





In a later paper Schur,[2], considered also the Laguerre and Hermite poly-

nomials ( ) - (—a)
e d*(z"e™” n\ (—z)”
o = al dem Z (u) v

v=0

[m/2] -
Hn(z)= Y (-1)* (2u)1 c3 5 (2 — D)a™

u=0

R. Coleman,[4], has given a different proof of some of Schur’s result, using
Newton polygons. H. Osada, [5], proved that the Galois group of 2" —z — 1
is S, for all n > 2.

We have found another such a simple family while playing with a kind of
generalized Fibonacci sequence (see section 1). In the study of the sucessive
quotients of this sequence there appears the equation

f,,(:c):x"-—a:"_l—---—x—lzﬂ,

whose unique positive root is a Pisot number (when n = 2 this root is the
golden number). We were able to prove that the Galois Group of the above

equation is S, for every even or prime n. We believe that the result is true
for every value of n. In the last section we proved this for n up to 30.

1 A remarkable family of polynomials

It is well known that if we consider the Fibonacci sequence {an} and put
bn = Gny1/an, then {b,} converges to the golden ratio

1+5
2

2 = = 1.6180339....
The recurrence @42 = an41 + a, implies that
Brpibn = bn + 1.
Since {bs} is a convergent sequence, its limit ¢ must be the positive root of

2=z+1.

Consider now a slightly more general Fibonacci sequence {a.}: 1, 1, 1,
3,5,9, ..., which obeys the recurrence an43 = an42 + @n41 + Gn. Putting as
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above b, = any1/a, we see that if {b,} is convergent, its limit ¢3 must be a
positive root of
=z 4+z+1.

It is not dificcult to see that the only positive root of the above polynomial

1S
1+ v/19-3v33 4+ V194333
- 3

b3 =1.83929...

and that the sequence {b,} is in fact convergent.
In general we consider the k-Fibonacci sequence {a.}:

Lo Lkk+(k=1)k+(k-1)+(k-2),...
which begins with k 1’s, and obeys the recurrence

Anik = Ontk—1 + Gnpk—2 + -+ an.

The corresponding b, = an41/an, if convergent, must converge to a positive
root of
x":xk‘1+---+x+1,

and this is the family of polynomials we will consider in this paper:

fE@)=a"—ag" ' -zt ... 1.

If we multiply f.(z) by (z — 1) the family becomes
gn(z) = 2™ — 22" 4+ 1. 0y

It is clear that except for ¢ = 1, g, and f,, have the same roots. We will see
that each f,(z) has only one positive zero ¢,, which converges to 2. Here
are some values of these roots:

¢, = 1.6180339... ¢4 = 1.92756...
&3 = 1.8392867... ¢s = 1.96595...

Table 1: Some values of the positive roots.



2 Algebraic properties of this family

Since fa(1) < 0 and fa(2) = ga(2) = 1, there is a real root ¢, of fu(z) with
1 < ¢» < 2. By Descarte’s rule of signs this is the unique positive root
of fu(z). The same rule applied to g,(z) shows that if n is even fa(z) has
exactly one negative root —1 < r, < 0 (indeed, for n even fa(-1)=1and
fa(0) = —1); if n is odd @y is the ony real root of fu(2).

Theorem 2.1 (Miles, [6], and Miller,[7]) Every root z # ¢a of fa(z)
verifies:
|2] < L.

Corollary 2.2 The polynomial f,(z) is an irreducible polynomial over Q.
Proof: In fact, since f,(z) does not have rational roots, if we can factor (in

Z[z] by Gauss lemma)
falz) = @(z)¥(z),

it is clear that the degrees of  and 1 are > 2 (clearly we can suppose n > 4).
Let ¢, be the unique positive root of f,(z) and suppose that ¥(¢s) = 0. Then
by theorem 2.1 and the observations at the beginning of this section all the
roots z of p(z) verify: |z| < 1. But this is not possible since the constant
term of ¢ is an integer. D

Lemma 2.3 The discriminant D, of go(z) is
D, = (_1)(";")[(11 + 1)n+1 - 2n+1nn]

Proof: Let i, 03,...,an41 be the roots of g,(z) in the complex field C.
Since

n+1
Dy = [ = o)* = ()" T TT(es - )
i<i i=1 ji (2)

n+1l
= (-1 ] ga(e)
i=1
and ¢/ (z) = 2" ![(n + 1)z — 2n] we can write
n41 n+1

H Glew) = H o} 7(n + 1)a; — 2n].
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But since ayaz - - - atpy1 = (—1)"*! we have

n+1 n+1

2n
") = (=1)rH)(-1) n+l o
gg..(a) (-1 (n+1) E[a, =]
-2 3)
= (—1){mtD)(n=1)(_1yn+1 1)+ .
(et T
2n

