

Journal Pre-proof

Aluminum, at an environmental concentration, associated with acidic pH and high water temperature, causes impairment of sperm quality in the freshwater teleost *Astyanax altiparanae* (Teleostei: Characidae)

João Paulo Silva Pinheiro, Cecilia Bertacini de Assis, Eduardo Antônio Sanches, Renata Guimarães Moreira

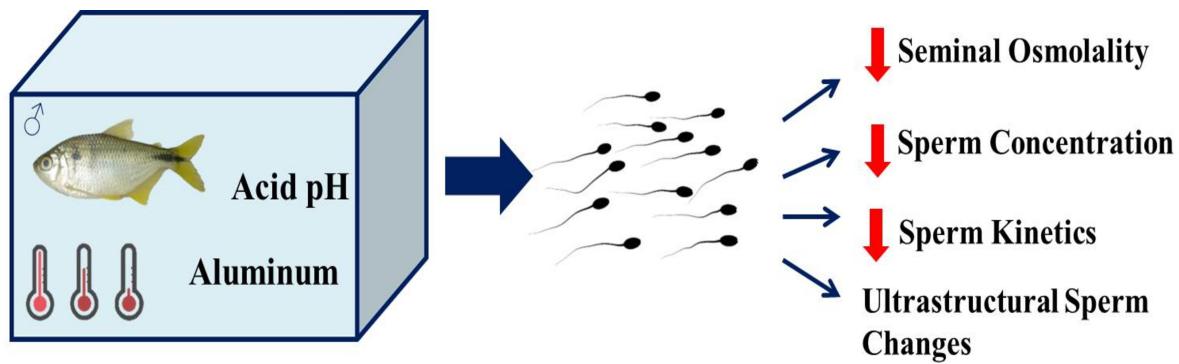
PII: S0269-7491(19)37524-4

DOI: <https://doi.org/10.1016/j.envpol.2020.114252>

Reference: ENPO 114252

To appear in: *Environmental Pollution*

Received Date: 14 December 2019


Revised Date: 11 February 2020

Accepted Date: 20 February 2020

Please cite this article as: Silva Pinheiro, Joã.Paulo., Bertacini de Assis, C., Sanches, Eduardo.Antô., Moreira, Renata.Guimarã., Aluminum, at an environmental concentration, associated with acidic pH and high water temperature, causes impairment of sperm quality in the freshwater teleost *Astyanax altiparanae* (Teleostei: Characidae), *Environmental Pollution* (2020), doi: <https://doi.org/10.1016/j.envpol.2020.114252>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1 **Aluminum, at an environmental concentration, associated with acidic**
2 **pH and high water temperature, causes impairment of sperm quality**
3 **in the freshwater teleost *Astyanax altiparanae* (Teleostei: Characidae)**

4 João Paulo Silva Pinheiro¹, Cecilia Bertacini de Assis¹, Eduardo Antônio Sanches²,
5 Renata Guimarães Moreira¹

6 1. Universidade de São Paulo, Institute of Biosciences, Department of Physiology,
7 Laboratory of Metabolism and Reproduction of Aquatic Organisms -
8 LAMEROA; Matão Street, 14 lane, number 101 - room 220, Cidade
9 Universitária - São Paulo – SP- Brazil.

10 2. Universidade Estadual Paulista, Fishery Engineering Course, Nelson Brihi
11 Badur Avenue, 430, Registro – São Paulo - SP – Brazil.

12

13 João Paulo Silva Pinheiro: joaopaulospinheiro@yahoo.com.br

14 Cecília Bertacini de Assis: cbertacini4@gmail.com

15 Eduardo Antônio Sanches: sanches@registro.unesp.br

16 Renata Guimarães Moreira: renatagm@ib.usp.br

17 Corresponding author: João Paulo Silva Pinheiro: joaopaulospinheiro@yahoo.com.br

18 +551130917531

19

20 **Abstract**

21 Given the toxicity of metals, including aluminum (Al), and the effects of water
22 temperature on ectotherms, we investigated the individual or association effect of these
23 variables (Al + acidic pH + temperature changes) on sperm quality of *Astyanax*
24 *altiparanae*. Mature males were divided into nine experimental groups based on the
25 combination of each of three water temperatures (20, 25, and 30 °C) with neutral and
26 acidic pH values (7.0 and 5.5, respectively) with or without 0.5 mg L⁻¹ Al. The fish

27 were subjected to subacute, semi-static exposure and at 24 and 96 h were evaluated for
28 seminal parameters: (1) pH; (2) osmolality; (3) sperm concentration; (4) sperm
29 morphology; (5) sperm kinetics; and (6) sperm ultrastructure. At 30 °C, Al caused a
30 reduction in osmolality (24 and 96 h) and sperm concentration (24 h). When analysing
31 sperm kinetics (30 sec post-activation), Al caused a reduction in total motility at all
32 temperatures (24 h), and when this exposure time was longer (96 h), both acidic pH and
33 Al addition to the water caused sperm motility reduction. By analysing curvilinear
34 velocity (VCL) 30 sec after sperm activation (24 and 96 h), the acidic pH caused a
35 reduction in sperm movement at 20 and 30 °C, but at 25 °C Al triggered this reduction.
36 Finally, Al in the water caused ultrastructural changes in the sperm head, midpiece, and
37 flagella regardless of water temperature. Also, it was found that the combination of Al
38 at 30 °C caused a reduction in sperm head area while at 20 °C, Al triggered a reduction
39 in the midpiece area. Therefore, acidity influenced some *A. altiparanae* sperm
40 parameters but Al in the water accentuated these effects on seminal quality, especially
41 seminal osmolality and sperm concentration, kinetics, and ultrastructure. This toxicity
42 was also influenced by changes in water temperature.

43 **Keywords:** Fish; Metal; Reproduction; Spermatozoa; Subacute exposure

44

45 Al negatively affects *A. altiparanae* sperm quality in a temperature-dependent manner.

46

47 **Introduction**

48 Aluminum (Al) is one of the most abundant elements on the Earth's crust;
49 however, its bioavailability is limited due to low solubility at pH values between 6 and
50 8. There are two major sources of Al in the aquatic environment: (1) indirect
51 solubilization by the release of Al from rocks and soils (natural source) and (2) addition

52 of Al salts to freshwater by anthropogenic actions in order to decrease phosphate
53 concentrations, reduce algal growth, or to clarify water through particulate precipitation.
54 Additionally, as freshwater becomes progressively or episodically acidified by acid rain,
55 Al bioavailability increases (Wilson, 2011).

56 In addition to pH, which acts on Al speciation, other environmental factors, such
57 as temperature, may interfere with metal toxicity. The association of low temperatures
58 with low pH values maximizes Al water solubility. High temperatures cause increase of
59 animal metabolism, consequently promoting a higher respiratory rate and in turn,
60 causing an increase in Al absorption by respiratory structures, such as gills, thus leading
61 to death of aquatic animals (Poleo and Muniz, 1993; Wilson, 2011; Pinheiro *et al.*,
62 2019). The United States Environmental Protection Agency (EPA) recommends an
63 acceptable Al limit of 0.2 mg L^{-1} in the water, while the National Environmental
64 Council (CONAMA) in Brazil sets the maximum dissolved Al value of 0.1 mg L^{-1} .
65 However, it is possible to observe that the concentration found in many rivers exceeds
66 these values, such as in the state of São Paulo, Brazil (e.g. 0.1 to 1.0 mg L^{-1} in the Mogi
67 Guaçu River; CETESB, 2018).

68 Although Al has no apparent biological function in organisms (Nayak, 2002;
69 Fernández-Dávila *et al.*, 2012), some studies have shown that Al can be found in
70 different animal organs, such as brain (Mold *et al.*, 2018), liver, muscle, kidneys, gills,
71 ovaries, and teleost testes (Correia, 2012; Pinheiro *et al.*, 2019), rat testes (Martinez *et*
72 *al.*, 2017) and even in fluids from different animals, such as human (Klein *et al.*, 2014)
73 and teleost semen samples (Pinheiro *et al.*, 2019). Furthermore, studies indicate that Al
74 can interfere with several physiological processes, such as reproduction, by acting as an
75 endocrine disruptor of the hypothalamic–pituitary–gonadal axis (Correia *et al.*, 2010;
76 Correia, 2012; Kida *et al.*, 2016). Other studies with teleost have shown the capability

77 of different metals, such as mercury ([Hg] Dietrich et al., 2010; Hayati et al., 2019),
78 cadmium ([Cd]; Dietrich et al., 2010), and copper ([Cu]; Bombardelli et al., 2016;
79 Zbral et al., 2019) to negatively affect sperm quality by reducing motility rates,
80 membrane integrity, normal morphology, mitochondrial functionality, DNA integrity,
81 fertilization rates, and hatching.

82 The studies addressing the effects of Al in rats and humans have shown that this
83 metal influences sperm concentration reduction, motility rates reduction, sperm
84 abnormalities, and viability reduction (Klein et al., 2014; Cheraghi et al., 2017;
85 Martinez et al., 2017); however, in teleost, this information is not available so far.
86 However, Pinheiro et al. (2019) quantified Al in the semen of *Astyanax altiparanae* and
87 observed that this metal bioaccumulates in this fluid and that there is an association of
88 this bioaccumulation with temperature and acidic pH, thus triggering cytotoxic and
89 genotoxic effects and generating reversible DNA damage in the sperm of this teleost
90 species. This species has been used in several studies involving bioassays (Gomes et al.,
91 2013; Vieira et al., 2013; Chehade et al., 2014; Bettim et al., 2016; Kida et al., 2016;
92 Abdalla et al., 2019; Brambila-Souza et al., 2019; Pinheiro et al., 2019) due to its high
93 plasticity and easy handling in the laboratory and thus, represents a good bioindicator
94 for metal toxicity-related events.

95 Thus, in view of the above and after considering the current scenario of climate
96 change, which includes the increase in temperature and anthropic action on water
97 bodies, it was found that there are no available data about the effects of metals,
98 including Al on the seminal quality of teleosts (*in vivo*) in association with
99 environmental factors, such as temperature, during the reproductive period. Moreover,
100 the reproductive capacity of animals is directly related to the environment in which they
101 live and may be influenced by numerous physical and chemical factors in addition to

102 environmental pollutants. Therefore, given the abundance of Al on Earth, our main
103 concern was the way in which this metal, at an environmental concentration (0.05 mg L⁻¹)
104 in combination with temperature changes (20, 25, and 30°C) in combination with
105 acidic pH, which make do this metal soluble, can influence spermatic parameters in
106 teleosts using *A. altiparanae* as a neotropical model. We hypothesized that Al would
107 negatively affect *A. altiparanae* sperm quality in a temperature-dependent manner.
108 Thus, the objective of this study was to evaluate the effects of subacute exposure of *A.*
109 *altiparanae* males to Al at environmental concentrations in addition to the individual
110 and/or synergistic actions of water temperature and acidic pH on the seminal quality of
111 this species.

112

113 **Material and Methods**

114 *Animals*

115 Mature *A. altiparanae* males (n = 360, Lt = 8.40 ± 0.05 cm; Wt = 7.45 ± 0.16 g)
116 were kindly donated by the *Companhia Energética de São Paulo* - CESP (Paraibuna -
117 SP) and kept for seven days at the Ectothermic Facility in the Department of Physiology
118 (IB/USP). The animals were divided into 18 glass aquariums (10 animals/aquarium; 132
119 L water/aquarium), with water renewal every 24 h (90%) and daily feed *ad libitum* with
120 extruded feed (32% crude protein). Furthermore, to avoid confounding factors due to
121 faeces and other factors, the fish were deprived of food 24 h before the beginning of the
122 experiment until the end of subacute exposure. The study was approved by the Animal
123 Use Ethics Committee (CEUA) at IB/USP (265/2016; Process 16.1.417.41.3).

