Anais do WSCAD-WIC 2017

Optimizing a Boundary Elements Method for Stationary
Elastodynamic Problems implementation with GPUs

Giuliano A. F. Belinassi', Rodrigo Siqueira', Ronaldo Carrion® , Alfredo Goldman',
Marco D. Gubitoso'

nstituto de Matemitica e Estatistica (IME) — Universidade de Sdo Paulo (USP)
Rua do Matao, 1010 — Sao Paulo — SP — Brazil

2Escola Politécnica (EP) — Universidade de Sdo Paulo (USP)
Avenida Professor Mello Moraes, 2603 — Sao Paulo — SP — Brazil

Abstract. The Boundary Element Method requires a geometry discretization to
execute simulations, and it can be used to analyze the 3D stationary behavior of
wave propagation in the soil. Such discretization involves generating two high
computational power demanding matrices, and this article demonstrates how
Graphical Processing Units (GPU) were used to accelerate this process. In an
experiment with 4000 Mesh elements and 1600 Boundary elements, a speedup
of 107 x was obtained with a GeForce GTX980.

1. Introduction

Differential equations governing problems of Mathematical Physics have analytical so-
lutions only in cases in which the domain geometry, boundary and initial conditions are
reasonably simple. Problems with arbitrary domains and fairly general boundary con-
ditions can only be solved approximately, for example, by using numerical techniques.
These techniques were strongly developed due to the presence of increasingly powerful
computers, enabling the solution of complex mathematical problems.

The Boundary Element Method (BEM) is a very efficient alternative for model-
ing unlimited domains since it satisfies the Sommerfeld radiation condition, also known
as geometric damping [Katsikadelis 2016]. This method can be used for numerically
modeling the stationary behavior of 3D wave propagation in the soil and it is useful as
a computational tool to aid in the analysis of soil vibration [Dominguez 1993]. A BEM
based tool can be used for analyzing the vibration created by heavy machines, railway
lines, earthquakes, or even to aid the design of offshore oil platforms.

With the advent of GPUs, several mathematical and engineering simulation prob-
lems were redesigned to be implemented into these massively parallel devices. However,
first GPUs were designed to render graphics in real time, as a consequence, all the avail-
able libraries, such as OpenGL, were graphical oriented. These redesigns involved con-
verting the original problem to the graphics domain and required expert knowledge of the
selected graphical library.

NVIDIA noticed a new demand for their products and created an API called
CUDA to enable the use of GPUs for general purpose programming. CUDA uses the con-
cept of kernels, which are functions called from the host to be executed by GPU threads.
Kernels are organized into a set of blocks composed of a set of threads that cooperate with
each other [Patterson and Hennessy 2007].

51

Anais do WSCAD-WIC 2017

The memory of a NVIDIA GPU is divided in global memory, local memory,
and shared memory. Global memory is accessible by all threads, local memory is pri-
vate to a thread and shared memory is low-latency and accessible by all threads in a
block[Patterson and Hennessy 2007]. CUDA provides mechanisms to access all of them.

Regarding this work, this parallelization approach is useful because an analysis of
a large domain requires a proportionally large number of mesh elements, and processing
a single element have a high time cost. Doing such analysis in parallel reduces the com-
putational time requied for the entire program because multiple elements are processed at
the same time. This advantage was provided by this research.

Before discussing any parallelization technique or results, Section 2 presents a
very brief mathematical description of BEM for Stationary Elastodynamic Problems and
the meaning of some functions presented in this paper. Section 3 shows how the most
computational intensive routine was optimized using GPUs. Section 4 discusses how the
results were obtained. Section 5 presents and discusses the results. Finally, Section 6
provides an overview of our future work.

2. Boundary Elements Method Background

Without addressing details on BEM formulation, the Boundary Integral Equation for Sta-
tionary Elastodynamic Problems can be written as:

ciju;(§,w) + /

S

t:j(§ﬂ$vw)uj($vw)ds(x) I/u;-kj(f,x,w)tj(x7w)d5(x) (D

S

After performing the geometry discretization, Equation (1) can be represented in
matrix form as:

Hu = Gt 2)

Functions u;(§, 7, w) and (&, z,w) (called fundamental solutions) present a singular
behavior when £ = x ordely O(1/r), called weak singularity, and O(1/r?), called strong
singularity, respectively. The r value represents the distance between z and £ points. The
integral of these functions, as seen in Eq. (1), will generate the G and H matrices respec-
tively, as is shown in Eq. (2). For computing these integrals numerically, the Gaussian
quadrature can be deployed. Briefly, it is an algorithm that approximates integrals by
sums as shown in equation (3)[Ascher and Greif 2011], where g is the number of Gauss
quadrature points.

b g
/ f)de =Y wif (z;) 3)
a i=1

To overcome the mentioned problem in the strong singularity, one can use the
artifice known as Regularization of the Singular Integral, expressed as follows:

Cij(f)uj(f»w) +/ [tfj(famaw)DYN — t;}(é-vx)STA} Uj(l",w)ds(l")—F
5 4)
n /S b (6, 2)s1a; (2)dS () = /5 2, (6,7, w)pent; (2, w)dS(x)

52

Anais do WSCAD-WIC 2017

Where DYN = Dynamic, STA = Static. The integral of the difference between the dy-
namic and static nuclei, the first term in Equation (4), does not present singularity when
executed concomitantly as expressed because they have the same order in the both prob-
lems.