= (=1)"*(n + 1) g (——).

n+1

Now we calculate:

)_(h+1)n+l (— )"+1
2n+1nﬂ+l 2n+1 (4)

= - 1
mr)™  (mtip T

(n+l

Substituting (4) into (3) we have:

n+1 n41,, n+l ntlpn

.I=Ilg’l’(ai) = (C1) 1) (i + T)"“ (i + 1) i

(— 1)n2+n [2n+1 n+1 2n+1nn(n+ 1) +(n+1)n+l] (5)
(=17 [(n + 1) — 2]

[(n +1 n+1 2n+l n]’

i

because n? + n is even for every n. This finishes the proof. O

Lemma 2.4 The discriminant d,, of fu(z) s

_1)('1:1)[(71 + 1)n+1 _ 2'n+1,nn].
(n—1)?

dn=(

Proof: The roots of g,(z) are 1,az,...,any1. Then

D,
ﬂ+] (1 _ ak)2

n =
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But since @, ..., any; are the roots of f.(z) we simply have

n+1

H(l — o) = fa(1) = —(n - 1),
which gives the lemma. O
Remark 2.5 In fact, R. Swan has proved, [8], that the discriminant D of
"+ azk +bis
D = (~1)DpF1 [pmmh 4 (1) (n — k) hgRgm ]
where n > k> 0, d = (n,k) and n = nyd, k = kid.

Table 2 gives some initial values of D, and d,:

m (2] 3 | 4 [ 5 6 | 7 | 8
D, | 5]|-176 | -5067 | 153344 | 5148425 | -194049792 | -8202514103
d, | 5| 44 | -563 | 9584 | 205937 | -5390272 | -167308247

Table 2: Some initial values of D, and d,

Lemma 2.6 The discriminant D, of g.(x) is never a perfect square. And
so the discriminant d,, of f, is also never a perfect square

Proof: Notice first that

(n-zH)‘_—‘O mod 2 <= n=0,3 mod 4,

and since (n+1)**!—2"*+1n" < 0 for e;iery n>2 D, <0forn=0,3 mod 4.
Therefore, if n = 0,3 mod 4, D,, < 0, and so D, cannot be a square. For
n =1,2 mod 4 we can write the discriminant D, as

Dn _ 2n+1nn _ (n + 1)n+1.
Suppose n =1 mod 4. Ifalson =0 mod 3 then

D,=-1 mod3
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and so D, cannot be a square. If n =2 mod 3,
Dp=(-1)"(=1)"= -1 mod3

and D, cannot be a square. Let n =1 mod 3. Then n = 1 + 12k and we
can write D,, as

Dy = 229128 [(1 4 12k)H1% — (1 + 6k)2H124]

It is enough to prove that D,/22*1% is not a perfect square. For this
consider the following cases
(I) k=1 mod 7. Then, since {0,1,4,2} are the only squares mod 7
and
D,=5"% =5 mod 7,

(because 5'2 =1 mod 7), D, cannot be a perfect square.
(2) k=2 mod 7. Then

D,=4"% _(1)y% =4 _1=3 mod7,

because 4'* =1 mod 7, and so D, cannot be a perfect square.

(3) k=3 mod 7. Then
D,=2"%2 _(5)2+12k =9 _ 4 =5 mod 7,

because 52 = 4 mod 7 and 22 = 1 mod 7. So D, cannot be a perfect
square.
(4) k=4 mod 7. Then

D, =—(4)""'?* = 2 mod 7,

and so D, cannot be a perfect square.
(5) k=5 mod 7. Then

D, =5"% _ (3% =5_9=3 mod?7,

and so D, cannot be a perfect square.

(5) k=6 mod 7. Then
D, = 3% _ (22112 =3_4=6 mod 7,

and so D), cannot be a perfect square.
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(6) Let k=0 mod 7 then k = 7m and

_ guriak (L+ 120)41% — (1 4+ 6K+

dn (12k)?

and so it is enough to prove that

(1 + 12k)1+12k - (1 + 6k)2+l2k
(3k)?
is not a perect square. In terms of the parameter m we must prove that
(1 +12.7. m)1+12-7-m _ (1 +6- 7 : m‘)2+l2-7-m
9.49-m?
is not a perfect square. In fact we will see that for every value of m we have
(1 + 12.7. m)1+12-7~m _ (1 + 6-7- m)2+12-7-m
949 . m?

and since 39 is not a square mod 43 we are done. Since we are working the
finite field Fy3 there is only a finite number of possible values for the left
hand side of (6). An easy, but tedious, case by case computation yields (6).

