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Studies regarding knowledge organization and acquisition are of great importance to understand
areas related to science and technology. A common way to model the relationship between different
concepts is through complex networks. In such representations, networks’ nodes store knowledge
and edges represent their relationships. Several studies that considered this type of structure and
knowledge acquisition dynamics employed one or more agents to discover node concepts by walking
on the network. In this study, we investigate a different type of dynamics adopting a single node as
the “network brain.” Such a brain represents a range of real systems such as the information about
the environment that is acquired by a person and is stored in the brain. To store the discovered
information in a specific node, the agents walk on the network and return to the brain. We propose
three different dynamics and test them on several network models and on a real system, which is
formed by journal articles and their respective citations. The results revealed that, according to the
adopted walking models, the efficiency of self-knowledge acquisition has only a weak dependency

on topology and search strategy. Published by AIP Publishing. https://doi.org/10.1063/1.5027007

Complex networks have been employed to model a myr-
iad of real systems and processes, including the dynamics
of knowledge acquisition and transmission. In this study,
knowledge is represented as a set of entities (nodes) con-
nected by links (edges). The process of acquisition is
performed by agents walking on this structure. The dis-
covery of each new piece of knowledge is transmitted to a
brain, which is placed on a single node from where walkers
start their walks. Our results revealed that the efficiency
of knowledge acquisition hardly depends on the structure
and walk.

I. INTRODUCTION

Most matter and energy exchanges in nature can be
represented and understood in terms of information' flow-
ing between distinct agents and/or subsystems. Perhaps as a
consequence, several developments in network science have
shown that a great number of natural systems can be rep-
resented and modeled in terms of intricate graphs, which
have been called complex networks. Thus, interesting real-
world systems such as opinion and epidemic spreading,>*
transport, communications and language,™® as well as the
nervous system’ have been approached by network science,
yielding several interesting results. One particularly inter-
esting research line concerns how information is acquired
by agents in a complex system.'” Preliminary investigations
along this line have represented knowledge as being stored
into nodes that are logically interconnected, while one or
more agents get acquainted with this knowledge while mov-
ing along the network.!! Therefore, knowledge integration is
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performed internally to each agent. This situation is illustrated
in Fig. 1(a).

Many real-world situations can be represented and mod-
eled by using this agent-based approach. The efficient routing
of information in a complex system, such as the Inter-
net, requires specific strategies for transmitting the infor-
mation between nodes.'> When there is limited knowledge
about the global connectivity of the system, the routing
problem becomes a heuristic search for the optimal paths
for communication.'? For instance, Lee et al.'* proposed a
degree-biased random walk search for optimizing the infor-
mation exchanges on peer-to-peer systems. Kim et al.'®
showed that self-avoiding walks can provide nearly opti-
mal exploration of networks. The search and information
exchange dynamics on networks has also been studied from
the perspective of opinion diffusion on social networks.'® In
this case, nodes represent individuals that need to form an
informed opinion about a given subject, which is done by
gathering the opinion of other nodes in the network. For exam-
ple, McCullen et al.'” analyzed the propagation of innovation,
showing that the level of adoption of a new concept or product
strongly depends on the topology of the network.

Here, we consider a distinct type of agent-based dynam-
ics. We analyze the case where the knowledge is integrated
not by one or more agents, but is otherwise stored in a spe-
cific and fixed part of the system, corresponding to some kind
of “brain” or “hq” (headquarter), and the information is gath-
ered by sampling through the networks by agents or sensing
pathways. Real-world related systems include the mapping
of communities with shared interests in the World-Wide-Web
(WWW) or the Internet, as well as consciousness acquisition

Published by AIP Publishing.
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(b)

FIG. 1. Two possible cases of knowing a network. In the first case (a), an agent repeatedly departs from different nodes and performs random walks aimed at
collecting knowledge about the network topology. In the second case (b), the collection of knowledge about the network is centered at a fixed node, here called
network brain. An agent repeatedly departs from the same node, collecting information about the network topology. The latter situation is particularly interesting
in the sense that the choice of the brain can influence strongly the knowledge acquisition efficiency.

by individuals with respect to the environment. In these situ-
ations, the information to be integrated can be considered as
being part of the own organism, so that acquired knowledge
becomes self-knowledge. For simplicity’s sake, the central
node where information is integrated in these systems is
henceforth called the network brain.

Though more general knowledge acquisition situations,
such as by multiple agents, are more often addressed in the
research literature, the particular dynamics of self-knowledge
represents an especially important problem in several real-
world situations involving centralized monitoring and control.
For instance, the self knowledge of an organism is required
for its operation and survival. More specifically, muscles and
organs of an individual are monitored and controlled contin-
uously through the nervous system, having the brain as the
major control and decision portion. Similarly, energy, com-
munications, and transportation systems require the constant
monitoring and control of their parts, which nowadays are
mostly implemented through distributed computing systems,
message exchanges, and autonomous agents that communi-
cate with specific control unities.

