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Abstract 

In this paper we prove that if n is an even integer or a prime 
number, then the Galois group of of x" - xn-l - • • • - x - l is the 
symmetric group Sn. This polynomial family arises quite naturally 
from a kind of generalized Fibonnaci sequence. In order to prove our 
result for n = p prime, we had to prove that xP - xP-1 - • • • - x - l is 
irreducible in J.l'p[x], which seems to be a result of independent interest. 

Keywords: Galois groups, polynomials with group Sn, generalized Fi­
bonacci sequences, irreducibility criteria. 

Introduction 

In general it is difficult to construct extensions of the rational number field 
with a given Galois group G. Hilbert's irreducibility result provides the 
existence of Galois extensions _of IQ with the symmetric group in n symbols 
Sn as Galois group. I. Schur, [lj, considered the family of polynomials 

x2 x" 
fn(x) = 1 + X + -21 +·.·+I' . n. 

and proved that the Galois group G,. of fn is Sn if n "¢ 0 mod 4 and A,. (the 
alternating group) otherwise. 
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In a later paper Schur,[2), considered also the Laguerre and Hermite poly­

nomials 
Ln = e"' d"(xne-x) = ~ (n) (-x)", 

n! dxn ~ v v! 
"=O 

(m/2] 

Hm(x) = L (-1)" (;) 1 · 3 · 5 · · · (2µ - I)xm-2
µ. 

µ=O µ 

R. Coleman,(4), has given a different proof of some of Schur's result, using 

Newton polygons. H. Osada, [5], proved that the Galois group of x" - x -1 

is S,. for all n ~ 2. 
We have found another such a simple family while playing with a kind of 

generalized Fibonacci sequence (see section 1). In the study of the sucessive 

quotients of this sequence there appears the equation 

whose unique positive root is a Pisot number (when n = 2 this root is the 
golden number). We were able to prove that the Galois Group of the above 

equation is Sn for every even or prime ·n. We believe that the result is true 

for every value of n. In the last section we proved this for n up to 30. 

1 A remarkable family of polynomials 

It is well known that if we consider the Fibonacci sequence { an} and put 

b,. = an+if a,., then {bn} converges to the golden ratio 

I+J5 
<P2 = 

2 
= 1.6180339 .... 

The recurrence a,.H = an+l + an implies that 

bn+lbn = bn + l. 

Since {bn} is a convergent sequence, its limit </>'2 must be the positive root of 

x2 = X + 1. 

Consider now a slightly more general Fibonacci sequence {an}: 1, l, 1, 

3, 5, 9, ... , which obeys the recurrence an+3 = On+2 + an+1 + On- Putting as 
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above bn = an+if an we see that if {bn} is convergent, its limit <P3 must be a 
positive root of 

x 3 = x 2 + x + 1. 

It is not dificcult to see that the only positive root of the above polynomial 
18 

4>J = 1 + v 19 - 3./33 + V 19 + 3./33 = 1.83929 _ .. 
3 

and that the sequence {bn} is in fact convergent. 
In general we consider the k-Fibonacci sequence {an}: 

1, ... , 1, k, k + (k - 1), k + (k - 1) + (k - 2), ... 

which begins with k 1 's, and obeys the recurrence 

The corresponding bn = an+i/an, if convergent, must converge to a positive 
root of 

x" = xk-l + · · · + x + 1, 

and this is the family of polynomials we will consider in this paper: 

f ( ) n n-1 n-2 l nX =x -x -x -···-X-. 

If we multiply fn(x) by (x - 1) the family becomes 

(1) 

It is clear that except for x = l, 9n and fn have the same roots. We will see 
that each fn(x) has only one positive zero <Pn, which converges to 2. Here 
are some values of these roots: 

</>2 = 1.6180339 .. . <P4 = 1.92756 .. . 
</>J = 1.8392867 .. . </>r, = 1.96595 .. . 

