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ABSTRACT Software-Defined Networking is a promising paradigm for providing flexibility and pro-
grammability to computer networks. Our goal is to assess the performance of this paradigm applied to
Wireless Sensor Networks. Previous evaluations are not complete, since they study small networks, do not
explore crucial performance metrics, or solely examine light traffic conditions. For this, we execute simu-
lations and a testbed experiment. The testbed shows Software-Defined Networking successfully operates in
a real network. We study simulated networks up to 289 data-transmitting nodes, while assessing all the
main networks metrics: data delivery, delay, control overhead, and energy consumption. We investigate
important parameters for Software-Defined Wireless Sensor Networks, such as controller positioning, radio
duty cycling, number of data sinks, and use of source routed control messages. The results indicate that
Software-Defined Networking is feasible for Wireless Sensor Networks, presenting competitive data delivery
ratio while saving energy in comparison to RPL, the Routing Protocol for Low-power and lossy networks.

INDEX TERMS Software-defined networking, Internet of Things, wireless sensor networks, performance
analysis.

I. INTRODUCTION combining the SDN concept with sensor networks holds the

The main applications of Wireless Sensor Networks (WSN)
consist in gathering, processing and relaying information
from the environment to data collection points in the
network.

Simple applications require only a small number of WSN
nodes, while complex applications may require a more
intricate network infrastructure. The topology may reach hun-
dreds of nodes, demanding tools to: 1) aid network man-
agement, 2) avoid configuration errors, and 3) automate
infrastructure-sharing between different applications.

The Software-Defined Networking (SDN) paradigm has
been proven to give the aforementioned benefits in wired
networks, while reducing operational costs [1]. Therefore,
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potential to facilitate management and to enhance perfor-
mance, giving birth to Software-Defined Wireless Sensor
Networks (SDWSN).

The main challenges in designing and implementing
SDWSN are the lossy characteristic of low power networks,
and in-band transmission of control packets. The SDN-based
networks separate the control plane from the data plane,
centralizing routing decisions at the logically-centralized net-
work controller. While wired SDN networks are provided
with a low-loss dedicated control channel between the con-
troller and switches, it is unrealistic to make this assumption
in SDWSNs.

With these challenges in mind, we study the scalability lim-
its of SDWSN systems, considering a set of key parameters.
As surveyed in Section II, previous SDWSN performance
analysis papers are not thorough, as they assume light data
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traffic, do not explore large networks, or do not assess all the
metrics of interest.

With the aid of IT-SDN, our SDWSN implementation
(described in Section III), we show the feasibility of SDSWN
in networks up to 289 nodes in the light of the following
metrics: data packets delivery, delay of data packets, control
overhead, and energy consumption.

We examine the influence of using source routed control
packets, using radio duty cycling, including multiple data
sinks, altering controller position, and changing the network
topology. We present a thorough description of our methods
in Section IV.

The results are discussed in Section V. As a baseline,
we included performance results for the Routing Protocol for
Low power an lossy networks (RPL) [2]. Our key findings
are: 1) average node distance to controller greatly impacts
performance; 2) source-routed control packets are instrumen-
tal for scaling SDWSN networks; and 3) SDN flexibility
enables more energy-efficient data delivery than RPL.

We performed experiments in a testbed to show the
SDWSN feasibility in real-life systems. The outcome of the
experiments is discussed in Section VI. Results show IT-SDN
is able to operate in a real-life network with 10 nodes with a
delivery rate close to 100%. The testbed results are similar to
the simulation results.

Our contribution lies in answering the question whether
the challenges imposed by the SDN paradigm would allow
Software-Defined WSN to scale. In sum, we filled a gap
in SDWSN performance evaluation, focusing on scalability
under varying network conditions. Our conclusions are sum-
marized in Section VIL

Il. RELATED WORK

The concept of applying SDN capabilities to the Internet of
Things (IoT) and WSN has been widely discussed in the lit-
erature. The most praised benefits are the inherent SDN flex-
ibility, resource reuse, and resource usage efficiency [3]-[8].

From a protocol perspective, a few papers attempted
to use OpenFlow as a basis for the proposed SDWSN.
However, such protocol is not adequate to the constraints
imposed by WSN and IoT devices (such as limited frame
sizes, memory constraints, and lack of dedicated control
channel), and thus the papers do not include a real device
implementation [9]-[11].

Other authors, mindful of the inadequacy of OpenFlow
to constrained networks, proposed their own architectures.
Some of these works are merely exploratory, in the sense
that no actual performance results or implementation details
are provided [12]-[14]. Others offer a simplistic description
of the proposed protocol to such an extent that the repro-
ducibility is compromised. On the other hand, some authors
provided performance results, despite limitations on the sce-
narios descriptions, small number of nodes and/or lack of
important performance metrics [15]-[20].

There are other works that explain the proposed protocol
thoroughly, and are thus discussed in more detail.
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TinySDN [23] is an SDWSN framework that enables mul-
tiple controllers within the network. It is based on TinyOS
and it is hardware-independent. TinySDN performance was
evaluated by simulations on COOJA [30] considering seven
sensor nodes in a linear topology and varying the number
of controllers between one and two. TinySDN performance
was compared to a traditional WSN using the Collection Tree
Protocol (CTP) [31], considering the time to deliver the first
packet, the latency for a given node to send a message to the
sink, and the memory footprint of the test application.

TinySDN was also used to test the concept of hierar-
chical controllers, although with the same topology and
metrics [32]. In addition, TinySDN was discussed in the con-
text of standardization efforts and IETF protocol stack for
IoT [33].

SDWN [21] is another SDN architecture proposal to WSN.
The authors argue that duty-cycling, in-network data aggre-
gation and flexible definition of rules should be supported.
However, there is no implementation or performance evalu-
ation. SDN-WISE [22] follows the architecture proposed by
SDWN [21] with the goal of providing stateful flow tables
in the sensor nodes. The paper presents performance results
from a 6-node testbed. The metrics evaluated were round trip
time, byte efficiency and controller response time, varying the
payload size and the distance between sender and sink. The
number of nodes generating data packets is not specified, but,
from the methods explanation, it seems that there is just one.

