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Abstract
This paper addresses a multi-attribute variant of the vehicle routing problem which 
encompasses a heterogeneous fixed fleet, flexible time windows and stochastic travel 
times. The objective is to minimize the sum of the transportation and the service 
costs. The former comprises the vehicle fixed costs and route variable costs, and 
the latter corresponds to the penalty costs for violating customer time windows. 
The problem is formulated as a two-stage stochastic mixed-integer program with 
recourse and solved by a granular local search matheuristic. The stochastic travel 
times are approximated by a finite set of scenarios generated by Burr type XII dis-
tribution. Extensive computational tests are performed on 216 benchmark instances, 
and the advantages of both flexible windows and stochastic travel times are stressed. 
The experiments show that, compared to a state-of-art mathematical programming 
solver, the developed matheuristic found better solutions in 81% of the instances 
within shorter computational times. The proposed solution method also far outper-
formed an alternative decomposition algorithm based on the augmented Lagrangian 
relaxation. Furthermore, the flexible time windows yielded overall cost savings for 
68% of the instances compared to the solutions obtained for hard time window prob-
lems. Finally, explicitly modeling the stochastic travel times provided 66% more fea-
sible solutions than the adoption of a deterministic model with the random param-
eters fixed at their expected values.
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1  Introduction

The freight distribution industry is not only essential to modern society but also 
responsible for significant revenues. For example, Fedex Ground reports revenue 
of 18.395 billion US dollars stemming from the pickup and delivery of small 
packages in the United States and Canada in 2018 (Fedex 2018). The vehicle 
routing problem (VRP) lies at the center of this industry and focuses on provid-
ing a minimum-cost service to a set of geographically dispersed customers by 
employing a limited and capacitated fleet of vehicles that is located at a central 
depot. Each customer can only be visited once by a single vehicle and all routes 
must start and finish at the depot (Dantzig and Ramser 1959). Given the VRP rel-
evance, academics have developed a large amount of work targeting this problem 
and its extensions (Braekers et al. 2016; Golden et al. 2008; Toth and Vigo 2014).

The VRP becomes more realistic when the fleets are heterogeneous, i.e., vehi-
cles differ in their capacities and costs (Taillard 1999). Hoff et al. (2010) analyze 
industrial aspects of heterogeneous fleets and stress that vehicles usually present 
different characteristics in practice since fleets are acquired over long periods and 
automotive technology continuously evolves. Moreover, companies often keep a 
varied set of vehicle types due to the need for flexibility. For thorough reviews 
on heterogeneous fleet VRP (HFVRP), see Baldacci et al. (2008) and Koç et al. 
(2016).

Another important feature of the VRP is the time window constraints that impose 
a time interval for collecting or delivering of goods at each customer (Desaulniers 
et  al. 2014). The literature classifies these constraints as hard or soft. In the first 
case, vehicles can arrive early and wait, but the service must start within the time 
windows. On the other hand, the second case represents a more realistic situation in 
which the time windows can be violated at penalty costs for early or late customer 
service. A particular case of the VRP with soft time windows (VRPSTW), which 
intensifies its practical perspective, is the VRP with flexible time windows (VRP-
FlexTW). In this problem, introduced by Taş et al. (2014c), early and late service 
deviations at each customer are bounded by an outer or flexible time window gener-
ated with respect to the length of the original or hard time window. The carrier pays 
a penalty cost only if the arrival time takes place outside the hard time window, but 
within its deviation bounds. The interested reader is referred to Salani and Battarra 
(2018) for a recent survey of the VRPSTW.

Both HFVRP and VRPFlexTW assume that all the information necessary 
to formulate the problems is known and readily available. However, in real-life 
applications, there are situations where the parameters of such problems have a 
stochastic nature (Gendreau et al. 2014). In particular, travel times are most sub-
ject to uncertainty caused by weather conditions, car accidents and traffic conges-
tion (Gendreau et al. 2016). This uncertainty entails further feasibility conditions 
and additional costs. Therefore, ignoring the stochastic nature of travel times may 
result in arbitrarily bad VRP solutions.

Despite the practical relevance of the previously mentioned VRP attributes, 
namely heterogeneous fleets, flexible time windows and stochastic travel times, 
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no research has simultaneously addressed all of them. The first HFVRP vari-
ant that incorporates flexible time windows is proposed by Firouzi et al. (2018), 
whereas the only stochastic version of such a problem is the mixed fleet stochastic 
VRP investigated by Teodorović et  al. (1995). The latter involves an unlimited 
fleet of heterogeneous vehicles and customers with stochastic demands.