Other analogous cases include traffic and weather moni-
toring, as well as social insects. All these systems require con-
tinuous self-awareness because they are subjected to changes
which may require important response. Though these sys-
tems do not necessarily involve moving agents reporting to
a central headquarter as in this work, their operation bears
direct analogy in the sense that their respective communica-
tion mechanisms can often be well-approximated in terms of
flows of information between agents at different positions and
one or more central control unities. In addition to maintain-
ing routine maintenance activity, these systems need to have
mechanisms to detect and map topological changes in their
own structure. For instance, the WWW needs to be contin-
uously explored by worms in order to detect new pages and
documents and, therefore, to provide a reasonably accurate
map of its interconnections.

The type of centralized knowledge acquisition consid-
ered in this work, illustrated in Fig. 1(b), has seldom been
addressed from the perspective of computational modeling.
Yet, this type of systems entails some specific problems that
are particularly interesting. One of the main such problems
regards how influential is the topology around the brain on
the knowledge acquisition speed. In case the topology is
influential, this would imply special care while electing a

specific node to operate as brain or hq of the system whenever
possible. The present work addresses precisely this type of
centralized systems as well as the influence of topology on
brain placement. We resort to complex network models and
concepts in order to investigate how self-knowledge pro-
gresses in different types of networks and how this dynamics
is influenced by the choice of node to act as the network brain.

In the investigations reported in this work, we consider
the domain to be explored to be represented as a complex net-
work. The knowledge exploration is performed by agents that
move along the network through random walks and period-
ically report the information gathered to the network brain,
where it is integrated and stored. These agents can be thought
as independent and simultaneous, thus the knowledge of dif-
ferent walks is not transmittable between them. A number of
different topologies are considered in order to allow us to infer
to which extent the structure of the domain influences the self-
exploration efficiency. At least as important as the topology in
defining such an efficiency is the choice of node to act as brain
and the type of probing dynamics.

Recent studies suggest that the topology of the network,
and also around the starting node, tends to have little influ-
ence on the knowledge acquisition speed, at least for the
considered models.'! However, these results refer to moving
agents as in Fig. 1. Because the random walks implemented
in such cases tend to “forget” the initial node, the topology
around these nodes is intrinsically less influential on knowl-
edge acquisition. In the current work, however, the node
where the knowledge is integrated is fixed, and all the sev-
eral implemented random walks depart from this same node.
Therefore, it could be expected that the topology surround-
ing these nodes plays a more decisive role on the knowledge
acquisition speed.

This article is organized as follows. Section II describes
some works on random walks. Section III presents the
employed network and dynamics. In Sec. IV, we analyze the
adopted dynamics and compare their efficiency according to
different used parameters. Finally, in Sec. V we conclude the
study and make some remarks regarding the results.

Il. RANDOM WALKS

One of the first studies regarding random walks was
proposed by Pearson in 1905.!® He aimed at modeling the
movements of mosquito swarms (called walkers) in forests.
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FIG. 2. Description of the changes of states in the three adopted walking models. The four states that a node can assume are shown in the legend, and include:
unvisited, primed (a node that is known but can still be visited), blocked (a node that is known and cannot be visited), and current (the node where the agent is).
(a)—(c) represent the self avoiding dynamics, where the only known nodes are those that have been visited already; (d)—(f) the extended self avoiding where all
nodes that neighbor the path are also known but not avoided; and (g)—(i) the look-ahead self avoiding where all nodes that neighbor the path are known and are

avoided.

He defined a dynamics in which for each iteration, the walker
turns a random angle and walks in a straight direction at
a fixed distance. This process is repeated many times. By
considering this dynamics, Pearson proposed the problem of
calculating the probability distribution of the distance traveled
by the walker from the starting point. The answer was given
by Lord Rayleigh.'” Since then, many applications have bene-
fited from the use of random walk models.?*->> More recently,
many studies took into consideration this dynamics simulated
on complex networks,?? in which the network topology is
employed to restrict the walker movements. For instance, this
dynamics has been used to model users navigating on the
World-Wide-Web.?® In this case, nodes represent web pages
and edges indicate a hyperlink between web pages. Using the
model, the web pages can be ranked according to the number
of times they are visited by the walker. Such a ranking was
called the PageRank algorithm.?’

