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Abstract The autoregressive (AR) estimator, a non-parametric method, is used to
analyze functional magnetic resonance imaging (fMRI) data. The same method has
been used, with success, in several other time series data analysis. It uses exclusively
the available experimental data points to estimate the most plausible power spectra
compatible with the experimental data and there is no need to make any assumption
about non-measured points. The time series, obtained from fMRI block paradigm data,
is analyzed by the AR method to determine the brain active regions involved in the
processing of a given stimulus. This method is considerably more reliable than the fast
Fourier transform or the parametric methods. The time series corresponding to each
image pixel is analyzed using the AR estimator and the corresponding poles are
obtained. The pole distribution gives the shape of power spectra, and the pixels with
poles at the stimulation frequency are considered as the active regions. The method
was applied in simulated and real data, its superiority is shown by the receiver oper-
ating characteristic curves which were obtained using the simulated data.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the most interesting and
active research areas in brain mapping. It can be used to trace the brain activity in
vivo in a non-invasive way with millimetric spacial resolution, [1-4]. The change in
signal intensity caused by the variation of concentration of oxy and deoxyhemo-
globin due to the oxygen consumption by the active neurons is relatively small, and
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difficult to be determined. There are already a variety of techniques [4, 5], and
continuously new ones are being proposed to analyze the perfusion-based, flow-
based or susceptibility contrast-based fMRI signal. Each one presenting some
advantages and shortcomings. The method proposed in this article has the advantage
that only the measured points are used, there is no need to assume any specific
hemodynamic response function (hrf) and the values of the time series can be real or
complex numbers.

Since the series corresponding to the temporal evolution of active pixels in a fMRI
block paradigm signal contains a weak periodic component, it could be Fourier
transformed to obtain the spectra. The presence of a component at stimulation
frequency can be used to distinguish the active from non-active pixels. However, due
to poor signal-to-noise ratio and scarcity of experimental data points, the spectra
obtained by fast Fourier transform (FFT) are very noisy and full of artifacts making it
impossible to single out the feeble periodic component present in active pixels. Lange
and Zeger [6] suggested a fMRI data analysis method using the discrete FT to
calculate the power spectrum in the neighborhood of stimulus frequency and their
harmonics. But, their method stands in stark contrast with ours in several aspects: (a) it
is a parametric one, (b) they assumed that the fMRI signal is a convolution of the
known stimulus function with one unobservable, unknown and yet spatially variable
hrf, supposed to be in a class of parametric functions whose FT can be evaluated
analytically, or whose partial derivatives have FT that can be evaluated analytically.
Lange and Zeger’s method does a frequency domain regression with hundreds of
whole head images. Marchini and Ripley [7] use the FFT after de-trend, hard noise
filtering and zero padding. In this work, no pre-processing is needed.

The AR estimator used in this paper has been used in a variety of problems with
excellent results; the AR estimator uses exclusively the available experimental
data points to estimate the most plausible power spectra compatible with the
experimental data [8—11].

The periodic stimulation of a subject in fMRI experiment, using block paradigm,
produces physiological changes in the brain region responsible for the processing of
these stimulus. These changes affect the nuclear magnetic resonance (NMR) signal
in a feeble way [2, 12—14]. A series of images are obtained during the active and rest
periods at regular time intervals producing a minute periodic component in the time
series corresponding to the active pixels. Often a post-processing is needed to
realign, normalize and correct eventual movements. Also, a local spatial mean can
be obtained to increase the harmonic signals and avoid isolated false positives. Due
to the background signal, the periodic component in the time series is almost
imperceptible and needs further treatment to single it out.

The power spectra obtained by FT invariably present a windowing artifact.
Windowing is, in fact, an artificial constraint imposed on experimental data, by
assuming null values for data points outside the measurement interval which results
in a convolution of the real spectra and the window, which leads to a distorted
spectra. In order to obtain the spectra as accurate as possible, no restrain should be
imposed on the information outside the observation period. Since the fMRI block
paradigm time series contain noise, it can be divided into two parts: a casual part
and a stochastic one. The causal part can be modeled analytically by some function
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(in general unknown) and the second part is a random series. The AR estimator
models the casual part using the past data to predict the future one. In order to use
the AR estimator, the time series must be stationary, roughly speaking, it means that
the causal part should be oscillatory. If the time series causal part has a small time
variation, a quasi-stationary time series, the AR estimator can still be used. Often
the AR process is used in fMRI data analysis to remove “T1 effects” that arose from
the spin—lattice relaxation [15].

