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Abstract

Given the toxicity of metals, including aluminum IfAand the effects of water
temperature on ectotherms, we investigated theviohail or association effect of these
variables (Al + acidic pH + temperature changes) sperm quality ofAstyanax
altiparanae Mature males were divided into nine experimemgaups based on the
combination of each of three water temperatures 280 and 30 °C) with neutral and

acidic pH values (7.0 and 5.5, respectively) withwithout 0.5 mg [* Al. The fish
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were subjected to subacute, semi-static exposutat®4 and 96 h were evaluated for
seminal parameters: (1) pH; (2) osmolality; (3) repeconcentration; (4) sperm
morphology; (5) sperm kinetics; and (6) sperm agtiacture. At 30 °C, Al caused a
reduction in osmolality (24 and 96 h) and spermcemntration (24 h). When analysing
sperm kinetics (30 sec post-activation), Al cauaeckduction in total motility at all
temperatures (24 h), and when this exposure tingeleveger (96 h), both acidic pH and
Al addition to the water caused sperm motility retthn. By analysing curvilinear
velocity (VCL) 30 sec after sperm activation (24d&®6 h), the acidic pH caused a
reduction in sperm movement at 20 and 30 °C, b@6&C Al triggered this reduction.
Finally, Al in the water caused ultrastructural mhes in the sperm head, midpiece, and
flagella regardless of water temperature. Alsevas found that the combination of Al
at 30 °C caused a reduction in sperm head area @whR20 °C, Al triggered a reduction
in the midpiece area. Therefore, acidity influenceaime A. altiparanae sperm
parameters but Al in the water accentuated thesetefon seminal quality, especially
seminal osmolality and sperm concentration, kisetand ultrastructure. This toxicity
was also influenced by changes in water temperature

Keywords: Fish; Metal; Reproduction; Spermatoz&arbacute exposure

Al negatively affectg\. altiparanaesperm quality in a temperature-dependent manner.

Introduction

Aluminum (Al) is one of the most abundant elemeotsthe Earth’s crust;
however, its bioavailability is limited due to losolubility at pH values between 6 and
8. There are two major sources of Al in the aquavironment: (1) indirect

solubilization by the release of Al from rocks asudls (natural source) and (2) addition
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of Al salts to freshwater by anthropogenic actionsorder to decrease phosphate
concentrations, reduce algal growth, or to clanter through particulate precipitation.
Additionally, as freshwater becomes progressivelgmsodically acidified by acid rain,
Al bioavailability increases (Wilson, 2011).

In addition to pH, which acts on Al speciation, @tlenvironmental factors, such
as temperature, may interfere with metal toxicitiie association of low temperatures
with low pH values maximizes Al water solubilityigth temperatures cause increase of
animal metabolism, consequently promoting a highempiratory rate and in turn,
causing an increase in Al absorption by respirastmyctures, such as gills, thus leading
to death of aquatic animals (Poleo and Muniz, 1988son, 2011; Pinheireet al,
2019). The United States Environmental Protectiaref’cy (EPA) recommends an
acceptable Al limit of 0.2 mg t in the water, while the National Environmental
Council (CONAMA) in Brazil sets the maximum dissetl’ Al value of 0.1 mg &
However, it is possible to observe that the corre¢ion found in many rivers exceeds
these values, such as in the state of Sdo Pawlail Be.g. 0.1 to 1.0 mgLin the Mogi
Guacu River; CETESB, 2018).

Although Al has no apparent biological function arganisms (Nayak, 2002;
Fernandez-Davila et al., 2012), some studies h&esvis that Al can be found in
different animal organs, such as brain (Mold et2018), liver, muscle, kidneys, gills,
ovaries, and teleost testes (Correia, 2012; Pialetiral., 2019), rat testes (Martinez et
al., 2017) and even in fluids from different anisyauch as human (Klein et al., 2014)
and teleost semen samples (Pinheiro et al., 2GL@hermore, studies indicate that Al
can interfere with several physiological processash as reproduction, by acting as an
endocrine disruptor of the hypothalamic—pituitargrgdal axis (Correia et al., 2010;

Correia, 2012; Kida et al., 2016). Other studiethwveleost have shown the capability
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of different metals, such as mercury ([Hg] Dietriehal., 2010; Hayati et al., 2019),
cadmium ([Cd]; Dietrich et al., 2010), and coppfCu]; Bombardelli et al., 2016;
Zebral et al., 2019) to negatively affect sperm ligpidby reducing motility rates,
membrane integrity, normal morphology, mitochondfimctionality, DNA integrity,
fertilization rates, and hatching.

The studies addressing the effects of Al in rats lammans have shown that this
metal influences sperm concentration reduction, ilityotrates reduction, sperm
abnormalities, and viability reduction (Klein et.,aP014; Cheraghi et al., 2017,
Martinez et al., 2017); however, in teleost, tm$ormation is not available so far.
However, Pinheiro et al. (2019) quantified Al ireteemen oAstyanax altiparanaand
observed that this metal bioaccumulates in thisl fand that there is an association of
this bioaccumulation with temperature and acidic, pirus triggering cytotoxic and
genotoxic effects and generating reversible DNA agenin the sperm of this teleost
species. This species has been used in severastodolving bioassays (Gomes et al.,
2013; Vieira et al., 2013; Chehade et al., 2014tiBeet al., 2016; Kida et al., 2016;
Abdalla et al., 2019; Brambila-Souza et al., 20R®theiro et al., 2019) due to its high
plasticity and easy handling in the laboratory #mds, represents a good bioindicator
for metal toxicity-related events.

