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Abstract

This work concerns the representation of a class of continuous functions into Logic, so that one may auto-
matically reason about properties of these functions using logical tools. Rational McNaughton functions
may be implicitly represented by logical formulas in Lukasiewicz Infinitely-valued Logic by constraining
the set of allowed valuations; such a restriction contemplates only those valuations that satisfy specific
formulas. This work investigates two approaches to such depiction, called representation modulo satisfia-
bility. Furthermore, a polynomial-time algorithm that builds this representation is presented, producing a
pair of formulas consisting of the representative formula and the constraining one, given as input a rational
McNaughton function in a suitable encoding. An implementation of the algorithm is discussed.

Keywords: Function representation; Lukasiewicz Infinitely-valued Logic; rational McNaughton functions; piecewise linear
functions

1. Introduction

The formal representation of functions is an important step in the automated reasoning about
properties of such functions; if a represented function models a system, we have at our disposal a
formal way to verify desirable properties of such system by means of automated reasoning tech-
niques. In this work, we are concerned with the theoretical and practical aspects of an efficient
representation of rational McNaughton functions, continuous [0, 1]-valued piecewise linear func-
tions with rational coefficients whose domain is [0, 1]", into Lukasiewicz Infinitely-valued Logic
(Loo).

Rational McNaughton functions are able to approximate any continuous function f : [0, 1]" —
[0, 1] according to the Weierstrass-like result stated in Aguzzoli and Mundici (2001), Amato
and Porto (2000). This property expands the application of this kind of representation practical
systems modeled by any (normalized) continuous function; e.g. neural networks.

There are several approaches to represent rational McNaughton functions by logic systems; it
is preferable from a computational point of view that the complexity of the target logic system
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2 S. Preto and M. Finger

be as low as possible. This work aims at showing that such efficiency may be achieved by means
of representation modulo satisfiability or representation in the Loo-MODSAT system, according to
which rational McNaughton functions may be implicitly represented in L, (Finger and Preto,
2020). In this approach, a function is represented by a pair of Lo -formulas, (¢, ®), where the
former is a representative formula and the latter a constraining set of formulas; a function f is
represented by a pair (@, ®), where ¢ is a formula that semantically acquires values f(x), for x €
[0, 1]", only from valuations in {v | v(¥/) = 1, for all ¢ € ®}.

We introduce two different definitions for such a representation concept, which highlight dif-
ferent aspects of the intended technique. In a first approach, we explore the properties of logical
formulas; we call it the formula-based approach. Such presentation differs from the original one
in Finger and Preto (2020), which departs from a traditional representation and constrains the
domain of the represented function; this is the function-based approach. We carry out a formal
investigation of both views and compare them.

We present a polynomial-time representation builder algorithm, which is an algorithm that
builds representations in £o,-MODSAT, taking as input rational McNaughton functions presented
in regional format; this format has been updated in relation to a previous work as observed at the
end of this section. We also discuss an implementation of such algorithm; for that, we estab-
lish classes of rational McNaughton functions with varied complexity from which random testing
inputs may be generated and we present some experimental results.

The rest of this work is organized as follows. Section 2 introduces all necessary concepts of
Lukasiewicz Infinitely-valued Logic and the definition of rational McNaughton function. Section 3
discusses the related work on the traditional logical representation of rational McNaughton
functions. Section 4 has a theoretical investigation on the concept of representation modulo sat-
isfiability together with two different approaches to defining such a concept and a comparison
between them. Section 5 has the description of a representation builder algorithm and of an input
format for such algorithm; it also discusses the input format. Section 6 presents an implementa-
tion of the algorithm, some classes of rational McNaughton functions, and experimental results.
Section 7 has our conclusions.

An early conference version of this work titled An Efficient Algorithm for Representing Piecewise
Linear Functions into Logic (Preto and Finger, 2020) was published in the proceedings of the
15th Logical and Semantic Frameworks with Applications (LSFA 2020). We refer the reader to that
version for some omitted proofs in this work for the sake of brevity.

Note on the Previous Version. The definition of regional format that appears in Section 5.1
is modified in relation to the version in Preto and Finger (2020) and now has one additional
item requiring the encoded function to obey the lattice property. At the time of publication of the
previous version, following most current literature on lattice representation of piecewise linear
functions, that property was considered a consequence of the initial definition, and it was required
for the algorithm’s correctness. Here we provide a counterexample, showing that such property
does not follow in all cases (Example 5). Therefore, all references to the regional format in this
work deal with the updated definition. Also, the input format as defined in the previous version
is here called pre-regional format and it is investigated in Section 5.4 together with a literature
review. The aforementioned omitted proofs are not affected by the update in the definition of
regional format encoding of rational McNaughton functions.

2. Preliminaries

Lukasiewicz Infinitely-valued Logic (Lo) is arguably one of the best studied many-valued logics
(Cignoli et al., 2000), whose satisfiability over Lo, is NP-complete (Mundici, 1987), so it is in the
same complexity class as classical propositional satisfiability (SAT); there are a number of available
implementations of Lo-solvers, for which an empirical phase transition phenomenon is identified
(Bofill et al., 2015; Finger and Preto, 2018).
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The basic language .Z of Lukasiewicz Infinitely-valued Logic (L) comprehends the formu-
las built from a countable set of propositional variables P and the disjunction (€) and negation
(—) operators. For the semantics, define a valuation as a function v:.%Z — [0, 1], such that, for
o, el

V(g @ ¥) = min(1, v(¢) + v(¥)); (1)
v(=p) =1—v(p). (2)

Consider a function vp that maps propositional variables to a value in the interval [0, 1] and extend
it to a valuation by obeying (1) and (2). This extension is uniquely defined, and also called vp.

Let Val be the set of all valuations; let Var(®) be the set of all propositional variables occur-
ring in the formulas ¢ € ®; and let X,, be the set of propositional variables {Xi,...,X,} CP.
A formula ¢ is satisfiable (or 1-satisfiable) if there exists a v € Val such that v(¢) = 1; otherwise, it
is unsatisfiable. A set of formulas ® is satisfiable if there exists a v € Val such that v(¢) = 1, for all
¢ € &. We denote by Valg the set of all valuations v € Val that satisfy a set of formulas ®; we call
such a restricted set of valuations a semantics modulo satisfiability.

From disjunction and negation, we derive the following operators:

Conjunction: ¢ © ¥ =gef ~(—¢ & —Y) V(e © ¥) = max(0, v(p) + v(¥) — 1)

Implication: ¢ — ¥ =qef ~¢ D ¥ v(p — ¥) =min(1, 1 — v(p) + v(¥))
Maximum: ¢ V ¢ =gef ~(—¢ ® V) ® ¥ V(e vV ) = max(v(e), v(¥))
Minimum: ¢ A Y =def ~(—¢ V =) v(p A ¥) = min(v(p), v({))

Bi-implication: ¢ <> ¥ =gef (9 = V) A (Y — @) Vg < ¥) =1~ |v(p) —v(¥)|
Note that v(¢ — ) =1 iff v(p) < v(¥); similarly, v(¢ <> ) =1 iff v(¢p) =v(¥). Let X be a
propositional variable, then, (X ® —X) = 0, for any v € Val; we define the constant 0 by X © —X.
We also define 0 =gcf 0 and n¢ =ger @ - - - By, n times, for n € N*; and ;5 @i =der 0.

A rational McNaughton function f :[0,1]" — [0, 1] is a function that satisfies the following
conditions:

« f is continuous with respect to the usual topology of [0, 1] real number interval;

o There are linear polynomials py,...,ps, over [0,1]” with rational coefficients such that,
for each point x € [0, 1]", there is an index i€ {1,...,m} with f(x) = p;(x). Polynomials
P1>- - . > pm are the linear pieces of f.

A McNaughton function is a particular case of rational McNaughton function whose linear pieces
coefficients are restricted to integer values.

Let Q C [0, 1]"; we denote by Q° its interior, by cl(€2) its closure, by €2 its boundary and by
conv(£2) its convex hull.