Apart from these studies, the closest related literature focuses on the VRPSTW 
under travel time uncertainty. Ando and Taniguchi (2006) suggest a model for this 
problem where each vehicle can make multiple routes per day within a given sched-
uling horizon. The objective is to minimize the sum of vehicle fixed costs, oper-
ating costs and expected earliness and lateness costs. Triangular distributions are 
estimated by using real data to describe the stochastic travel times, and a genetic 
algorithm is devised to handle the problem.

Russell and Urban (2008) deal with a VRPSTW in which travel times are ran-
dom variables modeled with the Erlang distribution, a special case of the gamma 
distribution with an integer shape parameter. The authors minimize a weighted 
average of three objectives, specifically: the number of vehicles employed, the total 
distance traveled, and the expected earliness and lateness penalties, calculated by 
closed-form expressions that reflect constant, linear or quadratic costs. The problem 
is solved in three phases. The first two phases build an initial solution and improve 
it through tabu search algorithms, respectively, while the third optimizes the waiting 
time before each customer using a generalized reduced gradient method.

Li et al. (2010) propose two formulations of a VRP variant in which both travel 
and service times are normally distributed random variables. The first includes 
hard time windows modeled as chance constraints, whereas the second considers 
soft time windows and corresponds to a two-stage stochastic program with recourse 
which designs routes in the first stage aiming to minimize the expected costs of 
driver’s remuneration and late arrivals in the second stage. These models are solved 
by a tabu search metaheuristic that incorporates a Monte Carlo simulation proce-
dure to estimate the expected values and probabilities of the stochastic parameters. 
The assumption that travel times follow a normal distribution is also employed by 
Thompson et al. (2011). The authors present alternative formulations based on sto-
chastic programming and robust optimization of the VRPSTW under travel time 
uncertainty. Because the former requires expensive numerical integrations, the latter 
is used in a case study conducted by the authors.

Another VRPSTW with stochastic travel and service times is analyzed by Zhang 
et al. (2013). They suggest a new stochastic programming model that incorporates 
service level constraints to ensure a minimum on-time arrival probability at each 
customer and a hierarchical objective function to minimize three components, 
namely: vehicle fixed costs, mean total travel time, and the weighted sum of costs 
stemming from earliness, lateness and route duration excess. An approximation 
method called �-discrete, which estimates the vehicle arrival time distributions at 
customers, is embedded in an iterated tabu search algorithm to solve the problem. 
Experiments were conducted with travel and service times following lognormal and 
normal distributions, respectively.

The more recent studies on VRPSTW with stochastic travel times are from 
Taş and colleagues (Taş et  al. 2013, 2014a, b). Taş et  al. (2013) develop a 
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three-phase method. An initialization algorithm obtains a starting feasible solu-
tion in the first phase. A tabu search metaheuristic improves such a solution in 
the second phase, and a post-optimization procedure is called in the third phase 
to adjust the departure times of vehicles from the depot to minimize penalties 
due to time window violations. The same problem is exactly solved by Taş et al. 
(2014b) through a branch-and-price solution approach. Taş et  al. (2014a) fur-
ther extended the VRPSTW to incorporate time-dependent and stochastic travel 
times. They adapt the three-phase method given in Taş et al. (2013) and imple-
ment an adaptive large neighborhood search metaheuristic to tackle such a prob-
lem. In these three works, travel times are assumed to be gamma distributed.

This paper deals with the industrially relevant variant of VRP called hetero-
geneous fixed fleet VRP with flexible time windows and stochastic travel times 
(HFFVRP-FlexTW-STT). The objective is to minimize the sum of the trans-
portation costs and service costs. The transportation costs comprise the vehicle 
fixed costs and route variable costs, while service costs correspond to the pen-
alty costs for violating customer time windows. These two costs provide an easy 
way of exploring the trade-offs between the expenses of the carrier company and 
the customer service reliability as pointed out by Taş et al. (2013).