Buratti et al. [24] compare Zigbee and 6LoWPAN/RPL
(distributed solutions) to SDWN (centralized solution) [21].
The research was conducted using Flextop [34], an experi-
mental platform for IEEE 802.15.4 networks, considering an
11-node and a 21-node network. The network configurations
evaluated were unicast and multicast for static, quasi-static
and dynamic environment conditions. For the unicast config-
uration, the coordinator sends a query to one specific node,
and for the multicast configuration the coordinator sends a
query to two nodes, therefore the network is tested only in
light traffic conditions. The metrics used for the performance
evaluation were packet loss rate, round-trip-time, overhead
and throughput. SDWN had the best performance in static and
quasi-static environments, but Zigbee and 6LoWPAN/RPL
outperformed it in dynamic environments.

SDN-WISE is also the basis for a MapReduce framework
for WSN [25]. In short, most nodes are mappers, which pro-
duce data from their sensors and forward it to reducers, which
are fewer nodes that aggregate the data according to a policy.
The authors use SDN to dynamically configure which node is
a mapper or reducer according to the resources available. The
experimental scenarios are diverse as the number of nodes
range from 10 to 100 nodes in grid, bus and ring topolo-
gies; also, the reducer allocation method is varied. However,
the methods are not clear as the following items are not
specified: 1) whether a testbed or simulator was used; 2) how
the communication cost was assessed; and 3) the application
data rate. In addition, important network metrics, such as
delivery rate and delay, are missing.
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TABLE 1. Performance evaluation conducted on related work.

Work Drawbacks | Metrics | Methods | Parameters | Compared to
[10], [211, [3], [41, [5], [6], [7], [11] Authors do not present performance evaluation results
[15], [16], [17], [18], [19] Insufficient details about the protocol specification
Flow-sensor [9] Use of Response time, Simulations: Toplogy size, density, | Traditional WSN
W Sens OpenFlow generated packets PROMELA/SPIN transmission power (not specified)
Limited Discovery time
Coral-SDN [20] scenarios di Y ’ Simulations: COOJA | Network topology -
. iscovery rate
and metrics
L S Payload,
Limited Round trip time, Simulations: pumber of hops
SDN-WISE [22] . byte efficiency, OMNeT++, ’ -
scenarios . R flow table entry TTL,
controller response time | physical testbed
number of nodes
Tiny-SDN [23] mee.d Delivery time, }atency ’ Simulations: COOJA | Number of controllers Trgdltlonal WSN
scenarios memory footprint using CTP
General evaluation Very light F:Erlf(elt tifss[irél:’ Physical testbed: Payload, Zigbee,
based on SDWN [24] traffic P y Flextop number of nodes 6LoWPAN
overhead, throughput
SDN based MapReduce Lack metrics, o B Number of nodes,
hard to Communication cost Not specified topology, -
framework [25] . .
reproduce sink location
Limited
. scenarios, Loss rate, delay Own testbed
Study based on SDN-WISE [26] lack of proper | convergence time Simulations: COOJA Network topology RPL
statistics
Is‘Jcl:rlll;i(f)s Loss rate, delay
©SDN ) ’ convergence time Simulations: COOJA | SDN timers RPL
lack of proper
. control overhead
statistics
IT-SDN [27] [28] Lack Lo Delivery rate, delay, Simulations: COOJA | Number of nodes -
comparisons control overhead
IT-SDN [29] L1m1te.d Delivery rate, delay, Simulations: COOJA Number of nodes' RPL
scenarios control overhead, energy Flow table capacity

Tsapardakis et al. [26] took SDN-WISE as the base
SDWSN implementation for their performance study. They
implemented their own controller and made several modifi-
cations to the original southbound protocol. They compared
results from a 7-node testbed with COOJA simulations, show-
ing that the simulations tend to yield better performance.
Their comparison between SDN and RPL reveals that using
SDN-WISE increases packet loss and delay, but it is able to
provide QoS on certain scenarios, considering both a fully
connected and a multihop network. Nonetheless, their results
lack proper statistical analysis, since there is no information
about the standard deviation and the number of times the
experiments were replicated.

uSDN [35] is an SDWSN architecture built on top
of a RPL network. The authors included mechanisms to
curb the extra control overhead added by SDN, including
source-routed control packets. Their performance evaluation
include important metrics, such as delay, delivery, and radio
duty cycle. However, the analysis is limited to one 30-node
network, the topology of which is not disclosed. The impact
of using source-routed control packets is not demonstrated
through experiments. Similar to Tsapardakis ef al. [26], stan-
dard deviation and information about experiment replication
are not present.

IT-SDN [27] is an open SDWSN tool inspired by
TinySDN [23]. Its SDWSN architecture contains three main
communication protocols: southbound, neighbor discovery
and controller discovery. Also, its architecture is independent
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of the operating system and provides source-routed control
packets as a way to reduce control overhead and flow table
occupancy. Margi et al. [28] evaluated IT-SDN (version 0.2)
through simulations using the COOIJA [30] simulator and
emulating the TelosB device. The metrics measured were
delivery rate, delay and control overhead, in three topology
sizes: 9 nodes, 16 nodes and 25 nodes, every node transmit-
ting one packet per minute. The three scenarios included one
controller node and one data sink. Protocol version 0.3 was
used to expand the results to networks up to 81 nodes [29].
Although the authors have included RPL as a performance
baseline, the range of parameters and largest network are still
limited.

To the best of our knowledge, surveys on SDWSN sys-
tems discuss protocol design and functionalities, but do not
discuss the topic of performance analysis [7], [8]. Therefore,
we summarize the information regarding performance eval-
uation collected from the literature in Table 1. It includes:
1) the main paper drawback in terms of performance analysis;
2) metrics; 3) methods; 4) parameters; and 4) which protocols
they have been compared to. We noticed that the literature
lacks two main characteristics in the scenarios used: larger
network sizes, and several nodes transmitting data within the
network simultaneously. It is also important to define a set of
metrics capable of capturing the overheads and benefits that
each type of approach may provide.