124 *Experimental Design*

125 Animal exposure (n= 360) to experimental treatments was carried out in two
126 periods (each one started at the moment that temperature stabilization was achieved):

127 (1) 180 animals exposed to experimental conditions for 24 h and (2) 180 animals
128 exposed to experimental conditions for 96 h.

129 Each exposure period consisted of nine experimental groups (duplicates), which
130 were chosen based on previous ecotoxicological bioassays with *A. altiparanae* (Correia
131 et al., 2010; Kida et al., 2016; Abdalla et al., 2019; Pinheiro et al., 2019) and the
132 plasticity of the species studied in undergoing rapid physiological responses to stressors.
133 The experimental groups consisted of combining each of the three temperatures (20, 25,
134 and 30 °C) *versus* neutral pH (7.0), acidic pH (5.5), and acidic pH (5.5) with Al,
135 resulting in nine experimental groups: (1) water at 20 °C, no Al, neutral pH; (2) water at
136 20 °C, no Al, acidic pH; (3) water at 20 °C, with Al, acid pH; (4) water at 25 °C no Al,
137 neutral pH (control group); (5) water at 25 °C, no Al, acidic pH; (6) water at 25 °C, with
138 Al, acid pH; (7) water at 30 °C, no Al, neutral pH; (8) water at 30 °C, no Al, acidic pH;
139 (9) water at 30 °C, with Al, acidic pH. Al was added to the water for groups T3, T6, and
140 T9 at a concentration of 0.5 mg L⁻¹ water (Pinheiro et al., 2019). The Al group was
141 carried out only in acid pH because of its bioavailability.

142 Temperature adjustment in each experimental group was conducted at a rate of 1
143 °C h⁻¹ (Trueman et al., 2000). This Al concentration has been previously used in studies
144 by our group (Correia et al., 2010; Kida et al., 2016; Abdalla et al., 2019; Pinheiro et al.,
145 2019) and also represents actual contamination values of some basins in the state of São
146 Paulo according to reports issued by the *Companhia Ambiental do Estado de São Paulo*
147 (CETESB). Solutions were prepared with Al₂(SO₄)₃.18H₂O (Sigma Aldrich) and 65%
148 HNO₃ (Suprapur, Merck; Pinheiro et al., 2019).

149 Aquarium water was filtered and analysed daily for physicochemical parameters
150 (temperature, dissolved oxygen, and pH) with the aid of an oximeter (YSI 55) and pH
151 meter (Gehaka). Al concentration was measured using inductively coupled plasma mass

152 spectrometry (ICP-MS) method and was within the expected range (0.36 ± 0.09 to
153 0.50 ± 0.02 mg L⁻¹; Pinheiro et al., 2019).

154 *Seminal Collection*

155 Before each collection, the animals were induced with crude carp pituitary
156 extract obtained commercially (Danúbio Aquacultura) to release sperm at a
157 concentration of 5 mg kg⁻¹ of body mass. Since spermiation is faster at higher
158 temperatures, the time of each injection was established according to the treatment
159 temperature so that the values of accumulated thermal units (ATU) were between 260
160 and 275 (13 h before collection for the animals kept at 20 °C; 11 h before collection for
161 animals kept at 25 °C; 9 h before collection for animals kept at 30 °C). For seminal
162 collection, the animals were sedated with eugenol-based solution (clove oil at 100 mg L⁻¹
163) in a 10 L aquarium until they presented loss of equilibrium.

164 After sedation, an animal's urogenital papilla was dried, and cranial-caudal
165 abdominal massage was performed. The semen of each animal was collected with an
166 automatic pipette, aliquoted in graduated polyethylene tubes, and kept in a polystyrene
167 thermal box (4 °C). After these steps, samples contaminated with water, blood, faeces,
168 and/or urine were discarded, and semen kinetics were immediately evaluated with an
169 optical microscope to identify if the samples had been activated during collection. Also,
170 semen samples that showed this activation, those activated with distilled water, and
171 those that were immobile were discarded. Only the viable samples were kept for the
172 seminal analyses described below.

173 The seminal volume was measured with graduated polyethylene tubes and
174 automatic pipette. The volume of semen collected was 31.24 ± 2.78 µL (24 h) and 36.14
175 ± 3.19 µL (96 h). The seminal pH was evaluated with pH reagent strips (Merck).

176 To measure the seminal osmolality aliquots of 20 μ L of semen from each animal
177 were mixed with 30 μ L of distilled water in a graduated polystyrene tube and deposited
178 on a digital osmometer (5004 MICRO-OSMETTE™ Automatic High Sensitivity -
179 Precision Systems Inc.).

180 A 4 μ L semen sample from each animal was fixed in 400 μ L of formalized
181 citrate solution for analysing sperm morphology. Ten microliters of this solution were
182 then mixed with 3 μ L of Rose Bengal dye. From this mixture, 4 μ L were removed and
183 dripped onto a glass slide (two slides per animal). After drying, 100 sperm cells per
184 slide were analysed using an optical microscope according to the following criteria: (1)
185 macrocephaly; (2) microcephaly; (3) normal tail; (4) curled tail; (5) folded tail; (6)
186 corrugated tail; and (7) midpiece evaluation (adapted from Galo et al., 2011).

187 Semen samples from each animal were fixed in 4% formaldehyde citrate
188 solution (4 μ L semen:4 mL fixative for a ratio of 1:1,000) in order to evaluate sperm
189 concentration. From each diluted sample, 20 μ L were deposited on a Neubauer chamber
190 and the number of sperm cells were counted under an optical microscope (400 x)
191 (Pinheiro et al., 2016). The calculation of sperm concentration was based on a method
192 by Wirtz and Steinmann (2006).

193 For sperm kinetics analysis, an aliquot of 1 μ L semen (in triplicate) was
194 activated with 1000 μ L of distilled water (pH 6.9; 25°C; it was monitored in each
195 motility evaluation and it was renewed when necessary) to evaluate motility duration,
196 total motility (MOT), sperm velocities (curvilinear velocity [VCL], straight-line
197 velocity [VSL], average path velocity [VAP]) and rectilinearity (STR). The images
198 were obtained with a trinocular light microscope (BEL) coupled to a Basler camera
199 (AcA640: 120 uc) and connected to a computer. The videos were captured with AVT
200 Universal Package software at 100 fps (640 x 480 pixels) in *.avi format, edited with

201 VirtualDub-1.9.0 software (virtualdub.org) and exported as *.jpg image sequences. Thus
202 100 images (1 sec) of 10 and 30 sec post-activation were edited by ImageJ (National
203 Institutes of Health, USA, <http://rsbweb.nih.gov/ij/>) and analysed using the CASA
204 plugin (University of California and Howard Hughes Medical Institute, USA,
205 <http://rsbweb.nih.gov/ij/plugins/casa.html>). The videos were processed based on the
206 description made for CASA free software (Wilson-Leedy and Ingemann, 2007) and
207 adjusted settings according to Sanches et al. (2013) with minimum mobile speeds of
208 $VCL = 15 \mu\text{m s}^{-1}$, $VAP = 6 \mu\text{m s}^{-1}$ and $VSL = 1 \mu\text{m s}^{-1}$.

209 In order to carry out the analyses after semen collection, the animals were
210 sacrificed through spinal cord section at the operculum level (Schreck and Moyle,
211 1990). A ventral opening was performed to remove the testes, which were fixed in
212 Karnovsky's solution (Karnovsky, 1965) for spermatozoa ultrastructural analysis. The
213 animal samples were selected according to the results obtained by Pinheiro et al. (2019)
214 regarding the absence of Al in the testes of the control groups for each temperature and
215 the presence of Al in the gonads of males exposed to this metal after 96 h (n= 6 animals
216 per treatment). This time was selected because after 24 h, there were no differences in
217 Al concentration in the testes in any treatment described by these authors. Subsequently,
218 after fixation of the samples, the testes were washed in phosphate buffer (0.1M; pH 7.3)
219 and immersed in osmium tetroxide and 0.5% uranyl acetate. An increasing dehydration
220 acetone series was used, the material was placed in the 1:1 mixture of 100% AralditeTM
221 resin, and then immersed in pure resin. Finally, the ultrathin sections were stained with
222 a saturated solution of uranyl acetate in 50% ethanol and lead citrate. The samples were
223 processed at the *Centro de Microscopia Eletrônica* of the *Universidade Estadual Júlio*
224 *de Mesquita Filho* (Botucatu Campus) and analysed under the EM900 Transmission

225 Electron Microscope Carl Zeiss (7,000 and 12,000 x) at the *Centro de Aquisição de*
226 *Imagens e Microscopia* from the Institute of Biosciences (Caimi, IB/USP).

227 *Statistical analyses*

228 The data obtained were expressed as mean \pm standard error of the mean and
229 subject to the Kolmogorov-Smirnov normality test and Spearman test for
230 homoscedasticity testing. When necessary, data were normalized (log10). Comparisons
231 between groups were made by the two-way analysis of variance (ANOVA) test
232 (temperature and treatment as variables) followed by the Holm-Sidak post-test. In all
233 cases, a significance level of 0.05 was considered statistically significant. Statistical
234 analyses were performed using SigmaStat 3.5 for Windows software.

235

236 **Results and Discussion**

237 This is the first study that investigated the seminal quality of teleosts after
238 exposure to Al and associated with physicochemical water factors. Sperm quantity
239 (such as sperm volume and concentration) and quality (such as kinetics, seminal plasma
240 pH, membrane composition and stability, and DNA integrity) can determine
241 fertilization capacity and hence reproductive success (Fauvel et al., 2010). Some of
242 these indicators, such as pH, osmolality, and seminal plasma composition, are specific
243 biomarkers that directly influence sperm maturation and sperm capability to fertilize
244 oocytes as sperm are immobile in the testes and seminal plasma (Kowalski and Cejko,
245 2019).

246 *Seminal pH*

247 Seminal pH values generally vary from 6 to 9 (Alavi and Cossion, 2005; Sanches
248 et al., 2011) between different species of teleosts. The seminal pH of *A. altiparanae* was
249 8.63 ± 0.07 in the control group (25 °C and neutral pH). After 24 h of exposure, within

250 each temperature setting, there was no difference in seminal pH considering the
251 different experimental groups ($P = 0.137$) and the same in neutral pH at different
252 temperatures ($P = 0.62$ – 20 °C *versus* 25 °C; $P = 0.14$ – 25 °C *versus* 30 °C; $P = 0.05$ –
253 20 °C *versus* 30 °C). However, at acidic pH and acidic pH + Al, seminal pH decreased
254 in animals kept at 30 °C (Fig. 1A). Thus, acid pH with or without the presence of Al, in
255 the aquatic environment, did not influence seminal pH. However, the temperature
256 variation interfered with the results in which a higher temperature yielded a lower pH at
257 30 °C.

258 Despite this variation in semen pH, this indicator is still within the range that
259 facilitates sperm mobility (slightly alkaline) when in contact with water for possible
260 fertilization, and these differences found within 24 h of exposure along with other
261 factors possibly influenced sperm kinetics among the different experimental treatments.
262 After 96 h of exposure (Fig. 1B), seminal pH was not affected by either treatment or
263 temperature. Probably, the exposure time allowed for a readjustment of the animals, and
264 the seminal pH returned to the default value while maintaining its buffering capability.
265 Although the influence of water quality on this sperm parameter has previously been
266 recognized, studies evaluating the effect of teleost exposure to pollutants on seminal pH
267 and seminal osmolality were not found.