The main contributions of this paper are fivefold: i) to the best of our knowl-
edge, the proposition of the first mathematical formulation for the HFFVRP-
FlexTW-STT; ii) the development of a two-stage stochastic mixed-integer pro-
gram with recourse, where the assignment of customers to vehicles make up the 
first stage, and recourse decisions are made in the second stage to find mini-
mum-cost routes for vehicles according to observed travel times; iii) the sugges-
tion of a scenario generation procedure which describes stochastic travel times 
using the Burr type XII distribution (Burr 1942), which has been shown to rep-
resent variations in day-to-day travel times better than other distributions such 
as lognormal, gamma, Weibull and normal (Susilawati et al. 2013; Taylor 2017); 
iv) the design of a novel granular local search matheuristic to solve the problem; 
v) extensive computational experimentation on benchmark instances and the 
assessment of benefits gained by flexible windows and stochastic travel times.

The computational experiments show that our matheuristic outperforms a 
state-of-art mathematical programming solver in terms of solution quality and 
runtime. The proposed solution method also overcomes an alternative heuris-
tic algorithm based on the augmented Lagrangian relaxation. Furthermore, the 
results underline the advantages of both flexible windows and stochastic travel 
times. The former drastically reduce the solution’s overall cost, whereas the lat-
ter are critical for their feasibility in a stochastic environment.

The remainder of the article is organized as follows. Section 2 introduces the 
problem description. Section 3 describes the granular local search matheuristic. 
Computational results are reported in Sect.  4, and conclusions are outlined in 
Sect. 5.
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2 � Problem Description

The HFFVRP-FlexTW-STT is defined on a complete graph G = (N, E) where the node 
set N = {0,1, .., n} consists of the depot {0} and the set of customers C = N�{0} , 
while the set E = {(i, j) ∶ i, j ∈ N, i ≠ j} represents the edges between the nodes. A 
heterogeneous fleet of vehicles is positioned at the depot in order to supply the custom-
ers. The set M = {1, ...,m} represents the m distinct types of vehicles. The set 
Mr =

{
1, ...,mr

}
 represents the vehicles available at the depot of type r ∈ M , each 

one having capacity Qr and an associated fixed cost fr . For each edge (i, j) ∈ E and for 
each vehicle type r ∈ M , a deterministic travel cost cr

ij
= cr

ji
 is given for which we 

assume that the triangular inequality holds. Furthermore, let t̂r
ij
, (i, j) ∈ E, r ∈ M, be 

stochastic travel times following a known probability distribution.
Each node i ∈ N  presents a demand qi, a service time Wi , a time window 

[
ei, li

]
 and 

associated fractions f e
i
 and f l

i
 used to set the early and late service deviation bounds, 

respectively. The time window 
[
e0, l0

]
 at the depot represents the planning horizon, and 

q0 = W0 = 0 by definition. Following Taş et al. (2014c), we define flexible time win-
dows 

[
e′i, l

′
i

]
 for each i ∈ N  with limits expressed by e�

i
= max

{
ei − f e

i

(
li − ei

)
, 0
}
 and  

l�
i
= min

{
li + f l

i

(
li − ei

)
, l0 + f l

0

(
l0 − e0

)}
 . Servicing a customer within 

[
e′i, ei

]
 is penal-

ized by �� for one unit of earliness, while servicing a customer within 
[
li, l

′
i

]
 is penalized  

by �� for one unit of lateness.
Define the binary variables yrk

i
, i ∈ N, r ∈ M, k ∈ Mr, such that, if the demand 

of node i ∈ N  is satisfied by vehicle rk, r ∈ M, k ∈ Mr , and yrk
i
= 0 , otherwise. The 

decisions regarding the assignment of customers to available vehicles can formulated 
as follows:

where � is a random vector that defines the travel time distributions, � ∈ Ω is an out-
come in sample space Ω of random events, and Q(y,t(�)) is equal to the costs of 
routes that vehicles will follow to service their assigned customers given realized 
travel times t(�) . The objective function (1) minimizes the carrier’s overall cost, 
including vehicle fixed costs 

∑
r∈M

∑
k∈Mr

fry
rk
0

 as well as expected traveling costs and 

(1)min
∑

r∈M

∑

k∈M
r

fry
rk
0
+ E�Q(y,t(�))

(2)
∑

i∈C

qiy
rk
i
≤ Qry

k
0

r ∈ M, k ∈ Mr

(3)
∑

r∈M

∑

k∈Mr

yrk
i
= 1 i ∈ C

(4)
∑

k∈Mr

yrk
0
≤ mr r ∈ M

(5)yrk
i
∈ {0, 1} i ∈ N, r ∈ M, k ∈ Mr
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penalty costs for violating customer time windows E�Q(y,t(�)) . Constraints (2) are 
the vehicle capacity constraints, while constraints (3) require the assignment of a 
single vehicle to each customer. Constraints (4) and (5) limit the number of vehicles 
that leave the depot for each type r and impose the integrality requirements on 
assignment variables, respectively.