Table l: Some values of the positive roots. 
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2 Algebraic properties of this family 

Since / 11 (1) < 0 and / 11 (2) = 911 (2) = 1, there is a real root 'Pn of fn(x) with 

1 < <f>n < 2. By Descarte's rule of signs this is the unique positive root 

of J11 (x). The same rule applied to 9n(x) shows that if n is even f 11 (x) has 

exactly one negative root -1 < r n < 0 (indeed, for n even f n (-1) = 1 and 

/ 11 (0) = -1); if n is odd <Pn is the ony real root of fn(x). 

Theorem 2.1 (Miles, [6], and Miller,[7]) Every root z -=f <Pn of J11(x) 

verifies: 
lzl < 1. 

Corollary 2.2 The polynomial f 11 (x) is an irreducible polynomial over Q. 

Proof: In fact, since J11 (x) does not have rational roots, if we can factor (in 

Z[x] by Gauss lemma) 
fn(x) = cp(x)t/J(x), 

it is clear that the degrees of r,p and tp are ~ 2 ( clearly we can suppose n ~ 4). 

Let <Pn be the unique positive root of / 11 (x) and suppooe that 1{;(</>n) = 0. Then 

by theorem 2.1 and the observations at the beginning of this section all the 

roots z of r,p(x) verify: lzl < I. But this is not possible since the constant 

term of cp is an integer. D 

Lemma 2.3 The discriminant Dn of g,.(x) is 

Dn = (-1/'t' )[(n + 1r+1 - 211+1n11
] 

Proof: Let a1,a2, ... ,a11+1 be the roots of g11 (x) in the complex field C. 

Since 

n+l 
(2) 

= (-l){nf) II g~(o;) 
i=l 

and g~(x) = x11
-

1 [(n + l)x - 2n] we can write 

n+l n+l 

IT g:(oi) = IT o;'-1[(n + l)oi - 2n] . 
i=l i=l 
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But since o-1 02 · • · O'n+l = ( -1 t+l we have 

Now we calculate: 

( 2n ) _ ( 2n )n+l 2( 2n )n 9n -- - -- - - - +l 
n+l n+l n+l 

= 
2n+1nn+l 

(n + 1)n+1 

Substituting (4) into (3) we have: 

n+l [ 2n+lnn+1 2n+lnn ] g g~(a;) = (-lt2+n(n + 1r+1 (n + l)n+i - (n + l)n + 1 

(4) 

= (-}r2+n [2n+lnn+l - 2n+lnn(n + 1) + (n + lt+I] (5) 

= (-1r2+n[(n + 1r+I - 2n+1nn] 

= [(n + l)n+l - 2n+1nn], 

because n2 + n is even for every n. This finishes the proof. D 

Lemma 2.4 The discriminant dn of fn(x) is 

Proof: The roots of 9n ( x) are 1, 0:2, .•• , On+1. Then 
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But since a 2 , ••• , a,.+ 1 are the roots of f n ( x) we simply have 

n+l 

II (1 - 01;) = fn(I) = -(n -1), 
k=2 

which gives the lemma. D 

Remark 2.5 In fact, R. Swan has proved, [8}, that the discriminant D of 
x" + axk +bis 

D = (-I)(;)bk-1 [n"1bn1-k1 + (-1r1+l(n -kr1-k1k"''a"l]d' 

where n > k > 0, d = (n,k) and n = n 1d, k = kid. 

Table 2 gives some initial values of Dn and dn: 

I n I 2 I 3 4 5 6 7 8 
D,. 5 -176 -5067 153344 5148425 -194049792 -8202514103 

dn 5 -44 -563 9584 205937 -5390272 -167398247 

Table 2: Some initial values of Dn and dn 

Lemma 2.6 The discriminant Dn of 9n(x) is never a perfect square. And 
so the discriminant dn off n is also never a perfect square 

Proof: Notice first that 

( n +2 1) _-- 0 mod 2 <==} n = 0,3 mod 4, 

and since (n+1t+1-2n+1n" < 0 for every n ~ 2, D,. < 0 for n = 0, 3 mod 4. 
Therefore, if n = 0, 3 mod 4, Dn < 0, and so Dn cannot be a square. For 
n = 1, 2 mod 4 we c,an write the discriminant Dn as 

Dn = 2"+1n" - (n + l)"+I. 