3. The Traditional Way and Related Work

In the traditional way of representing functions by logical formulas, we inductively associate to a
given formula ¢, with Var(¢) C X,,, a function f, : [0, 1]" — [0, 1] by

@) f;(x1 e xn) =xj, forj=1,...,m
(i) frp(xi .o x) =1 —folx1, . 05 x0);
(i) foay (X1, ..., x,) =min(L, fo(x1, . .., x0) + fy (x1, . . ., X))

Note that the definition of f, depends on n. It follows that f,, enjoys the property:
Jo((X1), ..., v(X,)) = v(gp), forall v e Val. (3)

https://doi.org/10.1017/5096012952200010X Published online by Cambridge University Press


https://doi.org/10.1017/S096012952200010X

4 S. Preto and M. Finger

And, then, we say that formula ¢ represents function f. For any formula ¢, f, is a McNaughton
function and reciprocally, McNaughton’s Theorem states that every McNaughton function f may
be represented by some formula ¢ (McNaughton, 1951; Mundici, 1994).

There are propositional logics whose formulas represent rational McNaughton functions in the
traditional way. In the following, we present and discuss some of such most relevant approaches.

« Logic LH% extends Lo, with a product operator, its residuum and a constant expressing the
truth value %, not directly expressible in L, (Esteva et al., 2001). That logic not only allows for
the expressivity of rational McNaughton functions but also expresses piecewise polynomials;
as a consequence satisfiability over LH% requires finding roots of polynomials of #n-degree
making its complexity extremely high.

o Logic 3L also expresses rational McNaughton functions (Aguzzoli and Mundici, 2001, 2003);
it extends Lo, and introduces rational numbers by providing restricted form of propositional
quantification whose semantic counterpart is the maximization of a set of L, -valuations of a
formula. Satisfiability problem in that logic is in the complexity class £, which is also a high
complexity.

« Rational Lukasiewicz Logic extends Lo, with division operators 8, that induces division by

n € N* in its semantics, i.e. v(§,¢) = @, where v is a valuation of Rational Lukasiewicz

Logic (Gerla, 2001); its associated tautology problem is coNP-complete, which is a reason-
able complexity for this task. This logic expresses all rational McNaughton functions, but
no algorithm has ever been proposed that builds the representation formulas; an attempt
to derive such algorithm from the results of Gerla (2001) would lead to the problem of
representing McNaughton functions in L; it is known that this task may be done in poly-
nomial time on the coefficients of some specific functions (Aguzzoli, 1998), however these
methods lead to exponential time complexity if binary representation of the coefficients is
used.

« Logic RL extends L., with constant multiplication operators V, that induces multiplica-
tion by r € [0, 1] in its semantics, i.e. v(V,@) =1 - v(¢), where v is a RE-valuation (Di Nola
and Leustean, 2011, 2014). This logic expresses all continuous [0, 1]-valued piecewise linear
functions over [0, 1]"; in particular, it expresses all rational McNaughton functions, however
its language is uncountable, thus it is not computable. We are unaware of computational
considerations so far about the fragment of RL that comprehends only operators V, for

7€[0,11NQ.

4. Representation Modulo Satisfiability

Although formulas of L, only represent (integer) McNaughton functions, we present here an
implicit representation of rational McNaughton functions, which we call representation modulo
satisfiability. Next, we introduce two different definitions for such a representation concept, which
highlight distinct aspects of the intended technique, then we compare both approaches.

4.1 The formula-based approach

We start by analyzing the property which is a crux for the possibility that logical formulas rep-
resent functions in the traditional way: the value of a formula ¢ according to some valuation
v is determined only by the values associated to a finite set of propositional variables X such that
Var(¢) C X. Thus, if X is semantically identified to the domain of a function, formula ¢ may
semantically express all the values such function. Let us generalize this notion.
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Definition 1. Let ¢ be a formula and let ® be a set of formulas. We say that a set of propositional
variables X,, determines ¢ modulo ®-satisfiable if:

s Forany (xi,...,xn) € [0, 1]", there exists at least one valuation v € Valg, such that v(X;) = x;,
forj=1,...,n; and

« For any pair of valuations v,v' € Valg such that v(X;) =V'(X;j), for j=1, ..., n, we have that
(@) =V (p)—i.e. valuations in Valg are truth-functional on variables in X,,.

For instance, for any formula ¢ such that Var(¢) C X,,, X, determines ¢ modulo J-satisfiable,
by truth-functionality and the fact that Valy = Val. Then, representation modulo satisfiability in
the formula-based approach is defined in a way that retrieves property (3).

Definition 2. Let f : [0, 1]" — [0, 1] be a function and (¢, ®) be a pair where ¢ is a formula and
® is a set of formulas. We say that ¢ represents f modulo ®-satisfiable or that (¢, ®) represents f
in the system Lo,-MODSAT) if:

o X, determines ¢ modulo ®-satisfiable; and
o f(W(X1), ..., v(Xy) =v(p), for all v € Valo.

The definition of representation modulo satisfiability in the formula-based approach adapts
property (3) from unrestricted to restricted valuations, as required by the semantics modulo
satisfiability. The next example should clarify the usage of such property.

Example 1. The function f : [0, 1] — [0, 1], given by f(x;) = %1, may be represented by (Z;, ),
where ® ={Z, ® Z; < X1, Zij2 <> —Z1)2, Z1 = Z1,2}. Propositional variable X; is intended to
take values in the domain of function f and Z; is intended to take half the value of Xj; it is also
necessary to define constant % by propositional variable Z;/; and assure Z; takes at most value
%. Observe that X; determines ¢ = Z; modulo ®-satisfiable since, if one associates a value x;
in the domain of function f to propositional variable X; —making x; = v(X;)—, the value v(Z;)
of formula Z; is uniquely determined modulo satisfiability of &, i.e. assuming that valuation v
satisfies ®. Moreover, the pair (Z;, ®) represents function f, since f(x;) = v(Z).

4.2 The function-based approach

Finger and Preto (2020) proposed a function-based definition of representation modulo satisfia-
bility that constained the domain of a traditionally represented function. We review such approach
in the following.

We extend the notion of associating functions from formulas to a pair (¢, ), where ¢ is a
formula and @ is a set of formulas, with Var(¢) U Var(®) C X,,,, as follows. First, let the function
domain be

D0y = {(xl, cooXm) €00, 11| fy(x1, .. xm) =1, forally € <I>}.
Then we inductively define function fiy ) : Diy,a) — [0, 1] by the following clauses in total
analogy to (i)-(iii) in the beginning of Section 3:
(i) f(xj,@(xl, cooxm) =xpforj=1,...,m;
(i) fimp,®) (X155 Xm) =1 = flo,0) (X1, o5 Xm)s
(iil) flpmy,®)(X1> .. > Xm) = min(l,f(w,cp) 15 -« o> Xm) + fry, @) (X1, - . ,xm)).

The definitions of Dy, ¢y and fi,,¢) depend on m. In the function-based approach, we have the
following definition.
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Figure 1. Graphs of functions f, and f(, o) and of set Dy ¢) in
Example 2, for fixed x3 = %

Definition 3. Let f : [0, 1]" — [0, 1] be a function and (¢, ®) be a pair where ¢ is a formula and
® is a set of formulas. We say that ¢ functionally represents f modulo ®-satisfiable or that (¢, ®)
functionally represents f (in the system Loo-MODSAT) if Var(¢) U Var(®) = X,,, m > n, and there

exist m — n functions z; : [0, 1]" — [0, 1], j=1, ..., m — n, such that:
o Forany (x1, ..., %m) € Dig,a) Xutj=2zj(x1,.. .., %), j=1,...,m—mn
o Forany (x1,...,x,) €[0,1]",
S x0) =flo,0) (X1 - o X 21X - s Xn)s e s Zmen(Xs L5 X)),
We write X = (x1,...,Xn) and 2= (Xpi1,...>Xm).

In the functional representation modulo satisfiability, a pair (¢, ®) functionally represents a
function f : [0, 1]" — [0, 1] when formula ¢ is the traditional representation of another function
fo :10,1]"™ — [0, 1] whose domain [0, 1]™ has possibly higher dimension - m > n - and can be
constrained to Dy,¢y C [0, 1]™ in order to be identified with the domain [0, 1]" of the original
function f; elements x € [0, 1]” are identified with elements (x, z) € D(, o) and it must hold that
f(x) =fip,0)(x, z). Note that the constraining from [0, 1]™ to Dy ¢) is a disguised application of
semantics modulo satisfiability since (x1, . .., xn) € Dy, o) if, and only if, there is a valuation v e
Valg such that v(X7) = x1, ..., v(Xin) = xm.