Model (1) – (5) is a two-stage stochastic mixed-integer program with recourse (Birge 
and Louveaux 2011) based on the cluster-first and route-second approach (Fisher and 
Jaikumar 1981). In the first stage, customers are grouped in clusters and assigned to 
vehicles before the stochastic travel times being revealed. After these times are realized, 
recourse decisions related to the route of each vehicle are made in the second stage. 
The second stage recourse function can be formulated as a set of independent routing 
problems over the customers assigned to each vehicle, presenting the special structure 
of the traveling salesman problem with flexible time windows (TSPFlexTW) (Fachini 
and Armentano 2020a):

where xrk
ij

 is a binary variable such that xrk
ij
= 1 , if vehicle r ∈ M, k ∈ Mr travels 

directly from node i ∈ N  to node j ∈ N, i ≠ j , otherwise, xrk
ij
= 0 , and continuous 

variables 
(
wrk
i
, �rk

i
, �rk

i

)
 denote service start time, earliness and lateness at node i ∈ N   

when serviced by vehicle rk, r ∈ M, k ∈ Mr , respectively. The objective function (6)  
minimizes the sum of traveling costs, called route variable costs, and service penalty  
costs. Constraints (7) and (8) guarantee that every node is visited exactly once when 
yrk
j
= 1 and yrk

i
= 1 . Constraints (9), in which Mr

ij
(�) = max

{
l�i − e�j + tr

ij
(�) +Wi, 0

}
 

(see Desrosiers et al. (1995)), ensure that the service start time at a customer must be  

(6)Q(�, �(�)) = min
∑

i∈N

∑

j∈N,j≠i

∑

r∈M

∑

k∈Mr

cr
ij
xrk
ij
+
∑

i∈N

∑

r∈M

∑

k∈Mr

(
���

rk
i
+ ���

rk
i

)

(7)
∑

i∈N

xrk
ij
= yrk

j
j ∈ N, j ≠ i, r ∈ M, k ∈ Mr

(8)
∑

j∈N

xrk
ij
= yrk

i
i ∈ N, i ≠ j, r ∈ M, k ∈ Mr

(9)
wrk
i
+Wi + tr

ij
(�) − [Mr

ij
(�)(1 − xrk

ij
)] ≤ wrk

j
i, j ∈ N, i ≠ j, j ≠ 0, r ∈ M, k ∈ Mr

(10)e�
i
≤ wrk

i
≤ l�

i
i ∈ N, r ∈ M, k ∈ Mr

(11)�rk
i
≥ ei − wrk

i
i ∈ N, r ∈ M, k ∈ Mr

(12)�rk
i
≥ wrk

i
− li i ∈ N, r ∈ M, k ∈ Mr

(13)
(
wrk
i
, �rk

i
, �rk

i

)
∈ ℝ+,

(
xrk
ij
, yrk

i

)
∈ {0, 1} i, j ∈ N, i ≠ j, r ∈ M, k ∈ Mr
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greater or equal to the sum of the service start time with the service time and the 
traveling time of its immediate predecessor. Constraints (10) impose the flexible time 
windows at nodes, while constraints (11) and (12) connect their service start times 
with the service earliness and lateness, respectively. Constraints (13) indicate the 
domain of the variables.

Let S ⊆ Ω define a set of scenarios for the random event obtained by a sampling 
procedure. One can approximate formulation (1) – (13) through the following multi-
scenario deterministic model (MSDM):

where Pr(s) defines the probability of scenario s ∈ S and Mrs
ij
= max

{
l�i − e�j+

trs
ij
+Wi, 0

}
 . Note that the second stage variables 

(
xrks
ij
,wrks

i
, �rks

i
, �rks

i

)
 and the, now 

deterministic, travel times trs
ij

 are scenario specific. MSDM is a large-scale mixed-
integer programming (MIP) model whose solution provides a customer-vehicle 
assignment y that minimizes vehicle fixed costs as well as expected route variable 
costs and penalty costs.