Suppose n = I mod 4. If also n = 0 mod 3 then 

Dn = -1 mod 3 
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and llO Dn cannot be a square. If n = 2 mod 3, 

and Dn cannot be a square. Let n = l mod 3. Then n = l + 12k and we 
can write Dn as 

It is enough to prove that Dn/ 22+12k is not a perfect square. For this 
consider the following cases 

( 1) k = l mod 7. Then, since {O, 1, 4, 2} are the only squares mod 7 
and 

Dn = 51+12k = 5 mod 7, 

(because 512 = 1 mod 7), Dn cannot be a perfect square. 
(2) k = 2 mod 7. Then 

Dn = 41+12k - (-1)2+12
k = 4-1 = 3 mod 7, 

because 412 = 1 mod 7, and so Dn cannot be a perfect square. 
(3) k = 3 mod 7. Then 

D,. = 2i+12k - (5)2+12,. = 2 - 4 = 5 mod 7, 

because 52 = 4 mod 7 and 212 = 1 mod 7. So Dn cannot be a perfect 
square. 

(4) k = 4 mod 7. Then 

Dn = -(4)2+12
k = -2 mod 7, 

and so Dn cannot be a perfect square. 
(5) k = 5 mod 7. Then 

Dn = 51+12
k - (3)2+12k = 5 - 2 = 3 mod 7, 

and so Dn cannot be a perfect square. 
(5) k = 6 mod 7. Then 

Dn = 31+12k - (2)2+12k = 3 - 4 = 6 mod 7, 

and so Dn cannot be a perfect square. 
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(6) Let k = 0 mod 7 then k = 7m and 

d 
_ 

2
2+m(l + 12k)1+12.1: - (1 + 6k)2+12k 

n - (12k) 2 

and so it is enough to prove that 

(1 + 12k )1+12k - (1 + 6k )2+12k 

(3k)2 

is not a perect square. In terms of the parameter m we must prove that 

(1 + 12. 7. m)l+l2•7•m - (1 + 6. 7. m)2+12•7•m 

9 • 49 • m 2 

is not a perfect square. In fact we will see that for every value of m we have 

(1 + 12 · 7 · m)1+12·7•m - (1 + 6 · 7 · m)2+12-7-m _ 
. 

9
. 
49 

. m 2 = 39 mod 43, (6) 

and since 39 is not a square mod 43 we are done. Since we are working the 

finite field F43 there is only a finite number of possible values for the left 
hand side of (6). An easy, but tedious, case by case computation yields (6). 

Now suppose n = 2 mod 4. Then n = 2 + 4k and we will prove that 

23+4.l:(2 + 4k)2Hk - (3 + 4k)3+4k -
(l + 4k)2 = 2 mod 3 

for every value of k. This implies that dn (and hence D,.) is not a perfect 
square. Again we work in a finite field F3 and there is only a finite number 
of possible values. A simple computation implies the result. Since 

D,. = (n - 1)2dn, 

and Dn is never a perfect square, it is clear that dn cannot be a perfect 
square. This finishes the proof of the lemma. □ 

It is also interesting to note (see table 3) that the factorization of ldnl is 
rather peculiar; it seems that for n even dn is a square free integer, and for n 
odd d,. is 2n-l times a square free integer. From this and from theorem 6 of 
[5) it would follow that the Galois group off n is Sn for n even. But we were 
not able to prove that d,. behaves this way and we had to follow a different 
path. 
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n I 
2 5 
3 22 . 11 
4 563 
5 24 • 599 
6 205937 
7 26 • 84223 
8 1319 · 126913 
9 2s · 17 · 487 · 2851 
10 7 · 35616734267 
11 210 . 19 · 131 · 4550179 
12 10607 · 211723 · 267679 
13 211

. 6317. 1328851967 
14 112589 · 219361 · 87132013 
15 21

'
1 

• 241 · 2347 · 2879 · 5484307 
16 131 · 1103237 · 74329019184449 
17 216 

• 83 · 2376011291 · 655308793 
18 12479 · 3119618081 · 1833387643403 
19 218 • 1439 • 4097227 • 4142481973103 
20 167 · 1840593902677 · 1981694167788721 

Table 3: Factorization of ldnl• 

Theorem 2. 7 Let G,. be the Galois group of f,.(x) over Q. Then Gn con­
tains a transposition. 