268 *Seminal Osmolality*

269 Osmolality is one of the main signals for the initiation of sperm motility in
270 teleosts since sperm is immobile in the testes and activated when they come into contact
271 with water (osmotic shock), which in freshwater teleosts, occurs at a low osmolality of
272 up to 50 mOsmol kg⁻¹ (Cosson, 2004; Alavi and Cosson, 2006). Seminal osmolality
273 varies among fish species, ranging from 230 ± 82 to 346 ± 18.26 mOsmol kg⁻¹ in
274 cyprinids, from 232 ± 13 to 332 ± 5.1 mOsmol.kg⁻¹ in salmonids, and from 38 ± 3 to

275 93.6 ± 7.3 mOsmol.kg⁻¹ in acipenserids (Alavi and Cosson, 2006). The seminal
276 osmolality of *A. altiparanae* was 224.83 ± 4.97 mOsmol.kg⁻¹ (at neutral pH), which is
277 within the range reported for teleosts. In the present study, after 24 h exposure (Fig.
278 1C), animals maintained at 20 and 25 °C displayed a reduction in seminal osmolality
279 when exposed to acidic pH and acidic pH with Al compared to neutral pH ($P < 0.001$).
280 Already at 30 °C, all groups differed from each other ($P < 0.001$). The most significant
281 reduction occurred when animals were exposed to acidic pH with Al. Besides, there was
282 no significant difference ($P = 0.101$) within each experimental group at different
283 temperatures.

284 When the exposure period was prolonged (96 h), seminal osmolality (Fig. 1D)
285 varied according to different pH values with a dependence on temperature; thus, there
286 was an interaction between treatment and temperature ($P \leq 0.001$). At 20 °C, there was a
287 decrease in seminal osmolality in the animals maintained in acidic pH and acidic pH
288 with Al compared to neutral pH ($P < 0.001$), while at 25 °C, this decrease was only
289 observed in the group exposed to acid pH and Al ($P < 0.001$). Already at 30 °C, all
290 groups differed from each other ($P < 0.001$) since at 24 h, the sharpest reduction in the
291 males exposed to pH acid with Al was noted. Additionally, in animals maintained in
292 acidic pH, there was an increase in the seminal osmolality at 25 °C ($P < 0.001$) and 30
293 °C ($P < 0.001$) compared to 20 °C. Thus, it can be emphasized that the association of
294 higher temperatures (25 and 30 °C), acidic pH, and the presence of Al caused a
295 significant reduction in seminal osmolality which consequently influences sperm
296 kinetics as shown below. These alterations in seminal osmolality may have occurred
297 because environmental pH and temperature impose changes on membrane permeability,
298 enzymatic activity, and energy metabolism (Dadras et al., 2016). It was also described
299 that heavy metals, such as mercury, can affect and block water channels or aquaporins,

300 which are responsible for osmotic regulation and activation of cell motility. Occlusion
301 of water channels by heavy metals can block water transport across the plasma
302 membrane, and therefore, osmotic rebalancing after osmotic shock does not occur. One
303 side effect after this process is sperm swelling (for freshwater teleosts) that undoubtedly
304 affects sperm movement (Preston et al., 1993; Kuwahara et al., 1997; Dietrich et al.,
305 2010). Although Al is not a heavy metal, this process could explain the effects observed
306 in seminal osmolality and sperm kinetics.

307 *Sperm Concentration*

308 In teleosts, sperm concentration varies among species according to reproductive
309 stage and age, and between seasons, due to variations in photoperiod, temperature, and
310 precipitation. Among abiotic factors, temperature is an important regulating factor in
311 teleost life that modulates reproductive processes, gamete development, maturation,
312 ovulation and spermiation, spawning, embryogenesis and hatching, and larval and
313 juvenile development, in addition to survival (Pankhurst and Porter, 2003). With
314 climate change, all of these processes will be or are already being affected, for example,
315 interference with the hypothalamus-pituitary-gonads axis as low temperatures can
316 inhibit and reduce steroid (such as testosterone) production, and high temperatures can
317 also cause inhibitory effects such as protein conformational changes (such as follicle
318 stimulation and luteinizing hormones [FSH and LH, respectively] receptors, and
319 enzymes; Pankhurst and Munday, 2011). In the present study, when comparing the
320 different experimental groups after 24 h of exposure to the solution with and without Al
321 at the same temperature (Fig. 1E), it was found that at 25 °C the animals maintained at
322 acidic pH with Al ($2.72 \pm 0.27 \times 10^9$ sptz mL⁻¹) had lower sperm concentration than the
323 animals at neutral pH ($4.17 \pm 0.16 \times 10^9$ sptz mL⁻¹: control group; $P = 0.002$). When
324 analysing different temperatures within the same treatment, males at neutral and acidic

325 pH values presented higher sperm concentrations at 25 °C than at 20 and 30 °C, while in
 326 animals maintained in acidic pH and Al, the sperm concentration was higher at 25
 327 compared to 30 °C (P = 0.001).

328 The results clearly demonstrate that the extreme temperatures of the experiment
 329 (20 and 30 °C) caused a reduction in the amount of sperm, suggesting once again that 25
 330 °C seems to be the closest temperature to which this species is in homeostasis. Besides,
 331 some anthropogenic factors, such as the presence of metals in water, can directly affect
 332 spermatogenesis, sperm count, cause sperm DNA damage, and reduce sperm motility
 333 (Rana, 2014; Jenardhanan et al., 2016). This fact was corroborated when *A. altiparanae*
 334 at the accepted homeostatic temperature (25 °C) was exposed to acidic pH with Al and
 335 caused a reduction in sperm quantity. This reduction in sperm count was also observed
 336 by Cheraghi et al. (2017) in Wistar rats and by Yousef et al. (2005) in rabbits exposed to
 337 Al. One effect of Al is a decrease in activities of various plasma membrane enzymes,
 338 such as adenosine triphosphatase, alkaline phosphatase, and gamma-glutamyl
 339 transferase in the testes, which impose indirect effects on spermatogenesis (Jenardhanan
 340 et al., 2016; Kaizer et al., 2010). Abiotic factors can potentiate the effect of xenobiotics,
 341 which are noticeable after 24 h of exposure when there was a reduction of more than
 342 50% in sperm concentration at the higher temperature (30 °C). However, when the
 343 exposure time was prolonged (96 h, Fig. 1F), there was a recovery in this parameter,
 344 suggesting plasticity in this species in readjusting to adverse conditions.

345 *Sperm Morphology*

346 Another variable used to evaluate seminal quality and which directly influences
 347 the fertilization rate is sperm morphology. In the present study, sperm were classified as
 348 normal or abnormal with the presence of the following tail anomalies: (1) curled (a part
 349 of the tail is above itself); (2) folded (a part of the tail shows curvature to one of the

350 sides); and (3) corrugated (the tail has wrinkles in its structure). When males were
351 exposed to different experimental treatments for 24 h, there was no effect on sperm
352 morphology (Table 1). Some studies demonstrate that xenobiotic compounds, such as
353 metals, are capable of generating sperm pathologies that consequently affect the
354 fertilization potential of gametes. Among these studies, we can highlight the one by
355 Vergilio et al. (2015) in which alterations in the sperm head of carapó (*Gymnotus*
356 *carapo*) exposed to cadmium chloride ($CdCl_2$) and also sperm morphopathologies in
357 rabbits (Yousef et al., 2005) and Wistar rats exposed to Cd (Cheraghi et al., 2017) were
358 found.

359 In addition to xenobiotics, environmental factors, such as temperature, may also
360 influence in the occurrence of anomalies in sperm as changes in these abiotic factors
361 alter membrane permeability and enzyme activity in addition to modifying membrane
362 proteins (Dadras et al. al., 2016). In *A. altiparanae* exposed to 30 °C for 96 h at neutral
363 pH, there was a decrease in the percentage of morphologically normal sperm compared
364 to those exposed to 20 and 25 °C ($P = 0.002$ and $P = 0.004$, respectively) as shown in
365 Table 1, suggesting that the increase in temperature caused protein denaturation that led
366 to pathologies in the sperm tail. Also, an interaction of the variables on the sperm
367 morphology after 96 h of exposure ($P = 0.045$) was observed.

368 *Sperm kinetics*

369 Sperm kinetics is an important parameter for assessing seminal quality since
370 sperm motility and velocities are directly related to fertilization rate (Rurangwa et al.,
371 2004; Gage et al., 2004). Previous studies have shown that sperm kinetics may be
372 influenced by physicochemical characteristics of the environment, such as temperature,
373 (Dadras et al., 2016) and the presence of pollutants, such as copper (Zebral et al., 2019)
374 in the water. In the present study, after 24 h exposure (Fig. 2A and 2B), when

375 considering the same treatment between different temperatures, there was a reduction in
376 the motility in the sperm of animals in acidic pH with Al at 30 °C compared to 25 °C (P
377 = 0.006). Also, by analysing the different groups within the same temperature, it was
378 observed that in acid pH with Al at 20 °C and 30 °C there was decrease in sperm
379 motility (10 sec after activation) compared to the animals in neutral and acidic pH (P =
380 0.004; P = 0.006; P < 0.001; P < 0.001; Fig. 2A). In the group exposed 30 sec after
381 sperm activation, an interaction between temperature and treatment (P = 0.002) on
382 sperm motility was observed. When analysing the same treatment between different
383 temperatures (30 sec), it was found that at the highest temperature, the sperm motility
384 remained higher regardless of pH and the presence and/or absence of Al. When
385 comparing the experimental treatments within the same temperature, at 20 °C, sperm
386 motility was reduced when the animals were exposed to acidic pH (30.53% ± 4.59%; P
387 < 0.001) and acidic pH with Al (19.16% ± 3.26%, P < 0.001) compared to neutral pH
388 (56.20% ± 4.42%). Already at both 25 and 30 °C, sperm motility was reduced by more
389 than 20% only when Al was added.

390 After 96 h of exposure (Fig. 2C and D), the same trend observed at 24 h was
391 observed in sperm motility after 10 sec of activation. When comparing the same
392 treatment between different temperatures, animals maintained in the acid pH group with
393 Al presented lower sperm motility at 30 °C than at 20 and 25 °C. After comparing the
394 different treatments at the same temperature, males at 30 °C and acidic pH with Al
395 presented the lowest sperm motility (77.28% ± 3.37%). After 30 sec of activation (Fig.
396 2D), in the same treatment at different temperatures, at neutral pH, sperm motility was
397 higher at 25 °C (P < 0.001) and 30 °C (P < 0.001) compared to 20 °C. At acidic pH,
398 sperm motility was also higher at 25 °C and reduced at 30 °C (P < 0.001) and 20 °C (P <
399 0.001). At acidic pH with Al, the percentage of mobile sperm was higher at 25 and 30

400 °C ($P < 0.001$ in both cases) than at 20 °C. After comparing the different groups within
401 the same temperature, the same pattern was observed at 20, 25, and 30 °C: neutral pH >
402 acidic pH > acidic pH + Al. High water temperature caused a reduction in the duration
403 of sperm motility; however, this reduction was compensated for by a higher swimming
404 speed compared to sperm activated at low temperatures and longer motility duration
405 (Fig. 2D). This decrease in motility duration may have been due to limited energy
406 resources and/or the effect of temperature on metabolic processes (Dadras et al., 2016).

407 Adriaenssens et al. (2012) studied long-term exposure (five weeks) of
408 mosquitofish males (*Gambusia holbrooki*) at different temperatures (cold acclimation:
409 18 °C and warm acclimation: 30 °C) and observed that the higher temperature favoured
410 the increase of sperm motility, a finding that was corroborated in the present study, both
411 at 24 and 96 h of exposure, implying that future climate changes could have an impact
412 on species reproduction.

413 Besides temperature, the presence of Al in the water negatively interfered with
414 sperm motility. At both exposure times and throughout the sperm motility period (10
415 and 30 sec post-activation analyses), Al triggered a decrease in sperm motility of > 30%
416 over conditions of neutral pH without this metal. Also, other studies with rats
417 demonstrated this reduction in sperm motility when exposed to Al (Cheraghi et al.,
418 2017; Martinez et al., 2017). Martinez et al. (2017) observed that this functional
419 impairment appears along with a redox imbalance and with an increase in production of
420 reactive oxygen species, lipid peroxidation, and altered antioxidant capacity in
421 reproductive organs. Also, suppression of spermatogenesis and sperm impairments in
422 addition to histopathological changes could be partially attributed to polyunsaturated
423 fatty acid peroxidation in the sperm membrane (Martinez et al., 2017).

