011), which contains u-, g-, r-, i-, and z-band information.
We select only objects morphologically classified as galaxies, and
only use data from the primary survey (i.e. the best observation
for each object). To create our catalogues, we use g-, r-, and i-
band modelMag magnitudes (see Stoughton et al. (2002)). We
also constrain the sample to i < 21 to avoid incompleteness, and
only include galaxies in the same region as the BOSS NGC DR12
footprint using the following masks detailed in Anderson et al.
(2012): the survey geometry mask, and veto masks for bright stars,
unphotometric seeing, and bright objects. Finally, we remove all
galaxies that are also in our reference sample, leaving 53 million
galaxies over ∼7000 deg2. We create random catalogues for this
sample using the MANGLE software (Swanson et al. 2008), using
10x randoms.

2.3 Mock surveys

In Section 4, we assess the reliability of our method on mock data,
which requires both a mock reference sample and photometric
survey. In later sections, we also use semi-analytic models to
compute masses from colours and redshifts. Both these purposes
require mock samples, and hence light cones from two semi-analytic
models (SAMs). We first take data from LGalaxies (Henriques et al.
2015). This light cone covers 1/8th of the sky and is run on the
Millennium simulation (Springel et al. 2005) rescaled to Planck
cosmology (Planck Collaboration XVI 2014). Magnitudes are
computed using Maraston & Strömbäck (2011) stellar population
models (SSPs), using a Kroupa et al. (2001) initial mass function
(IMF). We also use a smaller light cone from SAGE (Croton et al.
2016) covering a 100 deg2 area, run on the MultiDark MDPL2
simulation (Klypin et al. 2016; Knebe et al. 2018), with spectral
energy distributions (SEDs) and magnitudes also computed using
Maraston & Strömbäck (2011) SSPs and a Kroupa et al. (2001) IMF.
Both catalogues have angular positions, redshifts, SDSS magnitudes
(apparent and absolute) with reddening applied (Calzetti et al.
2000), and present-day stellar masses.

We add photometric errors to the magnitudes of both SAMs by
looking at how the error on a fitted magnitude in the SDSS varies as
a function of that magnitude (i.e. g versus σg, r versus σ r, i versus
σ i). For every mock galaxy, we use its magnitude to compute the
mean error at this magnitude in SDSS, then draw a Gaussian random
error using this value as the standard deviation. We compute errors
for all mock galaxies in the g, r, and i bands, and add these errors
to our mock galaxy magnitudes.

From these simulated galaxy catalogues, we define a mock
reference sample and photometric survey. We define our reference
sample by applying the colour and magnitude cuts of the BOSS
survey described in Dawson et al. (2013) to both our LGalaxies
and SAGE catalogues. This procedure produces samples with
comparable redshift distribution to the BOSS survey and is further
discussed in Section 4.3. We refer to these samples as BOSSLGalaxies

and BOSSSAGE. To create mock SDSS photometric samples, we cut
both catalogues to i < 21 as in Section 2.2, and also remove all
galaxies present in our mock reference sample. We refer to these
mock photometric surveys as SDSSLGalaxies and SDSSSAGE.

3 ME T H O D

Cross-correlations have long been used to test for physical
association (Seldner & Peebles 1979); however, the idea of using
cross-correlations to produce accurate redshift distributions has

only become common over the last decade, partly due to the increase
in data from large-volume spectroscopic and photometric surveys.

Phillipps et al. (1985) investigated determining correlation func-
tions from samples with only partial redshift information; later,
in Phillipps & Shanks (1987), luminosity functions are computed
given the assumption that galaxies close in the sky are likely at the
same redshift. Schneider et al. (2006) more generally investigate this
technique by measuring cross-correlations with galaxies binned by
photometric redshift. This approach is built on more formally in
Newman (2008), and later in Matthews & Newman (2010) and
Matthews & Newman (2012), where a method is outlined for
computing redshift distributions by measuring the angular cross-
correlation between a photometric sample and different redshift bins
of a spectroscopic sample. The amplitude of the cross-correlation is
fitted by an analytical form; since the redshift distribution inferred
also depends on the evolution in bias of both samples, an iterative
technique is employed to correct for this, assuming that clustering
amplitude is proportional in both the spectroscopic and photometric
samples.

Some variants on this method have subsequently appeared. For
example, Schmidt et al. (2013) and Ménard et al. (2013) propose
a similar technique, measuring angular cross-correlations with a
spectroscopic sample, but over constant physical scale. Further-
more, bias evolution is corrected for by assuming a bias evolution
law, and the effect of this assumption is tested, down to non-linear
scales. More recent studies applying these methods include Rahman
et al. (2015), Rahman et al. (2016a), Rahman et al. (2016b), Scottez
et al. (2016), and Scottez et al. (2018). van Daalen & White (2018)
present a model for computing luminosity functions using clustering
information and apparent magnitudes.

In Gatti et al. (2018), the performance of three of these methods
is investigated: Newman (2008), Schmidt et al. (2013), and Ménard
et al. (2013). They apply all methods to simulated Dark Energy
Survey (DES) data, finding that Newman (2008) method produces
slightly noisier redshift distributions due to having two extra
degrees of freedom when fitting the cross-correlation amplitude;
furthermore, they report that the proportional bias assumption is
not always accurate.

In our preliminary tests, the noise of all techniques was largely
due to noise in the cross-correlation functions; the choice of method
made only small differences to the noisiness of the recovered n(z)s.
The main difference between methods is how the bias evolution
correction is applied.

Since, first, Gatti et al. (2018) find that Menard method appears
to produce slightly less noisy distributions, and secondly, we will
be investigating methods of correcting for bias, we choose to adopt
a method based on Ménard et al. (2013).

3.1 Clustering redshifts methodology

The method is detailed in Ménard et al. (2013) (hereon M13); we
summarize the important points here, along with our alterations. The
method is centred around computing the cross-correlation between
a photometric or ‘unknown’ sample, and a number of redshift bins
of a spectroscopic or ‘reference’ sample.

Using the simplest Peebles & Hauser (1974) estimator, the
angular cross-correlation between two samples, 1 and 2, can be
defined as ω12(θ ) = D1D2(θ )/R1R2(θ ) − 1, where D1D2(θ ) is the
number of galaxies in sample 1 separated by an angular distance
θ from galaxies in sample 2. R1R2(θ ) is the same statistic, but
instead for two purely randomly distributed sets of points. The
cross-correlation function therefore describes, as a function of
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angle, the excess probability that galaxies in one sample will be
situated at a particular distance from galaxies in another. If the
two samples considered overlap in redshift, they will occupy the
same density field, and their positions will be correlated, hence this
cross-correlation will have a positive amplitude.