Thus, in view of the above and after considerimg ¢urrent scenario of climate
change, which includes the increase in temperatme anthropic action on water
bodies, it was found that there are no available ddout the effects of metals,
including Al on the seminal quality of teleostén (vivg) in association with
environmental factors, such as temperature, duhegeproductive period. Moreover,
the reproductive capacity of animals is directlated to the environment in which they

live and may be influenced by numerous physical emeimical factors in addition to



102  environmental pollutants. Therefore, given the aamte of Al on Earth, our main
103  concern was the way in which this metal, at anremvhental concentration (0.05 mg L
104 1) in combination with temperature changes (20, &% 30°C) in combination with
105 acidic pH, which make do this metal soluble, cafluence spermatic parameters in
106 teleosts usin@A. altiparanaeas a neotropical model. We hypothesized that Alildio
107 negatively affectA. altiparanae sperm quality in a temperature-dependent manner.
108  Thus, the objective of this study was to evalubhedffects of subacute exposurefof
109  altiparanaemales to Al at environmental concentrations initaid to the individual
110  and/or synergistic actions of water temperature auidic pH on the seminal quality of
111 this species.

112

113 Material and Methods

114 Animals

115 MatureA. altiparanaemales (n = 360, Lt = 8.40 + 0.05 cm; Wt = 7.45.36)9)
116  were kindly donated by thEompanhia Energética de Sdo Padl€ESP (Paraibuna -
117  SP) and kept for seven days at the Ectothermidifyac the Department of Physiology
118 (IB/USP). The animals were divided into 18 glassampms (10 animals/aquarium; 132
119 L water/aquarium), with water renewal every 24 0% and daily feead libitumwith
120 extruded feed (32% crude protein). Furthermoreavoid confounding factors due to
121  faeces and other factors, the fish were deprivddad 24 h before the beginning of the
122 experiment until the end of subacute exposure.sthgdy was approved by the Animal
123 Use Ethics Committee (CEUA) at IB/USP (265/201@&dess 16.1.417.41.3).

124  Experimental Design

125 Animal exposure (n= 360) to experimental treatmems carried out in two

126  periods (each one started at the moment that texyserstabilization was achieved):
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(1) 180 animals exposed to experimental condititmds24 h and (2) 180 animals
exposed to experimental conditions for 96 h.

Each exposure period consisted of nine experimgntalps (duplicates), which
were chosen based on previous ecotoxicologicakbag withA. altiparanae(Correia
et al., 2010; Kida et al.,, 2016; Abdalla et al.120Pinheiro et al., 2019) and the
plasticity of the species studied in undergoingdahysiological responses to stressors.
The experimental groups consisted of combining @dc¢he three temperatures (20, 25,
and 30 °C)versusneutral pH (7.0), acidic pH (5.5), and acidic pbl5) with Al,
resulting in nine experimental groups: (1) wate2@®fC, no Al, neutral pH; (2) water at
20 °C, no Al, acidic pH; (3) water at 20 °C, with, Acid pH; (4) water at 25 °C no Al,
neutral pH (control group); (5) water at 25 °C,Alpacidic pH; (6) water at 25 °C, with
Al, acid pH; (7) water at 30 °C, no Al, neutral p8) water at 30 °C, no Al, acidic pH;
(9) water at 30 °C, with Al, acidic pH. Al was add® the water for groups T3, T6, and
T9 at a concentration of 0.5 mg*lwater (Pinheiro et a12019). The Al group was
carried out only in acid pH because of its bioaatality.

Temperature adjustment in each experimental graagacenducted at a rate of 1
°C H' (Trueman et al., 2000). This Al concentration hasn previously used in studies
by our group (Correia et al., 2010; Kida et al.1@0Abdalla et al., 2019; Pinheiro et al.,
2019) and also represents actual contaminatioregsadfisome basins in the state of Sao
Paulo according to reports issued by @mmpanhia Ambiental do Estado de S&o Paulo
(CETESB). Solutions were prepared withp,(80,)3.18H,0 (Sigma Aldrich) and 65%
HNO3 (Suprapur, Merck; Pinheiro et al., 2019).

Aquarium water was filtered and analysed dailydbysicochemical parameters
(temperature, dissolved oxygen, and pH) with tlileadian oximeter (YSI 55) and pH

meter (Gehaka). Al concentration was measured usthgttively coupled plasma mass
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spectrometry (ICP-MS) method and was within theeetgd range (0.360.09 to
0.50+0.02 mg L% Pinheiro et al., 2019).
Seminal Collection

Before each collection, the animals were induceth wrude carp pituitary
extract obtained commercially (Danubio Aquaculture) release sperm at a
concentration of 5 mg Kgof body mass. Since spermiation is faster at highe
temperatures, the time of each injection was dstaddd according to the treatment
temperature so that the values of accumulated @denmits (ATU) were between 260
and 275 (13 h before collection for the animalstke®0 °C; 11 h before collection for
animals kept at 25 °C; 9 h before collection foimaais kept at 30 °C). For seminal
collection, the animals were sedated with eugeaskld solution (clove oil at 100 mg L
1y in a 10 L aquarium until they presented lossapfikbrium.

After sedation, an animal’'s urogenital papilla wédrsed, and cranial-caudal
abdominal massage was performed. The semen ofaactal was collected with an
automatic pipette, aliquoted in graduated polyethgltubes, and kept in a polystyrene
thermal box (4 °C). After these steps, samplesacoimated with water, blood, faeces,
and/or urine were discarded, and semen kinetice wemediately evaluated with an
optical microscope to identify if the samples hae activated during collection. Also,
semen samples that showed this activation, thoseated with distilled water, and
those that were immobile were discarded. Only tiablg samples were kept for the
seminal analyses described below.