Therefore, our goal is to conduct and to present a com-
prehensive performance evaluation of the SDWSN approach,
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FIGURE 1. SDWSN architecture.

using IT-SDN as a representative, comparing it to RPL [2],
the IETF standard for routing in LLNs.

Ill. SDN ENABLED WSN ARCHITECTURE

This section contains our vision of an SDN-enabled WSN
Architecture. The architecture is composed of three layers:
the application layer, the control layer and the sensing layer,
as shown in Figure 1.

The sensing layer is composed of the data gathering
devices, i.e., it is the wireless sensor network itself. The
devices collaborate to collect data from the environment and
relay the data to one of the network sinks. Due to the separa-
tion of control plane and data plane, the packet-forwarding
behavior of the nodes is configured by the control layer.
The routing decisions are taken by the logically central-
ized controller, which installs flow rules into the nodes flow
tables.

At least one node of the WSN nodes must interface with
the network controller to disseminate the configuration infor-
mation. The control packets are transmitted in-band, that is,
there is no dedicated control channel. The data sink is not
necessarily the same node as the controller interface node,
nor the sink has to be unique. Each flow may be associated
with a set of sinks; the nearest sink is used to flush the sensed
data out of the WSN.

The WSN nodes communicate with the controller through
the southbound interface. This interface, implemented as a
network protocol, enables the controller to configure the
WSN nodes, and to retrieve their connectivity and resource
availability. The controller uses the information received
from the nodes to make decisions.

The control layer is the core decision maker of the SDWSN
architecture. This layer is composed of controller servers,
resourceful computers that calculate and install the flow table
rules in the WSN nodes. The criteria to calculate routes may
be as simple as the shortest paths in terms of hop count or
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it could use other information, such as link quality, energy
availability, and node capacity.

Large networks may benefit from the service of multiple
controllers. The overhead due to node-controller communi-
cation tends to increase as the network diameter increases,
since the packets are relayed through a larger number of
hops. Adding more controllers to the networks alleviates this
bottleneck [32]. Nonetheless, the control plane is logically
centralized and coordination between the multiple controllers
is necessary, which is the purpose of the east-west interface,
which is also useful to coordinate disjoint WSNs. Ideally,
the controllers should communicate through an infrastruc-
tured wired network instead of relying on the ad-hoc wireless
connections of the sensing layer.

While the purpose of the southbound interface is to estab-
lish the communication between the controller and the WSN,
and the purpose of the east-west interface specifies com-
munication between controllers, the goal of the northbound
interface is to provide an interface between the controller
and the network applications, as illustrated in Figure 1. Thus,
through the northbound interface, it is possible to modify the
controller decision-making policies.

The network applications lie in the Application Layer. The
applications are capable of changing the controller policies
and modifying the WSN behavior. An example of application
is related to security. Given that the proper telemetries are
collected, an application could detect malicious node behav-
ior and, as a consequence, drop packets and avoid routing
through that node. Another example is changing the sensing
application parameters, such as sampling rate, coverage area
and collection granularity. Bulk data processing and analytics
also belong to the realm of the application layer.

This concludes the overview of all three layers of the
SDN-enabled WSN architecture. Proper design and specifi-
cation of the layers and their interfaces are the key to enable
high quality and reliable sensing systems.
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Our objective is to analyze the performance of SDWSN
systems regarding the WSN nodes controlled by a single con-
troller, that is, the segment of the architecture delimited by the
dotted box in Figure 1. We detail the IT-SDN framework in
the next subsections, comprising southbound protocol, WSN
node, and controller behavior.

A. SDN ENABLED WSN WITH IT-SDN

This section reviews the main characteristics of IT-SDN
(Improved Tiny-SDN) [27], the SDN framework for the
WSNs evaluated herein. !

In general, an SDWSN framework can be described as a
set of protocols and the routing node behavior when receiving
packets. The set of protocols comprises the Southbound (SB)
protocol, a Neighbor Discovery (ND) protocol and a Con-
troller Discovery (CD) protocol. The Southbound is the core
protocol, since it defines the message formats for information
exchange between the controller and the sensor nodes.

Neighborhood information is crucial to enable precise
route calculation by the controller. Thus, the ND protocol
should be able to efficiently gather such information and keep
it up-to-date.

At boot, sensor nodes do not have any routing information,
and do not know how to reach the controller. Therefore,
the CD protocol is used to find a route to the controller.
CD and ND are often performed as a joint operation.

According to IT-SDN design, all sensor nodes are
SDN-enabled, and at least one of the nodes communicates
directly with the controller (e.g. through a serial connection).
Packets are routed according to a flow identification number
(flow id), defined by the application. By using the flow
id concept, the network may accommodate multiple sinks;
consequently, the controller is not required to be a data sink.

B. IT-SDN UNDERLYING PROTOCOLS
IT-SDN has its own SB protocol specification, composed of
six packet types, defined as follows:

Flow request: Packet used by the nodes to query the
controller about an unknown route.

Flow setup: The controller configures routes on the sensor
nodes by sending flow setup packets. These packets may be
transmitted in response to flow request packets or due to
route recalculations performed by the controller. In contrast to
other SDWSN proposals, there are three Flow setup versions:
regular, source routed and multiple.

The regular flow setup requires setting all intermediate
control routes towards the requesting node. For example,
consider a linear network with four nodes and a controller,
as illustrated in Figure 2. At the moment node 4 asks how
to deliver packets to flow £ (whose destination is node
2), the controller calculates the best path and installs the
appropriate rules on the nodes. Before installing the route
on node 4, the controller needs to install the intermediate

II-SDN  is  available for
usp.br/users/cbmargi/www/it-sdn/

download at  http://www.larc.
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FIGURE 3. Source-routed flow setup example. Adapted from [27].

control forwarding rules; in other words, the controller needs
to inform nodes 1, 2 and 3 how to reach node 4. As shown
in Figure 2, the controller needs to transmit 6 packets.