The AR estimator can also be applied to complex numbers. In the case of fMRI
data, it is possible to construct the time series using the real and imaginary parts of
the reconstructed images rather than the pixel module. The use of complex numbers
instead of pixel modulus ensures that the noise characteristic remains unchanged
[16]. Using this method with fMRI block paradigm it is possible to determine the
region of the brain involved for the processing of a given stimulus. By AR modeling
of the time series of each pixel a frequency decomposition is achieved. Pixels with
peak at the stimulus frequency or close to it will be considered active pixels,
otherwise, are inactive ones. As the AR model uses past values to calculate the
future values plus noise it is possible, in principle, to extend the time signal and, by
averaging, build the hrf curve in each active pixel.

In order to measure the method performance, receiver operating characteristic
(ROC) curves was built. ROC curves show the sensitivity, as the fraction of
correctly classified active pixels, against the specificity, weighed by the fraction of
incorrectly classified inactive pixels.

2 Materials and Methods
2.1 Autoregressive Method

There are several methods for analysis of the time series with limited experimental
data and/or low signal-to-noise ratio. One of these methods is the AR estimator, a
robust estimator, which uses the preceding data points to predict the following ones
[8—11]. The time series is considered as a function corrupted by white noise, where
each term is modeled as a linear combination of p previous terms plus noise (Eq. 1).
The coefficients, a,,, m = 1,...,p, are determined from the recorded values of the
time series. The value of p, which is used to determine the following points is
normally a critical input parameter.

The AR estimator can also be defined as an output of a filter driven by a white
noise:

p
St = — § AyS—m + €, (1)
m=1

where s, is the time series term at time z#, the a,,’s are the filter coefficients, p is the
filter order and ¢, is a zero mean white noise process. The corresponding spectrum
can be obtained by the application of the FT to Eq. (1), using the time shift property
of the FT and appropriate factorization [8—10]
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where 62 is the estimated random input noise variance. The AR’s spectra are more
reliable than those obtained by FFT because, in using FFT, one assumes that there
are an infinity of noiseless experimental data points. Therefore, the resulting spectra
are the convolution of the “true” spectra with the observation window. These
hypotheses are not assumed in AR estimator and the spectra are obtained using just
the data within the recorded time interval.

The value of p, the filter order, is an input parameter. There are several criteria
for choosing the optimal value of the filter order [8, 9, 11, 17], The final prediction
error (FPE) criterion from Akaike is used in this work [17]. The values of all a,, and
af are calculated through the Burg algorithm [18]. A small p renders a spectrum
with few broad peaks, in fact the number of peaks is almost equal to p/2, since the
poles of AR estimator defined as the zeroes of the polynomial are obtained from Eq.

(2) by substitution of z = e*™
ZP+aIZP*1 +...+ap, (3)

a,, values are taken from the denominator of the same equation. The polynomial (3)
has p roots with module smaller than unity, lying within the unit circle Izl < 1. The
angle defined as 0 = tan~!(Im{z}/Re{z}) is called the argument of the complex
number z and, if 0 < 0 < 7, the complex number is said to belong to the upper half
of complex plane. As f, in Eq. (2), varies from 0 to 0.5, z = e>™ describes the upper
half of the unit circle Izl = 1. Therefore, the roots of polynomial (3) lying to the
upper half of complex plane, also called poles of the AR estimator, determine the
spectrum shape. The angle 0 is identified as the angular frequency [17]. In our
application, a small value for the order parameter provides a better distinction
between active and inactive pixels. As remarked, a pixel is classified as active if its
time-series spectrum has a peak in the stimulus frequency region. A peak is localized
by its pole argument. The module of pole used to classify the pixel as active can be
also used to assign the activity intensity. The module closer to unity corresponds to
intense peak which indicates more acute stimulus response at that pixel.