To produce a n(z) measurement, we therefore need to measure the
angular cross-correlation, ωur(θ , z), between an unknown sample,
and different redshift bins of a reference sample. Since we are
interested in how the amplitude of this quantity evolves with
redshift, we integrate over θ to produce

ω̄ur(z) =
∫ θmax

θmin

dθW (θ )ωur(θ, z) , (1)

where W(θ ) is the weight function, W(θ ) = θ−1, designed to
optimize the signal-to-noise ratio. In order to probe the same
physical scale at all redshifts, θmin and θmax are computed differently
for each redshift, such that they correspond the same physical scales
rp, min and rp, max.

From M13, the integrated cross-correlation is

ω̄ur(z) ∝ dNu

dz
(z)b̄u(z)b̄r(z)ω̄DM(z) , (2)

where dNu
dz

(z) is the redshift distribution of the unknown sample,
b̄u(z) and b̄r(z) are the evolution in bias of the unknown and
reference samples, respectively, over the same scales, and ω̄DM(z)
is the equivalent evolution in the integrated dark matter correlation
function.

3.2 The bias evolution of the unknown sample

In order to compute a redshift distribution, we need an estimate
of b̄u(z), b̄r(z), and ω̄DM(z). Assuming linear biasing, the integrated
autocorrelations of the unknown and reference samples as a function
of redshift can be written as ω̄uu(z) = b̄2

u(z)ω̄DM(z) and ω̄rr(z) =
b̄2

r (z)ω̄DM(z), respectively. We are able to measure both ωuu(z) and
ωrr(z), so we can substitute these into equation (2), producing

dNu

dz
(z) ∝ ω̄ur(z)√

ω̄uu(z)ω̄rr(z)
. (3)

We can measure ω̄ur(z), the integrated cross-correlation between the
unknown sample and each bin in redshift of the reference sample,
and also ω̄rr(z), the integrated autocorrelation of the reference
sample over the same redshift bins and physical scale. We can also
remove the constant of proportionality by normalizing dNu

dz
(z) to the

number of galaxies in the unknown sample. The only parameter we
cannot compute is ω̄uu(z), since we have no redshift information for
the unknown sample.

M13 show in their fig. 1 that for a range of assumed bias
evolutions of the unknown sample, if the redshift distribution is
narrow, σ z < 0.2, the effects of bias evolution on the recovered
distribution are small, and therefore the distribution can be estimated
as dNu

dz
(z) ∝ ω̄ur(z). Some papers choose to assume this relation, e.g.

M13, Schmidt et al. (2013), or factor any deviation from this into
their error budgets (Gatti et al. 2018).

3.3 Estimating a bias correction

In this work, we apply the methodology described in the previous
section to many different magnitude bins of galaxies and, as shown
in Section 4.1, while distributions are generally narrow, they can
often be wider than σ z = 0.2. For this reason, we investigate the
effect of different assumptions about the evolution of the bias of the

unknown sample on our redshift distributions, and also in our final
stellar mass, luminosity, and completeness functions. This section
describes our two different approaches: a correction based on the
evolution of the clustering as measured in LGalaxies, and analytic
forms for the evolution of the bias.

3.3.1 Bias evolution from LGalaxies

One way to correct for the bias evolution of the unknown sample is
to investigate how this evolves for different samples of galaxies in
the LGalaxies semi-analytic model described in Section 2.3. This
approach has the advantage of being applicable to any sample of
galaxies since we can look at the same bin of galaxies in our model
and compute a correction. We will see, however, that while it should
be correct for mock data, the derived correction may not hold for
real data.

We first measure the integrated autocorrelation, ω̄uu(z), as a
function of redshift in LGalaxies data. We measure ω̄uu(z) for 10 bins
of i-band magnitude of width �i = 0.25 between 17 < i < 20 and
�i = 0.125 between 20 < i < 21 (since we have significantly more
galaxies at fainter magnitudes). For each magnitude bin, we measure
ω̄uu(z) in redshift bins of width �z = 0.1/3, as this is the binning
we will apply to test our data in Section 4.1. Measuring ω̄uu(z) in
galaxies with different magnitudes accounts for any evolution of
the bias correction as a function of luminosity. Fig. 2 shows ω̄uu(z)
computed in three different magnitude bins. Two separate panels
show the integrated correlation function amplitude over either small
scales (0.5 < rp < 1.5 Mpc, middle panel) or large scales (5 < rp

< 15 Mpc, right-hand panel).
Looking at both small-scale and large-scale clustering, in all

bins of magnitude, there is a significant increase in the clustering
amplitude towards lower redshifts. This behaviour is particularly no-
ticeable in the two faintest magnitude bins. There is also, in all mag-
nitude bins, an increase in clustering amplitude towards higher red-
shifts, although in general this evolution is smaller at larger scales.

Some of the evolution in integrated clustering amplitude seen in
Fig. 2 is expected from the fact that we have magnitude-limited sam-
ples. For a given magnitude bin, galaxies at high redshift are, on av-
erage, intrinsically more luminous and therefore more massive and
more strongly biased. This will cause an increase in clustering am-
plitude towards high redshifts, as seen in Fig. 2 in all magnitude bins.

This does not, however, explain the increase towards low redshift,
where galaxies are of lower luminosity and stellar mass, hence
not strongly biased. We investigate a number of reasons for this
amplitude increase, including the fact that we are measuring the
evolution of ω̄uu(z), which captures the evolution of both the bias
of the unknown sample and of the dark matter power spectrum [i.e.
ω̄DM(z)], the latter of which increases in amplitude towards low
redshift, We also investigate the effect of a changing satellite fraction
with stellar mass on the clustering strength. We find, however,
that these effects are not significant, and the main reason for this
increased amplitude is due to the intrinsic clustering properties of
the model. van Daalen et al. (2016) present an exploration of how
the clustering of galaxies can aid the constraint of semi-analytic
models. In their fig. 5, they show that, without explicitly using
clustering as a model constraint, several flavours of ‘LGalaxies’
models fail to reproduce the clustering of low-mass galaxies
( M� � 109.5 M�), even if the clustering of high-mass galaxies
matches the SDSS-measured correlation functions very well. The
tendency for LGalaxies to overpredict the clustering amplitude of
low-mass galaxies (the model that we use here is not calibrated
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Figure 2. (Left) The normalized redshift distributions of three different magnitude bins of LGalaxies data: 18.75 < i < 19 (blue), 19.75 < i < 20 (magenta),
and 20.875 < i < 21 (red). The middle and right-hand side plots show the integrated angular autocorrelation function, ω̄uu(z) = b̄2

u(z)ω̄DM(z), as a function of
redshift for these three bins. The distributions are shown for small scales, 0.5 < rp < 1.5 Mpc (middle), and large scales, 5 < rp < 15 Mpc, (right). Since the
clustering redshifts method only depends on the evolution of ω̄uu(z), not the overall amplitude, integrated correlation functions are normalized such that the
minimum value is 1. Error bars are computed from correlation function errors.

using clustering) will produce the behaviour seen at low redshift in
Fig. 2.