The source routed version contains the route to the request-
ing node in the packet header. Considering the same network
as in the former example, the controller installs the flow £
rule directly on nodes 4, 3 and 2, i.e., it transmits only three
packets (as depicted in Figure 3).

The purpose of the multiple flow setup packets is to update
many nodes flow table with a single packet. This type is not
used herein.

The controller must select which type of flow setup to use.
It could be pre-configured to always use the same type or
choose the best type according to the situation.

Flow id register: This packet tells the controller that the
sender is a destination candidate for the specified flow id.

Acknowledgement: This packet confirms the delivery of
the control packets. A packet is acknowledged based on the
sequence number.

Neighbor report: This packet contains node neighbor-
hood information, which is sent to the controller at the ND
protocol request.

Data packet: These are the application layer packets.

Neighbor discover / controller discovery: These packets
are used by the underlying ND/CD protocols.

There are many possibilities to ND and CD protocols [36].
Thus, IT-SDN specification is not coupled with any specific
protocol. Instead, interfaces are defined to enable implement-
ing and choosing between alternatives. The ND protocol is
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TABLE 2. Factor variation and default values.

FIGURE 4. Example of flow table.
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FIGURE 5. IT-SDN node behavior.

responsible for calculating the link metrics, for example, hop
count, RSSI, ETX, etc.

C. NODE BEHAVIOR

According to the SDN philosophy, router behavior is as
simple as checking flow tables and executing the actions it
contains (except source-routed packets). A flow table exam-
ple is provided in Figure 4. It is composed of the following
columns: matching criteria (address or flow id), action taken,
action parameter (typically the next hop), the number of times
the entry has been used and the age of entry (assessed as the
number of updates since the entry was installed).

Figure 5 summarizes the procedure for processing an
incoming packet. Source-routed packets bypass the flow table
check procedure and are forwarded according to the contents
of the source route header.

Non-source-routed packets are routed according to the
flow table contents. If there is a matching rule in the flow
table, the associated action is executed. The currently avail-
able actions are forward, drop, and receive.

The effect of executing a receive action depends on the
packet type. Receiving a flow setup packet updates the
flow table content, while data packets are forwarded to the
application layer. Acknowledgement packets are used to
provide reliable delivery of control packets, which is achieved
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Flow id .
. Action
A dfi)rz & SAEE Parameter S age Parameter Variation range Default value
Source routed flow setup Yes / No Yes
Flow id: 0 | forward 4 4 3 Radio duty cycle NullRDC / ContikiMAC | ContikiMAC
Flowid: 5 |receive R 10 2 Number of data sinks 1,2,3,4 2
Network topology grid, random grid
Address: | drop - 2 Controller positioning center, corner center
0x1234

TABLE 3. Data payload sizes x number of sinks.

Number of sinks Payload sizes (bytes)

1 12 (data sink changes after 30 min)
2 12, 96

3 12, 48, 96

4 12, 36, 72, 96

by periodic retransmissions. Therefore, receiving an ACK
causes the corresponding retransmission timer to be
disarmed.

In case of a flow table miss, the default procedure is to store
the packet and to send a flow request, since we aim at max-
imizing packet delivery. On the one hand, storing the packet
increases the delay to deliver the first packet, particularly if
the path to the controller has not been discovered yet. On the
other hand, discarding the packet decreases the overall packet
delivery rate.

D. CONTROLLER

The network behavior and performance depend on the central
controller, as it is the entity that calculates all the routes
according to a set of given policies. IT-SDN specifies how the
controller communicates with the nodes, but does not specify
the internal controller procedures and policies [27].

A few examples of policies that a controller implementa-
tion should contemplate are: 1) decide which type of flow
setup to use (and when to use it); 2) define if routes are
configured reactively or proactively; 3) choose which metrics
and route calculation algorithm to use (the controller may
query nodes for additional information, e.g. energy).

IV. EXPERIMENTAL METHOD FOR SIMULATIONS

Our objective is to provide a comprehensive performance
analysis of SDWSN systems considering the impact of the
following factors: use of source routed control packets, under-
lying radio duty cycle, number of data sinks, data payload
size, network topology, and controller positioning. Each fac-
tor is evaluated individually while keeping the others con-
stant. The variation range of each factor and their default
values are shown in Table 2 and in Table 3.

Source routing control packets is a technique to reduce
the overall number of control packets, and limit the required
flow table capacity. We assess the impact of this technique in
comparison to the traditional approach.

Power efficiency is an important metric in the context of
constrained networks. Therefore, Radio Duty Cycling (RDC)
is used to reduce the radio energy footprint. However, RDCs
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turn the radio off most of the time, potentially reducing the
maximum achievable throughput and increasing the delay.
We measure the extent of the performance degradation by
comparing an always-on IEEE 802.15.4 standard CSMA to
ContikiMAC, a widely employed RDC available in Con-
tiki OS.

We analyze grids and random topologies. Grids are reg-
ular and simple to reproduce and are commonly used to
benchmark WSNs. We assume the nodes radio transmis-
sion range is long enough to reach the adjacent nodes
in the grid (north/south and east/west neighbors). Random
topologies are closer to real-life deployments, but tend to
yield worse performance than regular grids, since some
nodes are more connected than others, forming bottlenecks.
We check this hypothesis by generating random networks
with NPART [37], using the default parameters for Berlin
networks.

The position of specialized nodes, such as controller and
sinks, plays a part in the network performance. In grid topolo-
gies, the controller is placed in the center or in the corner.
We simulated scenarios with 1, 2, 3, or 4 data sinks, posi-
tioned at the center of the upper row, lower row, leftmost
column, and rightmost column of the grid.> Each regular
node transmits data to the i-th sink, in which i = 1 +
nodeid mod (number of sinks) (nodes are numbered sequen-
tially by column). While controller and sinks positioning is
pre-determined in grid topologies, the positioning of these
nodes are random in random topologies.