There are many different types of random walk dynamics
on networks, the most basic, and the traditional being the

uniform random walk. In this case, the walker selects one
of the neighbors of the current node with equal probability.
Therefore, the transition probability from a node i to another
node j only depends on the degree of node i. Given enough
time, the walker visits every node of the network. The average
number of steps taken by the walker to visit the entire network
is called the cover time.”® The uniform random walk tends
to have relatively large cover times when compared to other
random walk models. This is so because the walker tends to
revisit many times the nodes that have already been visited. A
modification in the dynamics, which can greatly reduce cover
times, is to forbid the walker to revisit nodes that have already
been visited, defining a self-avoiding walk."!

lll. MATERIALS AND METHODS

This section presents the adopted networks, which
include three real-world cases and many theoretical models,
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ogy, and the implemented self-learning dynamics.

A. Complex networks models

Networks with the same size and number of edges were
generated for each different model studied. The models that

were

Random Networks (Erdds-Rényi—ER): This has been
used as the reference model in complex networks research.
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FIG 3. Learning efficiency for the ER
networks considering the three adopted
dynamics. Each curve corresponds to a
realization for a different average node
degree (k), according to the legend. (a)
Standard, (b) Extended, and (c) Look-
ahead.

Each of its nodes has a probability p of connecting to each
other node in the network.?

Scale Free Networks (Barabdsi-Albert—BA): This type
of network is obtained by incrementally adding nodes with
probability of connection proportional to the degree of the
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nodes already existing in the network. The most important
property of this network model is the power law degree
distribution and the hence implied presence of hubs.

Configuration Model (CM): In this model, a random
graph is created to fit a desired degree distribution.’! The

30

FIG. 4. Efficiency curves for the con-
sidered walk dynamics and network
models. In all cases, (k) =5. (a) Stan-
dard, (b) Extended, and (c¢) Look-ahead.
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FIG. 5. Learning efficiency obtained for all the considered combinations of walk dynamics and network models. Each curve corresponds to a selection of the
starting node having betweenness centrality higher than a certain percentile considering the entire network, as indicated in the legends. (a) ER Standard, (b) ER
Extended, (c) ER Look-ahead, (d) WS Standard, (e) WS Extended, (f) WS Look-ahead, (g) BA Standard, (h) BA Extended, and (i) BA Look-ahead.

configuration model was used as a means to better under-
stand some complex effects detected in the BA networks.
The degree distributions used in this work were generated to
follow a BA network.

Small World Networks (Watts-Strogatz—WS): This model
is generated by rewiring connections in a regular toroidal lat-
tice. It presents the combination of high clustering coefficient
and low average minimal distance.’> The standard rewiring
probability used was 3%.

Geographical Networks (Waxmann—WAX): These are
based on distributing points in the Cartesian plane. The nodes
are evenly distributed, and each node can connect to each
other with probability decreasing exponentially with the dis-
tance. For the Waxmann networks, we used a square space
with random distribution of nodes in it.*?

Stochastic Block Model (SBM): This model uses
blocks of nodes and probabilities of connection between
nodes from one block to another (even with itself).3*3>
Two models of SBM networks were adopted in this
work, both with 10 blocks. Each block has the same
probability u of connecting to the other blocks, the
first model has a w = 1% chance and the second
= 2% chance.

All parameters referring to node connectivity were cho-
sen to approximately reflect the desired average degree of the
network, i.e., the probability of connection between two nodes
in the ER network.

B. Real-world networks

In order to investigate the behavior of the proposed
dynamics on real systems, we adopted three distinct
real-world networks: a citation network obtained from the
Web of Science (WOS),* the California WWW (CAL)
network,3”3 and the US Power Grid (PG) network.?

The WOS network comprises articles returned by search-
ing for complex network topics in journals indexed by WOS.
Each node corresponds to an article, and a connection exists
between a pair if they cite each other. Note that, in this
case, we disregard the direction of the connections since we
are interested in the relatedness between topics and not in
citation dynamics. The network contains 11063 articles and
has average degree (k) = 17. More information about this
network can be found in Ref. 39.

The CAL network is a Web sub-graph obtained in
2002 by expanding the connections from a predefined set of
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domains using the query “California.” Each node corresponds
to a website and connections represent the hyperlinks among
them. It contains 9664 nodes and the average node degree is
(k) =3.3.

Different from the other models, the PG network does
not represent an information network. However, its structure
resembles a geographic communication network. The PG net-
work comprises 4941 nodes associated with power stations
and generators. Each edge indicates a power line between
nodes, leading to an average degree (k) = 2.7.