Algorithmically, equation (1) is implemented into a routine named Nonsingd,
computing the integral using the Gaussian Quadrature without addressing problems re-
lated to singularity. To overcome singularity problems, there is a special routine called
Sing_de that uses the artifice described in equation (4). Lastly, Ghmatecd is a rou-
tine developed to create both the H and G matrices described in equation (2). Both
Nonsingd and Sing_de are called from Ghmatecd routine.

3. Parallelization Strategies

A parallel implementation of BEM began by analyzing and modifying a sequential code
provided by [Carrion 2002]. Gprof, a profiling tool by [GNU], revealed the two most
time-consuming routines: Ghmatecd and Nonsingd, with 60.9% and 58.3% of the
program total elapsed time, respectively. Since most calls to Nonsingd were performed
inside Ghmatecd, most of the parallelization effort was focused on that last routine.

3.1. Ghmatecd Parallelization

Algorithm 1 shows pseudocode for the Ghmatecd subroutine. Let n be the number of
mesh elements and m the number of boundary elements. Ghmatecd builds matrices H
and GG by computing smaller 3 x 3 matrices returned by Nonsingd and Sing_de.

Algorithm 1 Creates H, G € CG™)x(n)
1: procedure GHMATECD
2 for j :=1,ndo
3 fori:=1,mdo
4 ii=3(i—1)+1;jj:=3G —1)+1
5 if i == j then
6: Gelement, Helement <+ Sing_de(i) > two 3 X 3 complex matrices
7
8
9

else
Gelement, Helement < Nonsingd (3, j)
: Glii = i+ 2][jj : jj + 2] « Gelement
10: Hlii i1+ 2)[jj : jj + 2] + Helement

There is no interdependency between all iterations of the loops in lines 2 and 3,
so all iterations can be computed in parallel. Since typically a modern high-end CPU
have 8 cores, even a small number of mesh elements generate enough workload to use all
CPUs resources if this strategy alone is used. On the other hand, a typical GPU contain
thousands of processors, hence even a considerable large amount of elements may not
generate a workload that consumes all the device’s resources. Since Nonsingd is the
cause of the performance bottleneck of Ghmatecd, the main effort was implementing
an optimized version of Ghmatecd, called Ghmatecd Nonsingd, that only computes
the Nonsingd case in the GPU, and leave Sing_de to be computed in the CPU after
the computation of Ghmatecd_Nonsingd is completed. The pseudocode in Algorithm

93

Anais do WSCAD-WIC 2017

2 pictures a new strategy where Nonsingd is also computed in parallel. Let g be the
number of Gauss quadrature points.

Algorithm 2 Creates H, G € CG™)x(3n)
1: procedure GHMATECD_NONSINGD

2: for j :=1,ndo

3: fori::=1,mdo

4 ii=301—-1)+1;jj:=3J—-1)+1

5: Allocate Hbuffer and Gbuffer, buffer of matrices 3 x 3 of size g*
6: if i # j then

7: fory:=1,gdo

8 forz:=1,gdo

9: Hbuffer(z,y) + GenerateMatrixH(i, j, =, y)
10: Gbuffer(x,y) < GenerateMatrixG(i, j, x, y)
11: Gelement < SumAllMatricesInBuffer(Gbuffer)

12: Helement < SumAllMatricesInBuffer(Hbuffer)

13: Glii : it + 2][jj : jj + 2] + Gelement

14: Hlii :ii + 2)[jj : jj + 2] + Helement

15: procedure GHMATECD_SING_DE
16: fori:=1,mdo

17: it:=30—-1)+1

18: Gelement, Helement < Sing_de(1)
19: Glii =it + 2][di : it + 2] + Gelement
20: Hlii : it + 2] : i3 + 2] < Helement

21: procedure GHMATECD
22: Ghmatecd Nonsingd|()
23: Ghmatecd_Sing_de()

The Ghmatecd Nonsingd routine can be implemented as a CUDA kernel. In
a CUDA block, g x g threads are created to compute in parallel the two nested loops in
lines 2 and 3, allocating spaces in the shared memory to keep the matrix buffers Houffer
and Gbuffer. Since these buffers contain matrices of size 3 X 3, nine of these g X g
threads can be used to sum all matrices, because one thread can be assigned to each matrix
entry, unless g < 3. Note that g is also upper-bounded by the amount of shared memory
available in the GPU. Launching m x n blocks to cover the two nested loops in lines 2 to 3
will generate the entire / and G without the Sing_de part. The Ghmatecd_Sing.de
routine can be parallelized with a simple OpenMP Parallel for clause, and it will
compute the remaining H and G.