(14)

MSDM =min
∑

r∈M

∑

k∈Mr

fry
rk
0
+
∑

s∈S

Pr(s)

(
∑

i∈N

∑

j∈N,j≠i

∑

r∈M

∑

k∈Mr

cr
ij
xrks
ij

+
∑

i∈N

∑

r∈M

∑

k∈Mr

(
���

rks
i

+ ���
rks
i

)
)

Constraints (2) − (4)

(15)
∑

i∈N

xrks
ij

= yrk
j

j ∈ N, j ≠ i, r ∈ M, k ∈ Mr, s ∈ S

(16)
∑

j∈N

xrks
ij

= yrk
i

i ∈ N, i ≠ j, r ∈ M, k ∈ Mr, s ∈ S

(17)
wrks
i

+Wi + trs
ij
− [Mrs

ij
(1 − xrks

ij
)] ≤ wrks

j
i, j ∈ N, i ≠ j, j ≠ 0, r ∈ M, k ∈ Mr, s ∈ S

(18)e�
i
≤ wrks

i
≤ l�

i
i ∈ N, r ∈ M, k ∈ Mr, s ∈ S

(19)�rks
i

≥ ei − wrks
i

i ∈ N, r ∈ M, k ∈ Mr, s ∈ S

(20)�rks
i

≥ wrks
i

− li i ∈ N, r ∈ M, k ∈ Mr, s ∈ S

(21)

(
wrks
i
, �rks

i
, �rks

i

)
∈ ℝ+,

(
yrk
i
, xrks

ij

)
∈ {0, 1} i, j ∈ N, i ≠ j, r ∈ M, k ∈ Mr, s ∈ S
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3 � Granular Local Search Matheuristic for the HFFVRP‑FlexTW‑STT

We propose a solution method for the HFFVRP-FlexTW-STT based on the local search 
matheuristic devised by Agra et al. (2016, 2018) to handle stochastic production and 
inventory routing problems. Following the local branching concept of Fischetti and 
Lodi (2003), such a procedure iteratively tries to improve the best current solution for a 
stochastic MIP (SMIP) by searching a neighborhood induced by the addition in SMIP 
of general linear inequalities called local branching constraints.

The main framework of the matheuristic of Agra et al. (2016, 2018) is summarized 
in Fig.  1. Initially, a simplified version of the SMIP is solved by considering a sin-
gle scenario in which all stochastic parameters are set to their expected values (line 
1). Once a starting solution has been obtained, a local branching constraint is added to 
the SMIP with all scenarios (line 3), and the resulting model is solved by a MIP solver 
within a time limit of LS_time seconds (line 4). If a better solution is found, the current 
solution is updated (line 5) and the procedure is repeated, otherwise, the local search 
stops.

The algorithm developed in this section modifies the one of Agra et al. (2016, 2018)  
through two significant adaptations: (i) additional steps are performed to generate 
the starting solution; and (ii) the local search moves are restricted to a list of prom-
ising neighbors using the reduction technique of granular neighborhoods (Toth and 
Vigo 2003). These adaptations are included in our heuristic to address difficulties of 
HFFVRP-FlexTW-STT not present in problems studied by Agra et al. (2016, 2018), 
namely the absence of complete or relatively complete recourse and the presence of 
second stage discrete variables. In the following sections, the local branching con-
straints are defined first, followed by the description of the aforementioned adaptations.

3.1 � Local Branching Constraints

Assume that 𝐲̄ represents the values of the first stage variables y in a given reference 
solution of MSDM and, for each node i ∈ N  , let S̄i =

{
(r, k) ∈ B ∶ ȳrk

i
= 1

}
 denote 

the binary support of 𝐲̄ . We define the following local branching constraint for the 
HFFVRP-FlexTW-STT:

where Δ(y, ȳ) is the Hamming distance function expressed by

(22)Δ
(
y, y

)
≤ �

Fig. 1   Local search matheuristic
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and κ is an integer positive parameter that defines the neighborhood size. The latter 
should be calibrated to yield a neighborhood sufficiently small to be explored within 
reasonable computing time, but large enough to improve the best current solution.