C. Walk models

With these networks in hand, we aim at understanding
how long does it take for a random walker to fully discover
the network. The efficiency is measured with the total number
of steps taken to explore the network. Note that this effi-
ciency measurement is strongly related to the concept of cover
time for traditional random walks.?® Three different walking
models were used:

Standard self-avoiding random walks: for every move
in these walks, the walker chooses the destination node ran-
domly in the current neighborhood. The sole restriction on
these walks is that the same node cannot be visited twice. A
node is considered to be known if the walker has visited it at
least once. Therefore, the number of steps of a walk using this
dynamic is the number of nodes of the walk. Thus, the num-
ber of steps of each iteration, denoted by At, is always 1, as
illustrated in Figs. 2(a)-2(c).

Extended self-avoiding random walks: in this model the
walker behaves exactly like in the previous model, but the
known region is considered to include not only the nodes
that were covered along the walk, but also the neighbors of
these nodes. This means that the number of steps in a walk

10 20 30 40 50 60 70 80 90 100

correspond to the sum of the degrees of each of its nodes,
as seen in Figs. 2(d)-2(f). Note that here we consider that
checking whether a node is already known by the walker is
analogous to taking a step in the walk. In other words, the
traveler spends effort/time when checking the status of neigh-
bors. This is the reason why we denote the total number of
steps as Atf.

Look-ahead self-avoiding walks: like in the previous
model, here the walker will be considered to know the neigh-
borhood of every visited node after departing from it. How-
ever, the agents are prohibited to proceed to any already
known node. The number of steps of a walk is calculated
in the same fashion as in the extended walk dynamics. This
dynamics is illustrated in Figs. 2(g)-2(i).

Note that, for every model, the walks may eventually
hit a dead end and will have to stop, prompting another
walk to be started from the same starting point. This is
repeated until all nodes have been discovered. For every
new iteration the same starting node is used and the net-
work is considered to be completely unvisited by the agent
(the knowledge about the previous walks is always kept in
the network brain). We decided to select only self-avoiding
random walks in our analysis as such walks tend to opti-
mize the exploration efficiency. This happens because the
walker tends to visit an unvisited node at each new step, thus
avoiding those previously visited nodes. The restart mecha-
nism in the adopted walks also favors efficiency because it
avoids traps.

Since every network model was created with the same
number of nodes, but the average degree varies from 3 to 30,
the probability of dead ends will vary considerably. To better
grasp the influence of very long walks, an additional config-
uration was adopted in which the maximum number of steps
before resetting the walk was set to 100.



083106-7 Lima et al.

Chaos 28, 083106 (2018)

a b
(]).01e6 (0) ¢ 1e6
k=209 t :igg
0.81 k=243 0.8 -
. - 0 k=596
2 k=298 S =953
I = %061 =
%06 k=629 2 0.6
o [
:]-) g o 4,
2 0.4+ g
€ =
S =
= 0.2 0.21
' ! FIG. 7. Curves of efficiency obtained
L . e 0.0l e—eo—9—s—p—s>e—"I—"2"" by selecting the hubs as starting nodes in
0.0 10 20 30 40 50 60 70 80 90 100 10 20 3?} 40 t50 6f0| 70 80 90 100 BA networks for the Look-ahead dynam-
Percentage of learning ercentage ot learning ics. The legends indicate the node degree
of the starting node. m is the number of
(C) 1.0-1€6 links established by the node added in
b— k=603 each step of the BA algorithm. (a) m = 3,
0.8 k=811 (bym=4,and (c)m = 5.
8 ' k=984
= k=1117
B0.6
o
g 0.4
2o
=
=
0.2 4
0.0 NEEPEIEEY S = = . .
10 20 30 40 50 60 70 80 90 100

Percentage of learning

IV. RESULTS AND DISCUSSION

The results in this section all refer to the number of steps
that had to be taken in order to discover a given percentage of
the network. The total number of steps is considered to be the
sum of steps of all the walks. This was done to emulate the
cost of acquiring knowledge about the network.

The experiments were performed considering 100 dif-
ferent respective starting points in each network. The results
shown in Secs. IV A-E are averaged over realizations starting
from each one of the 100 nodes. First, the nodes are ordered
according to their degrees. Next, the selected starting points
are taken every 50 nodes in this sequence, implying 2% sam-
pling of the nodes. This was done to better understand the
influence of the centrality in the network on the total number
of steps necessary to discover the whole network.

A. ER network discovery

The studied ER networks are composed of 5000 nodes
with average degree (k) varying from 3 to 30. In Fig. 3, we
show the number of steps required for covering a given per-
centage of the network, with respect to the three considered
dynamics. A prototypical pattern can be identified in all cases,
the only difference being an overall decrease with the average
degree of the network.

Interestingly, there are no major differences between the
extended self-avoiding and look ahead self avoiding types of
walks. Avoiding or not the neighborhood of the walk bears
little influence on the efficiency.