For all the scenarios, we varied the network size according
to the following dimensions: 25, 36, 49, 64, 81, 100, 121,
144, 169, 196, 225, 256, and 289. All the nodes in the
network transmit data packets at constant intervals, with the
exception of data sinks and the controller. A random initial
delay is introduced to avoid artificial synchronization of data
transmission.

In the case of flow table misses, a flow request is issued
to the controller, and the unmatched packet is stored until a
suitable flow setup is received.

We used a periodic beaconing neighbor discovery protocol
based on the Collect protocol, which uses ETX as a link
quality indicator. The frequency of neighbor reports to the
controller is limited to 1 per minute, and only if the link
quality has changed substantially.> We consider a substantial
change as a relative difference of 200% or absolute difference
of 100. No Controller Discovery protocol is used, that is,
the controller actively configures how the nodes will reach
it from the gathered neighborhood information.

The controller calculates the shortest route based on the
Dijkstra algorithm. Incoming neighbor reports may change
the previously calculated best route. The new route is installed
in the network nodes only if its cost is at least 20%
smaller. Control packet reliability is provided by a peri-
odic retransmission mechanism. The controller maintains

Zin the case of even-sided grids, the leftmost or upper node is chosen
3the ETX ranges from 0 to 255
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TABLE 4. Simulation parameters.

Simulation parameters
25, 36, 49, 64, 81, 100, 121,
144, 169, 196, 225, 256, 289

Number of nodes

Simulation duration 3600 s
Node boot interval [0,1] s
Number of sinks 1,2

Data payload size 10 bytes
Data traffic start time [2, 3] min

ContikiMAC channel check rate 16 Hz

Energy Consumption parameters

Radio module transmission power | 0 dBm
Transmission current consumption | 21.70 mA
Receiving current consumption 22.00 mA
Processing current consumption 2.33 mA
Sleeping current consumption 0.18 mA
Operation voltage 3V

IT-SDN parameters
Software version v0.4.1

Controller retransmission timeout 60 s

ND protocol Collect-based

Link metric ETX

Neighbor report max frequency 1 packer per minute
CD protocol none

Route calculation algorithm Dijkstra

Route recalculation threshold 20%

RPL Parameters
MOP storing or P2P-RPL
RPL instances 1
4.096 s (contiki default)
8 (contiki default)
4 s (contiki default)
60 s (contiki default)
Objective Function Minimum rank with hysteresis
DODAG metric ETX

Minimum DIO interval
DIO interval doubling
DAO latency

DAO expiration

a copy of the nodes flow tables, with the addition of an
extra field indicating whether the corresponding flow setup
packet has been acknowledged. Unacknowledged flow con-
figurations are retransmitted after a fixed amount of time.
This mechanism is safe against route recalculations before
the former route has been acknowledged, and it ensures
all the flows rules are eventually correct in all the flow
tables.

We used COOJA [30], a tool able to emulate sky motes
firmware and to simulate the radio medium.

To provide a non-SDN routing protocol reference, we also
simulated equivalent scenarios with the Routing Protocol for
LLN (RPL). We chose RPL as it is an efficient standardized
protocol readily implemented in Contiki OS. A brief RPL
explanation is provided in Section I'V-B.
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Table 4 contains a summary of the simulation parameters.
All the graphs in Section V display 95% confidence intervals
from 10 simulation runs with randomized seeds.

A. PERFORMANCE METRICS

We assessed the following performance metrics: 1) delivery
rate of data packets, 2) delivery delay of data packets, 3) con-
trol overhead, and 4) energy consumption.

The overall delivery rate of data packets is defined as the
quotient between the total number of packets successfully
received by the sinks and the total number of packets trans-
mitted by the application layer of the other nodes.

Similarly, the overall delay is calculated as the average time
a data packet takes to reach the destination, i.e, the sum of
all individual delays divided by the total number of delivered
packets. Queuing and route solicitation delays are accounted
for, while undelivered packets are excluded from this metric.

Control overhead represents the extra load of work that the
routing protocol introduces in the network. We use the total
number of control packets to measure it.

The energy consumption metric represents the average
energy consumption of all nodes in the network over the
one-hour simulation. This metric considers four states: pro-
cessing, sleeping, transmitting and receiving. Each node cal-
culates its own energy consumption using Equation 1.

4
E=) LT,V (1)
j=1

where ; is the average current consumption in state j, 7; is
the time spent in state j, and V is the operation voltage for the
TelosB mote [38]. We used Energest [39], a tool embedded
in Contiki, to obtain T;.

We calculate the metrics by processing the nodes serial
output, i.e., messages print by the nodes. Outputting to serial
is slow and may degrade the measured protocol performance.
However, the number of messages should be similar among
the assessed protocols and parameters, achieving a fair com-
parison.

B. RPL PROTOCOL

RPL is the main outcome of IETF Routing Over Low power
and Lossy networks Working Group [2]. It is a routing pro-
tocol designed on top of 6LoWPAN stack (IPv6 adaptation
layer), aimed at providing efficient routing for the Internet of
Things.

In sum, RPL operates by building and maintaining a Des-
tination Oriented Directed Acyclic Graph (DODAG). Each
node calculates its rank according to an objective function
and periodically informs its neighbors by transmitting DIO
(DODAG Information Object) control messages. The trickle
algorithm controls DIO transmission interval length [40].

The rank of the DODAG root is set to MinHopRanklIn-
crease by default. Other nodes choose the neighbor with the
lowest rank as their preferred parent, and keep a list of parent
candidates to allow easy parent switching in case of failure.
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Examples of metrics used in the objective functions are hop
count, ETX and RSSI.

Once all nodes in the network compute their preferred
parent, the DODAG construction is complete and all the
nodes are able to reach the root (upward routes or multipoint-
to-point traffic pattern).