When applying a bias correction from LGalaxies in future
sections, we use the measured evolution of ω̄uu(z) in SDSSLGalaxies as
an estimate of the bias evolution of the unknown sample, following
equation (3). This correction is computed in the same magnitude
bin and over the same physical scales as the cross-correlation is
measured.

3.3.2 Analytic bias evolution

We will also consider analytic forms of the bias, when investigating
the effect of the bias evolution of the unknown sample. Rahman et al.
(2015) compute bias corrections fit to SDSS main spectroscopic
sample clustering: one that evolves as db/dz = 1 and one that
evolves as db/dz = 2. For our study, we choose the more extreme
evolution, b1(z) = 0.7 + 2z, in an effort to bound the effect of this
uncertainty. We also investigate a correction from Rahman et al.
(2016b), which takes the form b2(z) = 1 for z < 0.1, and b2(z) =
0.9 + z for z ≥ 0.1.

3.3.3 Quantifying the effect of the bias evolution of the unknown
sample

In Sections 4 and 5, we will compute redshift distributions, lumi-
nosity functions, stellar mass functions, and completeness functions
with different assumptions about the bias evolution of the unknown
sample. When testing our methodology in simulated data, we will
apply the bias evolution derived in Section 3.3.1, and quantify the
effect of not correcting for this evolution at all. However, due
to the shortcomings of LGalaxies in describing the evolution of
the clustering of low-mass galaxies, when analysing real data we
will also consider the analytic forms described in Section 3.3.2.
Ultimately, we will use the these models to quantify the likely
effect of the bias evolution of the unknown sample in our final
measurements, and add this systematic error to our estimates of the
statistical error.

3.4 Clustering measurements

Evaluating equation (3) requires us to make choices regarding cor-
relation function estimators, cosmological parameters, and scales
over which to integrate correlation function amplitudes. Although

large-scale clustering is less dependent on assumptions about the
bias evolution of the unknown sample, the recovered φ(z) is signif-
icantly noisier, mostly due to the angular cross-correlation signal
being diluted by foreground/background galaxies. Furthermore, this
signal is more susceptible to spurious correlations due to large-scale
structure (e.g. chance alignment of structure at different redshifts).
We discuss this issue in Appendix A. Because of this effect, when
applying our method to real data we choose to measure cross-
correlations over the scales 1.5–5 Mpc, as 1.5 Mpc is the smallest
scale we can measure while being safely above the SDSS fibre
collision radius of 62 arcsec. We use the Landy & Szalay (1993) es-
timator in all our correlation function measurements. Furthermore,
where cosmology is needed we assume Planck Collaboration XVI
(2014) best-fitting cosmological parameters.

3.5 Computing masses and luminosities

Before recovering redshift distributions, we seek to bin galaxies in
small bins of colour and magnitude (i.e. binned in three dimensions
by i, r − i, and g − r). This binning is useful because first, since
galaxy colours are strongly correlated with redshift, it limits the
width of redshift distributions for each bin, which will in turn reduce
the importance of the bias evolution correction (Newman 2008;
Ménard et al. 2013). Secondly, since we intend to compute masses
and luminosities, we require both colour and redshift information,
so binning by colour is important.

After recovering the redshift distributions of galaxies in all these
colour bins, for each bin, we know the value of i, r − i, and g − r,
along with the number of galaxies at each redshift. At each redshift,
we therefore have a measure of the rest-frame SED of galaxies
in this bin. We can compute parameters from this SED (e.g. mass,
luminosity) and allocate these to photometric galaxies in the correct
quantities.

To compute masses and luminosities for our bins of colour,
we choose to use semi-analytic models. After recovering redshift
distributions of all bins of colour of our photometric survey, we
compute the distribution of mass or luminosity within the same
colour-redshift bin of the SAM, and apply this probability density
function (PDF) to the real data (i.e. multiply this PDF by the number
of galaxies in the same bin of the real data). After recovering
masses and luminosities at each redshift, for all bins of colour,
these distributions are summed to produce mass and luminosity
functions.
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Although SAMs do not predict the correct number density of
galaxies of given colours, for a given set of colours and redshift, the
type of galaxy [i.e. star formation history (SFH), mass, luminosity]
should be representative of those in the real Universe. This method
allows us to account for photometric errors by adding these to our
SAM, and to produce a PDF of mass and luminosity rather than just
a best fit, ensuring that the correct distribution of mass is allocated
in each bin. This technique is, in essence, similar to Pacifici et al.
(2012), where a library of physically motivated SFHs is computed
from SAMs, and then used to fit individual galaxy SEDs.

4 T E S T I N G TH E M E T H O D S

Before computing real mass and luminosity functions, we test our
method using real and mock data. We create mock reference samples
and photometric surveys as described in Section 2.3. This allows
us to select galaxies from our photometric survey as a function of
magnitude and colour, and recover redshift distributions by cross-
correlating with the reference sample. We can then compare the
recovered redshift distributions to the true distribution.

4.1 Clustering redshifts on mock data

In order to test the clustering redshifts method, we bin mock
photometric survey, SDSSLGalaxies, by i-band magnitude in bins of
width �i = 0.25 between 17 < i < 20 and �i = 0.125 between 20
< i < 21, where the large number of galaxies allows us to bin more
finely. Within each of these magnitude bins, we then bin by r − i, and
then by g − r. We choose a number of bins such that each contains
>100 000 galaxies, as we found this to be roughly the minimum
number of galaxies required to recover a noise-free n(z). At fainter
magnitudes, the size of bins is comparable to the photometric error
in the SDSS, so smaller bins would not provide significantly more
information as galaxies are already scattered between bins. Binning
by i, r − i, and g − r produces 492 bins.

We then recover the redshift distributions of all bins of
SDSSLGalaxies by cross-correlating with a reference sample,
BOSSLGalaxies, as described in Sections 3.1 and 3.2. We correct
for bias evolution using the computed evolution in LGalaxies as
in Section 3.3.1. Correlation function errors are computed using a
jackknife method, which in turn is used to compute errors on the
final dN/dz following equations (1) and (3). Figs 3 and 4 show
the recovered and true redshift distributions of a selection of these
colour bins, in bright and faint magnitude bins, respectively.

Fig. 3 shows four bins of r − i and g − r covering the extent of
the colour space. It can be seen that the redshift distribution, φ(z)s,
is recovered well for a range of different values of g − r and r − i.
Adding a bias correction does not significantly affect the recovered
distribution, likely because distributions are narrow, and because
the correction, computed in Section 3.3.1, is fairly small at bright
magnitudes. Examining the faintest magnitude bin in Fig. 4, redshift
distributions are again recovered well for a range of different values
of g − r and r − i; however, the bias evolution correction becomes
more important. This effect appears to be particularly true for wider
distributions, where the bias is likely changing between low and
high redshifts following Fig. 2.