B. Other models

When compared to other models we notice that the pat-
terns displayed on ER networks are also present on almost all
other models, this can be seen in Fig. 4.

Some interesting behaviors have been identified. First,
almost every considered network model and walk model com-
binations present the same decreasing pattern observed for the
ER networks. The most deviating curves refer to the BA and
CM models, which present a significant standard deviation on
look-ahead walks. WS networks (see Fig. 8) also exhibit a
slight variance in efficiency, especially for the extended walk.
Such small changes are probably caused by the existence of
a few shortest paths compared to the regular lattice (for this
model, we chose to have only 3% of the edges being rewired).
This effect is more pronounced in the extended dynamics
because it combines the two limitations from the other consid-
ered methods: it takes paths that are analogous to the normal
dynamics, making it harder to reach the distant part of the
network, and it always checks the neighborhood of the walk,
causing the nodes in the vicinity of the brain to be checked
several times.

C. Influence of the starting node

We also studied the influence of the centrality of the cho-
sen starting node on the total number of steps required for
exploring the whole network. We found that the centrality
(computed via degree, betweenness, eigenvector centrality,
and accessibility*’) does not have a great influence on the final
results, with the only exception being the BA networks when
considering the look-ahead self avoiding walks (see Figs. 5
and 6). Notably, this influence is only significant when the
node of origin is a hub. In order to understand if this is a prop-
erty specific to BA networks, we compared this model with
CM networks with the same degree distribution. The same
behavior was observed, leading us to believe that the actual
degree distribution has a more important role in this dynamics
than the model itself.
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By selecting only the four nodes with the greatest degrees
for each network, we observe that the larger the degree, the
less efficient is the discovery, as illustrated in Fig. 7. This can
be explained by the relatively high number of walks that start
at the hub and terminate quickly. In the look-ahead dynamics,
starting a walk at a hub tends to be highly inefficient since
the agent checks every node around the hub. The number of
these nodes typically surpasses 10% of the network. More-
over, since the known nodes are avoided, the chance of hitting
a dead end is very high. This phenomenon can be seen in the
video provided in the supplementary material.

D. Structure influence

To analyze the effects of the structure on the efficiency
of the discovery process, we studied WS networks with vary-
ing probabilities p of rewiring (see Fig. 8). We can see that

the extended self-avoiding walk has a much lower efficiency,
which is mainly because the neighborhood of a walk is highly
overlapping due to the high clustering coefficient. Because
of such a high local clustering observed in each step, the
nodes around the starting node are counted several times. The
standard walk does not pose such a problem since it does
not discover the nodes’ neighbors and the look-ahead avoids
known neighborhood thus generating very little overlap.

E. Real networks

The experiment using the WOS real-world network
resulted in efficiency curves resembling those obtained for the
BA and CM networks, as shown in Fig. 9. The selection of
hubs as starting nodes was also found to play a major role in
the dynamics. This corroborates the idea that the influence of
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FIG. 9. Learning curves obtained by simulations of the extended dynamics
on the considered real-world network. The legends indicate the node degree
of the starting node.
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FIG. 10. Learning curves obtained for the CAL network. The best per-
formance was achieved for the self-avoiding random walk, when the full
coverage is considered.
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FIG. 11. Learning curves obtained for the PG network. The best performance
was achieved for the self-avoiding random walk.

the starting node on the dynamics is strongly related to its
degree and that this behavior does not seem to depend on
other, more complex, topological characteristics, which are
present in the WOS network.

Considering the California WWW network, CAL (see
Fig. 10), the best performance was obtained with the
traditional self-avoiding random walk. However, all three
strategies displayed a similar behavior when we consider the
number of steps taken to acquire a smaller portion of the net-
work. The effectiveness of the self-avoiding random walk can
also be observed in the power grid network (PG), as shown in
Fig. 11. Even when a small percentage of the network cover-
age is considered, the self-avoiding random walk outperforms
the other considered walks. We have not considered the full
coverage of the network in this case because of the high com-
putational cost associated with the exploration of the whole
power grid network.

V. CONCLUSIONS

Better understanding how knowledge is acquired in sev-
eral circumstances is of fundamental importance in science
and technology, as it allows predictions to be made about
the behavior of the studied systems, as well as contributes
to make those processes faster and more accurate. Being
a particularly interesting and important type of knowledge
acquisition, self-learning underlies several real-world sys-
tems, including human consciousness, risk assessment and
prognostic, prospection, as well as the formation of social
communities. Indeed, to a good extent, the rise of the WWW
can be understood as a kind of self-knowledge.