The seminal volume was measured with graduatedetiofiene tubes and
automatic pipette. The volume of semen collectesl 3424 + 2.78 uL (24 h) and 36.14

+ 3.19 pL (96 h). The seminal pH was evaluated witreagent strips (Merck).
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To measure the seminal osmolality aliquots of 20fikemen from each animal
were mixed with 30 pL of distilled water in a graded polystyrene tube and deposited
on a digital osmometer (5004 MICRO-OSMETTE™ Automatligh Sensitivity -
Precision Systems Inc.).

A 4 uL semen sample from each animal was fixed in 400of formalized
citrate solution for analysing sperm morphologyn Teicroliters of this solution were
then mixed with 3.L of Rose Bengal dye. From this mixturepé4 were removed and
dripped onto a glass slide (two slides per anim@&fder drying, 100 sperm cells per
slide were analysed using an optical microscoperdarg to the following criteria: (1)
macrocephaly; (2) microcephaly; (3) normal tail) @urled tail; (5) folded tail; (6)
corrugated tail; and (7) midpiece evaluation (addftom Galo et al., 2011).

Semen samples from each animal were fixed in 4¥mdtdehyde citrate
solution (4uL semen:4 mL fixative for a ratio of 1:1,000) inder to evaluate sperm
concentration. From each diluted samplepPQvere deposited on a Neubauer chamber
and the number of sperm cells were counted undeopdical microscope (400 x)
(Pinheiro et al., 2016). The calculation of spemnaentration was based on a method
by Wirtz and Steinmann (2006).

For sperm kinetics analysis, an aliquot of 1 plmee (in triplicate) was
activated with 1000 pL of distilled water (pH 6.85°C; it was monitored in each
motility evaluation and it was renewed when neaggda evaluate motility duration,
total motility (MOT), sperm velocities (curvilineavelocity [VCL], straight-line
velocity [VSL], average path velocity [VAP]) andctédinearity (STR). The images
were obtained with a trinocular light microscopeE(B coupled to a Basler camera
(AcA640: 120 uc) and connected to a computer. Tideos were captured with AVT

Universal Package software at 100 fps (640 x 48@lg) in .avi format, edited with
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VirtualDub-1.9.0 software (virtualdub.org) and exd as .jpg image sequences. Thus
100 images (1 sec) of 10 and 30 sec post-activatiere edited by ImageJ (National
Institutes of Health, USA, http://rsbweb.nih.gofj/ipnd analysed using the CASA
plugin (University of California and Howard Hughddedical Institute, USA,
http://rsbweb.nih.gov/ij/plugins/casa.html). Thedeos were processed based on the
description made for CASA free software (Wilson-tlgeand Ingermann, 2007) and
adjusted settings according to Sanches et al. |2@itB minimum mobile speeds of
VCL=15pum&, VAP =6 um&and VSL=1 pm3$

In order to carry out the analyses after semenecidin, the animals were
sacrificed through spinal cord section at the aplera level (Schreck and Moyle,
1990). A ventral opening was performed to remowe tistes, which were fixed in
Karnovsky's solution (Karnovsky, 1965) for spernzato ultrastructural analysis. The
animal samples were selected according to thetseshtained by Pinheiro et al. (2019)
regarding the absence of Al in the testes of th@robgroups for each temperature and
the presence of Al in the gonads of males expasé¢lis metal after 96 h (n= 6 animals
per treatment). This time was selected because 24td, there were no differences in
Al concentration in the testes in any treatmentdeed by these authors. Subsequently,
after fixation of the samples, the testes were edsh phosphate buffer (0.1M; pH 7.3)
and immersed in osmium tetroxide and 0.5% urangtade. An increasing dehydration
acetone series was used, the material was pladie ih:1 mixture of 100% Araldite
resin, and then immersed in pure resin. Finallg,uhrathin sections were stained with
a saturated solution of uranyl acetate in 50% ethand lead citrate. The samples were
processed at th€entro de Microscopia Eletrénicaf the Universidade Estadual Julio

de Mesquita Filho(Botucatu Campus) and analysed under the EM90@smesion
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Electron Microscope Carl Zeiss (7,000 and 12,00@&tx)heCentro de Aquisicao de
Imagens e Microscopitom the Institute of Biosciences (Caimi, IB/USP).

Statistical analyses

The data obtained were expressed as mean * staadardof the mean and
subject to the Kolmogorov-Smirnov normality test darSpearman test for
homoscedasticity testing. When necessary, data mermaalized (log10). Comparisons
between groups were made by the two-way analysivapiance (ANOVA) test
(temperature and treatment as variables) followedhle Holm-Sidak post-test. In all
cases, a significance level of 0.05 was considstatistically significant. Statistical

analyses were performed using SigmaStat 3.5 fod@us software.

Results and Discussion

This is the first study that investigated the seahiquality of teleosts after
exposure to Al and associated with physicochemieatier factors. Sperm quantity
(such as sperm volume and concentration) and gyalich as kinetics, seminal plasma
pH, membrane composition and stability, and DNAegnity) can determine
fertilization capacity and hence reproductive ssscéauvel et al., 2010). Some of
these indicators, such as pH, osmolality, and sainmitasma composition, are specific
biomarkers that directly influence sperm maturatiomd sperm capability to fertilize
oocytes as sperm are immobile in the testes anthakplasma (Kowalski and Cejko,
2019).
Seminal pH

Seminal pH values generally vary from 6 to 9 (Alamd Cosson, 2005; Sanches
et al., 2011) between different species of teled3te seminal pH oA. altiparanaewas

8.63 + 0.07 in the control group (25 °C and neuytid). After 24 h of exposure, within
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each temperature setting, there was no differencseminal pH considering the
different experimental groups (P = 0.137) and thees in neutral pH at different
temperatures (P = 0.62 — 20 ¥é&rsus25 °C; P = 0.14 — 25 °@rsus30 °C; P = 0.05 —
20 °Cversus30 °C). However, at acidic pH and acidic pH + Admmsnal pH decreased
in animals kept at 30 °C (Fig. 1A). Thus, acid pkhver without the presence of Al, in
the aquatic environment, did not influence semipll However, the temperature
variation interfered with the results in which gler temperature yielded a lower pH at
30 °C.