Now suppose n = 2 mod 4. Then n = 2 + 4k and we will prove that

23+4k(2 oE 4k)2+4k — (3 + 4k)3+4k
(1 + 4k)?

=39 mod43, (6)

=2 mod3

for every value of k. This implies that d,, (and hence D,) is not a perfect
square. Again we work in a finite field F3 and there is only a finite number
of possible values. A simple computation implies the result. Since

D, = (n—1)%d,,

and D, is never a perfect square, it is clear that d, cannot be a perfect
square. This finishes the proof of the lemma. O

It is also interesting to note (see table 3) that the factorization of |d,] is
rather peculiar; it seems that for n even d, is a square free integer, and for n
odd d,, is 2"~ ! times a square free integer. From this and from theorem 6 of
[5] it would follow that the Galois group of f, is S, for n even. But we were
not able to prove that d,, behaves this way and we had to follow a different
path.



K |dn |

2 5

3 2711

4 563

5 21.599

6 205937

7 2°. 84223

8 1319 - 126913

9 2517 - 487 - 2851

10 7 - 35616734267

11 210.19.131-4550179

12 10607 - 211723 - 267679

13 '] 217 76317 - 1328851967

14 112589 - 219361 - 87132013
15 217,941 - 2347 - 2879 - 5484307

16 131 - 1103237 - 74329019184449

17 215,83 . 2376011291 - 655308793

18 | 12479 - 3119618081 - 1833387643403
19| 218.1439 - 4097227 - 4142481973103

20 | 167 - 1840593902677 - 1981694167788721

Table 3: Factorization of |d,|.

Theorem 2.7 Let G, be the Galois group of fu(z) over Q. Then G, con-
tains a transposition.

Proof: We begin by defining a new polynomial h,(z):
ha(2) = (n + 1ga(z) — 26} (2) = 22" + (n + 1).

Denoting by g» and g, the reductions of g, and g/, module a prime p, we
conclude that if g, and g, have a common root (in an algebraic closure of
F,), then the common roots of g, and g, are the n-th roots of
fi41
5
Let p > 2 be a prime that divides the disciminant d,, — it is easy to see that
there are always such primes — (and so p also divides D,). Let us suppose
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also that p is a prime that ramifies. Consider fa(z) € F,[z] the reduction of
fa(z). The discriminant of f, is zero in T, and so f, has a multiple root &.
Let us prove that there is only one multiple root. By the above the multiple
root a verifies: -
.t 1
"=

and from g, (a) = 0 it comes
(n+1)a" —2na""' =0,
and so (we can clearly suppose & # 0, because & is a root of g,(z) and
g(0) = 1) i i
(7 +1a"t = 2na"

from this we conclude some important things:

__ 2m
CEERET
and so @ € F,, 7 # 0 mod p and &-is the unique multiple root of g, (and

50, of f,).

Now we show that & is a double root of gn.
h.(z) = —2Az""",

and so, since @ # 0, h, has only simple roots. Hence, g, cannot have triple
roots. Since ga(z) = (z —1)fu(z), fa(1) = —(n—1) and (n—1) £ 0 mod p,
we conclude that f,(z) cannot have a triple root.

We concluded that in F,[z] we must have the factorization:

Gn=Fi i fny (7)
with R
filz) = (= - &),
and f,,..., fm, monic irreducible.
By Hensel’s lemma, ([3], Theorem 5.3, pg. 192) considering fu(z) and

gn(z) as polynomials in Z,[z], where Z, is the ring of p-adic integers, we can
lift the factorization (7) to @,, (in fact to Z,[z]):

gn()=froi fmo
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with fi(z) = z?4az+b, (necessarily irreducible), f2,.. ., f» monic irreducible
with the same respective degrees as f,..., fm

Let us show that the extensions over QQ, generated by the roots of the f;
(¢ > 2) are unramified. Fix f; and let 6 be one root of f;. Then we can put

(Q,(6) : Q] = ef,
where e is the ramification index and f is the residue degree:
f=0(£)=08(f) = 1Q,(0): @y,
But then, since € > 1 and
[Q(6) : @] = [Q,(6) : Q]

we must have e = 1. If # is another root of f; then we have, by the same
arguments that the ramification index ¢ = 1. But this imples that the
ramification index e” of Q,(8,8') over Q,(8) is also 1, because it is obtained
from the compositum of two unramified extensions:

o o)
Q.(8) Q.(8)
Q.
|
Q

This proves that the extension E, generated over Q, by all the roots of
all the f; (i > 2) is unramified. By hypothesis, p ramifies in the splitting
field of f,(z) over Q, which is E,. I o is a root of fi(z) = 2> +azr +bin E,
then [Q,(c) : Q,] = 2 and so, the relation [Q,(c’) : Q,] = e and the fact
that e > 2 implies e = 2.