Example 2. The representation for function f : [0, 1] — [0, 1], given by f(x;) = ’%, in Example 1
is almost a functional representation for it; we only need to replace Z; and Z;, by X; and X3 to
fit the definition, which results in (X,, ®), where ® = {X; & X; < X1, X5 < —X3, X, — X3}. In
this case, we have n =1, m =3 and

X1 1
D0y = {(xbxz,xs) el0,1® | x1 €[0,1], x= 5 b= 5}

Then, there are functions z; : [0, 1] — [0,1] and 2, :[0, 1] — [0,1] given by z;(x;) =3 and

Z(x1) = % And we have that
x
fea) =5 = 2100) =fpe) (a1, 2100), 2(0).
Note that function f, : [0, 1] — [0, 1] is given by f,(x1, x2, x3) = x,. Figure 1 has graphs of the

functions f, and f,,4) and of the set Dy, ).
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4.3 Formula-based versus function-based approaches

We have seen two attempts to formalize a concept of representation modulo satisfiability. Each
approach has the virtue of elucidating some different aspects of the technique that provides a
pair (¢, @), where ¢ is a representative formula and ® is a set of constraining formulas. In this
way, one might wonder whether they formalize the same concept. In fact, despite the similarity,
the function-based presentation is a bit more restrictive than the formula-based one; the for-
mer constrains the values of x4, for j=1,...,m — n, to be functions zj(x1, . .., x,), for any
(X15 . . .» Xm) € D(p, @), so that the set Dy ¢) is minimal.

Example 3. The pair (X, & X3, ®), where ® = {X, <> —X3}, is a representation in the formula-
based approach for the constant function f : [0, 1] — [0, 1], given by f(x;) =1, but not in the
function-based approach, as the representation is not functional. In fact, for a given « € [0, 1],
it is not possible to determine a unique element (xi, X3, x3) € Dy, 4) such that x; =«, since
(o, B,1 — B) € Dy, @), for any g € [0, 1].

In order to make both presentations equivalent, we should restrict the formula-based one by
adding to Definition 1 the following items:

e Var(p) U Var(®) =X,,,, m > n;
o For any pair of valuations v, v € Valg such that v(Xj) = v’(Xj), forj=1,...,n, we have that
V(X)) =v (X)), forj=n+1,...,m.

The first item above only standardizes propositional variables to appear in ¢ and ®; such stan-
dardization was intended to ease the inductive process of associating functions to formulas in
the formula-based approach. The second item constrains, for valuations in Valg, the values of
propositional variables in X, \ X, as functions of the values of propositional variables in X,; this
is stronger than the original definition which only constrains the value of ¢ - indeed these new
items yield that the value of ¢ is invariant - and is the counterpart to the constraints to elements
in Dy ¢y by functions zy, . . ., z—,. We refer to the more restrictive form of Definition 1 as strong
determination modulo satisfiability and to the consequent more restrictive form of Definition 2 as
strong representation modulo satisfiability.

Theorem 4. A pair (¢, ®) strongly represents a function f : [0, 1]" — [0, 1] (in the formula-based
approach) if, and only if, it functionally represents f (in the function-based approach).

Proof. Let (p, ®) be a strong representation for f (in the formula-based approach); then
Var(¢) U Var(®) =X,,,. For any x=(x1,...,%x,)€[0,1]" and j=1,...,m—mn, we set

zj(x) = vx(Xy ), where vx € Valg is such w(Xj) =xj, for j=1,...,n This way, for any
(X1, ..+ Xm) € Diy,@), ¥ € ® and valuation v, with v(X;) =x;, for j=1,...,m, we have that
V() =fy(x1, ..., xm) = 1; then v € Valg and x,1; = V(Xy4j) = Vixy,...x) (Xntj) = 2j(X15 . - ., X)),
forj=1,...,m — n. Finally, for any (x;, ..., x,) € [0, 1]”, there is a v € Valg such that v(X;) = x;,

for i=1,...,n. Therefore, (v(X1),...,v(Xim)) € Dip,d)> f(x15...,%) =f(W(X1),...,v(Xyn) =
V((p) Zﬂ(p’q;)(V(Xl), e V(Xm)) Zf(XI, ce. ;xi’b Zl(xla ce. ’x”)7 ) ZWI7Vl(~x1> e )xﬂ)) and (‘P, CD)
is a functional representation for f (in the function-based approach). Conversely, let (¢, ®) be a
functional representation for f (in the function-based approach); then Var(¢) U Var(®) =X,,.

Since for any x= (x1,...,x,) €[0,1]" there are values zj(x), j=1,...,m —n, such that
(x) Zl(X)J L] ZWI71’1(X)> € D((p,‘b)a then) fOl’ au 1// € q)) V(I//) Zflﬂ(X) Zl(x)7 e )Z}’H7ﬂ(x)) = 1)
for a valuation ve Valg, where v(X1)=x1,...,v(X,) =xn v(Xpt1) =21(%), ..., v(Xp) =

Zm—n(x). For v,V €Valg, where x= (v(X1),...,v(Xp))={(/(X1),...,V(X,)), we have
(X V(Xng1)s - - >V Xm))s (5 V (Xng1)s - - o>V (X)) € Dp,¢), then V(Xn+j) = Zj(x) = V/(Xn+j)’
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for j=1,...,m—n, and v(¢) = fip,0)(X,21(X), ..., Zm_n(x)) =V (¢); therefore, X, strongly
determines ¢ modulo ®-satisfiable. Also, f(x)=fy,a)(X, 21(X),...,zZm-n(X)) =v(p), for
v € Valg, and (¢, ®) is a strong representation for f (in the formula-based approach). O

From now on, we choose to deal with the formula-based approach to represent functions mod-
ulo satisfiability, as we deem it a clearer and less restrictive definition. Moreover, we will only
refer to the version presented in Section 4.1 (not the strong one) as fixing the value of ¢ modulo
d-satisfiable is enough for establishing a satisfactory concept of representation. However, all the
constructions of representations to follow also fix the values of the additional propositional vari-
ables (other than the ones in X,,) modulo ®-satisfiable; thus, for them to be strong representations,
only the standardization of the propositional variables is missing.

5. An Efficient Algorithm for Building Representations

An attempt to derive a representation algorithm from the representation results in Finger and
Preto (2020) would lead to an exponential explosion, since the proposed pairs (¢, ®) for rep-
resenting only truncated linear functions are already exponential over the binary representation
of their coefficients. Thus, we need to produce a less complex representation in order to derive
an efficient algorithm that actually represents a piecewise linear function; this is our aim in this
section.

5.1 Regional format of rational McNaughton functions

The algorithm we present later uses a lattice representation of rational McNaughton functions;
before that we employ an encoding as follows. A rational McNaughton function f : [0, 1]" — [0, 1]
is in regional format if it is given by m (not necessarily distinct) linear pieces

pi(X) =vio + yinx1 + - - - + VinXn, (4)

forx=(x1,...,x,) €[0,1]", yjj€ Qandi=1,..., m, with each linear piece p; identical to f over
a convex set 2; C [0, 1]” called region such that:

* U?;l Q= [0> 1]n§

. Qfﬂﬁ}’:@,fori;&j;

o Regions €2; are given in such a way that there is a polynomial procedure to determine whether
or not a linear piece py is above other linear piece p; over region €2;, that is whether or not
Pr(x) > pi(x), for all x € Q;;

« Linear pieces and regions satisfy the lattice property, that is, for i # j, there is k such that linear
piece p; is above linear piece py over region 2; and linear piece py is above linear piece p; over
region ;.

The regional format allows for the repetition of linear pieces so that there is a one-to-one cor-
respondence between regions and pieces. In this format, the size of a function is the sum of the
number of bits necessary to represent its linear pieces coefficients as fractions 7 plus the space
necessary for representing its regions in some encoding. We discuss the regional format further at
the end of this section.

Example 4. Rational McNaughton function f with graph in Figure 2a may be given by the linear
pieces p1(x1,x2) = g + %xz, palx1, x2) = g - %xz and p3(x1, x2) = % — x1. Regions €; associated
to each linear piece are depicted in Figure 2b and described in Table 1; we soon tackle the problem
of deciding if a linear piece is above another.
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Table 1. Regions ; for function f in Example 4

2 Q0 Q3
8—9x; —6x, >0 1—2x1+x2>0 —849X +6x,>0
1 1
5—)(230 —§+x220 —1+2x—x>0
X1 >0 X1 >0 1=x=0
X2 >0 1—-x2>0 %220
(b) (c)
X2 X2
P31 P12
Q) Q
Pa3g P13
Q; Py3 P23
X1 X1
Graph Config. with 3 regions Config. with 6 regions

Figure 2. Graph of rational McNaughton function in Example 4.