If using a photometric survey with smaller photometric error, for
example DECaLS or DES, redshift distributions for a given colour
bin would be much narrower since galaxies will be less scattered
between neighbouring bins. The correction therefore becomes less
significant, particularly at faint magnitudes, where SDSS errors are
large. Errors are visibly larger at higher redshift (z > 0.65), where

the number density of objects in the reference sample is low, which
can sometimes cause an error in normalization. This effect should
average out over many bins, however, and will be less of a problem
when using real data since the true BOSS sample has a larger area,
and there are additional eBOSS galaxies and quasars above this
redshift.

As a further check of our bias correction, we compute the true
median redshift, zmed, true, for all colour bins, along with the median
redshift using clustering redshifts, zmed, cz, both with and without
a bias correction. We compute the error in the median redshift,
zmed, true − zmed, cz, for all bins, and present the distribution of errors
in Fig. 5.

Without a bias correction, median redshifts are almost always
slightly below the true value. The bias correction shifts the median
to higher redshifts, although there remains a similar amount of
scatter around the correct value. These errors in the median redshift
are fairly small however, relative to the size of our redshift bins
(�z = 0.033). The scatter is partly due to noise in the recovered
redshift distribution, but also may arise because we compute a bias
correction for an entire magnitude bin, and this approach may not
necessarily describe the bias evolution of all bins of colour within
this.

4.2 Clustering redshifts on real data

In this section, we test our method using a highly complete
set of spectroscopic redshifts, using data from the GAlaxy and
Mass Assembly spectroscopic redshift GAMA (Driver et al.
2009). GAMA is a spectroscopic survey magnitude limited to r
< 19.8, targeted over ∼286 deg2 of sky, its primary objective
being to study structure on scales of 1 kpc to 1 Mpc. Below
r < 19.8, GAMA is highly complete (>95 per cent), although
completeness drops for fainter magnitudes. Therefore, for r � 19.8,
GAMA redshift distributions should be roughly comparable to the
SDSS.

We use a photometric survey defined from SDSS data, again cut
to 17 < i < 21, described in Section 2.2. As in Section 4.1, we
split the sample into bins of i-band magnitude of width �i = 0.25
between 17 < i < 20 and �i = 0.125 between 20 < i < 21, and then
bin by r − i and g − r within each of these such that each bin contains
>100 000 galaxies. We cross-correlate each of these bins with our
reference sample described in Section 2.1, consisting of BOSS and
eBOSS LRGs and quasars, in order to recover redshift distributions.
An example of some recovered distributions is presented in Fig. 6,
alongside the redshift distributions measured from the GAMA
survey (Baldry et al. 2018) in the same bins of magnitude and colour.
We choose an intermediate magnitude bin, 19 < i < 19.25, in order
that we have galaxies over a range of redshifts. In order to lessen
the effect of the r-band magnitude cut in GAMA, we only show the
bluest bins such that bins have r � 19.8, where incompleteness is
not significant. Clustering redshifts recovery is shown without any
bias correction, since in our tests, the correction is not significant in
these bins.

Recoveries of SDSS redshift distributions generally match the
corresponding GAMA colour bin well. Some small differences are
visible; however, this was also true for the simulated data in Fig. 4,
for which the mass function is recovered well. If we take only
bins below i < 19.25, we can use GAMA to compute the error
in the median redshift of each colour bin, zmed, GAMA − zmed, cz,
as in Section 4.1. After computing this for all bins, the average
error is δzmed = −0.01, indicating no significant offset with the
spectroscopic redshift distribution.
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Figure 3. The recovered redshift distributions of different bins of colour of SDSSLGalaxies data, with both no bias correction (cyan), and the bias correction
computed in Section 3.3 (black). The true distribution is given by the red line. We choose galaxies from a bright magnitude bin (18 < i < 18.25), and show
four colour bins covering the extent of the colour space.

Figure 4. The recovered redshift distributions of different bins of colour of SDSSLGalaxies data, with no bias correction (cyan), and the bias correction computed
in Section 3.3 (black). The true distribution is given by the red line. Here we choose galaxies from the faintest magnitude bin (20.875 < i < 21), containing
7×7 bins in r − i and g − r. A selection of bins is presented throughout the colour space (bins 2, 4, and 6 in both dimensions). When computing redshift
distributions, the cross-correlation is integrated over small scales (0.5 < rp < 5 Mpc).
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Figure 5. Testing the recovery of redshift distributions in LGalaxies. The
distribution of errors in the median redshift, zmed, true − zmed, cz, for all bins
of colour and magnitude, both with and without the bias correction.

4.3 Mass and luminosity functions of mock data

We now test our method of computing masses and luminosities,
described in Section 3.5, on mock data. As in Section 4.1, we bin
our mock photometric survey, SDSSLGalaxies, into bins of colour
and magnitude, recovering redshift distribution in each. We then
take each of these bins at a given redshift and allocate masses and
luminosities by looking in both LGalaxies (the same model, but with
different photometric noise applied), and smaller light cones from
SAGE (a different model, also with photometric noise applied).
This approach tests how much the choice of model affects the
estimated stellar masses and luminosities. After summing the mass
and luminosity distributions for all bins of colour and redshift, we
produce mass and luminosity functions between 17 < i < 21. Errors
are computed using the error in φ(z) from the clustering redshifts
method. The recovered luminosity and mass functions are shown in
Figs 7 and 8.

Fig. 7 displays the recovery of luminosity functions of our
SDSSLGalaxies survey, in different redshift bins. Since the luminosities
allocated to our galaxies are in the rest frame, the recovered
luminosity functions are by definition k-corrected. We use both
LGalaxies and SAGE to compute luminosities. The true luminosity
function is recovered well at all redshifts, independent of whether
LGalaxies or SAGE is used to compute an absolute magnitude.
This result makes sense, since an absolute magnitude depends only
on the redshift, cosmological model, and galaxy SED. Since we
have accurate recovered redshifts and i, r − i, and g − r, we have
effectively a rest-frame SED, so the computed magnitude from this
should not be particularly dependent on the SAM chosen.

Fig. 8 shows mass functions, again recovered at different redshifts
for the two different models. Using LGalaxies to recover masses
works very well (i.e. the same model to convert colours and redshifts
to masses), with the recovered mass functions almost exactly
matching the true values at all redshifts and masses. Examining the
SAGE results, at M� < 1011.25 M�, mass functions are recovered
well; however, above these masses, the number of high-mass
galaxies is underpredicted.