3.2 � Starting Solution

As in Agra et al. (2016, 2018), a starting solution is generated by solving the model 
MSDM considering a single scenario s∗ in which the stochastic travel times trs∗

ij
 are 

set to their expected values E
(
t̂r
ij

)
 . The resulting problem is a deterministic hetero-

geneous fixed fleet VRP with flexible time windows (HFFVRP-FlexTW), which is 
solved by the large neighborhood search (LNS) matheuristic proposed by Fachini 
and Armentano (2020b). In this method, a feasible solution is obtained by an exten-
sion of the Solomon’s I1 heuristic (Solomon 1987), and further improved by the 
alternated application of destruction and reconstruction procedures. The former 
comprises four customer removal operators devised by Prescott-Gagnon et  al. 
(2009), whereas the latter rebuilds ruined solutions using a logic-based Benders 
decomposition (LBBD) method (Hooker and Ottosson 2003). Because LNS was 
originally designed for the deterministic heterogeneous fixed fleet VRP with hard 
time windows (HFFVRPTW), the following adjustments are made to take into 
account the flexible time windows:

•	 The hard time windows are replaced by the flexible time windows in all required 
calculations;

•	 The LBBD subproblems, which present the special structure of TSPFlexTW, are 
solved by an extension of the heuristic dynamic programming algorithm of Balas 
and Simonetti (2001) that incorporates a label-correcting strategy called EL, as 
suggested by Fachini and Armentano (2020a).

LNS stops as soon as it reaches LNS_time seconds of CPU time, generating ini-
tial reference values 𝐲̄ for variables y. However, these values do not ensure second 
stage feasibility because our problem does not have complete or relatively complete 
recourse (Birge and Louveaux 2011). Therefore, before local search starts, an auxil-
iary routine is performed to update vector 𝐲̄ with values that guarantee the feasibility 
of all second stage problems. The idea is to move from the first stage solution found 
for the single scenario s∗ to a nearby one, which is feasible for all scenarios. This 
routine exploits a proximity function similar to that used by Fischetti and Monaci 
(2014) in the heuristic proximity search (PS). More specifically, the objective func-
tion (14) is replaced by

where Δ(y, ȳ) is the Hamming distance defined in (23), and 𝐲̄ is the first stage solu-
tion vector generated by LNS matheuristic. The resulting formulation, called LNS 

(23)Δ(y, ȳ) =
∑

(r,k)∈S̄i

∑

i∈N

(
1 − yrk

i

)
+

∑

(r,k)∈B�S̄i

∑

i∈N

(
yrk
i

)

(24)minΔ(y, ȳ)
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model (LNSM), is given by objective function (24) and MSDM constraints. Such 
model is then solved by a MIP solver within a time limit PS_time . With the com-
pletion of this step, the reference vector 𝐲̄ is updated with the best feasible solution 
found by the solver and original objective function (14) is restored. Since LNSM 
takes into account every HFFVRP-FlexTW-STT scenario, the new values obtained 
for vector 𝐲̄ ensure the feasibility of all second stage problems.

3.3 � Granular Neighborhood

Granular neighborhoods were proposed by Toth and Vigo (2003) in the context of a 
tabu search algorithm for the VRP. Their purpose is to decrease the computational 
effort of local search through a candidate list strategy (Glover 1997). The key fea-
ture of this technique is to replace the original complete graph G = (N, E) by a new 
sparse one, denoted by G� =

(
N, E�

)
 with ||E

′|| ≪ |E| , which induces neighborhoods 
that can be quickly examined without affecting the quality of solutions found. The 
restricted edge set E′ should contain only promising or “short” edges whose costs do 
not exceed a granularity threshold value.

In our implementation, the granularity threshold value � is given by

where VC∗ represents the variable costs of routes in the solution found by LNS for 
scenario s∗, � is a sparcification parameter that controls the size of granular neigh-
borhood, n is the number of customers and 

∑
r∈M

mr is the total of heterogeneous vehi-

cles. Therefore, the restricted edge set can be defined as E� =
{
(i, j) ∈ E, maxr∈M{

cr
ij

}
≤ �

}
∪ I  , where I  is a set of important edges, i.e., those connected to the 

depot and those belonging to the best solution found by LNS for s∗.
Since HFFVRP-FlexTW-STT presents second stage discrete variables, the solu-

tion of model (14) – (21) is time-consuming even with the addition of local branch-
ing constraints (22). Thus, to accelerate our local search matheuristic, the above-
mentioned granular neighborhood discards the high-cost or “long” edges (i, j) ∈ E�E� 
of MSDM, producing a restricted MIP formulation with a smaller number of con-
straints and variables. More specifically, the removal of an edge (i, j) ∈ E�E� has the 
following implications for the model: (i) exclusion of variables xrks

ij
 related to the 

removed edge for all r ∈ M, k ∈ Mk, s ∈ S ; and (ii) exclusion of constraints (17) 
associated with the removed edge.