Let us deal with the encoding of regions. First, we characterize them in next result.
Lemma 5. Closures of regions in regional format of rational McNaughton functions are polyhedra.

Proof. Let 2 be a region of a rational McNaughton function in regional format. Since cl(2) is a
convex compact set, it is the convex hull of its extreme points. Suppose cl(£2) has infinitely many
extreme points and let E be the set comprehending the infinitely many extreme points which
are in the interior of [0, 1]". Let U = J{€2; | ; # Q}; we have that EC dU and, since U is a
finite union of regions €2, there exists an infinite set E’ C E, such that E' C Q' C ('), for some
Q' =Q; #Q.Let Epyq C E beaset with n + 1 points; as cl(€2) and cl(2") are convex sets, we have
that conv(E,,+1) C cl(2) N cl(2). Also, as 2 and €' are convex sets, we have that Q2° = cl(2)° and
Q'° = cl(')°. Finally, since conv(E,1) is an n-simplex, it follows that 2° N Q'° # @, contrary to
the definition of regional format. Therefore, cl(€2) is a polyhedron. O

Since the closure cl(€2) of region 2 is a polyhedron, it may be entirely described as the finite
intersection of half-spaces given by linear inequalities as

() = {XE [0, 1]" ‘ wio + wi X1 + -+ + Winxy >0, i=1,...,)»sz}- (5)

We show a polynomial procedure for deciding if a linear piece py is above another linear piece p;
over region £2; that takes polyhedron cl(€2;) given by (5) as input. Let py and p; be given by

Pi(X) = Yko + Viax1 + - - - + VinXns
pi(X) =yio + virx1 + - - - + VinXn,
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Algorithm 1 ABOVE-MAX: decides if a linear piece is above another one over a region

Input: Linear pieces py and p; given by their coefficients yxg,. .., Yinse-->Vios- > ¥in and
polyhedron cl(£2;).
Output: True, if py is above p; over ;. Or False, otherwise.
M= MAX(pI — Pk> CI(Q,’));
if M < 0 then
return True;
else

return False;
end if

AN L e

where x=(x],...,x,). In order to decide if p; is above p; over €;, Algorithm 1 analyzes the
optimal value of the maximization linear program:

max pPi — Pk
subject to cl(€2;)

We call MAX(f, P) the routine that computes maximum value of an objective function f over
polyhedron P. It is known that such linear programming problem may be solved in polynomial
time (Bertsimas and Tsitsiklis, 1997).

Theorem 6. Given linear pieces py and p; and a polyhedron cl(S2;), Algorithm 1 decides in
polynomial time whether or not py, is above p; over ;.

Proof. We have that pi(x) > pi(x), for x € Q; if, and only if,

pi(x) — pr(x) <0, (6)

for x € Q;. Let M be the maximum value of the objective function p;(x) — px(x) in cl(€2;) and
let xpr € cl(€2;) be an argument where the objective function has value M. In case M <0, then
(6) is satisfied by all x € Q; C cl(£2;). In case M > 0, then, either x)s € ; fails to fulfill (6) or, if
XM € 082;, there is some x € Q; which fails to do so, by the continuity of the objective function.
The correctness of Algorithm 1 follows from these remarks and, as MAX is a polynomial routine,
it terminates in polynomial time. O

In view of Theorem 6, it is enough to encode regions € in such a way that there is a polyno-
mial procedure to compute cl(€2) as in (5). Moreover, from continuity of rational McNaughton
function f, we have that f(x) = p;(x), for any x € cl(€2;), so a natural standardization is to consider
regions that are already polyhedra given by (5). We say that functions given this way are in closed
regional format; this is the case in Example 4.

We should establish that any rational McNaughton function may be put in (closed) regional
format. Let f:[0,1]" — [0, 1] be a rational McNaughton function with distinct linear pieces
P1> - - - » pins for each permutation p of the set {1, . . ., m}, we define the polyhedron

Py={xe(0,11" | poy® = -+ = ppm®}. ?)
Let & be the set of n-dimensional polyhedra P,, for some permutation p.
Theorem 7. The set € has the following properties.
(1) € =1I0,1]".
(2) For polyhedron P €€ and indexes i,i" € {1,...,m} with i #i", py(x) # pi(x), for any

x € P°.
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(3) P°NP" =4, for P',P" € € such that P’ # P".

(4) Foreach polyhedron P € €, thereis an index ip € {1, . . ., m} such that f(x) = p;,(x), forx € P.

(5) For polyhedra P',P" € €, there is an index k € {1, .., m} such that p;, is above py over P'
and py is above p;,, over P,

Proof. For (1)-(4), see Preto and Finger (2020, Proposition 4.2); the proof of (5), based on the
proof in Cignoli et al. (2000, Proposition 9.1.4), follows. If p;,, is not above p;,,, over P”, there is

b € P"° such that p;,, (b) < p;,, (b). Let a € P and A, B € [0, 1]"*1 be such that A = (a, f(a)) and
B = (b, f(b)); also, let g be the restriction of f to the line segment [a,b]={(1—X)a+Ab | X e
[0, 1]}. There is a point a’ € [a, b] \ {a}, such that g coincides with iy over [a, a’]; since the graph
of g lies strictly below [A, B] over [a,a’] \ {a}, amongall ¢ € [a, b] \ {a} such that (c, g(c)) € [A, B],
there is one point d nearest to a (possibly b). Let k € {1, . . ., m} be such that g(d) = py(d) and g
coincides with py on a nonempty line segment [d’, d] C [a, d]; the restriction of the graph of py to
[d’, d] \ {d} must be strictly below [A, B]. Then, pi(a) < i (), which makes p;,, to be above py
over P'. We also have that p;,,, (b) < pi(b), which makes pi to be above p;,, over P”. O

Polyhedra in ¢ may play the role of regions in regional format since they are convex sets with
the properties above; note that the same linear piece p; may be f-associated to many distinct poly-
hedra. Determining whether a linear piece py, is above other linear piece p; over P € ¢ boils down
to comparing their values for some point x € P°. Thus, any rational McNaughton function may be
encoded in regional format. Figure 2c shows the permutation-based region configuration ¢ for
the function in Example 4.

The regional format assures sufficient conditions and information about the ordering of linear
pieces over its region configuration which are required for a lattice representation, i.e. a repre-
sentation that comes from the application of lattice operations to the linear pieces of a given
continuous piecewise linear function. For instance, Mundici (1994) uses a lattice representation
for representing McNaughton functions in Lo,— which was adapted by Finger and Preto (2020)
for representing rational McNaughton functions in £o,-MODSAT - that requires conditions and
information from the region configuration given by the decomposition in simplices of the poly-
hedra P, in ¢’; this path has also been followed in the literature for representing continuous
piecewise linear functions in other Lo,-based logical systems; see Section 3.

The setback with describing a rational McNaughton function using the set € of polyhedra
is that, in the worst case, |¢| = m!; the situation may be even worse when decompositions in
simplices are considered. However, in many cases, regional format is able to encompass sufficient
conditions and information for lattice representation with a smaller set of regions; Figure 2 shows
such contrast related to Example 4 and it may also be seen in the classes of functions in Section 6.
This feature does not interfere with the complexity of the general algorithm in Section 5.3, since it
only amounts to a possible reduction of the input size, but it might yield a gain in the complexity
of the representation of inputs and, therefore, make some applications viable. Of course that if
a more compact encoding of rational McNaughton functions is provided, a side effect might be
an inefficient translation from such encoding to the regional format. However, we are unaware of
methods that perform representations in a L., -based logical system which require less conditions
or information than the provided by regional format or do not apply lattice representations.

