

Modified 3D Pen-Printed Electrodes Integrated into a Low-Cost Automated Device for Electrochemical Glutathione Detection

Carlos E. C. Lopes¹, Luiz R. G. Silva^{1*}, Irlan S. Lima², Josué M. Gonçalves³, Lúcio Angnes²,
Jéssica S. Stefano¹, Luiza M. F. Dantas¹, Iranaldo S. da Silva¹

¹ Federal University of Maranhão, ²University of São Paulo, ³Mackenzie Presbyterian Institute

*e-mail: luz.guterres@ufma.br

Glutathione is a key antioxidant found in animal, plant, and microbial tissues, with altered levels being associated with several diseases [1]. Therefore, the development of accessible and low-cost detection methods is essential [2]. In this work, we propose a simple and economical electrochemical approach for glutathione determination using electrodes fabricated from a carbon black-based conductive filament. The electrodes were manually produced using a 3D printing pen and reused Falcon tube caps, offering a rapid and flexible alternative to conventional 3D-printed electrode fabrication. The complete electrochemical device was constructed via fused deposition modeling and allows the integration of a repurposed DC motor from an inkjet printer, featuring front inlets for the reference and counter electrodes, as well as for an electronic pipette, and a bottom support for the working electrode (Fig. 1). The sensing surface was modified with a

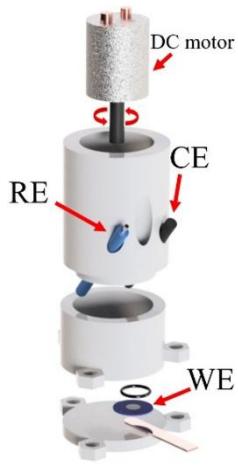


Fig. 1. 3D printed
electrochemical device

dispersion of carbon black and cobalt phthalocyanine in 20% aqueous ethanol. The modified electrodes were characterized by SEM-EDS, XRD, Raman, and FTIR. Amperometric detection was performed at 0.00 V under constant stirring. The method exhibited a sensitivity of $0.0149 \text{ A L mol}^{-1}$, a linear range from 5.0 to $180.0 \mu\text{mol L}^{-1}$, and detection and quantification limits of 1.30 and $4.50 \mu\text{mol L}^{-1}$, respectively. The method was successfully applied to fortified protein supplement sample, with recoveries ranging from 90.0% to 98.0%. Owing to its portable design, low cost, and ease of operation, the proposed device is also suitable for on-site glutathione monitoring.

Acknowledgments:

UFMA, FAPEMA, CAPES, CNPQ.

References:

- [1] Hanko, M., et. al., *Analytica Chimica Acta*, 1062, 1-27, 2019.
- [2] Ukirade, N., et. al., *Hybrid Advances*, 3, e100042, 2023.