In order to understand this difference, we compare the distribution
of colours in both models as a function of mass in Fig. 9. In the
two lowest mass bins (M� = 109.25 and 1010.25 M�), both SAGE and
LGalaxies cover roughly the same colour space at both redshifts (z=
0.25 and 0.5). This result implies that colours of low-mass galaxies

(M� � 1011 M�) are fairly independent of the semi-analytic model
chosen, and explains why the mass function is recovered well at
lower masses. In the high-mass bin (M� = 1011.25 M�), colours are
visibly different in the two models. This behaviour implies that
high-mass galaxies likely have different formation processes in the
two models, and explains why mass functions are not recovered as
well.

Since we do not know exactly which model best describes the
real Universe at high masses, we investigate how well both can
reproduce the BOSS survey (containing large numbers of massive
galaxies). We apply the colour cuts of BOSS to both samples as
described in Section 2.3, and compare the redshift distributions of
these samples and the real BOSS survey in Fig. 10. It can be seen
that the LGalaxies catalogue reproduces both samples within the
BOSS survey: the LOWZ sample at 0 < z < 0.4, and CMASS
sample at 0.4 < z < 0.8. These are recovered with broadly the same
number density, and although there is a slight offset in the peak of
the sample, the overall shape of both the samples is recovered well.
SAGE manages to select some galaxies with a distribution similar
to CMASS; however, at low redshift most galaxies are missing, and
the overall shape is significantly different.

For this reason, we trust that the colours of galaxies are sig-
nificantly closer to those of the real Universe in LGalaxies. We
therefore opt to use LGalaxies when computing masses of real data
in Section 5.

4.4 The effect of a bias correction on stellar mass functions
from simulated data

We now test the importance of the bias correction on the recovered
mock mass functions. To do this, we compute mass functions
with and without the bias correction detailed in Section 3.3.1. We
then compute the ratio of these mass functions 	(M�)

	(M�)nc
− 1, where

	(M�)nc represents the mass function without bias correction. This
quantity shows the fractional change in mass function when using a
bias correction compared with no correction. We show this quantity
for different redshift bins in Fig. 11.

The effect of the bias correction is more pronounced at lower
masses M� < 1010.5 M�; at larger masses, the change is only of
the order of a few per cent. We will see later, in Section 5.3, that
this matches well with similar tests in the data, and that these
uncertainties are comparable to our statistical error.

5 MASS A ND LUMI NOSI TY FUNCTI ONS
OF SDSS DATA

We now apply the technique to real SDSS data to produce stellar
mass and luminosity functions. As described in Section 4.2, we
recover redshift distributions of SDSS galaxies, chosen according
to many bins of colour and magnitude between 17 < i < 21.
Note that we do not apply any bias correction for the unknown
sample since we will test the effect of this later. We compute stellar
mass and luminosity distributions for each bin using the colour–
mass/luminosity relations of LGalaxies following Section 4.3.

Since our reference sample was originally removed from the
SDSS sample, we compute stellar masses and luminosities for these
galaxies in the same way as for the unknown sample: i.e. for a given
colour-redshift bin of our reference sample, we compute the stellar
mass or luminosity distribution within the same bin of LGalaxies.
We use spectroscopic redshift distributions instead of clustering
redshifts for our reference sample. The agreement between the
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Mass functions from clustering redshifts 3067

Figure 6. The recovered redshift distributions of different bins of colour of real data both with (black points), and without (cyan points) a correction. The
spectroscopic redshift distribution of GAMA galaxies is indicated in the same colour bin (green line). We choose the magnitude bin (19 < i < 19.25), and only
show bins with small values of r − i in order to avoid the r < 19.8 magnitude cut in GAMA.

stellar estimates of the BOSS reference sample using our method
with other published estimates is shown in Appendix B.

After adding together the stellar mass and luminosity distribu-
tions from all colour–magnitude bins, we produce global stellar
mass and luminosity functions, shown in Figs 12 and 13.

5.1 Galaxy stellar mass functions from SDSS

The computed stellar mass functions are presented in Fig. 12. The
95 per cent completeness limits are shown in grey, computed as
regions where ‘LGalaxies’ becomes less than 95 per cent complete
due to the magnitude cuts. The bright magnitude cut (i > 17) is
significant in the two lowest redshift bins; however, the impact of
this becomes less significant at higher redshifts. The faint magnitude
cut becomes more significant at higher redshifts; however, we are
still mostly complete at the very high mass end (�1011) across the
range (0.4 < z < 0.8). Tabulated versions of these mass functions
are presented in Appendix C.

Mass functions for the lowest redshift bins match closely with
GAMA mass functions (z < 0.06) over the complete regions,
indicating no significant offsets between our masses and GAMA.
At the high-mass end (M� > 1011 M�), little evolution is evident

over the redshift range (0.4 < z < 0.8), and the mass function is
broadly consistent with GAMA (z < 0.06), implying that there is no
significant enhancement of the high-mass end of the mass function
after z = 0.8.

5.2 Luminosity functions from SDSS

Our computed luminosity functions are shown in Fig. 13. Magni-
tudes shown are absolute, dust-corrected magnitudes. Incomplete-
ness is again visible for bright galaxies at low redshifts (due to the
i > 17 cut); however, beyond redshift 0.4 we are complete for Mi

� −23.5, allowing us to compare the evolution of the brightest
galaxies across multiple bins.

There appears to be a significant amount of evolution over the
range (0.3 < z < 0.8), with significantly more luminous galaxies
present at higher redshifts. If these luminous galaxies are evolving
passively, with little ongoing star formation, we would expect their
stellar populations to decrease in brightness as young stars die
out. Wake et al. (2008) find similar evolution, and find that this
is inconsistent with purely passive evolution. Analysis of these and
similar luminosity functions as a test of passive evolution may be
of interest for future studies.
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Figure 7. The recovered i-band k-corrected luminosity function of SDSSLGalaxies data for a number of different redshift bins between 0.2 and 0.7. Absolute
magnitudes are recovered using colour–luminosity relations from both LGalaxies (red) and SAGE (blue) as described in Section 4.3, and the true luminosity
function is shown as the black dotted line. The fall-off in the luminosity functions towards faint magnitudes is due to the i < 21 cut in our sample.

Figure 8. The recovered stellar mass function of SDSSLGalaxies data for a number of different redshift bins between 0.2 and 0.7. Masses are recovered using
colour–mass relations from both LGalaxies (red) and SAGE (blue) as described in Section 4.3, and the true stellar mass function is shown as the black dotted
line. The fall-off in the mass functions towards lower masses is due to the i < 21 cut in our sample.

5.3 The effect of a bias correction on stellar mass functions

We test how dependent our results are on the choice of unknown
sample bias correction as in Section 4.4. Fig. 14 shows the fractional
change in the mass function after applying three different unknown
sample bias corrections (relative to no correction). We use the

correction computed from LGalaxies in Section 3.3.1, and two
different analytic bias laws outlined in Section 3.3.2.