5.2 A particular case: Truncated linear functions

Let us show the possibility of representing a rational McNaughton function in £o,-MODSAT and
develop a polynomial algorithm for computing such representation in the particular case that
function is a truncated linear polynomial with rational coefficients, defined in the following.
Let p: [0, 1]" — R be a nonzero linear polynomial given by
a ap

o, @
b foeig Iy 8
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for x=(x1,...,x,) €[0,1]", aj€Z and b; € Z',. We want to build a representation for the
function p* : [0, 1]” — [0, 1] given by

p*(x) = min(1, max(0, p(x) ). 9)
We have that p*(x) = 0, if p(x) < 0; p*(x) = 1, if p(x) > 1; and p*(x) = p(x), otherwise.
In order to rewrite expression (8), we define:
oj=aj, forjeP;
o= —aj, forjeN;
,BJ B-b forj:O,...,n;

wherej€ P,ifa; > 0,andj € N, ifa; <0, with PUN CH{0,...,n},and B is the least integer greater
than or equal to

max {32 -3 2L

jepr ] jEN ]

We have that oj € Z, and gj € Z% , for j=0, ..., n. Let xo = 1 and define functions pp : [0, 1]" —
Rand py :[0,1]" — R, forx = (x1,...,x,) € [0, 1]", by

o
pp(x) = Z Ty v =) ;. (10)
JeP jeN
Let Zf-), Zl/ﬂj € IP; for a set of indexes ] € {P, N}, define:
G — P, B, — P P
(p]—.@ e ‘DJ—_U {q)ﬂl], B2l < X, Zj—>Zf}j}.
jeJ\{0} jeI\(0}
And then, define:
o =9 =), if0¢J;

- - 11
¢r = Ol()Zﬁi @ ¢y, P;=P;U {goﬁi 1 otherwise. (1)
0 0

Lemma 8. Functions pp and py in (10) may, respectively, be represented by (@p, ®p) and (¢n, Pn)
n(11).

Proof. See Preto and Finger (2020, Lemma 5.2). O

For the final step toward a representation for p*, we define:

@p = Bl=(@p — on)], ®,=PpU Dy. (12)
Theorem 9. Function p* in (9) may be represented by (@p, ®p) in (12).

Proof. See Preto and Finger (2020, Theorem 5.3). O

In order to set up a polynomial algorithm for computing a representation (g, ®,) for p*, we

analyze more closely expressions ny/, which show up in ¢, and in formulas in CTDP. These expres-
sions are exponential in the binary representation of n since they denote n-fold repetitions of
a formula ¥. We deviate from this situation by using [log 7] + 1 new propositional variables

52, Svlj, .. S togn) and replacing every occurrence of ny, where n € N\ {0, 1}, with the formula
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Llog n]
Eny =aet €D &5 (13)
k=0

n=1

where 7y € {0, 1} comes from the binary representation ZEZO%"J 2kn; of n, and by adding the

following formulas to ®:
) < Us

ko ek—1 . pk-1 _ (14)
£, <& @& fork=1,...,[logn].

These formulas define the propositional variables §1’Z and we call 8,y the set that comprehends
them. In this way, we avoid exponential blow up as shown in Theorem 10.

Theorem 10. Letn € N\ {0, 1}, ¥ be a formula and (¢p,, ®p) be a pair defined from representation
(@ps CTDP) in (12) by replacing any occurrence of nyr in ¢, and CiDp with &uy in (13) and by adding
Sformulas in set B,y in (14) to d_Dp. Then, (@p, ®p) isalso a representation for p* in (9). Furthermore,

(¢p» p) is a representation for p* if it is defined by multiple suitable replacements of expressions
npyy, forl=1,..., L

Proof. See Preto and Finger (2020, Theorem 5.5). O

We set (¢p, ®p) from (@, d_Dp) in (12) by properly replacing all occurrences of ;3 as stated in
the above theorem. By construction, (¢), @) is given by

@p = Bl=(op = oN)]; Dy =0pU Dy (15)

where ¢p, pn, Pp, and Py are properly defined from their barred correspondents in (11). Table 2
shows how functions in Example 4 can be represented as in Theorem 10.

Algorithms 2 and 3 compute the representation of nyr in Loo-MODSAT in time O(logn)
assuming that propositional variables are all represented with a constant size. Algorithm 2 returns
0and v in the limit cases # = 0 and n = 1 (lines 1-5); when n € N '\ {0, 1}, it returns formula &, in
(13) by building it in line 6 plus a [log n] + 1 iteration loop (lines 7-13) where the #;’s in the binary
representation of n are calculated by the routine in lines 8 and 9. Algorithm 3 returns ¢ in the limit
cases n =0 and n =1 (lines 1-3); when n € N\ {0, 1}, it returns set &,y that comprehends for-
mulas (14) by building it in line 4 plus a |log ] iteration loop (lines 5-7). Algorithm 4 computes
a representation of p* in Loo-MODSAT. It returns (0, @) in the limit case ag = - - - = a, = 0 (lines
1-3); otherwise it returns representation (¢, ®,) given in (15). From lines 4 to 15, the algorithm
sets all P, N, aj, Bj and B, for j=0, . .., n, which are used to rewrite function p in terms of pp and
pN. From lines 16 to 26, it writes formulas ¢p and ¢y and adds formulas in ®p and @ to ®,. For

J € {P, N}, it works throughout a |J| iteration loop where each iteration takes a coefficient % into
]

account, where it treats Z—g (lines 18-21) separately from the others (lines 22-25). In lines 27 and
28, it finally writes formula ¢, and completes set ®,,.

Theorem 11. Given a rational linear function p by its coefficients, a representation (¢,, ®,) for p*
may be computed in polynomial time by Algorithm 4.

Proof. See Preto and Finger (2020, Theorem 5.6). O

We call REPRESENT-TL-F and REPRESENT-TL-S the routines that separately compute ¢,
and &, respectively. Both may be easily derived from routine REPRESENT-TL in Algorithm 4.
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Table 2. Representations as in (15) for functions pi’, pg and pg, where functions ps, p2, and p3 are from Example 4

. 1
wpl‘ E
ﬁ<$zzi GBElel H0)
18 2
4 0 0 P1
@p, Zio—-|& B SZm‘_)Zz
18 L L 5
£ 7. gL, < &% @&l
Zr‘g 1 21211 2571 Zgl
1 0 0 2 1 1
Sleg < 7 EB&Z% Sz‘z’le 251695251
2 1 1 0
SZI 5z, ®§Zl SZl (_)Z%
i i i 5
3 2 2 1 0 0
le%e 7 GBEZﬁ Ezéefzéeagzé
4 3 3 2 1 1
SZL EZL @gzi EZ; QSZ; eagzl
18 1 1 5 5 3

SO

2 1
18 2

-8 @&l —>0)
) (2, 02

£ DD © X2 g <& @£°
2 2 1 2 1 2 1
—|& . ®&p, —0 -|&7, @&, —0 —|& . ®&p, —0
T e O T
7,
@py* - (5}21 &7, _)Zgz>
5 5
2 0 1 0 0
@p, Z; <—>—|<§zl®§zl) &, <& ©8,
5 5 5 5
7y -7y £ <t7 @&
5 5 5
1 P2
SZZ”Z < X2 EZ‘;Z <27
P2 1 0 0
75— 27y EZ’;Z g 7 EBSZ’Z)Z
£ <
5
¢p3: El
—(é‘zzl ~>Z§’3>
5
2 0 p
Dp, Zé<—>—'<’§zé @521) Zla—>Z%
8 o g;l,g <7

1 0 o) 0
SZIF Zf3 SZ‘P

SO < — <§2 N Zp3)
2 P3 21 !
-8, -2
3

<~ g0

g ®E°
) o) o)
3

5.3 The general case

We can finally tackle the general case by means of a lattice representation. Let f : [0, 1]” — [0, 1]
be a rational McNaughton function in regional format with linear pieces:

pilx) =

aij a;
L+
bir

— X, (16)
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Algorithm 2 BINARY-F: computes formula &, in (13) or 0 or

Input: A natural number # and a formula .
Output: Formula &,y

1: if n =0 then

2 return 0;

3: elseif n =1 then
4 return ;

5. end if
6
7
8
9

o qi=n,n:=0,8y :=0;
: fork=0,...,[logn] do
. ng:=remainder from division of g by 2;
. q:= quotient from division of q by 2;
10: ifnp =1 then
1y = Ef @y
122 endif
13: end for
14: return &y;

Algorithm 3 BINARY-S: computes set B,y in (14) or

Input: A natural number # and a formula .
Output: Set &,y .

1: if n=0o0rn=1then
2 return (;

3: end if

4 Bpy = {%‘8 <~ W},

5 fork=1,...,|logn] do

6: Eny = Eny U {S{i < 51};71 @%‘{;71}§
7: end for
8 return E,y;

for x = (x1,...,x,) €[0,1]", aij € Z, b,-j € Zj_ and i=1,...,m, with each piece identical to f in
region ;, for i=1,...,m. We call ABOVE(py,p;) the polynomial time routine that decides if
linear piece py is above a different linear piece p; over ;.

Let (@p,, ®p,) be the representation for p} given by Theorem 10, fori=1,. .., m. We define
m m
o=\ ga, withpo, = /\ ¢ps o=@, (17)
i=1 keKg,; i=1
where k € Kg, iff py. is above p; over ;.