424 In addition to motility, the study of sperm velocities is of paramount importance
425 for the evaluation of semen quality as some studies have shown a strong correlation of
426 these variables, especially VCL, with fertilization rate (Viveiros et al., 2010; Gallego et
427 al., 2017). When *A. altiparanae* males were exposed to experimental treatments for 24 h
428 (Fig. 3A), in VCL after 10 sec of sperm activation, when comparing the same treatment
429 between the different temperatures, no influence of temperature in each group ($P =$
430 0.958) was seen. However, when analysing the different treatments within the same
431 temperature group, it was possible to observe that animals exposed to acidic pH + Al
432 presented lower VCL for all temperatures. Moreover, after 30 sec of sperm activation,
433 there was an interaction between treatment and temperature ($P = 0.047$) in VCL. When
434 comparing the same experimental group between different temperatures and neutral pH
435 it was observed that as the temperature increased so did the VCL ($20\text{ }^{\circ}\text{C} < 25\text{ }^{\circ}\text{C} < 30$
436 $^{\circ}\text{C}$). Already at acidic pH at $20\text{ }^{\circ}\text{C}$ and acid pH + Al at 20 and $25\text{ }^{\circ}\text{C}$, the lowest VCL
437 values were observed. Besides, when the different treatments are compared at the same
438 temperature, acidic pH + Al produced lower VCL values at all temperatures.

439 After 96 h of animal exposure (Fig. 3B), no differences ($P = 0.062$) were found
440 after comparing the same treatment between the different temperatures in VCL after 10
441 sec of activation of male gametes. Regarding the 30 sec post-activation, with the same
442 treatment, animals maintained at acidic pH at extreme temperatures of the study ($20\text{ }^{\circ}\text{C}$
443 and $30\text{ }^{\circ}\text{C}$) presented lower VCL values ($P < 0.001$ and $P = 0.03$, respectively).
444 Similarly at 24 h exposure at 30 sec post-activation, acidic pH + Al demonstrated lower
445 VCL values at all temperatures.

446 Some metals, such as Hg, can bind to flagellar proteins and affect sperm kinetics
447 or enzymes and consequently sperm metabolism (such as inhibition of protein activity,
448 denaturation, or conformational protein changes). Consequently, the structure of sperm

449 flagella may be altered, and the sliding process of the dynein-driven microtubules may
450 be impaired (Dietrich et al., 2010). This fact can suggest that Al can attach to the sperm
451 and reduce both motility and VCL at both exposure times.

452 VAP is another sperm parameter that was investigated in the present study. After
453 24 h of exposure (Fig. 4A) at 10 sec and 20 °C, sperm from animals maintained at acidic
454 pH + Al, presented the lowest VAP value. After analysing the different treatments at the
455 same temperature at 30 sec post-activation, it was possible to verify that Al caused a
456 reduction in the VAP values compared to the other groups at 25 °C ($P = 0.002$; $P =$
457 0.016).

458 After 96 h (Fig. 4B), when comparing different treatments within the same
459 temperature, animals at acidic pH + Al presented the lowest VAP values at 25 °C at 10
460 sec post-activation. At 30 sec post-activation, animals at acidic pH presented lower VAP
461 at the extreme study temperatures ($P < 0.001$ and $P = 0.035$, respectively). Within each
462 temperature group, 20 °C and acidity triggered a decrease in VAP, but at 25 °C, only the
463 presence of Al caused this reduction (similar to 24 h).

464 Regarding VSL, after 24 h of exposure (Fig. 5A) was observed that the presence
465 of Al at 20 °C caused a reduction in this velocity (neutral and acidic pH values; $P = 0.01$
466 and $P = 0.005$, respectively). Already after 30 sec of sperm activation, for the same
467 treatment at different temperatures and both at neutral and acidic pH values, a decrease
468 in VSL at 20 °C compared to 25 and 30 °C was seen. However, at acidic pH + Al, the
469 lowest values were observed at 20 and 25 °C.

470 After 96 h (Fig. 5B), at 30 sec post-activation, analysing the same group at
471 different temperatures at acidic pH values, it was possible to observe a lower VSL value
472 at 20 °C. Also, when comparing the different groups at the same temperature, it was
473 verified that acidity was responsible for the reduction in VSL at 20 °C. However, at 25

474 °C, this decrease occurred only due to the presence of Al. This decrease was also found
475 in sperm from *Danio rerio* (Acosta et al., 2016) and *Salmo trutta* (Kowalska-Górska
476 et al., 2019), which had been exposed to Cd and Cu and presented reductions in VCL,
477 VAP, and VSL.

478 Regarding STR, at 24 h of exposure (Fig. 6A) and 30 sec after sperm activation,
479 interaction between treatment and temperature ($P = 0.024$) on this sperm parameter was
480 observed. Moreover, at both times, it was found that animals exposed to neutral pH
481 presented lower STR at 30 °C. After 96 h (Fig. 6B) and at 10 and 30 sec post-activation,
482 temperature and treatment variables did not interact with STR ($P = 0.207$ and $P = 0.420$,
483 respectively).

484 *Sperm Ultrastructure*

485 Another important parameter to evaluate in order to understand the action of a
486 pollutant on gametes is cell ultrastructure since it may be possible to associate changes
487 in morphological characteristics with the functions/mechanisms performed by each
488 structure. As stated previously, for this analysis, the exposure time of 96 h was selected,
489 because after 24 h, Al does not concentrate in *A. altiparanae* testes (Pinheiro et al.,
490 2019). *A. altiparanae* sperm consists of a spherical nucleus containing granular
491 chromatin with a mean diameter of $1.73 \pm 0.02 \mu\text{m}$, surrounded by a plasma membrane,
492 totalling a nuclear area of $0.49 \pm 0.01 \mu\text{m}^2$. Below the nucleus and involving the
493 insertion of the flagella, the midpiece is located with a mean diameter (measured above
494 the insertion of the flagellum and the cytoplasmic canal) of $1.58 \pm 0.04 \mu\text{m}$ and an area
495 of $0.28 \pm 0.01 \mu\text{m}^2$, which is composed of mitochondria unevenly arranged throughout
496 the region.

497 A qualitative analysis (Fig. 7) showed that the males that underwent treatment
498 without Al regardless of temperature had similar sperm ultrastructural characteristics.

499 However, when Al was added and animals were exposed to different temperatures, a
500 change in the ultrastructure was observed with the most pronounced changes at 30 °C. It
501 was observed that Al favoured the disruption of the sperm nuclear membrane (Fig. 7B
502 and 7D), conformational changes of chromatin (Fig. 7B and 7C), the clutter of the
503 midpiece (Fig. 7C, 7D and 7F), presence of greater number of vesicles/vacuoles in the
504 midpiece (Fig. 7E), and damage to the structure of the flagella (Fig. 7E).

505 It was possible to observe the qualitative effects of isolated temperature in
506 addition to the interaction of this physical parameter with the presence of Al in the
507 testes after 96 h (Table 2). The influence of the interaction between the temperature and
508 the presence/absence of the metal in the diameter and the nuclear area ($P = 0.002$ and P
509 $= 0.037$, respectively). Thus, in the absence of Al, the animals maintained at 30 °C
510 presented sperm head with the largest nuclear diameter and area compared to the other
511 temperatures. Also, within each temperature group, the presence of Al caused a
512 reduction in nuclear diameter and area of sperm head at 30 °C ($P=0.002$ and $P=0.036$,
513 respectively). Regarding the midpiece temperature alone did not influence the diameter
514 and area of the midpiece; however, when associated with Al the smallest diameter and
515 smallest area of the midpiece were found when the animals were exposed to 20 °C.

516 Morphological changes were observed in sperm when animals or gametes were
517 exposed to certain pollutants, such as different metals in rabbits (Castellini et al., 2009),
518 Cd in sea urchins and mussels (Au et al., 2000), mercury in fish (Hatef et al., 2011), and
519 insecticides in fish (Xu et al., 2005) and mammals (Sánchez et al, 2017). However, no
520 studies of sperm ultrastructure under the influence of Al have been evaluated so far. The
521 results suggest that Al favours nuclear membrane disruption and causes chromatin
522 conformational changes, leading to higher DNA fragmentation scores (Pinheiro et al.,
523 2019). Besides, Al modified the structure of the midpiece in addition to the

524 mitochondria inserted in it, which may have caused changes in enzymatic activities
525 leading to reductions in sperm motility and VCL. Additionally, changes in head and the
526 midpiece may affect fecundity at the micropile level. These changes could decrease
527 fertilization and hatching rates and also influence the embryonic development pattern of
528 *A. altiparanae*. With that, more studies are needed to clarify the way in which Al could
529 enter the cell and whether it would affect generation and development of progenies.

530 **Conclusion**

531 Under the experimental conditions described in this study, acidity influences
532 sperm parameters in *A. altiparanae*, but the presence of Al in the water at ambient
533 concentrations accentuates the effects on seminal quality, especially sperm osmolality,
534 concentration, kinetics, and ultrastructure. Also, this toxicity may be influenced by
535 temperature. It is suggested that both water acidity and the non-optimal temperature,
536 influence fertilization and hatching rates, which could trigger a reduction in *A.*
537 *altiparanae* populations.

538

539 **Acknowledgements**

540 This study was supported by the Fundação de Amparo à Pesquisa do Estado de
541 São Paulo (FAPESP; Grants 2016/08770-8 and 2014/16320-7), the Conselho Nacional
542 de Desenvolvimento Científico e Tecnológico (CNPq) (Grant 140197/2016-8) and the
543 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) -
544 Finance Code 001. The authors would also like to thank the fish farm at *Companhia*
545 *Energética de São Paulo* (CESP, Paraibuna, SP) for donating the fish, the staff at
546 LAMEROA (IB-USP) for their help, the Centro de Aquisição de Imagens e
547 Microscopia do Instituto de Biociências (Waldir Caldeira) at the University of São

548 Paulo (IB-USP) for microscopy support, and IB/USP for providing logistics and
549 facilities.

550

551 **References**

552 Abdalla, R. P., Kida, B. M. S., Pinheiro, J. P. S., Oliveira, L. F., Martinez, C. B. F.,
553 Moreira, R. G., 2019. Exposure to aluminum, aluminum + manganese and acid pH
554 triggers different antioxidant responses in gills and liver of *Astyanax altiparanae*
555 (Teleostei: Characiformes: Characidae) males. *Comp. Biochem. Physiol. C Toxicol.*
556 *Pharmacol.* 215, 33-40.

557 Acosta, I. B., Varela Junior, A. S., Silva, E. F., Cardoso, T. F., Caldas, J. S., Jardim, R.
558 D., Corcini, C. D., 2016. Effects of exposure to cadmium in sperm cells of zebrafish,
559 *Danio rerio*. *Toxicol. Rep.* 3, 696-700.

560 Adriaenssens, B., Damme, R.V., Seebacher, F., Wilson, R.S., 2012. Sex cells in
561 changing environments: Can organisms adjust the physiological function of gametes to
562 different temperatures? *Glob. Change Biol.* 18, 1797–1803.

563 Alavi, S. M. H., Cosson, J., 2006. Sperm motility in fishes: II. Effects of ions and
564 osmolality. *Cell Biol. Int.* 30, 1-14.

565 Alavi, S.M.H., Cosson, J., 2005. Sperm motility in fishes. (I) Effects of temperature and
566 pH: a review. *Cell Biol. Int.* 29, 101-110.

567 Au, D.W., Chiang, M.W., Wu, R.S., 2000. Effects of Cadmium and Phenol on Motility
568 and Ultrastructure of Sea Urchin and Mussel Spermatozoa. *Arch. Environ. Contam.*
569 *Toxicol.* 38, 455-463.