2.2 Hemodynamic Response Function

The methods normally used to process the fMRI data assume an “ad hoc” shape for
hrf. It is well known that the shape of hrf is difficult to be measured experimentally
and in fact it can change form pixel to pixel and temporally. With the proposed
method, it is not necessary to do any presupposition.

2.3 Construction of Functional Map

To test the performance of our method, a simulated binary image P (Fig. 1a) was

used. The ones and zeroes represent the active and inactive pixel, respectively.
The block paradigm setup was simulated by intercalating three sets of images

corresponding to activation periods with three sets of images corresponding to
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Fig. 1 a Simulated functional map used to generate the data. The white points, equal to one, represent
the active points and the black ones, equal to zero, represent the inactive points. b One of the 60 slices
used to obtain the 128 x 128 time series with 60 points each. It was constructed by adding noise to image
a (the signal-to-noise ratio is 0.5). ¢ Reconstructed functional map using the AR method with the
following parameters: AR filter order p = 20 and frequencies within 0.267/T rad/s and 0.361/Tx rad/s
(stimulus angular frequency & 15 %), pole intensity equal or great than 0.95 was considered as active
pixel. d Reconstructed functional map obtained by the Statistical Parametric Mapping Program,
significant value of 0.95 was used

resting periods, each set containing ten images (128 x 128 pixels). For each pixel
I=(i,j) with i, j=1,...,128, a time series Y;(t,) was constructed, where t, =
nTg,n = 1,...,60. Ty represents the time interval between two subsequent images.
The Y;(z,)’s were modeled as in [19, 20] considering that (a) the system has an
assumed known global hrf [21], that (b) every pixels is either active or not, that (c)
at every pixel and time, the MR signal has been corrupted by some noise process,
and that (d) linear model, following [22] is adequate:

' , ifPr=1
) = { Al o = @)
where
fl(tn) = by +A1h(tn)v (5)

and 1, represents the noise process with standard deviation equal to A/2h(t,), the
hrf is a periodic function with period equal to 20 7k, whose maximum value is 1
(Fig. 2) Ay is the signal amplitude, by is the baseline at the pixel I.
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3 Results

Instead of applying the AR estimator directly to the sequence Y;(z,), given in Eq.
(4), it was applied to Y;(#,) — my, where my is the mean value of Y;(z,) with I
constant. In this way, the zero frequency component in the power spectra of Eq. (5)
is eliminated. The power spectra of the other signals like the relaxation decay have
low frequency and do not interfere with the peak at the stimulus frequency. The
“ar.burg” routine from software R [23, 24] was used to build a script for the AR
method to process the fMRI data. The time series for each pixel was modeled by the
AR process with filter order of p = 20 and the values of the filter coefficients,
a,,, fitted using the Burg’s method [8, 11, 18]. Then, the root arguments, 0, of the
polynomial (3) gives the peak localization in rad/s units. The pixel is considered as
active if its corresponding time series has a root within 2z (1/7x £ 0,15/TR) rad/s.
The £ 0.37/Ty interval is chosen due to the error induced by phase dependence of
Burg’s method [25].

The ROC curves were used for quantitative comparison between different
methods and different processing parameters. The AR estimator method was
compared with the SPM version 8.0 following the tutorial, adapting the
corresponding parameters to our simulated data [15]. In all cases, the ROC curve
parameter for the AR estimator method was the cutoff value of the pole used to
classify the pixel as active. The ROC curve parameter for the SPM was the
significance value, labeled as p in the software.

As can be seen in Fig. 3, the present method, solid line, has a better ROC
performance if compared with the traditional SPM program [15] (dashed line). For
the AR method the filter order was 20 and the roots with the stimulus frequency
415 % considered as an active pixel. with these conditions and pole cutoff of 0.95,
the method result can be seen in Fig. 1c. In Fig. 1d, the SPM result with significant
value of 0.95 is shown.