While a good deal of works have investigated knowledge
acquisition (see, e.g., Refs. 11 and 41-46), self-knowledge
has received substantially less attention.*’” The present work
approached this subject by using powerful concepts derived
from network science. In particular, we investigated the self-
knowledge acquisition as being a process derived from a
random walk dynamics taking place in an information net-
work. We considered three different types of dynamics and a
diverse set of complex network models, as well as a real-world
network representing the knowledge structure of a scientific
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area. By considering different combinations of network mod-
els and dynamics, three aspects were investigated in terms of
acquisition efficiency: dependence on the dynamics, on the
network type, and on the local characteristics of the starting
point.

The main contribution of this study is the result that
the efficiency of self-knowledge acquisition, at least as
approached from the point of view of the speed in which this
dynamics unfolds and for the considered configurations and
choices, hardly depends on either topology or the learning
strategy considered. This is a surprising result itself, as it hints
that the several paths to self-knowledge are similar regarding
their speed efficacy.

Similar results, though slightly more dependent on
topology and dynamics, have been obtained in a previous
investigation,'! but the extension of this principle to the here-
reported self-knowledge is even more surprising because,
unlike in that work, now the exploratory incursions are always
performed with a fixed headquarter, so that the topology sur-
rounding that node would be expected to have a greater impact
on the self-knowledge acquisition.

As for future works, we intend to conduct a system-
atic study of the influence of topology, dynamics, and start-
ing node in a large variety of complex systems, including
social,*® information,**! semantic,>>* and technological
networks.’> More specifically, we intend to extend the anal-
ysis performed here for a broader range of random walks?>°
and centrality measurements to select the starting nodes.>’
Future investigations should also study whether some of the
adopted models can reproduce the dynamics of acquisition
and transmission of knowledge.

SUPPLEMENTARY MATERIAL

See the supplementary material for the illustration of
network exploration dynamics obtained for the adopted ran-
dom walks in a small network.

ACKNOWLEDGMENTS

T.S.L thanks Capes-Brazil for sponsorship. H.F.A.
acknowledges Capes-Brazil for sponsorship. FN.S. thanks
FAPESP (Grant Nos. 15/08003-4 and 17/09280-7) for spon-
sorship. C.H.C thanks FAPESP (Grant No. 15/18942-8) for
financial support. D.R.A. acknowledges FAPESP (Grant Nos.
16/19069-9 and 17/13464-6) for financial support. L.F.C.
thanks CNPq (Grant No. 307333/2013-2) and NAP-PRP-
USP for sponsorship. This work has been supported also by
FAPESP (Grant Nos. 11/50761-2 and 15/22308-2).

I'T. Stonier, “Information as a basic property of the universe,” Biosystems
38, 135-140 (1996).

2R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Phys. Rev. Lett. 86, 3200 (2001).

3Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of rumor spreading
in complex networks,” Phys. Rev. E 69, 066130 (2004).

4R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Rev. Mod. Phys. 87, 925
(2015).

SB. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, “Optimal transport on
complex networks,” Phys. Rev. E 74, 046106 (2006).

SM. Markosova, “Network model of human language,” Phys. A: Stat. Mech.
Appl. 387, 661-666 (2008).


ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-002808CHA
https://doi.org/10.1016/0303-2647(96)88368-7
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevE.69.066130
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/PhysRevE.74.046106
https://doi.org/10.1016/j.physa.2007.09.027

083106-10 Lima et al.

"D. R. Amancio, “Probing the topological properties of complex networks
modeling short written texts,” PLoS ONE 10, e0118394 (2015).

8H. F. de Arruda, L. da F. Costa, and D. R. Amancio, “Topic segmenta-
tion via community detection in complex networks,” Chaos: Interdiscip. J.
Nonlinear Sci. 26, 063120 (2016).

°E. Bullmore and O. Sporns, “Complex brain networks: Graph theoreti-
cal analysis of structural and functional systems,” Nat. Rev. Neurosci. 10,
186-198 (2009).

04, F. de Arruda, F. N. Silva, C. H. Comin, D. R. Amancio, and L. d.
F. Costa, “Connecting network science and information theory,” preprint
arXiv:1704.03091v2 (2017).

'H. E. de Arruda, F. N. Silva, L. da F. Costa, and D. R. Amancio, “Knowl-
edge acquisition: A complex networks approach,” Inf. Sci. 421, 154-166
(2017).

12G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, and B.-H. Wang, “Efficient routing on
complex networks,” Phys. Rev. E 73, 046108 (2006).

I3M. Boguna, D. Krioukov, and K. C. Claffy, “Navigability of complex
networks,” Nat. Phys. §, 74 (2009).