570 Bettim, F.L., Galvan, G.L., Cestari, M.M., Yamamoto, C.I., Silva de Assis, H.C., 2016.

571 Biochemical responses in freshwater fish after exposure to water-soluble fraction of

572 gasoline. *Chemosphere* 144, 1467-1474.

573 Bombardelli, R.A., Neumann, G., Toledo, C.P.R., Sanches, E.A., Bastos, D.N.,

574 Oliveira, J.D.S., 2016. Sperm motility, fertilization, and larval development of silver

575 catfish (*Rhamdia quelen*) in copper-contaminated water. *Semin. Cienc. Agrar.* 37,

576 1667–1677.

577 Brambila-Souza, G., Mylonas, C.C., Mello, P.H., Kuradomi, R.Y., Batlouni, S.R.,

578 Tolussi, C.E., Moreira, R.G., 2019. Thermal manipulation and GnRHa therapy applied

579 to the reproduction of lambari-do-rabo-amarelo, *Astyanax altiparanae* females

580 (Characiformes: Characidae) during the non-breeding season. *Gen. Comp. Endocr.* 279,

581 120-128.

582 Castellini, C., Mourvaki, E., Sartini, B., Cardinali, R., Moretti, E., Collodel, G.,

583 Fortaner, S., Sabbioni, E., Renieri, T., 2009. In vitro toxic effects of metal compounds

584 on kinetic traits and ultrastructure of rabbit spermatozoa. *Reprod. Toxicol.* 27, 46–54.

585 CETESB (Companhia Ambiental do Estado de São Paulo), 2018. Relatório de

586 Qualidade das Águas Interiores do Estado de São Paulo, Governo do Estado de São

587 Paulo, Secretaria do Meio Ambiente. São Paulo. [http://cetesb.sp.gov.br/aguas-](http://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios/)

588 interiores/publicacoes-e-relatorios/. (Accessed 10 January 2020).

589 Chehade, C., Cassel, M., Borella, M. I., Costa, F. G., 2014. Morphologic study of the

590 liver of lambari (*Astyanax altiparanae*) with emphasis on the distribution of cytokeratin.

591 *Fish Physiol. Biochem.* 40, 571-576.

592 Cheraghi, E., Golkar, A., Roshanaei, K., Alani, B., 2017. Aluminium-Induced Oxidative
593 Stress, Apoptosis and Alterations in Testicular Tissue and Sperm Quality in Wistar
594 Rats: Ameliorative Effects of Curcumin. *Int. J. Fertil. Steril.* 11, 166-175.

595 Correia, T. G., 2012. Evidências de desregulação endócrina causada pela exposição
596 aquática ao Alumínio e ao Manganês em *Astyanax bimaculatus* (Linnaeus, 1758). 2012.
597 140f. Thesis (PhD in Sciences) – PPG em Fisiologia, Universidade de São Paulo, São
598 Paulo.

599 Correia, T. G., Narcizo, A. M., Bianchini, A., Moreira, R. G., 2010. Aluminum as an
600 endocrine disruptor in female Nile tilapia (*Oreochromis niloticus*). *Comp. Biochem.
601 Physiol. C Toxicol. Pharm.* 151, 61–66.

602 Cosson, J., 2004. The ionic and osmotic factors controlling motility of fish spermatozoa
603 *Aquac. Int.* 12, 69-85.

604 Dadras, H., Dzyuba, B., Cosson, J., Golpour, A., Siddique, M. A. M., Linhart, O., 2016.
605 Effect of water temperature on the physiology of fish spermatozoon function: a brief
606 review. *Aquacult. Res.* 48, 729-740.

607 Dietrich, G. J., Dietrich, M., Kowalski, R. K., Dobosz, S., Karol, H., Demianowicz, W.,
608 Glogowski, J., 2010. Exposure of rainbow trout milt to mercury and cadmium alters
609 sperm motility parameters and reproductive success. *Aquat. Toxicol.* 97, 277–284.

610 Fauvel, C., Suquet, M., Cosson, J., 2010. Evaluation of fish sperm quality. *J. Appl.
611 Ichthyol.* 26, 636-643.

612 Fernández-Dávila, M.L., Razo-Estrada, A.C., García-Medina, S., Gómez-Oliván, L.M.,
613 Piñón-López, M.J., Ibarra, R.G., Galar-Martínez, M., 2012. Aluminum-induced

614 oxidative stress and neurotoxicity in grass carp (Cyprinidae - *Ctenopharingodon idella*).
615 Ecotoxicol. Environ. Saf. 76, 87–92.

616 Gage, M.J.G., Macfarlane, C.P., Yeates, S., Ward, R.G., Searle, J.B., Parker, G.A.,
617 2004. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm
618 velocity is the primary determinant of fertilization success. Current Biology 14, 44–47.

619 Gallego, V., Cavalcante, S.S., Fujimoto, R.Y., Carneiro, P.C.F., Azevedo, H.C., Maria
620 A.N., 2017. Fish sperm subpopulations: changes after cryopreservation process and
621 relationship with fertilization success in tambaqui (*Colossoma macropomum*).
622 Theriogenology 87, 16-24.

623 Galo, J. M., Streit Jr., D. P., Sirol, R. N., Ribeiro, R. P., Digmayer, M., Andrade, V. X.
624 L., Ebert, A. R., 2011. Spermatic abnormalities of Piracanjuba *Brycon orbignyanus*
625 (Valenciennes, 1849) after cryopreservation. Braz. J. Biol. 71, 693-699.

626 Gomes, C. C., Costa, F. G., Borella, M. I., 2013. Distribution of GnRH in the brain of
627 the freshwater teleost *Astyanax altiparanae*. Micron 52-53, 33-38.

628 Hatef, A., Alavi, S.M., Butts, I.A., Policar, T., Linhart, O., 2011. Mechanism of action
629 of mercury on sperm morphology, adenosine triphosphate content, and motility in *Perca*
630 *fluviatilis* (Percidae; Teleostei). Environ Toxicol. Chem. 30, 905-914.

631 Hayati, A., Wulansari, E., Armando, D.S., Sofiyanti, A., Amin, M.H., Pramudya, M.,
632 2019. Effects of in vitro exposure of mercury on sperm quality and fertility of tropical
633 fish *Cyprinus carpio* L. Egypt. J. Aquat. Res. 42, 189–195.

634 Jenardhanan, P., Panneerselvam, M., Mathur, P.P., 2016. Effect of environmental
635 contaminants on spermatogenesis. Semin. Cell Dev. Biol. 59, 126–140.

636 Kaizer, R.R., Gutierrez, J.M., Schmatz, R., Spanevello, R.M., Morsch, V.M.,
637 Schetinger, M.R., Rocha, J. B., 2010. In vitro and in vivo interactions of aluminum on
638 NTPDase and AChE activities in lymphocytes of rats. *Cell. Immunol.* 265, 133-138.

639 Karnovsky, M.J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for
640 use in electron microscopy. *J. Cell Biol.* 27, 137–138.

641 Kida, B.M.S., Abdalla, R.P., Moreira, R.G., 2016. Effects of acidic water, aluminum,
642 and manganese on testicular steroidogenesis in *Astyanax altiparanae*. *Fish Physiol.*
643 *Biochem.* 43, 1347-1356.

644 Klein, J. P., Mold, M., Mery, L., Cottier, M., Exley, C., 2014. Aluminum content of
645 human semen: implications for semen quality. *Reprod. Toxicol.* 50, 43-48.

646 Kowalska-Góralska, M., Dziewulska, K., Kulasza, M., 2019. Effect of copper
647 nanoparticles and ions on spermatozoa motility of sea trout (*Salmo trutta* m. *Trutta* L.).
648 *Aquat. Toxicol.* 211, 11-17.

649 Kowalski, R. K., Cejko, B. I., 2019. Sperm quality in fish: determinants and
650 affecting factors. *Theriogenology* 135, 94-108.

651 Kuwahara, M., Gu, Y., Ishibashi, K., Marumo, F., Sasaki, S., 1997. Mercury-sensitive
652 residues and pore site in AQP3 water channel. *Biochemistry* 36, 13973–13978.

653 Martinez, C. S., Escobar, A. G., Uranga-Ocio, J. A., Peçanha, F. M., Vassallo, D. V.,
654 Exley, C., Miguel, M., Wiggers, G. A., 2017. Aluminum exposure for 60 days at human
655 dietary levels impairs spermatogenesis and sperm quality in rats. *Reprod. Toxicol.* 73,
656 128-141.

657 Mold, M., Umar, D., King, A., Exley, C., 2018. Aluminium in brain tissue in autism. *J.*
658 *Trace Elem. Med. Biol.* 46, 76-82.

659 Nayak, P., 2002. Aluminum: Impacts and disease. *Environ. Res.* 89A, 101 – 115.

660 Pankhurst, N. W., Porter, M. J. R., 2003. Cold and dark or warm and light: variations on
661 the theme of environmental control of reproduction. *Fish Physiol. Biochem.* 28, 385–
662 389.

663 Pankhurst, N.W., Munday, P.L., 2011. Effects of climate change on fish reproduction
664 and early life history stages. *Mar. Freshw. Res.* 62, 1015–1026.

665 Pinheiro, J. P. S., Leite-Castro, L. V., Oliveira, F. C. E., Linhares, F. R. A., Lopes, J. T.,
666 Salmito-Vanderley, C. S. B., 2016. Qualidade do sêmen de tambaqui (*Colossoma*
667 *macropomum*) criopreservado em diferentes concentrações de gema de ovo. *Ci. Anim.*
668 *Bras.* 17, 267-273.

669 Pinheiro, J.P.S., Assis, C.B., Munoz-Penuela, M., Barbosa Junior, F., Correia, T.G.,
670 Moreira, R.G., 2019. Water temperature and acid pH influence the cytotoxic and
671 genotoxic effects of aluminum in the freshwater teleost *Astyanax altiparanae*
672 (Teleostei: characidae). *Chemosphere* 220, 266-274.

673 Poleo, A. B. S., Muniz, I. P., 1993. The effect of aluminium in soft-water at low pH and
674 different temperatures on mortality, ventilation frequency and water balance in
675 smoltifying Atlantic salmon, *Salmo salar*. *Environ. Biol. Fishes* 36, 193– 203.

676 Preston, G.M., Jung, J.S., Guggino, W.B., Agre, P., 1993. The mercury-sensitive
677 residue at cysteine 189 in the CHIP28 water channel. *J. Biol. Chem.* 268, 17–20.

678 Rana, S. V.S., 2014. Perspectives in endocrine toxicity of heavy metals—a review. Biol
679 Trace Elem. Res. 160, 1–14.

680 Rurangwa, E., Kime, D.E., Ollevier, F., Nash, J.P., 2004. The measurement of sperm
681 motility and factors affecting sperm quality in cultured fish. Aquaculture 234, 1-28.

682 Sanches, E. A., Marcos, R. M., Okawara, R. Y., Caneppele, D., Bombardelli, R. A.,
683 Romagosa, E., 2013. Sperm motility parameters for *Steindachneridion parahybae* based
684 on opensource software. J. Appl. Ichthyol. 29, 1114-1122.

685 Sanches, E.A., Bombardelli, R.A., Baggio, D.M., Sykora, R.M., Xavier, A.M.M., 2011.
686 Características seminais do cascudo-preto (*Rhinelepis aspera*). Rev. Bras. Reprod.
687 Anim. 35, 357-362.

688 Sánchez, M.C., Alvarez Sedó, C., Chaufan, G.R., Romanato, M., Da Cuña, R., Lo
689 Nostro, F., Calvo, J.C., Fontana, V., 2017. In vitro effects of endosulfan-based
690 insecticides on mammalian sperm. Toxicol. Res. (Camb) 7, 117-126.