Some differences are seen in how the different bias laws affect the
mass functions, particularly at lower masses, with the two analytic
laws predicting fewer low-mass galaxies at high redshifts. At higher
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Figure 9. The r − i and g − r colours of galaxies in LGalaxies (red) and SAGE (blue). This distribution is shown for two different redshifts, 0.25 and 0.5, and
for three bins of mass centred around 9.25, 10.25, and 11.25 log( M�).

Figure 10. The redshift distribution (number of galaxies deg−2 z−1) for
the BOSS survey (black dotted line) compared with redshift distributions of
LGalaxies (red) and SAGE (blue) with the BOSS colour cuts.

masses, however, both the SAM and analytic bias corrections only
change the mass function by a few per cent, which is normally
smaller than, or comparable to the size of our mass function errors.
In the analysis of future surveys, where clustering errors will be
significantly smaller, the choice of bias correction might play a
more significant role. For the data presented here, however, the
effect is minimal. When tabulating our mass functions, luminosity,
and completeness estimates in Tables C1, C2, and C3, we apply no
bias correction, but use the maximum offset in the mass function
from the three bias laws, an estimate of the systematic error due
to the unknown sample bias, which can be added to our errors in
quadrature.

Figure 11. The fractional difference in the mass function between using
an unknown sample bias correction from SAMs and no-correction, plotted
for masses where mass functions are more than 95 per cent complete as in
Section 5.1.

6 C OMPLETENESS

Having computed stellar mass functions out to z = 0.8, we can now
measure the stellar mass completeness of the BOSS spectroscopic
sample. We first take both the SDSS and BOSS masses computed
in Section 5.1. The completeness at a particular redshift is therefore
just the mass function of BOSS at that redshift divided by the SDSS
mass function. The resulting completeness is displayed in Fig. 15
for six bins of redshift between 0.2 < z < 0.8.

At low redshift z < 0.4, our SDSS mass functions are not
complete at higher masses due to the bright magnitude cut (i >

17). This effect is also true for low masses at higher redshifts due
to the faint (i < 21) cut. Completeness estimates of BOSS in these
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Figure 12. Recovered mass functions for real SDSS data in a number of different redshift bins (red). The green points in the redshift bin 0.2 < z < 0.3 are
the GAMA mass function (z < 0.06) (Baldry et al. 2012). For reference, the mass function computed using our method in the 0.3 < z < 0.4 bin is shown in
all bins as the black dashed line. Regions where our mass functions are more than 95 per cent incomplete (due to the photometric sample magnitude cut) are
shown in grey.

Figure 13. Recovered luminosity functions for real SDSS data in a number of different redshift bins (red). The luminosity function for (0.3 < z < 0.4) is
shown as the black dashed line in all redshift bins for reference. Regions where our mass functions are more than 95 per cent incomplete (due to the photometric
sample magnitude cut) are shown in grey.

regions may not be fully representative and is shown in grey in
Fig. 15. Between 0.4 < z < 0.8, however, we are not affected by
these cuts over the mass range of BOSS galaxies.

Between 0.2 < z < 0.7, the stellar mass completeness of
BOSS appears similar across all redshifts. Over this redshift range,
above M� � 1011.4 M�, BOSS is roughly 80 per cent complete,
with completeness falling to roughly zero at masses lower than

M� � 1011 M�. In the 0.6 < z < 0.7 bin, incompleteness appears at
slightly higher masses than in the lower redshift bins. This decrease
in completeness mirrors the decrease in number density of the
sample shown in Fig. 1, which peaks just above z = 0.5 and falls
off at higher redshifts. Looking in the highest redshift bin, BOSS
is around 30 per cent complete, only at the highest masses (M� �
1011.6).
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Figure 14. The fractional change in the mass function after applying three different unknown sample bias corrections, shown between 0.2 < z < 0.8. Our
correction from LGalaxies is shown in blue, and two analytic bias corrections are shown in magenta and green. For reference, the size of the error in the mass
function is shown as the black dashed line. Regions where mass functions are more than 95 per cent incomplete (due to the photometric sample magnitude cut)
are shown in grey.

Figure 15. Stellar mass completeness estimates for BOSS between 0.2 < z < 0.8, computed using the SDSS mass functions recovered in Section 5.1.
Completeness estimates are shown as the solid red line. The shaded red region represents the errors due to the clustering redshifts method, and the dotted red
line represents the same error, but with our systematic correction added in quadrature. Regions where the mass functions are more than 95 per cent incomplete
(due to the photometric sample magnitude cut) are the grey regions.

Stellar masses are dependent on the method used to obtain them.
When mass functions or completeness measurements are compared
between methods, any offsets should be taken into account. We
investigate the difference between our method and different BOSS
stellar mass estimates in Appendix B.

7 D I SCUSSI ON AND C ONCLUSI ONS

In this study, we have demonstrated that clustering redshifts can
be used to successfully recover redshift distributions of galaxies in
small bins of colour and magnitude of the SDSS by cross-correlating

MNRAS 486, 3059–3077 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/3/3059/5479250 by guest on 24 February 2021



3072 D. J. Bates et al.

with galaxies in the BOSS and eBOSS surveys. The importance of
the bias correction becomes significant for fainter galaxies, where
photometric errors are large, and galaxies are scattered between
colour bins.

We have shown that mass and luminosity functions of mock data
can be recovered using these recovered redshift distributions by
computing masses using simulations in small bins of colour and
redshift. We have also recovered mass functions of real data, and
find little evolution at high masses between 0.2 <z< 0.8, suggesting
that the most massive galaxies form most of their mass before this
time, and do not evolve significantly in mass afterwards. The lack of
evolution over these redshifts agrees well with other studies, for ex-
ample, Pérez-González et al. (2008), Moustakas et al. (2013), Leau-
thaud et al. (2016), and Guo et al. (2018). In our study, the effect of a
bias correction on the recovered mass functions is generally compa-
rable to, or smaller than, the error; however, this may not be the case
for future large-volume surveys. Our luminosity functions show
some evolution with redshift, possibly due to passive evolution.

We also produce targeting completeness measurements for BOSS
using these mass functions, suggesting that over the redshift range
0.2 < z < 0.7, BOSS is around 80 per cent complete at high masses
(M� > 1011.4 M�), and falling to almost zero below M� < 1011 M�.
In our highest redshift bin (0.7 < z < 0.8), BOSS is strongly affected
by incompleteness, and is only about 30 per cent complete at the
highest masses M� � 1011.6 M�. We also demonstrate that when
comparing mass functions or completeness estimates between meth-
ods, significant offsets can be present, which require correction.