Let E,/Q be the splitting field of fa(x) over Q and choose a prime P
in E, over p. Then Dy = Gal((E,)p/Q;) is the decomposition group of .
If O, g is the valuation ring of the completion (E,)p and P is its maximal
ideal we have the inertia subgroup

Ip={0€ Dy : o(z)=z mod P},
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and the inertia subfield Tip. By local Hilbert theory Ty is the maximal
unramified extension of Q, contained in (E,)p and

[(En)p: Tyl =e=2.

Since the roots of f; for 7 > 2 generate unramified extensions, the subgroup
I fixes all these roots. But if 8 and o are roots of the quadratic polynomial
f1(z) over Q, then there is an element 7 in Iy such that

7(B) = o, () = 8,

and 7 fixes all other roots. Then Dy C Gal(E,/Q) contains a transposition.
This finishes the proof of the theorem. O

Remark 2.8 In fact we have proved that for a ramified p > 2 and p a prime
ideal of the splitting field E of f.(z) over Q, plp, the inertia group of p over
Q is generated by a transposition. See also Lemma 1 of [5]. This means that
for every prime p > 2 the inertia group of p dividind p is trivial or generated
by a transposition. If n is even, d, is clearly odd, and so we have proved
that for every prime p the inertia group of p|p is trivial or generated by a
transposition.

Theorem 2.9 Let n be an even integer. The Galois group of fn(z) is the
symmetric group on n symbols S, and if E/Q is the splitting field of f.(z)
over Q, the extension E/Q(\/d,) is unramified.

Proof: Corollary 2.2 implies that Gal(f,) is a transitive subgroup of S,. But
lemma 5 of Osada’s article [5] says that a transitive subgroup of S, generated
by transpositions must be all S,. By theorem 2.7 and remark 2.8 above, this
is the case for Gal(f,), when n is even. For the last part it is enough to say
that the intersection of the alternating group A, with any inertia group must
be trivial. This proves the theorem. O

Remark 2.10 For the prime p = 2 in the case of odd n, although theorem
2.7 continues to hold, (and even it is still true that for every prime p >
2 inertia groups above p are trivial or generated by a transposition), the
polynomial h,(x) is identically zero and so we cannot deduce the behaviour
of the factorization in F; of fu(z).
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3 The case of prime degree

Let p be a prime number and f,(z) = 27 — 2P~' — ... — z ~ 1 the reduction

mod p of f,(z). We will prove that f,(z) is irreducible in F,[z]. In order to
do this we prove first a kind of reciprocity:

Lemma 3.1 If p is a prime number we have the reciprocity formula in F,[z]
_ 1 _
z” fp(2 — ;) = fp(z).

Proof: We can write f,(z) = 2P — (z — 1)P"! because in F,[z]

= zP —1 (z -1
— P — P
fp(.l')—l' z—1 z r—1

=27 — (z - 1)}

and so

2P fp(2 — %) =2zP ((2 - .1_)P -(1- l)p—l)

z T
=zP(2 - ;;l;) —z(z —1)P! (8)
=2zF — 1 —z(z — 1)L
Since gp(x) = (z — 1) fp(z) = &**! — 227 + 1 we have
2zP — 1 = 2P — (z — 1) fo(2)
and so
P2~ 3) = 2 (o = V(o) —2lz - 17
=z [o” = (2 - 1] ~ (=~ V() ®)
= fo(2).

This finishes the proof of the lemma. O

Lemma 3.2 In the quotient ring R = F,(z]/(f(x)) we have that {F = z,
where

f=—2"14+272 4. .+ 43
Besides, z is invertible in R and £ =2 — 1/z. (We are writing simply « for
its class in R).
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Proof: Since in R we have zP! — 227 4+ 1 = 0 (because gy(z) = (z — 1) f,(z)
and z # 1) we can write

z[z? - 2277 = -1,
and this proves that z is invertible and that
-1
z

= zP — 22771, (10)
Besides, from zPt! — 227 4+ 1 = 0 it follows that
1
r—24 E =0,

that is:

Now, by (10) we write

1 14 P _ 9Pk 1
(2_,_)=2 z+ =2+I____%_+=

z T (1-2) -z
=2+—x”'1+x”+1—-z”'1 =2+—z””1(1—z)+1—x"‘1 _
l1-=2 o 1—-2
1—zr!
=—z""‘+71_x +2=—2P 2Pl 4 . p 4142,

and this proves tha lemma. O

Theorem 3.3 The polynomial f,(z) = 2? —2P~' —-.. —x — 1 is irreducible
in Fy,[z] for every prime number p.
Proof: It is easy to see that f,(z) is irreducible in F,[z] if and only if

(1) (yla), 2 =) = 1,

(2) fol2)|(z?" ~2).