The downward routes (or point-to-multipoint traffic pat-
tern) are calculated apart from the DODAG construction.
DAO (DODAG Destination Advertisement Object) control
messages are transmitted to disseminate reachability infor-
mation. There are two modes of operation (MOP): storing
and non-storing. In the first MOP, routing nodes maintain a
routing table with the addresses of their children, whereas in
the latter MOP, the DODAG root stores all the reachability
information. The downward routes also enable point-to-point
communication between nodes.

We consider the DODAG root is always a data sink.
In scenarios with more than one sink, the other sinks are
not a DODAG root (i.e. there is only one RPL instance
and DODAG id); consequently, their reachability information
must be propagated through DAO packets.

V. SIMULATION RESULTS AND DISCUSSION

We present the simulation results in this section, displaying
a set of four graphs (one for each metric) for each of the
studied parameters, namely, (1) source-routed control packets
discussed in Section V-A, (2) radio duty cycling presented in
Section V-B, (3) number of data sinks addressed in Section V-
C, (4) network topologies compared in Section V-D, and (5)
controller positioning discussed in Section V-E.

A. SOURCE-ROUTED CONTROL PACKETS

It is clear that source-routed control packets are instrumental
to increase the scalability of SDWSN systems, as observed
in Figure 6a. Using this feature enables at least 90% data
yield in networks up to 225 nodes; otherwise, this level of
performance is only achieved in small networks (25 and
36 nodes). From networks of size 81 onwards, data delivery
is less than 30% without source routed control packets, while
we notice significant performance degradation only in large
networks with source-routed packets (as low as 70%).

The main reason behind the performance gap is the number
of nodes that join the SDN network and communicate with
the controller. Without source routed packets, the periph-
eral nodes are unable to establish a communication channel
with the controller, and are consequently unable to fill their
flow tables and deliver data packets from 64-node networks
onwards.

The source-routed control packets reduce the overall num-
ber of flow setup packets, since intermediate control routes do
not have to be set by the controller, as explained in Section I1I-
B. Another consequence is the prevention of flow table over-
flows, which further reduces the overall control overhead.
The combination of these two factors enables peripheral
nodes to communicate with the controller, increasing packet
delivery ratio.
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FIGURE 6. Results from the usage of source-routed control packets. Source-routed control packets are instrumental to SDWSN scalability.

The difference in the number of control packets can be
observed in Figure 6¢. Not using source-routed control pack-
ets increases the control overhead by at least 78 % in networks
larger than 49 nodes. A great increase in flow-configuration
packets is noticed. For example, in the 100-node network,
we observed the usage of source routed control packets
reduces the number of flow configuration packets by 7 times,
on average.

Delay results are displayed in Figure 6b. In the smallest
network sizes, not using source-routed packets increases the
delay by 14.9% and 33.9%, respectively. In larger networks,
the delay metric presents a large standard deviation, espe-
cially for the non source-routed version. This is caused by the
randomness in the time it takes for the nodes to communicate
with the controller and acquire the data flow rules. As a
consequence, the data packets that are buffered waiting for
a matching flow rule to be installed present an increased
delay.

It might seem counter-intuitive that using source-routed
packets results in a larger energy consumption per node,
as observed in Figure 6d. The non-source routed version
presents slightly higher (< 1%) energy consumption in small
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networks sizes. In the larger topologies, as mentioned before,
many nodes do not establish a communication channel with
the controller; therefore, these nodes only perform basic
neighbor discovery procedures. Consequently, these nodes
present low energy consumption, decreasing the average
network-wide energy consumption.

B. RADIO DUTY CYCLING

Using radio duty cycling does not influence the packet deliv-
ery metric (less than 2.5% difference, Figure 7a) for networks
up to 196 nodes. If the network is larger than that, the limita-
tion that ContikiMAC imposes on the maximum link data rate
hinders delivery of control packets, delaying timely network
configuration.

In particular, in our simulation setup, the data sinks adver-
tise their existence to the controller at the network startup.
The advertisement message (flow_id_register) takes longer to
be successfully delivered in large networks, as ContikiMAC
increases medium access contention. As a consequence,
the controller takes longer to be aware of the data sinks and
instructs the nodes to drop data packets until a valid path is
known.
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FIGURE 7. Impact of radio duty cycling. RDC is a necessary evil, as energy efficiency comes with performance degradation in large networks.

In this case, the area around the controller becomes a bot-
tleneck, hinting that strategically adding another controller to
the network would alleviate the burden on the link layer.

Figure 7b shows delay results. It is noticeable that Con-
tikiMAC slope gets steeper at 144-node network size. This is
an effect of increased channel contention and the prolonged
delay to first obtain data flow forwarding rules. We study
the 90th percentile to exclude the largest delays from the
dataset; the values are presented in Table 5 for large networks.
For all the cases shown in the table, ContikiMAC 90th per-
centile is lower than its average, indicating that some packets
present a very large delay. Considering the 90th percentile,
ContikiMAC is about 70% slower than CSMA, while the
average can be up to 5 times larger, indicating that using this
RDC increases delay regardless of the extended initial flow
configuration.

The number of transmitted control messages is larger
for ContikiMAC, as observed in Figure 7c. Although the
same flow configurations are performed in either scenario,
end-to-end SDN control messages require reliability; thus,
the extra control messages are due to retransmissions.
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TABLE 5. Delay average and 90th percentile (ms). The R column
represents the ratio between ContikiMAC and CSMA delays.

Average 90th percentile
n ContikiMAC | CSMA | R | ContikiMAC | CSMA | R
144 3173 1076 | 29 2 339 1 436 1.6
169 3 969 1444 | 2.7 2 448 1 484 1.6
196 5877 2159 | 2.7 2 796 1 665 1.7
225 7 746 2105 | 3.7 3 009 1731 1.7
256 10 268 2194 | 4.7 3 450 1918 1.8
289 13 854 2840 | 49 3479 1 992 1.7

The end-to-end acknowledgements are also prone to deliv-
ery failure, triggering unnecessary retransmissions. For
example, the 169-node scenario presents 72% delivery out
of 3365 transmitted end-to-end control packets (Contiki-
MAC), while 83% out of 1922 for CSMA. It is noteworthy
that at least 60% of the control packets are attributed to
discovery algorithms.