Proof: We begin by defining a new polynomial h,.(x): 

hn(x) = (n + l)g,.(x) - xg~(x) = -2x" + (n + l). 

Denoting by g,. and g~ the reductions of 9n and g~ module a prime p, we 
conclude that if g,. and ifn have a common root (in an algebraic closure of 
1Fp), then the common roots of g,. and ifn are then-th roots of 

n+I 
2 . 

Let p > 2 be a prime that divides the disciminant d,. - it is easy to see that 
there are always such primes - (and so p also divides D,.) . Let us suppose 
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also that pis a prime that ramifies. Consider fn(x) E Fp[x] the reduction of 

fn( x ). The discriminant of fn is zero in lFP and so fn has a multiple root a:. 
Let us prove that there is only one multiple root. By the above the multiple 

root a verifies: 
- n n + I 
a= ~ • 

and from g,.(o:) = 0 it comes 

( + 1) -n 2- - -n-1 _ 0 n a - na - , 

and so ( we can clearly suppose a f- 0, because a: is a root of 9n ( x) and 

9n(O) = i) 
(- + 1-)-n+l 2- - -n n a = na 

from this we conclude some important things: 

2n 
a:=---, 

,:· - n+ l 

and so a: E lFp, n ¥- 0 mod p arid a is the unique multiple root of 9n ( and 

so, of fn)• 
Now we show that a is a double root of 9n• 

and so, since ii f- 0, hn has only simple roots. Hence, 9n cannot have triple 

roots. Since 9n(x) = (x - l)fn(x), fn(l) = -(n -1) and (n -1) ¢. 0 mod p, 

we conclude that fn(x) cannot have a triple root. 
We concluded that in Fp[x] we must have the factorization: 

(7) 

with 
f1(x) = (x - o:i\ 

and /2, ... , /,,,., manic irreducjble. 
By Hensel's lemma, ([3], Theorem 5.3, pg. 192) considering fn(x) and 

9n(x) as polynomials in Zp[x], where Zp is the ring of J>-adic integers, we can 

lift the factorization (7) to Qp, (in fact to Zp(x]): 

9n(x) =Ji·,••· fm, 
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with f1(x) = x2+ax+b, (necessarily irreducible), f2 , .•. , fm monic irreducible 
with the same respective degrees as / 2, ••• , f m 

Let us show that the extensions over Q,, generated by the roots of the Ji 
(i 2: 2) are unramified. Fix Ji and let 0 be one root of Ji. Then we can put 

where e is the ramification index and f is the residue degree: 

But then, since e 2: 1 and 

we must have e = 1. If 0' is another root of f; then we have, by the same 
arguments that the ramification index e' = 1. But this imples that the 
ramification index e" of Qp(O, 0') over Qp(O) is also 1, because it is obtained 
from the cornpositum of two unramified extensions: 

This proves that the extension Ep generated over Qp by all the roots of 
all the f; ( i 2: 2) is unramified. By hypothesis, p ramifies in the splitting 
field off n( x) over Qp which is Ep. If ct' is a root of f1 ( x) = x2 +ax+ bin Ep 
then [Q,,(a') : QP] = 2 and so, the relation [Qp(o') : QP] = ef and the fact 
that e 2: 2 implies e = 2. 

Let En/Q be the splitting field of fn(x) over Q and choose a prime~ 
in En over p. Then D'.J.l = Gal((En)'.J.1/Qp) is the decomposition group of~­
If On,'.J.l is the valuation ring of the completion (En)'.J.l and P is its maximal 
ideal we have the inertia subgroup 

/'.J.l = {u E D<p : a(x) = x mod P}, 
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and the inertia subfield T '-P· By local Hilbert theory T '-P is the maximal 
unramified extension of QP contained in ( En)'-13 and 