4. Methods

Matrix norms were used to assert the correctness of our results. Let A € C™*™,
[Watkins 2004] defines matrix 1-norm as:

IA]l, = max Zlaml 5)

1<j<n

o4

Anais do WSCAD-WIC 2017

Table 1. Data experiment set
Number of Mesh elements 240 | 960 | 2160 | 4000
Number of Boundary elements | 100 | 400 | 900 | 1600

All norms have the property that || A|| = 0if and only if A = 0. Let u and v be two
numerical algorithms that solve the same problem, but in a different way. Now let y, be
the result computed by u and y, be the result computed by v. The error between these two
values can be measured computing ||y, — v, ||. The error between CPU and GPU versions
of H and G matrices was computed by calculating || Hep, — Hypy ||, and ||Gepu — Ggpul| ;-
An automated test check if this value is bellow 10~%.

Gfortran 5.4.0 and CUDA 8.0 were used to compile the applica-

tion. The main flags used in Gfortran were -Ofast -march=native
-funroll-loops -flto. The flags used in CUDA nvcc compiler were:
—use_fastmath -03 —Xptxas -—--opt-level=3 -maxrregcount=32

—Xptxas ——allow—expensive-optimizations=true.

For experimenting, there were four data samples as shown in Table 1. The appli-
cation was executed for each sample using the original code (serial implementation), the
OpenMP version and the CUDA and OpenMP together. All tests but the sequential set
the number of OpenMP threads to 4. The machine used in all experiments had an AMD
A10-7700K processor paired with a GeForce GTX980".

Before any data collection, a warm up procedure is executed, which consists of
running the application with the sample three times without getting any result. After-
ward, all experiments were executed 30 times per sample. Each execution produced a file
with total time elapsed, where a script computed averages and standard deviations for all
experiments.

GPU total time was computed by the sum of 5 elements: (1) total time to move
data to GPU, (2) launch and execute the kernel, (3) elapsed time to compute the result, (4)
time to move data back to main memory, (5) time to compute the remaining H and G parts
in the CPU. The elapsed time was computed in seconds with the OpenMP library function
OMP_GET_WTIME. This function calculates the elapsed wall clock time in seconds with
double precision. All experiments set the Gauss Quadrature Points to 8.

5. Results

The logarithmic scale graphic at Figure 1 illustrates the results. All points are the mean
of the time in seconds of 30 executions as described in Methodology. The average is
meaningful as the maximum standard deviation obtained was 2.6% of the mean value.

The speedup acquired in the 4000 mesh elements sample with OpenMP and
CUDA+OpenMP with respect to the sequential algorithm are 2.7 and 107 respectively.
As a conclusion, the presented strategy paired with GPUs can be used to accelerate the
overall performance of the simulation for a large number of mesh elements. This is a
consequence of parallelizing the construction of both matrices H and G, and the calcu-
lations in the Nonsingd routine. Notice that there was a performance loss in the 260

Thanks to NVIDIA for donating this GPU.

95

Anais do WSCAD-WIC 2017

102 .
: L.
| - -
10'5+ -
) - Le°
Fg 10' = .7 -
S b 7
N T L i 5 .
: .
=] 4
S 10" e
E 3 Py
C 4
107054 -
107 = :] : ;
240 960 2160 4000
Number of Mesh Elements

CPU+OpenMP = CPUSeq = GPU+OpenMP
Figure 1. Time elapsed by each implementation in logarithm scale

sample between OpenMP and CUDA+OpenMP, this was caused by the high latency be-
tween CPU-GPU communication, thus the usage of GPUs may not be attractive for small
meshes.

6. Future Work

There are issues related to the g described in Algorithm 2. Detailed studies are required
to determine the exact value of g that provides a good relation between precision and
performance. Also, better ways to compute the sum in lines 11-12 of Algorithm 2 may
increase performance. The usage of GPUs for the singular case can also be analyzed.

References
Ascher, U. M. and Greif, C. (2011). A first course on numerical methods. SIAM.

Carrion, R. (2002). Uma Implementacdo do Método dos Elementos de Contorno para
problemas Viscoelastodindamicos Estaciondrios Tridimensionais em Dominios Abertos
e Fechados. PhD thesis, Universidade Estadual de Campinas.

Dominguez, J. (1993). Boundary elements in dynamics. Wit Press.

GNU. Gnu binutils. https://www.gnu.org/software/binutils/. Accessed:
2017-05-08.

Katsikadelis, J. T. (2016). The Boundary Element Method for Engineers and Scientists:
Theory and Applications. Academic Press.

Patterson, D. A. and Hennessy, J. L. (2007). Computer organization and design. Morgan
Kaufmann.

Watkins, D. S. (2004). Fundamentals of matrix computations, volume 64. John Wiley &
Sons.