Guo et al. (2018) incorporate a missing fraction (incompleteness)
component into their conditional stellar mass function model, and
analyse the clustering of BOSS galaxies to produce completeness
estimates for BOSS. They find that BOSS is around 80 per cent
complete above M� � 1011.3 M� between 0.2 < z < 0.6, with
completeness falling off significantly at higher redshifts. This
analysis is in good agreement with our results, showing very
similar evolution with redshift and mass, although some offsets
may be present due to using different mass estimates. Leauthaud
et al. (2016), discussed in Section 1, report similar completeness
estimates at most redshifts and masses, however predict close to
100 per cent completeness at the highest masses, which is not shown
in both Guo et al. (2018) and our estimates.

Ongoing and future large-volume spectroscopic surveys, for
example eBOSS, DESI, and EUCLID (Laureijs et al. 2011), will
produce a large number of spectra out to higher redshifts. This
will first allow for better clustering redshift estimates due to having
a larger reference sample, but also produce large spectroscopic
galaxy samples, for which incompleteness must be understood.
Combining these data with ongoing and future photometric surveys,
for example, the Dark Energy Camera Legacy Survey (DECaLS;
Dey et al. 2018) and the DES (DES Collaboration 2017), will allow
for redshift distributions to be computed out to higher redshifts, and
in much smaller bins of colour, due to these new surveys reaching
much deeper and having much smaller photometric error.

The methods used in this study, and similar techniques, will
therefore be important tools for the next generation of galaxy
surveys in order to utilize these large data bases, and to understand
the galaxy populations present.
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APPEN D IX A : TESTING THE FITTING SCALE

Here we show how the choice of fitting scale affects the recovered
φ(z). As in Section 4.1, we compute redshift distributions of mock

data in small bins of magnitude and colour. Here we show the
recovery of several colour bins within the faintest magnitude bin,
but rather than integrating the cross-correlation over small scales,
as in Fig. 4, we integrate over large scales (15 < rp < 50 Mpc). The
results are shown in Fig. A1

While redshift distributions are generally recovered successfully,
there is a significant amount of extra noise when compared with
the small-scale recovery (Fig. 4). We compute the average error in
φ(z) (i.e. the error due to errors in the correlation functions) for
both small scales and large scales. We average this error across all
colour bins and all redshifts; when recovering redshift distributions
over large scales, the error is on average 2.4x larger. When noise
becomes large, a significant error in normalization can appear, as
seen in, for example, the bin of lowest r − i and highest g − r of
Fig. A1. For this reason, we use only small-scale clustering when
applying to real data.

Figure A1. Same as in Fig. 4, except the cross-correlation is integrated over large scales (15 < rp < 50 Mpc), rather than smaller scales.
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APP ENDIX B: C OMPARING BOSS MASS
F U N C T I O N S

Here we compare, for BOSS galaxies, our mass functions to mass
functions computed using three other methods: (1) Chen et al.
(2012), hereon Ch12, where galaxy parameters are modelled based
on a library of model spectra for which principal components
have been identified; (2) Maraston et al. (2013), hereon Ma13,
where stellar population models are fitted to the observed ugriz
magnitudes, as well as the spectroscopic redshift of each galaxy;
(3) Comparat et al. (2017), hereon Co17, which for given spectra
finds the best-fitting combination of single-burst SSPs. All the three
methods use Maraston & Strömbäck (2011) SSPs and a Kroupa
et al. (2001) IMF. The four mass functions are presented in Fig. B1.

Although all methods generally agree on the shape of the mass
function, there is a clear offset between methods. In particular,
Ch12 predicts the highest masses. Both Ma13 and our method
predict broadly the same shape as Ch12 at all redshifts, but
this is offset towards slightly lower masses. This result may be
related to the fact that in our method and Ma13, masses are
computed from photometry rather than spectra. The shape of
the Co17 mass function appears slightly different. It predicts a
larger number of low-mass (M� < 1010 M�) galaxies; however,
the number of high-mass galaxies is similar to our method.
When comparing mass functions or completeness estimates across
methods, this offset between different methods must be taken into
account.

Figure B1. Mass functions of BOSS galaxies using four different methods, shown for six different bins of redshift. Our method described in Section 4.3 is
shown in black, along with C12 in red, M13 in blue, and C17 in cyan.
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APPEN D IX C : TABULATED RESULTS

We present tabulated versions of our stellar mass functions and i-
band luminosity functions in Tables C1 and C2, respectively, and

our completeness estimates in Table C3. In each table, we also
present the error in our mass functions due to the clustering redshifts
method, and the systematic error due to the bias correction, which
can be added together in quadrature.

Table C1. Tabulated stellar mass functions computed as in Section 5.1.

log (M�) (M�) 	 (10−3 Mpc−3) 	err 	sys log (M�) (M�) 	 (10−3 Mpc−3) 	err 	sys

0.2 < z < 0.3 0.3 < z < 0.4
9.375 8.270 0.143 0.362 ... ... ... ...
9.525 6.849 0.092 0.322 ... ... ... ...
9.675 5.866 0.068 0.411 ... ... ... ...
9.825 5.557 0.067 0.420 9.825 4.113 0.048 0.394
9.975 5.476 0.062 0.349 9.975 3.985 0.048 0.246
10.125 5.321 0.099 0.197 10.125 3.946 0.055 0.125
10.275 5.167 0.108 0.110 10.275 4.061 0.068 0.078
10.425 5.001 0.081 0.097 10.425 4.132 0.051 0.065
10.575 4.555 0.074 0.107 10.575 3.896 0.074 0.069
10.725 3.817 0.053 0.055 10.725 3.209 0.080 0.187
10.875 2.965 0.045 0.008 10.875 2.513 0.039 0.060
11.025 1.395 0.030 0.027 11.025 1.479 0.030 0.015
... ... ... ... 11.175 0.448 0.011 0.014
... ... ... ... 11.325 0.147 0.004 0.002
... ... ... ... 11.475 0.048 0.001 0.000

0.4 < z < 0.5 0.5 < z < 0.6
10.275 2.832 0.079 0.148 ... ... ... ...
10.425 3.391 0.035 0.136 ... ... ... ...
10.575 3.577 0.046 0.072 ... ... ... ...
10.725 3.162 0.056 0.042 10.725 2.768 0.045 0.064
10.875 2.221 0.046 0.018 10.875 2.038 0.038 0.067
11.025 1.059 0.021 0.033 11.025 0.929 0.018 0.009
11.175 0.344 0.011 0.012 11.175 0.336 0.011 0.003
11.325 0.118 0.004 0.002 11.325 0.123 0.006 0.000
11.475 0.039 0.002 0.001 11.475 0.038 0.001 0.000
11.625 0.0092 0.0007 0.0000 11.625 0.0082 0.0003 0.0000
11.775 0.0014 0.0001 0.0000 11.775 0.0018 0.0002 0.0000
11.925 0.000 25 0.000 08 0.000 00 11.925 0.000 21 0.000 05 0.000 00

0.6 < z < 0.7 0.7 < z < 0.8
11.025 0.924 0.020 0.068 ... ... ... ...
11.175 0.452 0.009 0.056 ... ... ... ...
11.325 0.184 0.005 0.033 11.325 0.178 0.015 0.018
11.475 0.048 0.002 0.019 11.475 0.073 0.007 0.008
11.625 0.0091 0.0004 0.008 11.625 0.013 0.002 0.001
11.775 0.0018 0.0001 0.0001 11.775 0.0033 0.0012 0.0002
11.925 0.000 28 0.000 05 0.000 01 11.925 0.000 18 0.000 42 0.000 07
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Table C2. Tabulated i-band luminosity functions computed as in Section 5.2.