Despite this variation in semen pH, this indicatostill within the range that
facilitates sperm mobility (slightly alkaline) when contact with water for possible
fertilization, and these differences found withida B of exposure along with other
factors possibly influenced sperm kinetics amorgydtiferent experimental treatments.
After 96 h of exposure (Fig. 1B), seminal pH wag affected by either treatment or
temperature. Probably, the exposure time allowea fe@adjustment of the animals, and
the seminal pH returned to the default value wmkantaining its buffering capability.
Although the influence of water quality on this speparameter has previously been
recognized, studies evaluating the effect of teélemposure to pollutants on seminal pH
and seminal osmolality were not found.

Seminal Osmolality

Osmolality is one of the main signals for the mtion of sperm motility in
teleosts since sperm is immobile in the testesaatidated when they come into contact
with water (osmotic shock), which in freshwateetsts, occurs at a low osmolality of
up to 50 mOsmol K§ (Cosson, 2004; Alavi and Cosson, 2006). Seminaiotelity
varies among fish species, ranging from 230 + 8846 + 18.26 mOsmol Kyin

cyprinids, from 232 + 13 to 332 + 5.1 mOsmolkip salmonids, and from 38 + 3 to
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93.6 + 7.3 mOsmol.ky in acipenserids (Alavi and Cosson, 2006). The sahi
osmolality ofA. altiparanaewas 224.83 + 4.97 mOsmol.kdat neutral pH), which is
within the range reported for teleosts. In the en¢sstudy, after 24 h exposure (Fig.
1C), animals maintained at 20 and 25 °C displayeeldaction in seminal osmolality
when exposed to acidic pH and acidic pH with Al pamed to neutral pH (P < 0.001).
Already at 30 °C, all groups differed from eachent(P < 0.001). The most significant
reduction occurred when animals were exposed thcapH with Al. Besides, there was
no significant difference (P = 0.101) within eackperimental group at different
temperatures.

When the exposure period was prolonged (96 h), rsdnaismolality (Fig. 1D)
varied according to different pH values with a degence on temperature; thus, there
was an interaction between treatment and temperé®s 0.001). At 20 °C, there was a
decrease in seminal osmolality in the animals na@med in acidic pH and acidic pH
with Al compared to neutral pH (P < 0.001), while2% °C, this decrease was only
observed in the group exposed to acid pH and A& (®001). Already at 30 °C, all
groups differed from each other (P < 0.001) sirtcdah, the sharpest reduction in the
males exposed to pH acid with Al was noted. Adddity, in animals maintained in
acidic pH, there was an increase in the seminabtaity at 25 °C (P < 0.001) and 30
°C (P < 0.001) compared to 20 °C. Thus, it canrbphasized that the association of
higher temperatures (25 and 30 °C), acidic pH, dr& presence of Al caused a
significant reduction in seminal osmolality whiclonsequently influences sperm
kinetics as shown below. These alterations in sahvsmolality may have occurred
because environmental pH and temperature imposgelan membrane permeability,
enzymatic activity, and energy metabolism (Dadtasl.e 2016). It was also described

that heavy metals, such as mercury, can affecbéouk water channels or aquaporins,
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which are responsible for osmotic regulation antivaton of cell motility. Occlusion
of water channels by heavy metals can block watansport across the plasma
membrane, and therefore, osmotic rebalancing afterotic shock does not occur. One
side effect after this process is sperm swelling ffeshwater teleosts) that undoubtedly
affects sperm movement (Preston et al., 1993; Kavealet al., 1997; Dietrich et al.,
2010). Although Al is not a heavy metal, this psxeould explain the effects observed
in seminal osmolality and sperm kinetics.
Sperm Concentration

In teleosts, sperm concentration varies among epeaicording to reproductive
stage and age, and between seasons, due to vwasiatiphotoperiod, temperature, and
precipitation. Among abiotic factors, temperatusean important regulating factor in
teleost life that modulates reproductive procesgaspete development, maturation,
ovulation and spermiation, spawning, embryogenasid hatching, and larval and
juvenile development, in addition to survival (Phaokst and Porter, 2003). With
climate change, all of these processes will be®rleady being affected, for example,
interference with the hypothalamus-pituitary-gonags as low temperatures can
inhibit and reduce steroid (such as testosterormjyction, and high temperatures can
also cause inhibitory effects such as protein aonédional changes (such as follicle
stimulation and luteinizing hormones [FSH and Lkspectively] receptors, and
enzymes; Pankhurst and Munday, 2011). In the ptesteuidy, when comparing the
different experimental groups after 24 h of expegorthe solution with and without Al
at the same temperature (Fig. 1E), it was fountah@5 °C the animals maintained at
acidic pH with Al (2.72 + 0.27 x T0sptz mLY) had lower sperm concentration than the
animals at neutral pH (4.17 + 0.16 x°1€ptz mL*: control group; P = 0.002). When

analysing different temperatures within the sareatiment, males at neutral and acidic
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pH values presented higher sperm concentratio®s &€ than at 20 and 30 °C, while in
animals maintained in acidic pH and Al, the speromoentration was higher at 25
compared to 30 °C (P = 0.001).