Lemma 12. Let f be a rational McNaughton function in regional format with linear pieces given
by (16) and let PQ; be a formula and ® a set as in (17). Then, v(gogj) <fw(X1),...,v(Xy)), for
v € Valp.

Proof. Let v € Valp and x¢9 = (v(X1), ..., ¥(Xy)). In particular, v e Valcppk, for k € Kq, and, by
Theorem 10, v(pg;) = minkngj Pi(%0). If xg € j, then v(pg;) §p;(xo) = pj(x0) =f(x0). On the
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Algorithm 4 REPRESENT-TL: computing representations for truncated linear functions

Input: A linear function p given by its rational coefficients 7%, 71,..., 3*.

Output: A representation (¢,, ;) for the truncated function p*.
1: ifa;=---=a, =0 then
2:  return (0, ?);

3. end if
4 P:=0,N:=0;

5. forj:=0,...,ndo

6:  if aj > 0 then

7 P:=PU{j}, aj:=a;

8: elseifa; <0then

9 N:=NU {j},OljZZ —aj;

10:  endif

11: end for

12: B := least integer greater than or equal to max {Zjep Z—j, =2 jeN Z—j},

13: forje PUN do

14 Bj:=p-bj

15: end for

t6: pp:=0, N :=0, Dy := ?;

17: for J=P, N do

18:  if 0 € ] then

19: @7 := @y ® BINARY-F (0, Z1/8, );

20: @, :=d, U {Zy /g, <> =BINARY-F (By — 1, Z1/g,) } UBINARY-S (o, Z1,) U

BINARY-S (Bo — 1, Z1/8, )s

21:  endif

22z forje]\{0}do

2% ¢p:= @ ® BINARY-F (aj, Z);
2w @pi=d,U |21 < <BINARY-F (8= 1,21/, ) . BINARY-F (8, 7]) < X;

2~ 71y, } UBINARY-S (@j, Z7) UBINARY-S (B — 1, Z1/5, ) U BINARY-S (8, 2 );
25.  end for
26: end for
27: @y = BINARY-F (8, = (¢p — on));
28: @, := B, UBINARY-S (B, —(pp — on));
29: return (g, ®p);

other hand, if xo ¢ €2;, there is some i such that x¢ € ;. By the lattice property of regional for-
mat, there is ko such that p; is above py, over €2; and py, is above p; in €2, then ko € Kg; and

v(pe;) < pj (%o) < pj (x0) = pi(x0) = £ (xo). O
Theorem 13. Any rational McNaughton function may be represented by (¢, @) in (17).

Proof. First note that any rational McNaughton function may be put in regional format as
showed in Section 5.1. For (x1, ..., xy) € [0, 1]", define a valuation v € Valg such that v(X;) = x;

and V(Zfi)zg—fj, for i=1,...,mj=1,...,n, V(Zl/ﬂij)zﬁiij, for i=1,...,mj=0,...,n,
v(ég) =v(y¥) and v(é@) = min(l, V(Effl) + v(éiﬁl)), fork=1,...,|logn], for any nyr that
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Table 3. Representation asin (17) for function f from Example 4

$: (‘/’Pl AN ¥py N ‘/’Ps) M (‘ppl AN@py, A ‘ppa) M (‘/’Pl AN@py A (/’Ps)
@ B, Udy, Ud,,

Algorithm 5 REPRESENT: computing representations for rational McNaughton functions

Input: A rational McNaughton function f in regional format given by its linear pieces coefficients

%,..., %,..., Zﬁ,..., ZZZ and regions 1, ..., Q.
Output: A representation (¢, ®) for the rational McNaughton function f.
L ®:=0;
2 fori=1,...,mdo
% g = REPRESENT-TL-F (f2,..., f);
4 Q= (Pp;;
5. end for
6: fori=1,...,mdo
7. fork=1,...,i—1,i+1,...,mdo
8: if ABOVE(py, pi) = true then
9: OQ; =Y N Ppis
10: end if
11:  end for
1 ®i=®UREPRESENT-TL-S (§2,..., fi);
13: end for
4: @ =@, V- - VOQ,;
15: return (@, ®);
occurs in ¢ and ®. Now, let v, v € Valg such that v(X;) =v' (Xj), for j=1,...,n. In particular,

v,V € Valg, ,fori=1,...,m, and, by Theorem 10, v(¢p,) =V (¢p,), fori=1,.. ., m. Therefore,

v(p) =V (p) and X, determines ¢ modulo ®-satisfiable. Finally, suppose v € Valg. There is some
ko € K such that (v(X1), ..., v(Xy)) € Q,. Note that v(<pgk0) =fwX1),...,v(Xy)). Therefore,

fOvX1),. .., v(Xy)) =maxi—1, m v((pgi) = v((pgko), by Lemma 12. O

Table 3 shows how function f in Example 4 can be represented as in Theorem 13.

Algorithm 5 returns representation (¢, ®) for function f with linear pieces given in (16). From
lines 1 to 13, the algorithm writes formulas ¢, and the set ®: it first computes formulas ¢, (lines
2-5) by means of routine REPRESENT-TL-F and then it writes ¢q. (lines 7-11) by means of
routine ABOVE. It writes set ® computing each ®;, by means of routine REPRESENT-TL-S (line
12). In line 14, it writes formula ¢.

Theorem 14. Given a rational McNaughton function f in regional format, a logical representation
for it may be computed in polynomial time on the size of f by Algorithm 5.

Proof. See Preto and Finger (2020, Theorem 6.3). O

5.4 Pre-regional format and a literature review

The algorithm presented for building representations in L,.-MODSAT comprehends two distin-
guished steps, the representation of the truncated version of linear pieces and the representation
of the entire rational McNaughton function by means of a lattice representation. The second step
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Table 4. Regions ; for function f in Example 5

Q Q) Q3 Q4 Qs

1—x1>0
l—-x1—x>0 —14+x14+x>0 —X1+Xx2>0 X1 —X2>0 1 0
2 — Xy >

x1>0 %—xlzo —%+X120 1-x>0 2 2_0

X1 >

~lix>0 1-x>0 1-x,>0 ~1ix>0 1=
xX2>0

(b)

X2
Q
\\\ /Q’z’/
o
,”/// \\\QS‘
Q4
0\ X1

1 X1
X2

Graph Region configuration

Figure 3. Graph and region configuration of function fcg in Example 5.

is based on Lemma 12 and Theorem 13, where the encoding of the input function in regional for-
mat is required to comply with the lattice property. In the following, we discuss the necessity of
such property for the correctness of the construction.

We say that a rational McNaughton function is in pre-regional format if it satisfies the first
three items of the definition of regional format in Section 5.1, but it does not necessarily satisfy
the lattice property; thus, functions in regional format are also in pre-regional format; however,
the converse is not necessarily true. The following example shows that the encoding of a rational
McNaughton function in pre-regional format is not enough to assure that an actual representation
in Loo-MODSAT is built by the algorithm proposed in the previous section.

Example 5. Rational McNaughton function fcg with graph in Figure 3a may be given in pre-
regional format by the linear pieces p;(x1, x2) = pa(x1, x2) = x2, p2(x1,x2) = 1 — x1, p3(x1, %2) =
x1 and p5(x1, x2) = ;11 + %xz. Regions €2; associated to each linear piece are depicted in Figure 3b
and described in Table 4. The intersection of hyperplane given by ps with the hyperplanes given
by p2 and p3 are depicted by the dotted lines in Figure 3b.

Note that such encoding of fcr does not have the lattice property since there is no linear piece
Pk such that p3 is above py over Q3 and py is above p5 in Q5. Let (¢, @) be a pair as in (17),
intending to represent fcg, and let xg = (0.6, 0.9) € Q3; we have K, = {1, 3} and K, = {5} and,
then, for v € Valg such that xo = (v(X1), v(X3)), we have fcr(xo) = p3(xp) = 0.6 < 0.7 = v(pq;) <
v(¢). Therefore, (¢, ) cannot be a representation for function fcg and the lattice property cannot
be dropped from regional format in order to perform such representation.