As expected, ContikiMAC is significantly more energy
efficient than pure CSMA/CA, expending roughly 24 times
less energy, as observed in Figure 7d.

VOLUME 7, 2019



R. C. A. Alves et al.: Cost of Software-Defining Things: A Scalability Study of Software-Defined Sensor Networks

IEEE Access

100 i
< 90
>
>
2 80 ]
E T
©
8 70
©
o SDN: 1 sink RPL: 1 sink \i
604 . —¥ SDN:2sinks -¥- RPL:2sinks |
SDN: 3 sinks RPL: 3 sinks
—#— SDN: 4 sinks RPL: 4 sinks
50 Lb—+——+— : T T
25 49 81 121 169 225 289
36 64 100 144 196 256
Number of nodes
(a) Delivery rate
SDN: 1 sink RPL: 1 sink
w0 30000+ —¥— SDN:2sinks  -¥-- RPL:2sinks
9 SDN: 3 sinks RPL: 3 sinks
[¥] . : i .
§ 25000 - —#— SDN: 4 sinks RPL: 4 sinks /n
S 20000 2
©
£
5 15000
>
o
B 10000
5
§ 5000
25 49 81 121 169 225 289
36 64 100 144 196 256

Number of nodes

(c) Control overhead

FIGURE 8. Multiple sinks results.

C. NUMBER OF DATA SINKS AND PACKET SIZES

In this section, we study the network behavior while varying
the number of sinks. Each sink receives a difference payload,
as described in Table 3.

The delivery rate (Figure 8a) did not show expressive
variations between RPL and SDN, considering networks up
to 169 nodes and at least 2 sinks (£2%). In larger networks,
the SDN approach is worse than RPL, especially with 3 or
4 sinks. Considering 1-sink scenarios, RPL performs better,
especially at intermediate networks sizes (up to 5% at 196-
node scenario). The cause of SDN performance loss as the
network increases is the increment of the average node dis-
tance to the controller, particularly the sink distance to the
controller. This factor delays the initial network configura-
tion, causing data packet losses.

We also analyzed the data delivery rate of packets transmit-
ted after 20 minutes of simulation. In this case, we observe
SDN is competitive with RPL even in large networks. In
fact, considering the 1-sink scenario, SDN delivered 15%,
14%, and 26% more than RPL for 225, 256, and 289-node
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topologies, respectively. This improvement is a consequence
of the flexibility provided by SDN, which is able to promptly
deal with the sink change.

A similar rationale can be applied to the delay metrics,
Figure 8b. The SDN stack buffers the data packets until
it receives a matching flow entry. Since the controller sets
routes reactively, the initial packet delay is high. In small
networks (up to 100 nodes), SDN is 132% slower, on average.
In larger networks, the delay can be increased by a factor of 7.
Alternatively, we can study the delay 90th percentile. In this
case, SDN is on average 29% slower than RPL in networks as
large as 169 nodes. In the other topologies, SDN outmatches
RPL by 22% on average, which is caused by SDN calculating
optimal routes in comparison to the tree-based routing from
RPL.

Control overhead is claimed as one the main drawbacks of
the SDN approach in the WSN domain [41]. However, our
experiments show that SDN presents lower control overhead
than RPL (Figure 8c). If there is more than one sink in the
network, SDN beats RPL by 15% on average, although the
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FIGURE 9. Influence of topology on network performance. Randomness tends to decrease network performance.

difference is more prominent in small networks (around 20%)
than in large networks (around 5%). In one-sink scenarios,
SDN produces 6% fewer control packets on average. SDN is
fairly stable after the initial convergence, performing mostly
neighbor discovery after the routes are configured. RPL,
on the other hand, constantly transmits DIO according to
the trickle timer algorithm. Whenever a node changes its
parent, it may trigger several DIO transmissions throughout
the DODAG. In addition, the DAO messages are sent to
keep track of downward routes, which is a separate process
from the DODAG construction, further increasing control
messages count.

As a consequence of lower control overhead, SDN also
presents lower energy consumption in most scenarios, show-
ing an increasing gap as the network gets larger, as observed
in Figure 8d. In 25 and 36-node networks, RPL consumes
less energy by 3% on average. At 49-node, SDN is slightly
more energy efficient (& 1.5%). From this point onwards,
the energy gap steadily increases up to 21%. In addition to
the number of control packets, we also highlight that most
of RPL control packets are link layer broadcasts, which are
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particularly inefficient in comparison to unicast packets when
using ContikiMAC as radio duty cycling protocol.

D. TOPOLOGY

In this section, we compare the performance of grid and
random topologies. We obtained similar results up to medium
sized networks (144 nodes), except for the 100-node random
network, in which the controller and sink nodes ended up
being badly positioned. In larger networks, randomness tends
to decrease the overall performance.

The packet delivery rate in random topology drops up to
28% in comparison to grid topologies (Figure 9a). A similar
trend was observed considering only the data packets trans-
mitted after 20 minutes of simulation.

The data delay is displayed in Figure 9b. The random topol-
ogy presents a characteristic that is a double-edged sword:
the average number of neighbors is larger than grid topolo-
gies. Conversely, this characteristic reduces the average path
length from source to destination, while increasing medium
access contention. As a consequence, it takes longer to set the
routes in all nodes. Yet, once the routes are set, the packets
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FIGURE 10. Effect of controller positioning. Average distance to controller is inversely correlated to network performance.

can be delivered more quickly. The delay 90th percentile is
at least 16% smaller for random topologies up to 100 nodes.
In larger topologies, the results were not consistent, as they
depend on the controller and sink nodes positioning.

Grid topologies tend to require less control traffic (18% on
average), as exhibited in Figure 9c. In some specific cases,
the random topology was more efficient, mostly due to the
good positioning of controller and sink, and low number of
bottleneck nodes.