The results clearly demonstrate that the extrermpeéeatures of the experiment
(20 and 30 °C) caused a reduction in the amouspedm, suggesting once again that 25
°C seems to be the closest temperature to whistsgi@cies is in homeostasis. Besides,
some anthropogenic factors, such as the presenoetais in water, can directly affect
spermatogenesis, sperm count, cause sperm DNA @araagd reduce sperm motility
(Rana, 2014, Jenardhanan et al., 2016). This fasta@rroborated wheh. altiparanae
at the accepted homeostatic temperature (25 °Cewassed to acidic pH with Al and
caused a reduction in sperm quantity. This redoatiosperm count was also observed
by Cheraghi et al. (2017) in Wistar rats and by ¥&fiet al. (2005) in rabbits exposed to
Al. One effect of Al is a decrease in activitiesvalrious plasma membrane enzymes,
such as adenosine triphosphatase, alkaline pheagghatand gamma-glutamyl
transferase in the testes, which impose indirdetef on spermatogenesis (Jenardhanan
et al., 2016; Kaizer et al., 2010). Abiotic factors can potentiate the effect of xeiotibs,
which are noticeable after 24 h of exposure whemetlwas a reduction of more than
50% in sperm concentration at the higher tempeza(@® °C). However, when the
exposure time was prolonged (96 h, Fig. 1F), tlvems a recovery in this parameter,
suggesting plasticity in this species in readjustmadverse conditions.
Sperm Morphology

Another variable used to evaluate seminal qualiy which directly influences
the fertilization rate is sperm morphology. In firesent study, sperm were classified as
normal or abnormal with the presence of the folloyail anomalies: (1) curled (a part

of the tail is above itself); (2) folded (a parttbie tail shows curvature to one of the
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sides); and (3) corrugated (the tail has wrinklests structure). When males were
exposed to different experimental treatments forh24here was no effect on sperm
morphology (Table 1). Some studies demonstratex@abbiotic compounds, such as
metals, are capable of generating sperm patholothias consequently affect the
fertilization potential of gametes. Among thesedsts, we can highlight the one by
Vergilio et al. (2015) in which alterations in tlsperm head of carapd@&ymnotus
carapg exposed to cadmium chloride (CdCand also sperm morphopathologies in
rabbits (Yousef et al., 2005) and Wistar rats egdds Cd (Cheraghi et al., 2017) were
found.

In addition to xenobiotics, environmental fact@ach as temperature, may also
influence in the occurrence of anomalies in spesntlaanges in these abiotic factors
alter membrane permeability and enzyme activityadadition to modifying membrane
proteins (Dadras et al. al., 2016).Analtiparanaeexposed to 30 °C for 96 h at neutral
pH, there was a decrease in the percentage of miogbally normal sperm compared
to those exposed to 20 and 25 °C (P = 0.002 andG4, respectively) as shown in
Table 1, suggesting that the increase in temperatamsed protein denaturation that led
to pathologies in the sperm tail. Also, an intaactof the variables on the sperm
morphology after 96 h of exposure (P = 0.045) waseoved.

Sperm kinetics

Sperm kinetics is an important parameter for agsgsseminal quality since
sperm motility and velocities are directly relatedfertilization rate (Rurangwa et al.,
2004; Gage et al., 2004). Previous studies havevrsitbat sperm kinetics may be
influenced by physicochemical characteristics ef éimvironment, such as temperature,
(Dadras et al., 2016) and the presence of pollstanich as copper (Zebral et al., 2019)

in the water. In the present study, after 24 h eyp® (Fig. 2A and 2B), when
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considering the same treatment between differenpéeatures, there was a reduction in
the motility in the sperm of animals in acidic phtiwAl at 30 °C compared to 25 °C (P
= 0.006). Also, by analysing the different groupshim the same temperature, it was
observed that in acid pH with Al at 20 °C and 30th€re was decrease in sperm
motility (10 sec after activation) compared to #remals in neutral and acidic pH (P =
0.004; P = 0.006; P < 0.001; P < 0.001; Fig. 2A)tHe group exposed 30 sec after
sperm activation, an interaction between tempegatud treatment (P = 0.002) on
sperm motility was observed. When analysing theesamatment between different
temperatures (30 sec), it was found that at thbdsgtemperature, the sperm motility
remained higher regardless of pH and the presendéoraabsence of Al. When
comparing the experimental treatments within themesaemperature, at 20 °C, sperm
motility was reduced when the animals were expasextidic pH (30.53% * 4.59%; P
< 0.001) and acidic pH with Al (19.16% + 3.26%, F€01) compared to neutral pH
(56.20% + 4.42%). Already at both 25 and 30 °Crmepeotility was reduced by more
than 20% only when Al was added.

After 96 h of exposure (Fig. 2C and D), the saneadrobserved at 24 h was
observed in sperm motility after 10 sec of actmati When comparing the same
treatment between different temperatures, animaistained in the acid pH group with
Al presented lower sperm motility at 30 °C tharR@tand 25 °C. After comparing the
different treatments at the same temperature, nale€3) °C and acidic pH with Al
presented the lowest sperm motility (77.28% + 3.37After 30 sec of activation (Fig.
2D), in the same treatment at different temperatuae neutral pH, sperm motility was
higher at 25 °C (P < 0.001) and 30 °C (P < 0.0@pared to 20 °C. At acidic pH,
sperm motility was also higher at 25 °C and redwte2D °C (P < 0.001) and 20 °C (P <

0.001). At acidic pH with Al, the percentage of melsperm was higher at 25 and 30
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°C (P < 0.001 in both cases) than at 20 °C. Aengaring the different groups within

the same temperature, the same pattern was obsar2€d 25, and 30 °C: neutral pH >
acidic pH > acidic pH + Al. High water temperatwaused a reduction in the duration
of sperm motility; however, this reduction was cangated for by a higher swimming
speed compared to sperm activated at low tempesatamd longer motility duration

(Fig. 2D). This decrease in motility duration magvh been due to limited energy
resources and/or the effect of temperature on mobtatirocesses (Dadras et al., 2016).