145 Lee, S.-H. Yook, and Y. Kim, “Searching method through biased random
walks on complex networks,” Phys. Rev. E 80, 017102 (2009).

15y, Kim, S. Park, and S.-H. Yook, “Network exploration using true self-
avoiding walks,” Phys. Rev. E 94, 042309 (2016).

16C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social
dynamics,” Rev. Mod. Phys. 81, 591 (2009).

7N. J. McCullen, A. M. Rucklidge, C. S. Bale, T. J. Foxon, and W. F. Gale,
“Multiparameter models of innovation diffusion on complex networks,”
SIAM. J. Appl. Dyn. Syst. 12, 515-532 (2013).

I8K . Pearson, “The problem of the random walk,” Nature 72, 342 (1905).

19L. Rayleigh, “The problem of the random walk,” Nature 72, 318 (1905).

20E. Agirre and A. Soroa, “Personalizing pagerank for word sense dis-
ambiguation,” in Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics (Association for
Computational Linguistics, 2009), pp. 33—41.

2IM. Rosvall and C. T. Bergstrom, “Maps of random walks on complex net-
works reveal community structure,” Proc. Natl. Acad. Sci. 105, 1118-1123
(2008).

22N. Masuda, M. A. Porter, and R. Lambiotte, “Random walks and diffusion
on networks,” Phys. Rep. 716-717, 1-58 (2017).

2D. R. Amancio, “Comparing the topological properties of real and arti-
ficially generated scientific manuscripts,” Scientometrics 105, 1763-1779
(2015).

24N. Craswell and M. Szummer, “Random walks on the click graph,” in
Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (ACM, 2007),
pp- 239-246.

ZL. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell. 28, 1768-1783 (2006).

26N. Duhan, A. Sharma, and K. K. Bhatia, “Page ranking algorithms: A sur-
vey,” in [EEE International Advance Computing Conference, 2009. IACC
2009 (IEEE, 2009), pp. 1530-1537.

7, Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Technical Report (Stanford InfoLab,
1999).

28U. Feige, “A tight upper bound on the cover time for random walks on
graphs,” Random Struct. Algorithms 6, 51-54 (1995).

2P, Erdos and A. Rényi, “On the evolution of random graphs,” Publ. Math.
Inst. Hung. Acad. Sci. 5, 17-60 (1960).

30A.-L. Barabési and R. Albert, “Emergence of scaling in random networks,”
Science 286, 509-512 (1999).

3IM. E. Newman, “The structure and function of complex networks,” SIAM
Rev. 45, 167-256 (2003).

¥D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” Nature 393, 440-442 (1998).

Chaos 28, 083106 (2018)

33B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun. 6, 1617-1622 (1988).

34y, Batagelj, A. Mrvar, A. Ferligoj, and P. Doreian, “Generalized blockmod-
eling with Pajek,” Metodoloski zvezki 1, 455 (2004).

35p. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Soc. Networks 5, 109-137 (1983).

3See See http://www.webofscience.com for access to the dataset of papers
and respective references.

¥J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM 46, 604-632 (1999).

38 A.N. Langville and C. D. Meyer, “A reordering for the pagerank problem,”
SIAM J. Sci. Comput. 27, 2112-2120 (2006).

3E N. Silva, D. R. Amancio, M. Bardosova, L. da F. Costa, and O. N.
Oliveira Jr, “Using network science and text analytics to produce surveys
in a scientific topic,” J. Informetr. 10, 487-502 (2016).

4B, A. N. Travengolo and L. d. E. Costa, “Accessibility in complex
networks,” Phys. Lett. A 373, 89-95 (2008).

411, T. Koponen and M. Nousiainen, “Modelling students’ knowledge organ-
isation: Genealogical conceptual networks,” Phys. A: Stat. Mech. Appl.
495, 405-417 (2018).

421, T. Koponen and M. Nousiainen, “Concept networks in learning: Find-
ing key concepts in learners’ representations of the interlinked structure of
scientific knowledge,” J. Complex Netw. 2, 187-202 (2014).

B Tacopini, S. Milojevic, and V. Latora, “Network dynamics of innovation
processes,” Phys. Rev. Lett. 120, 048301 (2018).

4“M. Lin and N. Li, “Scale-free network provides an optimal pattern for
knowledge transfer,” Phys. A: Stat. Mech. Appl. 389, 473-480 (2010).

45B. Cao, S. hua Han, and Z. Jin, “Modeling of knowledge transmission by
considering the level of forgetfulness in complex networks,” Phys. A: Stat.
Mech. Appl. 451, 277-287 (2016).

46H.-M. Zhu, S.-T. Zhang, and Z. Jin, “The effects of online social net-
works on tacit knowledge transmission,” Phys. A: Stat. Mech. Appl. 441,
192-198 (2016).