691 Schreck, C. B., Moyle, P. B., 1990. Methods for Fish Biology. Am. Fish. Soc.,
692 Bethesda, 684p.

693 Trueman, R. J., Tiku, P. E., Caddick, M. X., Cossins, A.R., 2000. Thermal thresholds of
694 lipid restructuring and delta (9)-desaturase expression in the liver of carp (*Cyprinus*
695 *carpio* L.). J. Exp. Biol. 203, 641-650.

696 Vergilio, C.S., Moreira, R.V., Carvalho, C.E.V., Melo, E.J.T., 2015. Evolution of
697 cadmium effects in the testis and sperm of the tropical fish *Gymnotus carapo*. Tissue
698 Cell 47,132–139

699 Vieira, V. A., Correia, T. G., Moreira, R. G., 2013. Effects of aluminum on the
700 energetic substrates in neotropical freshwater *Astyanax bimaculatus* (Teleostei:
701 Characidae) females. *Comp. Biochem. Physiol. C. Toxicol. Pharmacol.* 157, 1-8.

702 Viveiros, A.T.M., Nascimento, A.F., Orfão, L.H., Isau, Z.A., 2010. Motility and fertility
703 of the subtropical freshwater fish streaked prochilod (*Prochilodus lineatus*) sperm
704 cryopreserved in powdered coconut water. *Theriogenology* 74, 551–556.

705 Wilson, R.W., 2011. Aluminum. *Fish Physiol.* 31 (PART B), 67–123.

706 Wilson-Leedy, J. G.; Ingemann, R. L., 2007. Development of a novel CASA system
707 based on open source software for characterization of zebrafish sperm motility
708 parameters. *Theriogenology*, 67, p. 661–672.

709 Wirtz, S., Steinmann, P., 2006. Sperm characteristics in perch *Perca fluviatilis* L. *J. Fish*
710 *Biol.* 68, 1896–1902.

711 Xu, Y., Zhang, S., Zhang, Y., Hu, J., Bhattacharya, H., 2005. Exposure of Rosy Barb
712 (*Puntius conchonius*) Sperm to Abamectin as an In Vitro Assay of Cytotoxicity.
713 *Toxicol. Mech. Methods.* 15, 351-354.

714 Yousef, M.I., El-Morsy, A.M., Hassan, M.S., 2005. Aluminium-induced deterioration in
715 reproductive performance and seminal plasma biochemistry of male rabbits: protective
716 role of ascorbic acid. *Toxicology* 215, 97–107.

717 Zebral, Y. D., Anni, I. S. A., Varela Junior, A. S., Corcini, C. D., Silva, J. C., Caldas, J.
718 S., Acosta, I. B., Afonso, S. B., Bianchini, A., 2019. Life-time exposure to waterborne
719 copper IV: Sperm quality parameters are negatively affected in the killifish *Poecilia*
720 *vivipara*. *Chemosphere* 236, 124332.

Table 1. Sperm morphology (% of normal) of *Astyanax altiparanae* after exposure (24 and 96 h) at different temperatures, pHs, and the presence or absence of aluminum (Al) shown as mean \pm standard error of the mean.

Sperm Morphology - % Normal			
Treatment	24 h Exposure		
	20°C	25°C	30°C
Neutral pH	99.92 \pm 0.08	99.83 \pm 0.17	99.92 \pm 0.08
Acid pH	99.80 \pm 0.11	100 \pm 0	99.83 \pm 0.11
Acid pH + Al	99.83 \pm 0.11	99.58 \pm 0.20	99.42 \pm 0.30
96 h Exposure			
Treatment	20°C	25°C	30°C
	100 \pm 0 ^A	99.92 \pm 0.08 ^A	98.92 \pm 0.35 ^B
Neutral pH	99.92 \pm 0.08	99.33 \pm 0.31	99.25 \pm 0.11
Acid pH	99.67 \pm 0.33	99.25 \pm 0.31	99.67 \pm 0.21

Uppercase letters indicate differences within the same treatment at different temperatures; n = 6; *P <0.05

Table 2. Sperm Ultrastructure (head and midpiece diameters and areas) of male *A. altiparanae* after exposure (96 h) at different temperatures, pHs, and the presence or absence of Al shown as mean \pm standard error of the mean.

Sperm Ultrastructure			
Treatment	Head Diameter (μm)		
	20°C	25°C	30°C
Neutral pH	1.66 \pm 0.02 ^B	1.73 \pm 0.02 ^B	1.84 \pm 0.02 ^{Aa}
Acid pH + Al	1.72 \pm 0.02	1.74 \pm 0.03	1.73 \pm 0.03 ^b
Midpiece Diameter (μm)			
Treatment	20°C	25°C	30°C
	1.48 \pm 0.04	1.58 \pm 0.04	1.55 \pm 0.03
Neutral pH	1.43 \pm 0.03 ^B	1.57 \pm 0.04 ^A	1.48 \pm 0.04 ^{AB}
Head Area (μm^2)			
Treatment	20°C	25°C	30°C
	0.46 \pm 0.01 ^B	0.49 \pm 0.01 ^B	0.54 \pm 0.02 ^{Aa}
Neutral pH	0.48 \pm 0.01	0.52 \pm 0.02	0.50 \pm 0.01 ^b
Midpiece Area (μm^2)			
Treatment	20°C	25°C	30°C
	0.28 \pm 0.01 ^a	0.28 \pm 0.01	0.30 \pm 0.01
Neutral pH	0.24 \pm 0.02 ^{Bb}	0.27 \pm 0.01 ^{AB}	0.30 \pm 0.02 ^A
Acid pH + Al			

Uppercase letters indicate differences within the same treatment at different temperatures; lowercase letters indicate differences within the same temperature at different treatments. n = 6; *P < 0.05

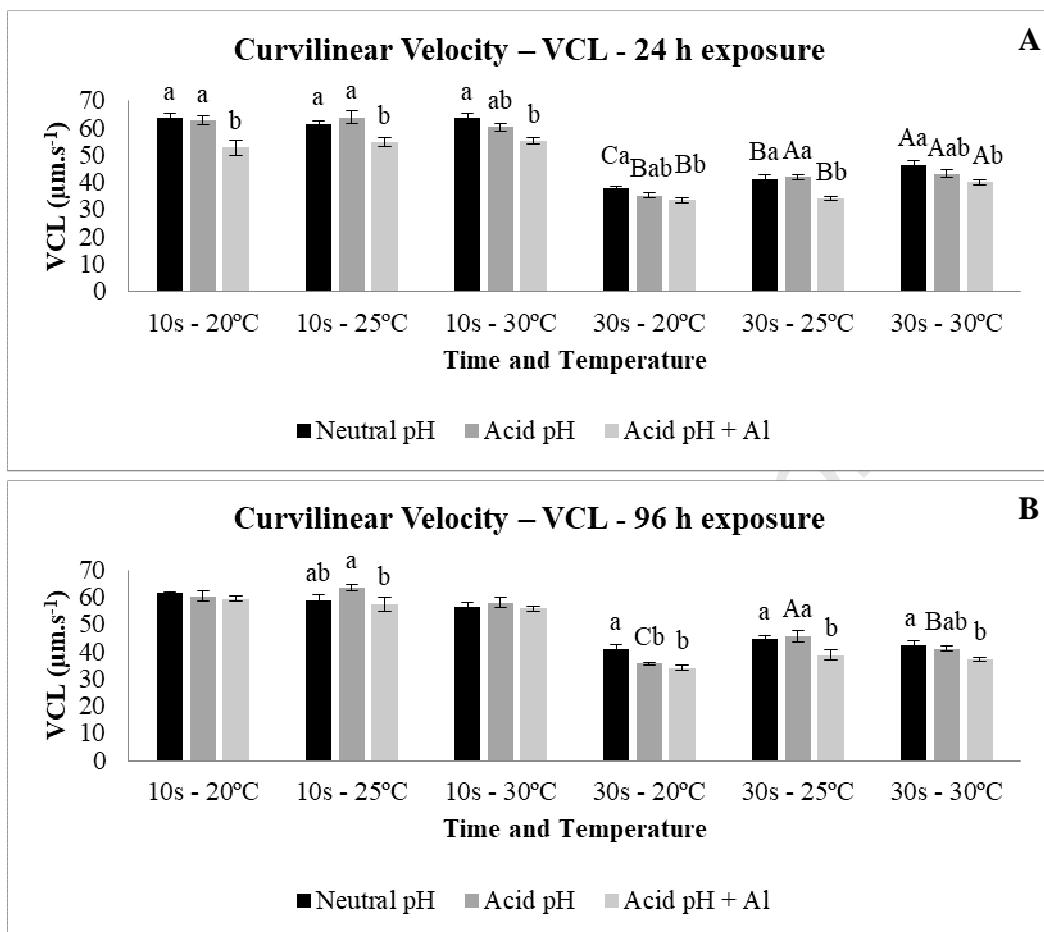


Fig. 3. Curvilinear velocity (VCL) of *A. altiparanae* sperm after 24 h (A) and 96 h (B) exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase letters indicate differences within the same treatment at different temperatures; Lowercase letters indicate differences within the same temperature under different treatments. n = 6; *P < 0.05

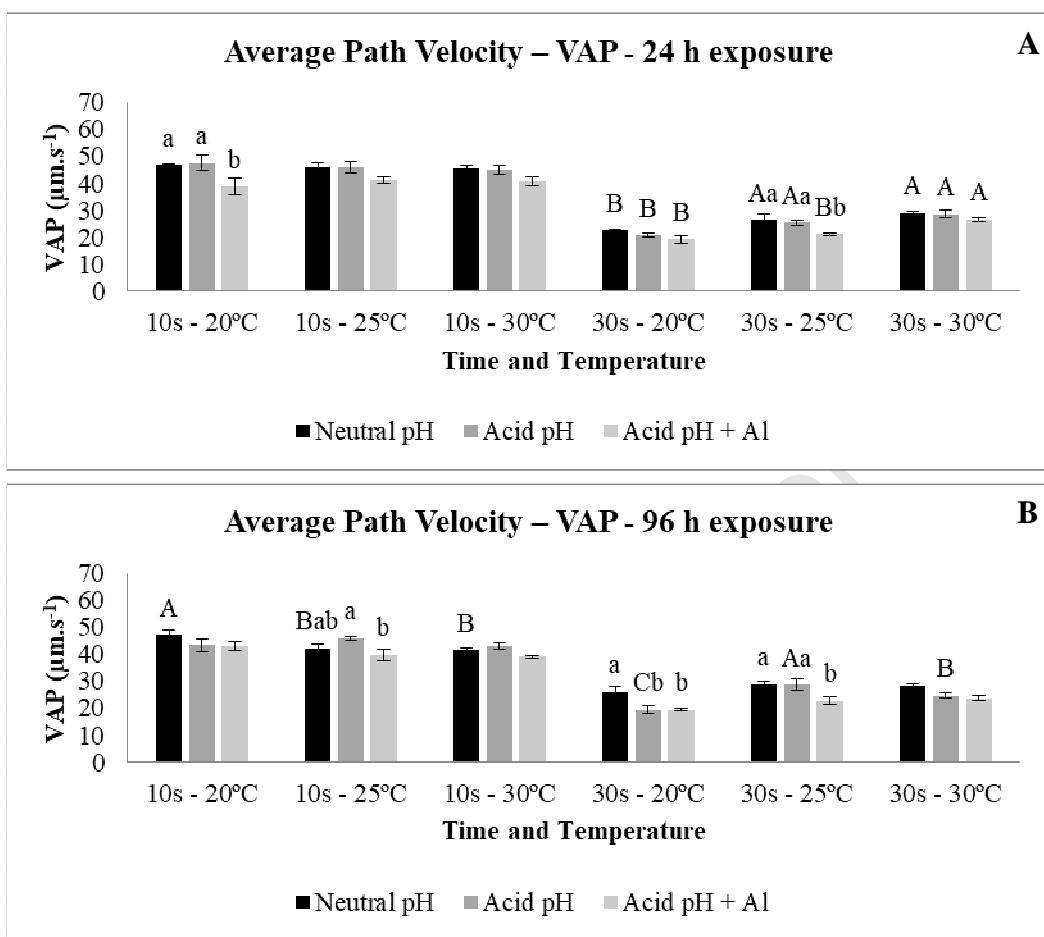


Fig. 4. Average path velocity (VAP) of *A. altiparanae* sperm after 24 h (A) and 96 h (B) exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase letters indicate differences within the same treatment at different temperatures; lowercase letters indicate differences within the same temperature under different treatments. n = 6; *P < 0.05