Mi (mag) 	 (10−3 Mpc−3) 	err 	sys Mi (mag) 	 (10−3 Mpc−3) 	err 	sys

0.2 < z < 0.3 0.3 < z < 0.4
... ... ... ... −24.375 0.0037 0.0063 0.0000
... ... ... ... −24.125 0.015 0.014 0.001
... ... ... ... −23.875 0.053 0.013 0.004
... ... ... ... −23.625 0.131 0.013 0.010
... ... ... ... −23.375 0.296 0.015 0.026
−23.125 0.417 0.018 0.024 −23.125 0.577 0.018 0.041
−22.875 0.789 0.024 0.036 −22.875 0.907 0.024 0.0414
−22.625 1.213 0.025 0.038 −22.625 1.276 0.043 0.011
−22.375 1.612 0.029 0.030 −22.375 1.513 0.043 0.132
−22.125 1.972 0.037 0.067 −22.125 1.886 0.048 0.143
−21.875 2.435 0.046 0.109 −21.875 2.302 0.049 0.118
−21.625 2.905 0.071 0.122 −21.625 2.804 0.049 0.149
−21.375 3.221 0.078 0.084 −21.375 3.26 0.053 0.197
−21.125 3.445 0.073 0.044 −21.125 3.417 0.107 0.123
−20.875 3.778 0.077 0.080 ... ... ... ...
−20.625 4.216 0.071 0.173 ... ... ... ...
−20.375 4.968 0.121 0.253 ... ... ... ...

0.4 < z < 0.5 0.5 < z < 0.6
−25.125 0.000 0.007 0.000 −25.125 0.000 0.007 0.000
−24.875 0.000 0.005 0.000 −24.875 0.001 0.002 0.000
−24.625 0.002 0.009 0.000 −24.625 0.005 0.006 0.001
−24.375 0.010 0.009 0.001 −24.375 0.015 0.008 0.002
−24.125 0.025 0.008 0.002 −24.125 0.029 0.008 0.002
−23.875 0.064 0.011 0.007 −23.875 0.089 0.012 0.004
−23.625 0.147 0.014 0.015 −23.625 0.254 0.024 0.037
−23.375 0.383 0.018 0.024 −23.375 0.534 0.029 0.036
−23.125 0.735 0.035 0.024 −23.125 0.864 0.025 0.037
−22.875 1.053 0.040 0.023 −22.875 1.174 0.025 0.049
−22.625 1.306 0.031 0.064 −22.625 1.567 0.022 0.065
−22.375 1.677 0.030 0.081 −22.375 1.842 0.028 0.082
−22.125 2.132 0.029 0.133 .. .. ... ...
−21.875 2.490 0.045 0.160 ... ... ... ...
−21.625 2.437 0.078 0.144 ... ... ... ...

0.6 < z < 0.7 0.7 < z < 0.8
−25.125 0.000 0.007 0.000 −25.125 0.001 0.014 0.000
−24.875 0.001 0.001 0.000 −24.875 0.005 0.015 0.000
−24.625 0.004 0.013 0.000 −24.625 0.018 0.024 0.000
−24.375 0.011 0.009 0.001 −24.375 0.033 0.018 0.000
−24.125 0.044 0.014 0.001 −24.125 0.124 0.026 0.001
−23.875 0.148 0.014 0.007 −23.875 0.229 0.023 0.007
−23.625 0.341 0.036 0.016 −23.625 0.388 0.036 0.016
−23.375 0.579 0.028 0.025 ... ... ... ...
−23.125 0.949 0.025 0.054 ... ... ... ...
−22.875 1.243 0.050 0.085 ... ... ... ...
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Table C3. Tabulated stellar mass completeness for BOSS computed as in Section 6.

log (M�) (M�) Completeness σ comp σ sys log (M�) (M�) Completeness σ comp σ sys

0.2 < z < 0.3 0.3 < z < 0.4
10.575 0.0015 0.0001 0.0000 10.575 0.0009 0.0001 0.0000
10.725 0.0020 0.0001 0.0000 10.725 0.0027 0.0001 0.0001
10.875 0.0178 0.0003 0.0000 10.875 0.0180 0.0003 0.0002
11.025 0.1380 0.0028 0.0011 11.025 0.1104 0.0016 0.0004
... ... ... ... 11.175 0.3997 0.0085 0.0068
... ... ... ... 11.325 0.6478 0.0158 0.0035
... ... ... ... 11.475 0.7198 0.0183 0.0022

0.4 < z < 0.5 0.5 < z < 0.6
10.575 0.0031 0.0001 0.0001 ... ... ... ...
10.725 0.0124 0.0002 0.0001 10.725 0.0190 0.0004 0.0002
10.875 0.0438 0.0009 0.0001 10.875 0.0501 0.0010 0.0009
11.025 0.1473 0.0025 0.0028 11.025 0.1586 0.0024 0.0005
11.175 0.3893 0.0095 0.0078 11.175 0.4146 0.0095 0.0009
11.325 0.6904 0.0204 0.0044 11.325 0.7030 0.0162 0.0005
11.475 0.7469 0.0281 0.0025 11.475 0.7699 0.0111 0.0021
11.625 0.8322 0.0637 0.0025 11.625 0.8172 0.0251 0.0005
11.775 0.7719 0.0660 0.0013 11.775 0.7703 0.0484 0.0274
11.925 0.8036 0.1761 0.0012 11.925 0.5874 0.1085 0.000 66

0.6 < z < 0.7 0.7 < z < 0.8
11.025 0.0357 0.0007 0.0007 ... ... ... ...
11.175 0.0909 0.0018 0.0025 ... ... ... ...
11.325 0.2318 0.0061 0.0058 11.325 0.0270 0.0019 0.0016
11.475 0.4971 0.0137 0.0042 11.475 0.0576 0.0046 0.0038
11.625 0.6266 0.0212 0.0011 11.625 0.1451 0.0177 0.0054
11.775 0.7042 0.0499 0.0007 11.775 0.3818 0.0888 0.0050
11.925 0.6521 0.1070 0.0003 11.925 0.1583 0.0458 0.0005

This paper has been typeset from a TEX/LATEX file prepared by the author.
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