Adriaenssens et al. (2012) studied long-term exmosfiive weeks) of
mosquitofish malesGambusia holbrookiat different temperatures (cold acclimation:
18 °C and warm acclimation: 30 °C) and observetith®higher temperature favoured
the increase of sperm motility, a finding that weasroborated in the present study, both
at 24 and 96 h of exposure, implying that futuienate changes could have an impact
on species reproduction.

Besides temperature, the presence of Al in therwedgatively interfered with
sperm motility. At both exposure times and throughihe sperm motility period (10
and 30 sec post-activation analyses), Al triggerelécrease in sperm motility of > 30%
over conditions of neutral pH without this metallséd, other studies with rats
demonstrated this reduction in sperm motility whexposed to Al (Cheraghi et al.,
2017; Martinez et al.,, 2017). Martinez et al. (20Dbserved that this functional
impairment appears along with a redox imbalancevatidan increase in production of
reactive oxygen species, lipid peroxidation, anteratl antioxidant capacity in
reproductive organs. Also, suppression of spernegitegjs and sperm impairments in
addition to histopathological changes could beigértattributed to polyunsaturated

fatty acid peroxidation in the sperm membrane (Mag et al., 2017).
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In addition to motility, the study of sperm veloe# is of paramount importance
for the evaluation of semen quality as some stuldiéa® shown a strong correlation of
these variables, especially VCL, with fertilizaticate (Viveiros et al., 2010; Gallego et
al., 2017). WherA. altiparanaemales were exposed to experimental treatment4fdr
(Fig. 3A), in VCL after 10 sec of sperm activatiovhen comparing the same treatment
between the different temperatures, no influenceeafperature in each group (P =
0.958) was seen. However, when analysing the diffetreatments within the same
temperature group, it was possible to observe dhahals exposed to acidic pH + Al
presented lower VCL for all temperatures. Moreowadter 30 sec of sperm activation,
there was an interaction between treatment andegsatpe (P = 0.047) in VCL. When
comparing the same experimental group betweenrdifteaemperatures and neutral pH
it was observed that as the temperature increaseddshe VCL (20 °C < 25 °C < 30
°C). Already at acidic pH at 20 °C and acid pH +aAR0 and 25 °C, the lowest VCL
values were observed. Besides, when the differeatrhents are compared at the same
temperature, acidic pH + Al produced lower VCL \ediat all temperatures.

After 96 h of animal exposure (Fig. 3B), no diffieces (P = 0.062) were found
after comparing the same treatment between therdiff temperatures in VCL after 10
sec of activation of male gametes. Regarding thee®0post-activation, with the same
treatment, animals maintained at acidic pH at exé¢ré¢emperatures of the study (20 °C
and 30 °C) presented lower VCL values (P < 0.00d Bn= 0.03, respectively).
Similarly at 24 h exposure at 30 sec post-activaetazidic pH + Al demonstrated lower
VCL values at all temperatures.

Some metals, such as Hg, can bind to flagellaeprstand affect sperm kinetics
or enzymes and consequently sperm metabolism @si@hhibition of protein activity,

denaturation, or conformational protein changesnhgequently, the structure of sperm
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flagella may be altered, and the sliding procesthefdynein-driven microtubules may
be impaired (Dietrich et al., 2010). This fact caggest that Al can attach to the sperm
and reduce both motility and VCL at both exposures.

VAP is another sperm parameter that was investigatéhe present study. After
24 h of exposure (Fig. 4A) at 10 sec and 20 °Onspm animals maintained at acidic
pH + Al, presented the lowest VAP value. After asalg the different treatments at the
same temperature at 30 sec post-activation, itpeasible to verify that Al caused a
reduction in the VAP values compared to the otheugs at 25 °C (P = 0.002; P =
0.016).

After 96 h (Fig. 4B), when comparing different tmeants within the same
temperature, animals at acidic pH + Al presentedidivest VAP values at 25 °C at 10
sec post-activation. At 30 sec pot-activation, algrat acidic pH presented lower VAP
at the extreme study temperatures (P < 0.001 an@ B35, respectively). Within each
temperature group, 20 °C and acidity triggeredaedse in VAP, but at 25 °C, only the
presence of Al caused this reduction (similar td24

Regarding VSL, after 24 h of exposure (Fig. 5A) whserved that the presence
of Al at 20 °C caused a reduction in this velo¢itgutral and acidic pH values; P = 0.01
and P = 0.005, respectively). Already after 30 sksperm activation, for the same
treatment at different temperatures and both atraleand acidic pH values, a decrease
in VSL at 20 °C compared to 25 and 30 °C was ddewever, at acidic pH + Al, the
lowest values were observed at 20 and 25 °C.

After 96 h (Fig. 5B), at 30 sec post-activationalgeing the same group at
different temperatures at acidic pH values, it wassible to observe a lower VSL value
at 20 °C. Also, when comparing the different groapshe same temperature, it was

verified that acidity was responsible for the regutin VSL at 20 °C. However, at 25
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°C, this decrease occurred only due to the presgingk This decrease was also found
in sperm fromDanio rerio (Acosta et al., 2016) ardalmo trutta(Kowalska-Goralska
et al., 2019), which had been exposed to Cd andr@upresented reductions in VCL,
VAP, and VSL.

Regarding STR, at 24 h of exposure (Fig. 6A) and&Dafter sperm activation,
interaction between treatment and temperature f®©24) on this sperm parameter was
observed. Moreover, at both times, it was found #ramals exposed to neutral pH
presented lower STR at 30 °C. After 96 h (Fig. 88J at 10 and 30 sec post-activation,
temperature and treatment variables did not intevah STR (P = 0.207 and P = 0.420,
respectively).