To prove the first condition is equivalent to prove that f,(z) has no root
in F,. To prove the second condition it is enough to prove that each root of
f» is a root of z7° — z. Now, we have already noticed that

folz) = 2% — (@ = 1",
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and so, since,
(2 — 2z, fp(2)) =1 = fo(m) #0, VmeR,
and since y?~! =1 for every y € F, we have, for m # 1,
fo(m)=(m)f —(m -1 =m—-1+4£0.

But f,(1) = 1 and so we are done. This proves the first claim. For the
second: let us suppose that in F,[z] we have a factorization

Jolz) = filz) -+ fe(2),
where each f;(z) is irreducible with degree n;. Let

n,—1
Ay ={ag,al, o ol

) 0
be the set of roots of f;j(z) in an algebraic closure of I, {notice that a?nJ =
;). By lemma 3.1 the map a ++ 2 — 1/a gives a bijection of the set of all
roots of f,(z) onto itself, and so the set

1
potool a1
e i of
is also a subset of the roots of f,(z). But this set is clearly an orbit under
the action of the Frobenius automorphism u ~ u?, and this means that it
must be some A;. But lemma 3.2 says that

1 P
Otj aj;

and so Ay = A;, and this means that @ — 2 — 1/« gives a permutation of
Aj. Let

¢: Aj — Aj, #(B)=2-1/8.
It is easy to see that ¢ is a cyclic permutation (an nj-cycle). A simple
induction argument shows that

_k-(k-1)8
¢k(ﬂ)_(1:1)_—kﬁ’
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where ¢* = popo---0¢ (the composition of ¢ with itself k times). Then

R CHER:?
that is:
nj—(nj+1)e; _
(nj—1)—nja; 7’
and hence

njo@ —2njo;+n; =0.
If n; #0 mod p we have
o} —2a; +1=0,
But this is impossible because dividing this last expression by a; we obtain
a; —2+ El; =0,
and so )
aj =2 — a—j.

But this in turn implies (again by lemma 3.2)

l b4
a?: (2——) = q;
a;

which would gives us that a; € F,. This is impossible by the first claim.
This finishes the proof of the theorem. O

We are now ready to prove the main theorem of this section:

Theorem 3.4 Let p be a prime number. Then de Galois group of f,(z) is
the symmetric group S, in p symbols.
Proof: It is well known that a transitive subgroup of .S, containing a trans-

position and a p-cycle is S,. From our previous theorem 2.1 and theorem 2.7
it is enough to prove that Gal(f,) has a p-cycle. Since

D, = (-1){)[(p+ 1)+ — 241 p]

it is clear that p docs not divide D, (and a fortiori does not divide d,). This
means that p does not ramify. By theorem 3.3 f,(z) is irreducible in F,[z].
From these two facts (and Hensel’s lemma) it folows that considering f, over
the p-adic field Q, we have that its Galois group is cyclic and contains a
p-cycle. This proves the theorem. O

16



4 Final remarks

It is well known that a transitive permutation subgroup of S, that contains
a transposition and an n — 1 cycle must be S,,. In the table bellow the first
line gives the degree of f, and the second line gives the smallest prime p such
that the the decomposition of f, in F, has exactly one factor of degree 1 and
other irreducible factor of degree n — 1. By Dedekind’s theorem there is a
(n — 1)-cycle in the Galois group of f, over Q.

n(3/4[5|6]7[8[9]10[11]12]13[14] 15 16] 17
p|7(3]19[17[3]13[7]61[71[29]79]19]1997]59 167

n|18|19120121 | 22 |23 24 | 25 (26| 27 | 28 | 29 | 30
T 13 1237|349 |19 |641 | 149 | 83 | 641 | 137 | 127 | 197

Table 4: Degree of f, and smallest prime p giving an n — 1 cycle.

These calculations suggest that it is likely that the Galois group of f.(z)
is S, for every n.
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