Function fcg may be put in regional format by taking as regions the polyhedra P, € € in (7);
in this case, we have a representation with |¢| =9 regions. On the other hand, it may be put
in regional format from the encoding above by only splitting region Qs in two regions Q% =
Qs N {p; >0} and Q7 = Qs N {p; <0}, for some i € {2, 3}, adding only one more region to the
encoding.
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The results in Tarela et al. (1990, Theorem 7), Tarela and Martinez (1999, Theorem 4.2) and,
more recently, in Xu and Wang (2019, Theorem 1) propose a lattice representation of piecewise
linear functions analogous to the one we derived in Lemma 12 and Theorem 13, where ¢ is a
(\V A\ )-combination of formulas ¢, ; they are presented in a more general context of piecewise
linear functions over more general domains and codomains and do not refer to a specific formal
language. However, those results do not require that the configuration of regions and linear pieces
in the function description have the lattice property; thus, rational McNaughton functions only
in pre-regional format would be enough for applying such results in our context. Unfortunately,
despite being a less restrictive hypothesis, it is not actually suitable for our kind of representation,
as Example 5 demonstrates. Nevertheless, this less restrictive approach is suitable for one-variable
piecewise linear functions in pre-regional format due to the fact that functions in such encoding
already have the lattice property.

Theorem 15. One-variable rational McNaughton functions in pre-regional format have the lattice
property; i.e., they are also in regional format.

Proof. With no loss of generality, we may consider the regions of a one-variable rational
McNaughton function in pre-regional format f : [0, 1] — [0, 1] to be nonempty closed intervals
[a, b] C [0, 1]. Let ©2; = [a;, b;] and ; = [a), b;] be regions such that b; < a;. If neither p; is above
pj over Q; nor p; is above p; over ; (then, b; < a;), let Py, P. € ¢ be polyhedra as in (7) such
that there are o, 8 € [0, 1] in a way that [a, b;] C Py, [aj, B] C P and («, b;) # 0 # (aj, B). For
o' € (a, b;) and B’ € (aj, B), let X = (/. f(a')), Y= (B, f(B')) and [X, Y] ={(1 —A)A+AB | L €
[0, 1]} be a line segment in [0, 1]%. By our assumptions about p; and pj, p; is strictly below [X, Y]
over (o, b;) and pj is strictly above [X, Y] over (aj, B'). Then, among all ¢ € (b;, aj) such that
(¢, f(c)) € [A, B, there is some d nearest to &’ (which cannot be 8'); let py. be a linear piece such
that (d, f(d)) = (d, pr(d)) € [X, Y] and f coincides with p; on some nonempty interval (d’, d). For
x < d, pr(x) is strictly below [X, Y] and, for x > d, py(x) is strictly above [X, Y] and, then, p; is
above py over 2; and py is above p; over ;. Therefore, f has the lattice property, and it is given in
regional format. The result is analogous for the case where b; < a;. O

6. Implementation and Results

We have developed a C++-implementation of Algorithms 4 and 5 for building representations of
functions; it consists of two main modules. One module builds a representation for the truncated
linear function p* as in (9) from a given linear function as in (8). The other module encompasses
the first one and builds a representation for a piecewise linear function f in closed regional format
given by linear pieces as in (8) which are identical to f in given polyhedral regions as in (5). The
routine for deciding whether linear piece py is above linear piece p; over region 2; is the one in
Algorithm 1 which was implemented using the C++ interface to the SoPlex linear programming
solver (Gamrath et al., 2020).

We ran the implementation through experiments in order to measure its execution time and
to give evidence for its correctness. The totality of a finite set of tests does not prove correctness;
however, in large amounts, it may provide some evidence in favor of it.

In each experiment, the implementation was fed with a piecewise linear function f of » vari-
ables. Its execution time was measured and, with output (¢, ®), for random values x1,...,x, €
[0, 1], a valuation v € Valg was computed such that v(X;) =x, ..., v(X,) = x,. Finally, it was
attested whether v(¢)=f(x; ...,x,) by separately evaluating ¢ and the original function f.
Valuations v were computed using a Lo,-solver based on the one by Ansétegui et al. (2012); it was
written in the SMT-LIB language (Barrett et al., 2016) and ran in the Yices SMT solver (Dutertre,
2014).
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Table 5. Number of tests by class of rational McNaughton functions

Class of functions Tested functions Evaluations per function Evaluations
Truncated linear 5.000 100 500.000
Normalized linear 5.000 100 500.000
Simple-region piecewise linear 1.000 100 100.000
Cubic-region piecewise linear 990 100 99.000
Total 11.990 100 1.199.000

We ran four batteries of experiments, each one comprehending functions belonging to a class
of rational McNaughton functions which were randomly generated according to a specification;
in any case, each function was evaluated in 100 combinations of random values xy, . . ., x, € [0, 1],
which were uniformly chosen over the interval [0, 1]. Table 5 summarizes the experiments.

All the experiments in this section were run in a UNIX machine with two E5645 CPUs @
2.40GHz with 12 processors. The source code for the implementation and the experiments are
publicly available.!

6.1 Classes of rational McNaughton functions and experiments

Following, we describe the classes of functions we used in each battery of experiments and the
specifications according to which random functions in these classes were generated. Before that,
we state a result on continuous piecewise linear functions which we assume in the constructions
in the latter classes.

Theorem 16. Let f : R” — R be a continuous piecewise linear function identical to p; : R" — R
and p; : R" — R over Ry CR" and Ry, C R", respectively. If py and p, have rational coefficients
and

RlﬂRzz{(xl,...,xn)eR”‘xjozg, ajijfﬁj,forjzl,...,jo—1,j0+1,...,n},

for &, aj, B e Q, with & #0 and aj < Bj, for j=1,...,jo— 1,jo+1,...,n, then, there is g€ Q,
such that p1(x) — p2(x) =q - (xjo - E),forx e R".

Proof. Let pi(x) = yio + yirx1 + - - - + VinXkn, fori=1,2and x = (x1, ..., x,,) € R". Since p;(x9) =
p2(xp), for any x¢ € R; N Ry, we must have that Y1j = V2> forj=2,...,jo—Ljo+1,...,n, and
(Y10 = ¥20) + (V1j, — ¥2jo)& = 0. The result follows by letting g = w O

Truncated linear functions. A function p* : [0, 1]” — [0, 1] in this class is a truncated linear
function in (9) defined from a linear function p in (8). Function p* has range in [0, 1] and is
continuous over [0, 1]".

In the experiments, for each dimension n=1, ..., 50, one hundred functions p* were gener-
ated from functions p for which, for each coefficient %, aj was randomly chosen among integers

from —100 to 100 and b; was randomly chosen among integers from 1 to 100. The execution time
for building the representations in £,-MODSAT was up to 0.03 second. In Figure 4a, we see the
results of the representation builder running on truncated linear functions.

Normalized linear functions. A function p’: [0, 1]" — [0, 1] in this class is defined from a
linear function p in (8) by the following normalization process performed over D = [0, 1]" by

(x) + 2
p(x)= 1%, (18)
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Figure 4. Representation builder performance, randomly gen. instances: n =1to n =50.
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Figure 5. Simple-region and cubic-region configurations in dimension n = 3.

for x € [0, 1]”, where A is the least positive integer such that b% > | mingep p(x)|, if mingep p(x) <
0, and A =0, otherwise; and B is the least integer greater than or equal to maxxep p(x) + ;}io, if

maxyep p(x) + ;710 > 1, and B=1, otherwise. Function p’ has range in [0, 1] and is continuous
over [0, 1]".

In the experiments, for each dimension n =1, . . ., 50, one hundred functions p’ were generated
from functions p for which, for each coefficient Z—j, aj was randomly chosen among integers from

—100 to 100 and b; was randomly chosen among integers from 1 to 100. The execution time for
building the representations in Lo,-MODSAT was up to 0.04 second. In Figure 4b, we see the
results of the representation builder running on normalized linear functions.

Simple-region piecewise linear functions. A function f : [0, 1]" — [0, 1] in this class is defined
to be identical to linear pieces p; over (simple-)regions

i—1 i
Q,-:{x:(xl,...,xn)e[o,l]” e 0sx<1, forj=2,...,n},
r r

fori=1,...,r. Figure 5a depicts a simple-region configuration with four regions for n =3 and
r=4.

Linear piece p; is defined by p’ from a linear function p in (8) by the normalization process in
(18) performed over D = Q;.
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Figure 6. Representation builder performance running on simple-region piecewise linear functions, randomly gen.
instances:r =1tor=20.

The other linear pieces p;, fori=2, ..., r, are defined by

Pi(x) = pi1 (%) + i - (xl - i_r 1),

with g; € [-m; - r, (1 — M;) - ], for

m;= min pi_1(x) and M;= max p;_;(x).
XeR; ) xe; )
s.t.x;=1 s.t.xj=7

These linear pieces and, therefore, function f have range in [0, 1]; also, function f is continuous
over [0, 1]”. Theorem 17 below states that such encoding of function f has the lattice property.