Sperm Ultrastructure

Another important parameter to evaluate in ordeuriderstand the action of a
pollutant on gametes is cell ultrastructure siniaaay be possible to associate changes
in morphological characteristics with the functibnechanisms performed by each
structure. As stated previously, for this analysis, exposure time of 96 h was selected,
because after 24 h, Al does not concentratd.imltiparanaetestes (Pinheiro et al.,
2019). A. altiparanae sperm consists of a spherical nucleus containirgnudar
chromatin with a mean diameter of 1.73 + 0.02 pum,cainded by a plasma membrane,
totalling a nuclear area of 0.49 + 0.01 urBelow the nucleus and involving the
insertion of the flagella, the midpiece is locategth a mean diameter (measured above
the insertion of the flagellum and the cytoplaseanal) of 1.58 + 0.04 um and an area
of 0.28 + 0.01 prh which is composed of mitochondria unevenly areghthroughout
the region.

A qualitative analysis (Fig. 7) showed that the esahat underwent treatment

without Al regardless of temperature had similagrap ultrastructural characteristics.
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However, when Al was added and animals were expusetifferent temperatures, a
change in the ultrastructure was observed withrtbset pronounced changes at 30 °C. It
was observed that Al favoured the disruption of¢perm nuclear membrane (Fig. 7B
and 7D), conformational changes of chromatin (KiB. and 7C), the clutter of the
midpiece (Fig. 7C, 7D and 7F), presence of greatienber of vesicles/vacuoles in the
midpiece (Fig. 7E), and damage to the structutbeflagella (Fig. 7E).

It was possible to observe the qualitative effemttsisolated temperature in
addition to the interaction of this physical paréenewith the presence of Al in the
testes after 96 h (Table 2). The influence of titeraction between the temperature and
the presence/absence of the metal in the diametetha nuclear area (P = 0.002 and P
= 0.037, respectively). Thus, in the absence oftA& animals maintained at 30 °C
presented sperm head with the largest nuclear desiraad area compared to the other
temperatures. Also, within each temperature grabp, presence of Al caused a
reduction in nuclear diameter and area of spernd la¢&80 °C (P=0.002 and P=0.036,
respectively). Regarding the midpiece temperatloeeadid not influence the diameter
and area of the midpiece; however, when associaitidAl the smallest diameter and
smallest area of the midpiece were found when tiraas were exposed to 20 °C.

Morphological changes were observed in sperm wingmas or gametes were
exposed to certain pollutants, such as differertalmén rabbits (Castellini et al., 2009),
Cd in sea urchins and mussels (Au et al., 2000)¢cung in fish (Hatef et al., 2011), and
insecticides in fish (Xu et al., 2005) and mamn{&&nchez et al, 2017). However, no
studies of sperm ultrastructure under the influerfc&l have been evaluated so far. The
results suggest that Al favours nuclear membraseugiion and causes chromatin
conformational changes, leading to higher DNA fragtation scores (Pinheiro et al.,

2019). Besides, Al modified the structure of thedpmece in addition to the
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mitochondria inserted in it, which may have causbdnges in enzymatic activities
leading to reductions in sperm motility and VCL.dMbnally, changes in head and the
midpiece may affect fecundity at the micropile levEhese changes could decrease
fertilization and hatching rates and also influetie embryonic development pattern of
A. altiparanae With that, more studies are needed to clarifywag in which Al could
enter the cell and whether it would affect generatind development of progenies.
Conclusion

Under the experimental conditions described in 8tigdy, acidity influences
sperm parameters IA. altiparanae but the presence of Al in the water at ambient
concentrations accentuates the effects on semuaity especially sperm osmolality,
concentration, kinetics, and ultrastructure. Alfus toxicity may be influenced by
temperature. It is suggested that both water gcatid the non-optimal temperature,
influence fertilization and hatching rates, whicbuld trigger a reduction inA.

altiparanaepopulations.
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Table 1. Sperm morphology (% of normal) Adtyanax altiparanae after exposure (24 and 96 h) at
different temperatures, pHs, and the presence senaie of aluminum (Al) shown as mean * standard

error of the mean.

Sperm Morphology - % Normal
24 h Exposure

Treatment 20°C 25°C 30°C

Neutral pH 99.92 +0.08 99.83 +0.17 99.92 + 0.08
Acid pH 99.80+0.11 100+ 0 99.83+0.11
Acid pH + Al 99.83+0.11 99.58 + 0.20 99.42 +0.30

96 h Exposure

Treatment 20°C 25°C po°C

Neutral pH 100 + 0" 99.92 + 0.08' 98.92 + 0.3%
Acid pH 99.92 +0.08 99.33+0.31 99.25+0.11
Acid pH + Al 99.67 +0.33 99.25 +0.31 99.67 +0.21

Uppercase letters indicate differences within times treatment at different temperatures; n = 6505



Table 2. Sperm Ultrastructure (head and midpie@endters and areas) of male altiparanae after
exposure (96 h) at different temperatures, pHs, thedpresence or absence of Al shown as mean +

standard error of the mean.