Since the roots off; for i ~ 2 generate unramified extensions, the subgroup 
J'-P fixes all these roots. But if /3 and o.' are roots of the quadratic polynomial 
fi(x) over Q, then there is an element Tin J'-P such that 

r(/3) = cl, r(o.') = {3, 

and T fixes all other roots. Then D'-P C Gal(E,,./Q) contains a transposition. 
This finishes the proof of the theorem. □ 

Remark 2.8 In fact we have proved that for a ramified p > 2 and p a prime 
ideal of the splitting field E off,,. ( x) over Q, p IP, the inertia group of p over 
Q is generated by a transposition. See also Lemma 1 of {5]. This means that 
Jor every prime p > 2 the inertia group of '1 dividind p is trivial or generated 
by a transposition. If n is even, d,,. is clearly odd, and so we have proved 
that for every prime p the inertia group of PIP is trivial or generated by a 
transposition. 

Theorem 2.9 Let n be an even integer. The Galois group of fn(x) is the 
symmetric group on n symbols Sn and if E/Q is the splitting field of fn(x) 
over Q, the extension E /Q( ,Jd;.) is unramified. 

Proof: Corollary 2.2 implies that Gal(/n) is a transitive subgroup of Sn. But 
lemma 5 of Osada's article [5] says that a transitive subgroup of Sn generated 
by transpositions must be all Sn. By theorem 2.7 and remark 2.8 above, this 
is the case for Gal(!,,.), when n is even. For the last part it is enough to say 
that the intersection of the alternating group An with any inertia group must 
be trivial. This proves the theorem. □ 

Remark 2.10 For the prime p = 2 in the case of odd n, although theorem 
2. 7 continues to hold, (and even it is still true that for every prime p > 
2 inertia groups above p are trivial or generated by a transposition), the 
polynomial hn(x) is identically zero and so we cannot deduce the behatiiour 
of the factorization in lF2 of fn(x). 
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3 The case of prime degree 

Let p be a prime number and ]p(x) = xP - xP-l - · • • - x - 1 the reduction 
mod p of fp(x). We will prove that fp(x) is irreducible in lFµ[x). In order to 
do this we prove first a kind of reciprocity: 

Lemma 3.1 If pis a prime number we have the reciprocity formula in lFp[x] 

- 1 -
xPfp(2 - -) = fp(x). 

X 

Proof: We can write ]p(x) = xP - (x - l)p-t because in 1Fp[x] 

- xP - 1 ( x - l )P 1 fp(x) = xP ~ -- = xP - --- = xP - (x - l)P-
x -1 x-1 

and so 

Since g11 (x) = (x - l)fp(x) = xP+l - 2xP + 1 we have 

2xP - 1 = xP+l - (x - l)fp(x) 

and so 

This finishes the proof of the lemma. D 

(8) 

(9) 

Lemma 3.2 In the quotient ring R = lF,,(x]/(fp(x)) we have that e = x, 
where 

~ = -xp-l + xP-2 + · · · + x + 3. 

Besides, x is invertible in R and ~ = 2 - 1 / x. (We are writing simply x for 
its class in R). 
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Proof: Since in R we have zP+1 -2xP + 1 = 0 (because gp(x) = (x - I)fp(x) 
and x =, 1) we can write 

and this proves that x is invertible and that 

-1 - = xP - 2x1>-1. 
X 

Besides, from x1>+ 1 - 2x" + l = 0 it follows that 

1 
x-2+- =0, 

xP 

that is: 

Now, by (10) we write 

2-- =2- ~ =2+ ----- = ( 
1) -l+l xP-2xP-1 +1 
x (1-x) 1-x 

-xp-l + xP + 1 - xP-l -x"-1(1 - x) + l - z1>- 1 

=2+ -------- =2+ - - ~--'-----
1-x 1-x 

1 -xp-l 
= -xp-l + --- + 2 = -xp-l + xP-2 + · · · + x + l + 2, 

1-x 
and this proves tha lemma. D 

(10) 

Theorem 3.3 The polynomial fp(x) = zP - zP-l - • • • - x - l is irreducible 
in Fp[x] for every prime number p. 

Proof: It is easy to see that Jp(x) is irreducible in Fp[x) if and only if 

(1) (Jp(x),xP - x) = 1, 
(2) /p(x)l(xP" - x). 