In the experiments, for each dimension n=1,...,50 and each number of regions r=
1,...,20, one function f was generated with linear piece p; defined from a function p for which,
for each coefficient %, aj was randomly chosen among integers from —100 to 100 and b; was ran-

domly chosen among integers from 1 to 100; and with linear pieces p; defined from linear pieces
pi—1 and values g; uniformly chosen over the intervals [—m; -1, (1 —M;)-r], for i=2,...,r.
The execution time for building the representations in Loo-MODSAT was up to 1 second. In
Figure 6, we see the results of the representation builder running on simple-region piecewise linear
functions with dimensions n = 25 and n = 50.

Cubic-region piecewise linear functions. A function f” : [0, 1]" — [0, 1] in this class is defined
from a function f : [0, 1] — R by the following normalization process performed by

f&)+y

fx) = T

for x € [0, 1]", where y = | minyeo,1)» f(x)|, if mingefo,17» f(x) <0, and y =0, otherwise; and I'
is the least integer greater than or equal to maxye(g,1}» f(X) + ¥, if maxye[o,1)» f(x) +y > 1, and
I = 1, otherwise. Function f” has range in [0, 1].

Function f : [0, 1]” — R is defined to be identical to linear pieces py;,,...i,) over (cubic-)regions

,,,,,

forij=1,...,r,forj=1,...,n Figure 5b depicts a cubic-region configuration with eight regions
forn=3andr=2.

Linear piece pqi,...1) is defined by p’ from a linear function p in (8) by the normalization process
in (18) performed over D= €y, 1).
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The linear pieces p,..,), for which iy =-- =i 1 =ijy1=---=i,=1 and ij#1, are
defined by
i ij —1
Pitrecin) (X) = Plit it Lyt (X) + G5 - | X% — — ) (19)
with q}j € [—H’I(,'l ,,,,, i (=M, i) - r], for

My, i) = MUD PG i i Lijyyi) (X)) and My, iy = DX D (i1 Li 1 i) (X),

/)
Xj==1.
Ty

Q= {XZ (X15 -+ Xn) € iy in)

These linear pieces already have range in [0, 1] and function f is continuous over 2, ;)N
Q(il,...,ijfl,ij—l,ij+1,.‘.,in)'

The other linear pieces p(;,. i,)» for which ‘il = =i =ip1=--=i_; =1 and
ij # 1 # iy, are also defined by (19) with the same q;»] . These linear pieces are not guaranteed to

have range in [0, 1]; however, function f is continuous over Q;,, iy N i1, ij 1= L 1,0} - 1

is also continuous over Q;;,.__i,) N Q(iy,...i_1ij—Lirt1,...in)> 10T [ > ks indeed, there is a value g such
that
-1\ ij—1
Plirseesin) (X) = Pliyeis 1= L 15eeii it g o) (X) + G - (xz - T) +4q; - (xj -

and we are able to write
ip—1
Dlitesin (X) = Plin,ii =Ly 1eei) (X) + G- <xz i ) :

Thus, functions f and f” are continuous over [0, 1]”. Theorem 17 below states that such encoding
of function f” has the lattice property.

In the experiments, for each dimension n=1,...,9 and each regional parameter r=
1,...,7—(n—1),if n <5,and r =1, 2, otherwise, thirty functions f” were generated from func-
tions f with linear piece p(j, .1y defined from a function p for which, for each coefficient Z—;, a;

was randomly chosen among integers from —30 to 30 and b; was randomly chosen among inte-
gers from 1 to 30; and with linear pieces py;,,...i,), for which iy = - =i 1 =ij1=--- =iy =1
and only i; # 1, defined from linear pieces DAt 15— L4 1) and values q;,,...;,) uniformly
chosen over the intervals [—my;,, i) -1, (1 — M, i) - 7]. In Table 6, we see the results of the
representation builder running on cubic-region piecewise linear functions.

Theorem 17. Simple-region and cubic-region piecewise linear functions in the presented encoding
have the lattice property.

Proof. Let Q; and §2; be simple regions of a simple-region piecewise linear function f. Fixing x, =
& €[0,1],...,x, =&, € [0, 1], we define the restriction of f to g : [0, 1] — [0, 1] given by g(x;) =
f(x1,&2, ..., &), which is a piecewise liner function with the lattice property by Theorem 15.
Since, by Theorem 16, linear pieces of simple-region piecewise linear functions intercept each
other over domain points in some set {x € [0,1]" | x; =K € R}, f also has the lattice property.
Now, let €, iy and €1, 1, be cubic-regions of a cubic-region piecewise linear function f’;
since the normalization process from f to f’ does not interfere with the lattice property, we only
need to show that f has the lattice property. Analogous to the previous argument for simple-
regions, forj=1, ..., n, there is kj, for which min{ij, Ij} < kj < max{ij, Ij}, such that p,, i) (x) >
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Table 6. Representation builder performance running on cubic-region piecewise linear functions

n r avgTime(s) minTime(s) maxTime(s) n r avgTime(s) minTime(s) maxTime(s)
1 1 0 0 0 3 5 3.2877 2.64 6.4
1 2 0 0 0 4 1 0 0 0

1 3 0 0 0 4 2 0.0607 0.04 0.08
1 4 0 0 0 4 3 1.4173 1.08 1.92
1 5 0.001 0 0.01 4 4 15.5163 13.17 25.38
1 6 0.0013 0 0.01 5 1 0 0 0

1 7 0.0043 0 0.01 5 2 0.2423 0.17 0.4
2 1 0 0 0 5 3 15.284 11.55 27.38
2 2 0 0 0 6 1 0 0 0

2 3 0.0103 0 0.02 6 2 1.004 0.74 2.09
2 4 0.0463 0.03 0.08 7 1 0 0 0

2 5 0.1213 0.08 0.15 7 2 4.47 3.4 7.93
2 6 0.2427 0.19 0.32 8 1 0 0 0

3 1 0 0 0 8 2 19.4273 15.01 46.63
3 2 0.01 0 0.02 9 1 0 0 0

3 3 0.1473 0.11 0.19 9 2 85.9193 67.39 169.99
3 4 0.8707 0.67 1.05

Q Liij41,.in)- Then, from the general formula for linear pieces

n b t—1
Pl (X) = P11y (X) + Z Z q (xj - ) )

j=1 1=2

i15enij1,

it follows that p(il,m,,-n)(x) Zp(kl)_”)kw(x), forx e Q(i],...,in% and p<kl,--->kn)(x) Zp(]b...,[ﬂ)(x), forx e
Q1,,...1,)- Therefore, f has the lattice property. O

7. Conclusions and Future Work

We investigated implicit representations of rational McNaughton functions by logical formulas in
the Lukasiewicz Infinitely-valued Logic by means of semantics modulo satisfiability. We carried
out a comparative investigation on different approaches to define such a representation concept,
the formula-based approach, and the function-based approach, which was originally introduced
by Finger and Preto (2020).

Rational McNaughton functions were constructively shown to be representable in %oo-
MODSAT, which yielded a polynomial algorithm for building the representations. An implemen-
tation of the Algorithm 5 together with results of experimental tests were presented and, in order
to set up the tests, we established classes of rational McNaughton functions from where random
such functions may easily be chosen. In comparison with the existing literature, we were able
to conclude that our approach has the advantage of efficiently building a representations in the
Lukasiewicz Infinitely-valued Logicframework, whose associated problems remain within the NP
boundary and about which there is considerable literature.

For the future, both the algorithm for building representations in £,,-MODSAT and its imple-
mentation might be improved in order to achieve efficiency gains. Also, we hope to couple
this algorithm with algorithms that approximate (normalized) continuous functions by rational
McNaughton functions.
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Moreover, we might apply these approximations to the study of real systems such as neural
networks through automated reasoning techniques since, depending on its class of activation
functions, a neural network may be seen either as a piecewise linear function or as a continuous
function that can be approximated by one (Leshno et al., 1993). Also, Amato et al. (2002) pointed
that the representation of neural networks in a logical system may be useful in their interpretation,
which is still a challenging task for research; thus, approximate representations in £,,-MODSAT
might play a role in such endeavor.

Conflicts of interest. The authors declare none.

Note
1 http://github.com/spreto/pwl2limodsat.
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