Normally, the AR estimator order parameter is a critical one and should be
chosen rather carefully. However, in our case this is not so and p can assume a
range of values without influencing drastically the resulting functional map. This
can be confirmed quantitatively from the ROC curves obtained for different values
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Fig. 3 ROC curves for AR
(solid line) with filter order of o SPM
p = 20, and for SPM (dashed -~
line) [15]. The time series used
to build the simulated data had
three periods with 20 images by
stimulus period and signal-to- -
noise ratio of 0.5 5
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Fig. 4 ROC curves for AR
order parameters,
p = 12, 16, 20, 24, 26. The
better ROC curve happens for
p = 20 (solid line)
2
o)
5] “
0.4 |
02r
0

0 0.05 0.1 0.15 0.2 0.25 0.3
1-Spec

of p, as it can be seen in Fig. 4, a higher sensitivity and specificity are obtained
for 16 < p, curves represented in dashed line (p = 16), solid line (p = 20),
dashed line (p = 24) and dotted line (p = 26). All those curves have similar
behavior. On the other hand, the dotted line ROC curve for p = 12 showed a poor
performance.

The robustness of the AR method was tested varying the frequency interval used
to classify the active/inactive pixels. The interval limits are presented in Table 1.

In Fig. 5, the ROC curve for each interval in Table 1 is shown. The dashed-
dotted line, 5 %, has the poor performance as compared to the other intervals. For
the solid line, 10 % curve, a higher specificity was achieved and a better sensitivity.
For interval with 15 %, dotted curve, a still better sensitivity has reached in relation
to the other two cases. For this case, the specificity was decreased. The dashed-
dotted curve, 20 % curve, has similar sensitivity as the 15 % case, but, worse
specificity.

Another characteristic is the root module distribution, shown in Fig. 6. As it can
be seen, the majority of the modulus is concentrated close to zero which
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Table 1 Interval limits for
angular frequency used to
classify active pixels

Fig. 5 ROC curves for different
frequency intervals

Fig. 6 Histogram for the root
polynomial (3) module. The
higher count for lower values,
zero, correspond to inactive
pixels

% Inferior (rad/s) Superior (rad/s)
5 0.298 0.330

10 0.28 0.34

15 0.267 0.361

20 0.251 0.377
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corresponds to inactive pixels and there is another concentration of modulus close to
1 (>0.9), corresponding to active pixels.

3.1 Application to Real fMRI Data Set

A bilateral finger tapping experiment was performed in a healthy male subject with
16 s off followed by five epoch of 25 s on and 25 s off, with echo time Tg = 40 ms
and repetition time Tg = 3,840 ms. Using a 1.5 T scanner (Siemens, Magneton
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Fig. 7 Result of the application
of the AR method in a real fMRI
data set (for details see text)

Vision), 64 axial images of a slice passing through the motor cortex were acquired.
The 60 final images with a 128 by 128 pixel resolution were used to build the fMRI
data set. Figure 7 shows the activity map of the chosen slice obtained by AR
method, the active pixels are marked with red crosses. For clarity the result was
superimposed on a structural image. The AR filter order was p = 20 and a +15%
frequency interval was considered.

4 Conclusions

Normally, the frequency of stimulus in block paradigm is precisely known, while
the shape and timing of the hemodynamic response is rather ambiguous. The AR
estimator analysis, presented in this paper, makes no assumption about the form and
timing of the hrf. In fact, it can vary from region to region in brain. The only
necessary information is the fact that in block paradigm the stimulus are periodic
with known frequency. If the spectrum of the time series corresponding to a pixel
contains a peak around the stimulus frequency, it is chosen as active region. The
argument of the complex poles of the AR process corresponds to the peaks in the
power spectra. In contrary to the FT analysis, the power spectra are obtained without
the addition of any “ad hoc” information in to the measured data. This method is
easily implemented and computationally it is as fast as other methods. Using the
simulated data the AR estimator method was compared to SPM. The comparison
between the corresponding ROC curves shows the superiority of the AR estimator.

This method can also be applied to any other fMRI paradigm with periodic
stimulus.
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