We did not notice a clear correlation between topology and
energy consumption, as observed in Figure 9d. The differ-
ences remain in the range of £10%.

E. CONTROLLER POSITIONING
We chose the best and the worse locations, in terms of average
node distance to the controller, to study the effect of controller
positioning. Asymptotically, the average number of hops to
reach a controller positioned in the corner of a grid is doubled
in comparison to a controller positioned at the grid center.
The degradation in data delivery and data delay observed
in Figures 10a and 10b are due to the increased distance
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between nodes and controller. Consequently, it takes longer
to reach the controller and fill the flow table. The degradation
tends to grow with the networks size, although it is not
noticeable for small networks (up to 64 nodes).

For studying the network behavior after the initial tran-
sient, we calculated the data delivery rate solely considering
packets transmitted after 20 minutes of simulation. Indepen-
dently of the controller positioning, at least 95% data yield
was observed in networks up to 225 nodes. In larger topolo-
gies, we observed that the controller in the corner entails
less data delivery, as one of the sinks can take a long time
to successfully deliver the flow_id_register to the controller,
causing most of the losses.

Analogously, we calculated the 90th percentile of the
delay metric. In this case, there are no significant differences
regardless of the controller position. Since the sink nodes are
in the same position in either case, the packet delay is the
same once the routes are properly set.

Placing the controller in the corner increases the control
overhead metric, as seen in Figure 10c. The excess, which
varies from 18% to 49%, is mainly due to the increased
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retransmission of end-to-end control packets. This behavior
is a consequence of medium contention in the area around
the controller and larger average hop length to reach the
controller.

The differences in energy consumption are bounded by 6%
(Figure 10d). This metric is somewhat correlated to the num-
ber of control packets in the network. When the controller is
in the corner, the farthest nodes may not join the network,
decreasing the average energy consumption at the expense of
data packet losses. Other than that, we observe an increasing
trend (up to 4.5%) in energy consumption in the scenarios
with at least 95% data delivery (81 nodes). This is expected,
since the end-to-end control packets can reach the controller
in a smaller number of hops if the controller is at the center.

VI. TESTBED EVALUATION

We evaluated IT-SDN in a testbed with 10 nodes distributed
as shown in Figure 11. The testbed was deployed indoors in
our research group facilities. All the devices are TelosB [38],
programmed using Contiki OS 3.0 and IT-SDN 0.4.1.

Each sensor node was programmed to send temperature,
humidity, luminosity, and energy consumption data to the
sink every 60 seconds. The radio module power was set to
—7 dBm and each mote was located 0.8 meters apart from its
neighbors. During the experiments, the motes were connected
to a computer via USB to obtain the serial output and also for
energy supply.

The objective of running a testbed evaluation is to assess
IT-SDN performance in a network with real devices and
to compare these results with simulations results using the
same network topology. For this, we conducted experi-
ments using pure CSMA/CA (no RDC) and ContikiMAC.
Each scenario was replicated ten times and operated for
one hour. Also, we executed simulations with 10 nodes for
comparison purposes. The simulations were executed using
COOIJA and configured with 100% transmission (TX) and
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reception (RX) success ratio. Data packets delivery rate
and energy consumption are the metrics we used to com-
pare the network performance. The energy consumption
was calculated using the four-state energy consumption
model explained in Section IV-A and shown in Equation 1.
As explained in Section IV-A, we used Energest [39] to obtain
the time spent on each state.

Figure 12 shows the results for data packets delivery
rate. The testbed results show the scenario with Contiki-
MAC obtained 99.8% and the scenario with pure CSMA/CA
obtained 95.0% of data packets successfully delivered. The
simulation results show a data delivery rate of 99.9% and
100% when using ContikiMAC and pure CSMA/CA, respec-
tively. Comparing both scenarios (testbed and simulation)
using ContikiMAC, we notice they have similar data delivery
rate results. Conversely, there is a difference of 5% in the pure
CSMA/CA cases. This is a significant difference since the
network has a small data traffic (8 data packets per minute)
in a network with only 10 nodes. In turn, COOJA does not
consider external interference, such as Bluetooth and IEEE
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802.11 networks, and it was configured with a 100% TX/RX
success ratio.

Observing Figure 13, we notice that the energy consump-
tion when using pure CSMA/CA is 30 times higher than
the energy consumption when using ContikiMAC for both
simulation and testbed results. These results are similar to
the simulation results shown in Figure 7d, where the energy
consumption when using pure CSMA/CA is between 24 to
33 times higher than the energy consumption when using
ContikiMAC.

This experiment shows IT-SDN is able to operate in a real
network using TelosB motes and obtain delivery rate close
to 100%. We observe that, when using ContikiMAC in a
real-life network, the delivery rate is higher and 30 times less
energy is consumed in comparison to using pure CSMA/CA.
Furthermore, testbed and simulations results differ less when
using ContikiMAC than when using pure CSMA/CA.

VII. CONCLUSION

Software-Defined Networking holds the potential of pro-
viding flexibility to Wireless Sensor Networks, while it
was unclear whether the challenges imposed by the SDN
paradigm would allow Software-Defined WSN to scale.

To answer this question, we performed several experiments
in networks up to 289 nodes. We showed that: 1) controller
positioning greatly affects performance; 2) radio duty cycling
decreases PDR only in large networks; 3) grid topology yields
optimistic results; 4) source-routed control packets are instru-
mental for scaling SDWSN systems; and 5) SDN is flexible
to deal with multiple data sinks.

We showed that SDN is feasible for WSN, performing as
well as RPL, the de facto standard protocol for IoT. In fact,
SDN used less energy while being able to deliver the same
number of data packets.

The main drawback introduced by SDN is the initial net-
work setup, which can take longer than distributed algo-
rithms. We studied data delay percentiles to show that SDN
is competitive after the network is properly configured. It is
worth noticing that this initial network setup depicts the worst
case scenario, since this happens in the reactive approach.
Despite that, the testbed deployment showed IT-SDN is able
to achieve close to 100% delivery rate.
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