47H. Wang, J. Wang, L. Ding, and W. Wei, “Knowledge transmission model
with consideration of self-learning mechanism in complex networks,”
Appl. Math. Comput. 304, 83-92 (2017).

48X Chen, X. Xiong, M. Zhang, and W. Li, “Public authority control strategy
for opinion evolution in social networks,” Chaos: Interdiscip. J. Nonlinear
Sci. 26, 083105 (2016).

“L. Yin, L.-C. Shi, J.-Y. Zhao, S.-Y. Du, W.-B. Xie, F. Yuan, and D.-B.
Chen, “Heterogeneous information network model for equipment-standard
system,” Phys. A: Stat. Mech. Appl. 490, 935-943 (2018).

SUH.-L. Zhou and X.-D. Zhang, “Dynamic robustness of knowledge collabo-
ration network of open source product development community,” Phys. A:
Stat. Mech. Appl. 490, 601-612 (2018).

SIE Breve, L. Zhao, M. Quiles, W. Pedrycz, and J. Liu, “Particle competition
and cooperation in networks for semi-supervised learning,” IEEE Trans.
Knowl. Data Eng. 24, 1686-1698 (2012).

52D, R. Amancio, O. N. Oliveira Jr., and L. da F. Costa, “Structure-semantics
interplay in complex networks and its effects on the predictability of
similarity in texts,” Phys. A: Stat. Mech. Appl. 391, 44064419 (2012).

3D. R. Amancio, “A complex network approach to stylometry,” PLoS ONE
10, 0136076 (2015).

3*H. Chen, X. Chen, and H. Liu, “How does language change as a lexical
network? An investigation based on written chinese word co-occurrence
networks,” PLoS ONE 13, 0192545 (2018).

55K. C. Chen, M. Chiang, and H. V. Poor, “From technological networks to
social networks,” IEEE J. Sel. Areas Commun. 31, 548-572 (2013).

%R. Pemantle et al., “A survey of random processes with reinforcement,”
Probab. Surv. 4, 1-79 (2007).

STM. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stan-
ley, and H. A. Makse, “Identification of influential spreaders in complex
networks,” Nat. Phys. 6, 888 (2010).


https://doi.org/10.1371/journal.pone.0118394
https://doi.org/10.1063/1.4954215
https://doi.org/10.1038/nrn2575
http://arxiv.org/abs/arXiv:1704.03091v2
https://doi.org/10.1016/j.ins.2017.08.091
https://doi.org/10.1103/PhysRevE.73.046108
https://doi.org/10.1038/NPHYS1130
https://doi.org/10.1103/PhysRevE.80.017102
https://doi.org/10.1103/PhysRevE.94.042309
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1137/120885371
https://doi.org/10.1038/072342a0
https://doi.org/10.1038/072318a0
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1007/s11192-015-1637-z
https://doi.org/10.1109/TPAMI.2006.233
https://doi.org/10.1002/rsa.3240060106
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1038/30918
https://doi.org/10.1109/49.12889
https://doi.org/10.1016/0378-8733(83)90021-7
http://www.webofscience.com
https://doi.org/10.1145/324133.324140
https://doi.org/10.1137/040607551
https://doi.org/10.1016/j.joi.2016.03.008
https://doi.org/10.1016/j.physleta.2008.10.069
https://doi.org/10.1016/j.physa.2017.12.105
https://doi.org/10.1093/comnet/cnu003
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1016/j.physa.2009.10.004
https://doi.org/10.1016/j.physa.2015.12.137
https://doi.org/10.1016/j.physa.2015.08.044
https://doi.org/10.1016/j.amc.2017.01.020
https://doi.org/10.1063/1.4960121
https://doi.org/10.1016/j.physa.2017.08.055
https://doi.org/10.1016/j.physa.2017.08.092
https://doi.org/10.1109/TKDE.2011.119
https://doi.org/10.1016/j.physa.2012.04.011
https://doi.org/10.1371/journal.pone.0136076
https://doi.org/10.1371/journal.pone.0192545
https://doi.org/10.1109/JSAC.2013.SUP.0513049
https://doi.org/10.1214/07-PS094
https://doi.org/10.1038/nphys1746

	I. INTRODUCTION
	II. RANDOM WALKS
	III. MATERIALS AND METHODS
	A. Complex networks models
	B. Real-world networks
	C. Walk models

	IV. RESULTS AND DISCUSSION
	A. ER network discovery
	B. Other models
	C. Influence of the starting node
	D. Structure influence
	E. Real networks

	V. CONCLUSIONS
	ACKNOWLEDGMENTS