Sperm Ultrastructure

Head Diameter (um)

Treatment 20°C 25°C 30°C
Neutral pH 1.66 + 0.02 1.73+0.02 1.84 +0.02°
Acid pH + Al 1.72+0.02 1.74 +0.03 1.73+0.03

Midpiece Diameter (um)

Treatment 20°C 25°C 30°C

Neutral pH 1.48 +£0.04 1.58 +0.04 1.55+0.03

Acid pH + Al 1.43+0.08 1.57 £ 0.04 1.48 + 0.04°
Head Area (unf)

Treatment 20°C 25°C 30°C

Neutral pH 0.46 + 0.0F 0.49 +0.0¥ 0.54 + 0.02°

Acid pH + Al 0.48 +0.01 0.52+0.02 0.50 + 0.61
Midpiece Area (unf)

Treatment 20°C 25°C 30°C

Neutral pH 0.28 +0.01 0.28 £0.01 0.30+0.01

Acid pH + Al 0.24 +0.02° 0.27 +0.01® 0.30+ 0.02*

Uppercase letters indicate differences within thene treatment at different temperatures; lowercase

letters indicate differences within the same terapge at different treatments. n = 6; *P <0.05
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Fig. 3. Curvilinear velocity (VCL) of A. altiparanae sperm after 24 h (A) and 96 h (B)
exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase
letters indicate differences within the same treatment at different temperatures,

Lowercase letters indicate differences within the same temperature under different

treatments. n=6; *P < 0.05
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Fig. 4. Average path velocity (VAP) of A. altiparanae sperm after 24 h (A) and 96 h (B)
exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase
letters indicate differences within the same treatment at different temperatures,
lowercase letters indicate differences within the same temperature under different

treatments. n=6; *P < 0.05
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Fig. 5. Straight line velocities (VSL) of A. altiparanae sperm after 24 h (A) and 96 h
(B) exposure at different temperatures, pHs, and the presence or absence of Al.
Uppercase letters indicate differences within the same treatment at different
temperatures; lowercase letters indicate differences within the same temperature under

different treatments. n = 6; *P <0.05
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Fig. 6. Rectilinearity (STR) of A. altiparanae sperm after 24 h (A) and 96 h (B)
exposure at different temperatures, pHs, and the presence or absence of Al. Uppercase
letters indicate differences within the same treatment at different temperatures,
lowercase letters indicate differences within the same temperature under different

treatments. n=6; *P < 0.05



Fig. 7. Sperm ultrastructure & altiparanae after exposure to different temperatures
and the presence or absence of Al. A. Normal spezoa (12.000 x; arrow: nuclear
membrane; n: nucleus; h: head; mp: midpiece; nochiindria; f: flagellum; treatment:
25°C, and neutral pH). B-F. Abnormal spermatozoaE(BL2.000 x; F—7.000 x; anm:
abnormal nuclear membrane; v: vesicle; circle: tebetucid areas; amp: abnormal
midpiece; af: abnormal flagellum; am: abnormal witondria; B-D: treatment 20°C,

acid pH, and Al; E-F: treatment 30°C, acid pH, atd



Seminal Osmolality (mOsmolKg1) Seminal pH

Sperm Concentration (x10° sptz.mL1)

[ —Y

O=RIW A1 0 O — W

Seminal pH

wA AR 5
20°C 2 30°C

® Neutral pH

- 24 h exposure

Temperature

Acid pH

Acid pH+ Al

Seminal Osmolality - 24h exposure

"
5
5
5

1
1
1
1
1

2 W +

—

260
240

® Neutral pH

a

220
Hgg b

4y C

60 I
40
20
00
80
60
40
20
0

30°C

Tempel'ature
Acid pH © Acid pH+ Al
Sperm Concentration - 24h
exposure
Aa Aab
B A I Ab
B
B I i
T B
L B
I
20°C 25°C 30°C

® Neutral pH

Temperature

Acid pH

Acid pH+ Al

Seminal pH

Seminal Osmolality (mOsmolKg1)

Sperm Concentration (x10° sptz.mL1)

Seminal pH - 96 h exposure

[Rry—

=
O=RWR NI 0O— W

® Neutral pH

I | II

Temperature

Acid pH

Acid pH+ Al

Seminal Osmolality - 96h exposure

260
240 a
220
200
180
160

® Neutral pH

a
a Aa Ab
I b T
I

H o

Temperature

Acid pH

Acid pH+ Al

Sperm Concentration - 96h

8]

—

20°C

® Neutral pH

exposure

°F L L
I I I
0
25°C 30°C

Temperature

Acid pH

Acid pH+ Al



Fig. 1. Physicochemical characteristicsAsfyanax altiparanae semen after exposure to
different temperatures, pH values, and presencabsence of aluminum (mean *
standard error of the mean). A. Seminal pH (expodor 24 h); B. Seminal pH
(exposure for 96 h); C. Seminal Osmolality (expedar 24 h); D. Seminal Osmolality
(exposure for 96 h); E. Sperm Concentration (exmosior 24 h); F. Sperm
Concentration (exposure for 96 h). Uppercase ketiedicate differences within the
same treatment at different temperatures; Lowerlsdter's indicate differences within

the same temperature in different treatment. rgrobip; *P < 0.05.
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Fig. 2. Sperm motility (%) of male A. altiparanae after exposure at different
temperatures, pHs and the presence or absence of Al. A. Sperm motility after 10 sec
post-activation (animal exposure for 24 h); B. Sperm motility after 30 sec post-
activation (animal exposure for 24 h); C. Sperm motility after 10 sec post-activation
(animal exposure for 96 h); D. Sperm motility after 30 sec post-activation (animal
exposure for 96 h). Uppercase letters indicate difference within the same treatment at
different temperatures, Lowercase letters indicate differences within the same

temperature in different treatments (n = 6; *P <0.05).
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Highlights

- Al at high water temperature reduces semina osmolality at 24 h and 96 h.

- Al and a high water temperature reduce sperm concentration after 24 h.

- Acidic water induces changes in sperm kinetics after 24 h and 96 h.

- Al triggers reduction in sperm motility and curvilinear speed after 24 h and 96 h.

- Al generates ultrastructural changesin sperm after 96h.
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