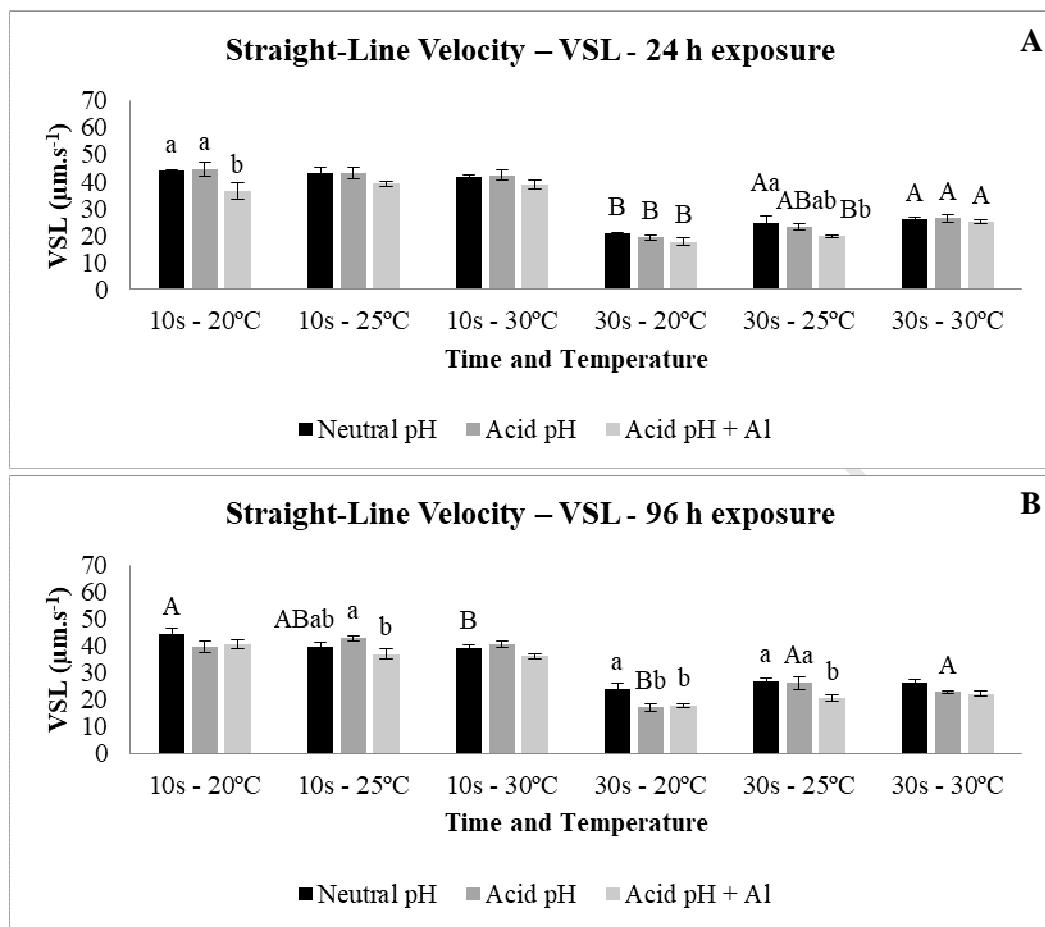


Fig. 5. Straight line velocities (VSL) of *A. altiparanae* sperm after 24 h (A) and 96 h (B) exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase letters indicate differences within the same treatment at different temperatures; lowercase letters indicate differences within the same temperature under different treatments. $n = 6$; $*P < 0.05$

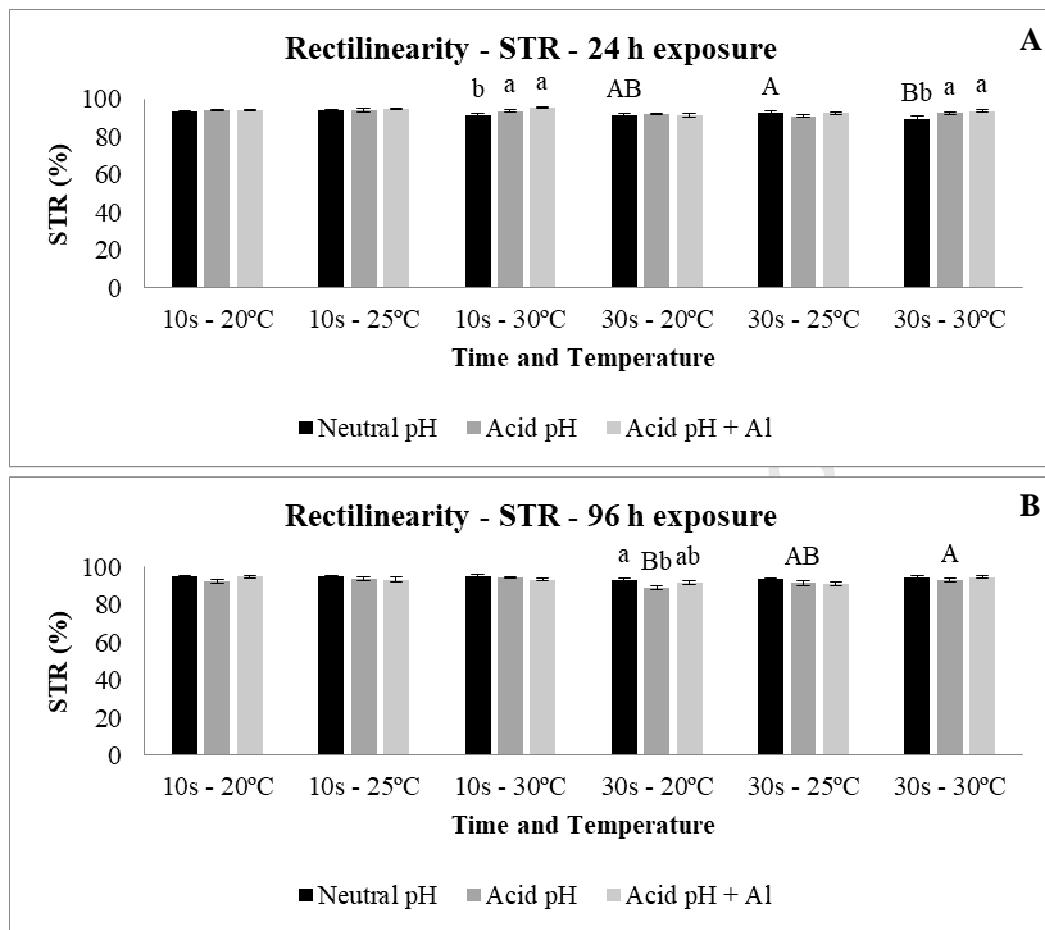


Fig. 6. Rectilinearity (STR) of *A. altiparanae* sperm after 24 h (A) and 96 h (B) exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase letters indicate differences within the same treatment at different temperatures; lowercase letters indicate differences within the same temperature under different treatments. n = 6; *P < 0.05

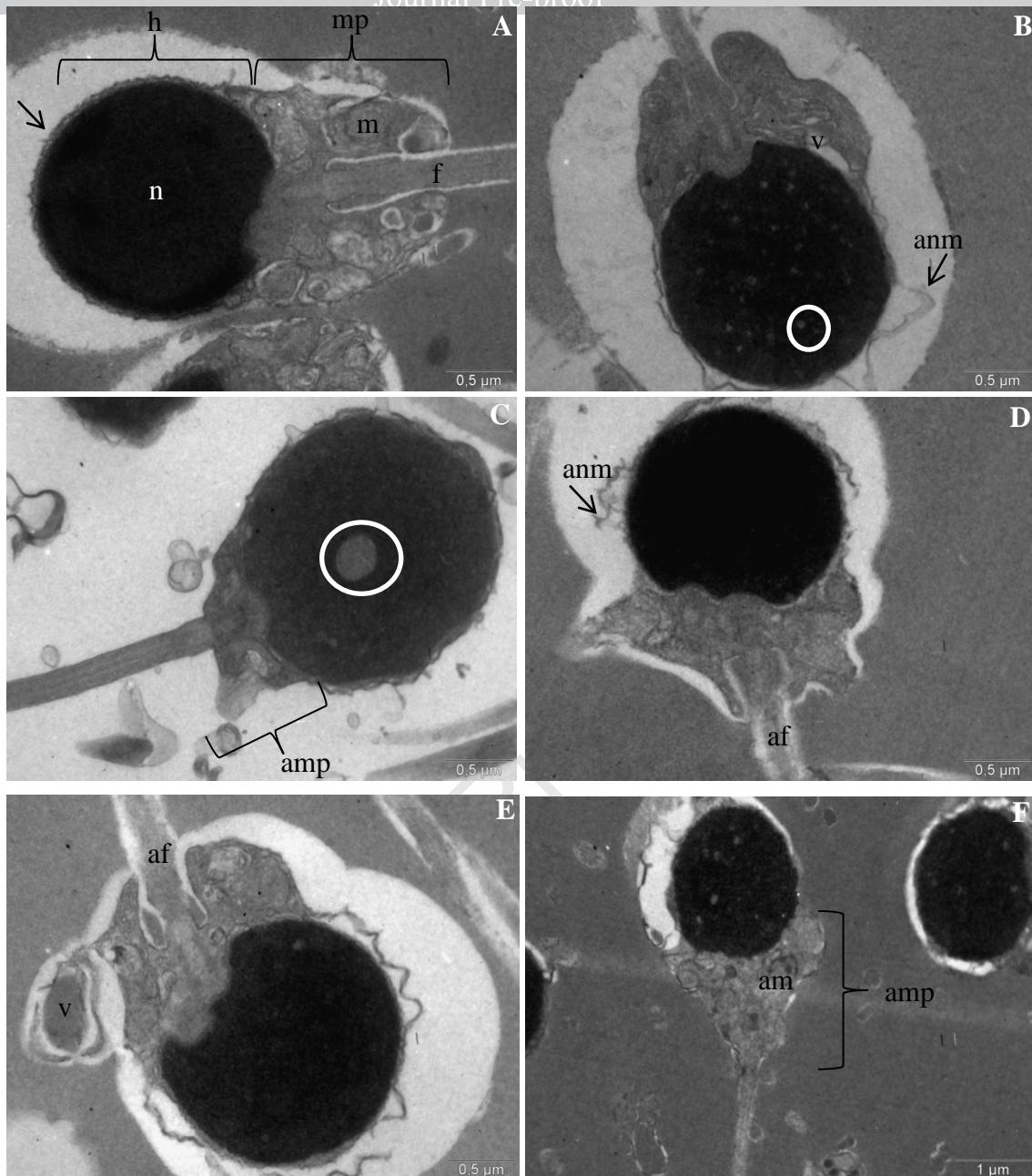


Fig. 7. Sperm ultrastructure of *A. altiparanae* after exposure to different temperatures and the presence or absence of Al. A. Normal spermatozoa (12.000 x; arrow: nuclear membrane; n: nucleus; h: head; mp: midpiece; m: mitochondria; f: flagellum; treatment: 25°C, and neutral pH). B–F. Abnormal spermatozoa (B–E: 12.000 x; F–7.000 x; anm: abnormal nuclear membrane; v: vesicle; circle: electro lucid areas; amp: abnormal midpiece; af: abnormal flagellum; am: abnormal mitochondria; B–D: treatment 20°C, acid pH, and Al; E–F: treatment 30°C, acid pH, and Al).