To prove the first condition is equivalent to prove that Jp(x) has no root 
in Fp. To prove the second condition it is enough to prove that each root of 
JP is a root of xP" - x. Now, we have already noticed that 
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and so, since, 

and since yP-l = 1 for every y E r; we have, form-/: 1, 

But Jp(l) = 1 and so we are done. This proves the first claim. For the 
second: let us suppose that in IFp[x] we have a factorization 

where each fi(x) is irreducible with degree nj, Let 

be the set of roots of J; ( x) in an algebraic closure of fp ( notice that o{' = 
Oj), By lemma 3.1 the map at-+ 2 - 1/a gives a bijection of the set of all 
roots of JP( x) onto itself, and so the set 

1 l I 
{2 - -, 2 - _p, . .. , 2 - ~ } 

Oj <r; ~ , , 
is also a subset of the roots of fp(x ). But this set is clearly an orbit under 
the action of the Frobenius automorphism u t-+ uP, and this means that it 
must be some Ak. But lemma 3.2 says that 

and so Ak = A;, and this means that a >-+ 2 - 1/a gives a permutation of 
A1. Let 

¢(/3) = 2 - 1/ /3. 
It is easy to see that cp is a cyclic permutation (an ni-cycle). A simple 
induction argument shows that 

k k - (k - 1),8 
ti> (/3) ~ ( k - I) - k/3 ' 
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where rJ,-,. = ¢ o ¢ o • • • o ¢ ( the composition of rJ, with itself k times). Then 

qJn'(Oj) = Oj 

that is: 
n; - (n; + l)o; -"---'---'----'- = o;, 
(n; - 1) - n,o:; 

and hence 

If n; '¥= 0 mod p we have 

o~ - 2o; + 1 = 0, 

But this is impossible because dividing this last expression by o; we obtain 

1 
Oj-2+- = 0, 

and so 

Oj 

1 
Oj = 2- -. 

Oj 

But this in turn impli(",a ( a.gain by lemma 3.2) 

( 
1 )Jl o~ = 2- - = a; 

J Oj 

which would gives us that a; E F,,. This is impossible by the first claim. 
This finishes the proof of the theorem. D 

We are now ready to prove the main theorem of this section: 

Theorem 3.4 Let p be a prime number. Then de Galois group of f,,(x) is 
the symmetric group S,, in p symbols. 

Proof: It is well known that a transitive subgroup of Sp containing a trans­
position and a p-cycle is Sp, From our previous theorem 2.1 and theorem 2. 7 
it is enough to prove that Gal(!,,) has a p-cycle. Since 

D,, = (-1}{"t
1
)[(p + l)P+l - 2P+lp"] 

it is clear that p docs not divide DP (and a fortiori does not divided,,). This 
means that p does not ramify. By theorem 3.3 fp(x) is irreducible in IF,,[x]. 
From these two facts (and Hensel's lemma) it folows that considering JP over 
the p-adic field QP we have that its Galois group is cyclic and contains a 
p-cyde. This proves the theorem. D 
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4 Final remarks 

It is well known that a transitive permutation subgroup of Sn that contains 
a transposition and an n - 1 cycle must be Sn. In the table bellow the first 
line gives the degree of fn and the second line gives the smallest prime p such 
that the the decomposition off n in IFP has exactly one factor of degree 1 and 
other irreducible factor of degree n - l. By Dedekind's theorem there is a 
(n - 1)-cycle in the Galois group of fn over Q. 

n 1 3 1 4 1 s 1 6 1 1 1 s 9 110 111 112 113 114 1s 116 1 11 1 

p 1 1 1 3 119 111 1 3 113 1 1 61 1 11 1 29 1 19 119 199 1 s9 1161 1 

n 11s 119 1 20 1 21 1 22 23 1 24 1 2s 1 26 1 21 28 1 29 1 30 1 
p 1 1 1 3 1 23 1 1 1 349 19 1 641 1149 1 83 1 641 131 1121 1191 1 

Table 4: Degree of f n and smallest prime p giving an n - 1 cycle. 

These calculations suggest that it is likely that the Galois group of fn(x) 
is Sn for every n. 
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