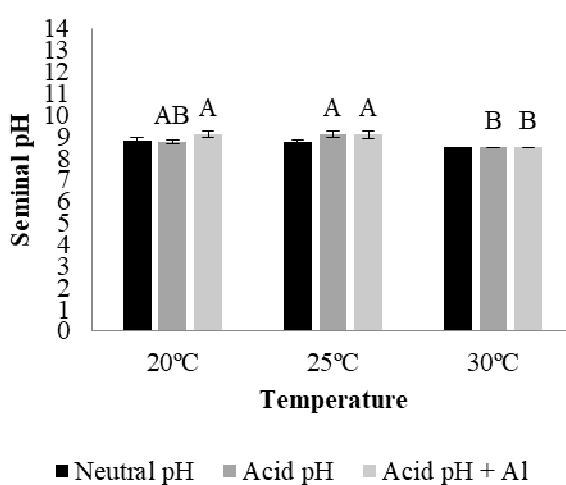
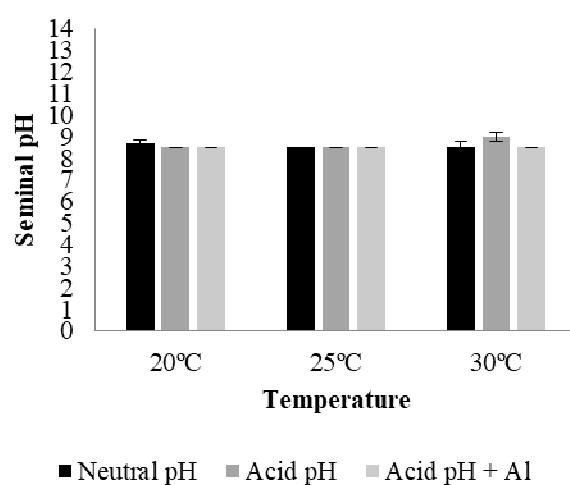
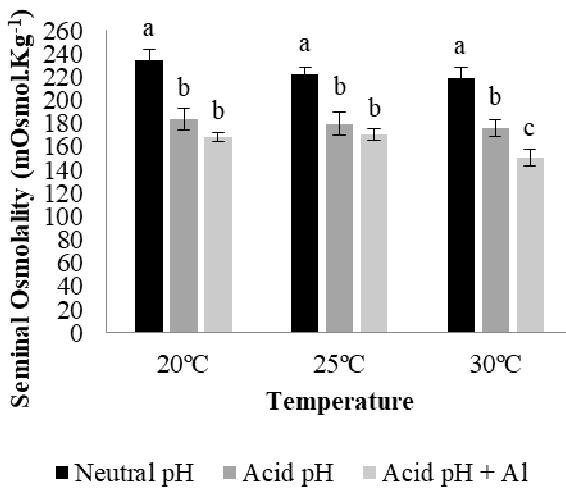
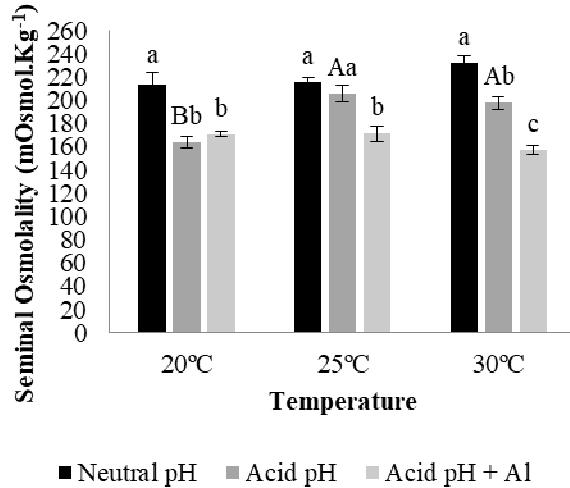
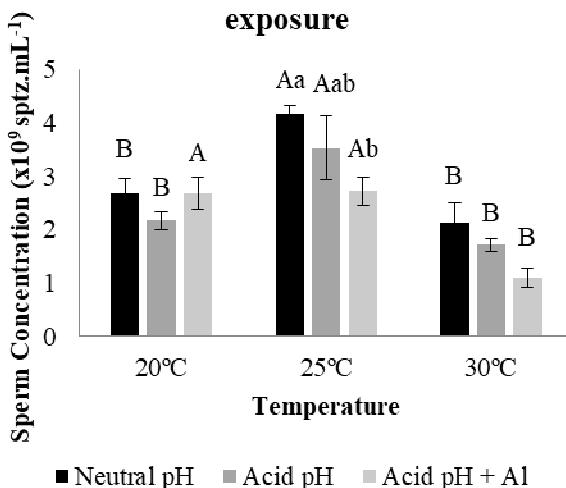
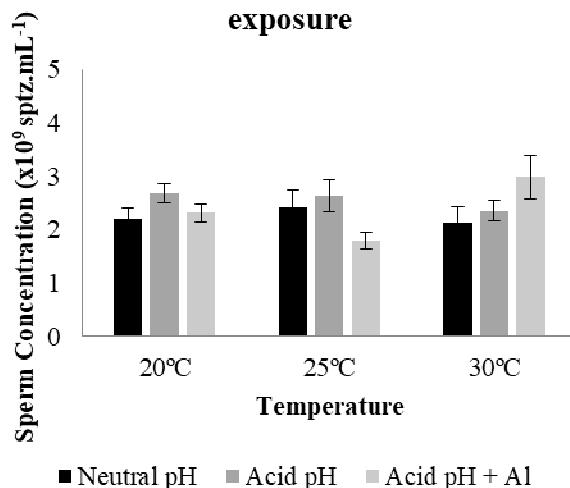






Seminal pH - 24 h exposure**A****Seminal pH - 96 h exposure****B****Seminal Osmolality - 24h exposure****C****Seminal Osmolality - 96h exposure****D****Sperm Concentration - 24h exposure****E****Sperm Concentration - 96h exposure****F**

Fig. 1. Physicochemical characteristics of *Astyanax altiparanae* semen after exposure to different temperatures, pH values, and presence or absence of aluminum (mean \pm standard error of the mean). A. Seminal pH (exposure for 24 h); B. Seminal pH (exposure for 96 h); C. Seminal Osmolality (exposure for 24 h); D. Seminal Osmolality (exposure for 96 h); E. Sperm Concentration (exposure for 24 h); F. Sperm Concentration (exposure for 96 h). Uppercase letters indicate differences within the same treatment at different temperatures; Lowercase letters indicate differences within the same temperature in different treatment. n = 6/group; *P < 0.05.

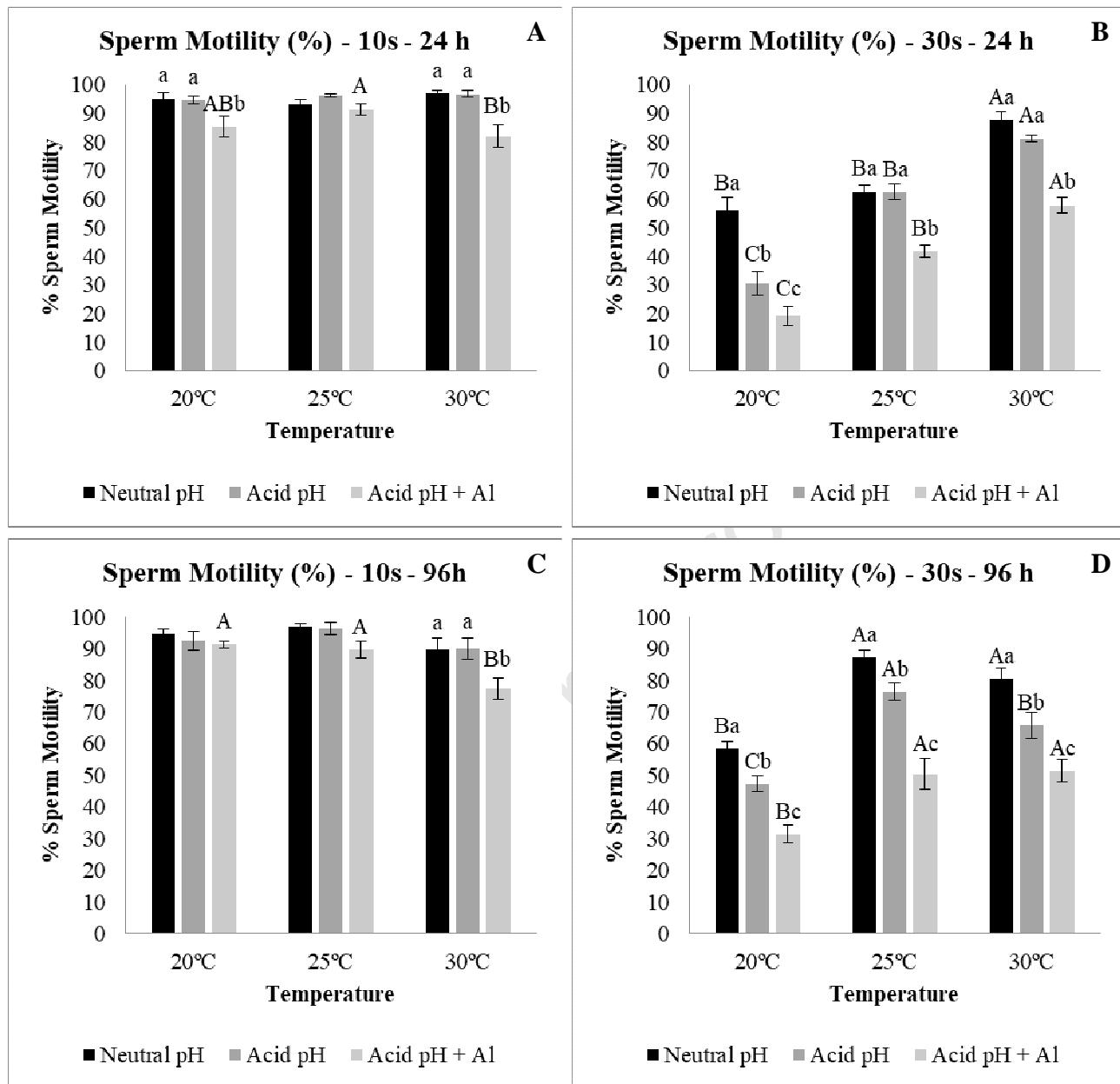


Fig. 2. Sperm motility (%) of male *A. altiparanae* after exposure at different temperatures, pHs and the presence or absence of Al. A. Sperm motility after 10 sec post-activation (animal exposure for 24 h); B. Sperm motility after 30 sec post-activation (animal exposure for 24 h); C. Sperm motility after 10 sec post-activation (animal exposure for 96 h); D. Sperm motility after 30 sec post-activation (animal exposure for 96 h). Uppercase letters indicate difference within the same treatment at different temperatures; Lowercase letters indicate differences within the same temperature in different treatments (n = 6; *P <0.05).

1 **Highlights**

2 - Al at high water temperature reduces seminal osmolality at 24 h and 96 h.

3 - Al and a high water temperature reduce sperm concentration after 24 h.

4 - Acidic water induces changes in sperm kinetics after 24 h and 96 h.

5 - Al triggers reduction in sperm motility and curvilinear speed after 24 h and 96 h.

6 - Al generates ultrastructural changes in sperm after 96h.

7

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

João Paulo Silva Pinheiro
Cecília Bertacini de Assis
Eduardo Antonio Sanches
Renata Guimarães Moreira