Following previous studies (Branchini et al. 2009; Toth and Vigo 2003; Schneider 
et al. 2017), the cardinality of set E′ is dynamically adjusted to diversify the search 
procedure. For this purpose, we do not fix the value of � . Instead, we first set � = �step 
and, whenever a local optimum is found, we make � ← � + �step until such a param-
eter reaches the maximum value �max.

� = �
VC∗

�
n +

∑
r∈M

mr

�
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3.4 � Algorithm Implementation

Figure 2 shows the pseudo-code of the granular local search matheuristic proposed 
for the HFFVRP-FlexTW-STT. Initially, MSDM is solved considering the single 
scenario s∗, in which trs∗

ij
= E

(
t̂r
ij

)
 (lines 1 – 2). Parameter � is initialized (line 3), 

enabling the calculation of granularity threshold � (line 4) and the construction of a 
restricted edge set E′ (line 5). As soon as these steps have been carried out, the multi-
scenario version of MSDM is built by taking into account the sparse graph G′ (line 
6), and the auxiliary routine described in Sect. 3.2 is triggered to generate a refer-
ence solution feasible for all scenarios (lines 7 – 10). The granular local search 

Fig. 2   Granular local search matheuristic for the HFFVRP-FlexTW-STT
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procedure (lines 11 – 24) is analogous to that one presented in Fig. 1. The main dif-
ference is that the search does not stop when a local optimum is reached. Instead, the 
value of � is increased (line 18), the granularity threshold � is recalculated (line 20), 
and both the restricted edge set E′ and the model MSDM are updated (lines 21 – 22). 
Once a local optimum has been found by using the maximum value allowed for the 
sparcification parameter, i.e., � = �max , the algorithm stops and outputs the mini-
mum-cost solution found (line 25).

4 � Computational Experiments

This section describes the computational results of the proposed algorithm that was 
coded in C# and run on a CPU Intel® Core™ i7-4790 CPU at 3,6 GHz with 16 GB 
RAM. As MIP solver, we used the Gurobi v.6.05 software. We start by presenting 
the benchmark instances and the parameters used within our algorithm in Sects. 4.1 
and 4.2, respectively. In Sect. 4.3, we compare the proposed matheuristic with the 
direct application of Gurobi v.6.05 to solve the HFFVRP-FlexTW-STT model. Sec-
tion 4.4 evaluates the solutions obtained by the granular local search with respect to 
those obtained by an alternative decomposition algorithm based on the augmented 
Lagrangian relaxation. To highlight the benefits gained by flexible time windows, in 
Sect. 4.5, we assess the results found by LNS matheuristic for the HFFVRP-FlexTW 
associated with scenario s∗ against corresponding HFFVRPTW solutions. Finally,  
in Sect.  4.6, we analyze the advantage of solving the suggested stochastic model 
rather than its deterministic counterpart.

4.1 � Instance Generation

Our data set was derived from 216 benchmark instances proposed by Fachini and 
Armentano (2020b) for the HFFVRPTW. Each instance combines: customer param-
eters derived from Solomon’s instances (Solomon 1987), which comprise both short 
scheduling horizon classes R1, C1 and RC1 and long scheduling horizon classes R2, 
C2 and RC2, vehicle parameters derived from Liu and Shen (1999b) subclasses A, B 
and C, and fixed fleets obtained by Liu and Shen (1999a) for the corresponding fleet 
size and mix vehicle routing problem with time windows. There are problems with 
different time window densities TWdensity, i.e., percentage of customers that have 
time windows, and various time window widths TWwidth = li − ei , i ∈ C . Moreover, 
the data set includes instances with sizes n = 25, 50 and 100. The name of each one 
specifies its attributes of class, identification number in class, number of customers 
and subclass, e.g., R104.25A is the fourth instance of class R1, with 25 customers 
and vehicles of subclass A. For further details, see Fachini and Armentano (2020b).

We adapt each instance to the HFFVRP-FlexTW-STT context by means of two 
modifications. First, as in Taş et al. (2014c), we set costs 

(
�� , ��

)
 to (0.50, 1.00) and 

fractions 
(
f e
i
, f l
i

)
 to (0.10, 0.10) for all i ∈ N  . Second, we change the deterministic 

travel time tr
ij
 of each edge (i, j) ∈ E to a random variable t̂r

ij
 following the Burr type 

XII probability distribution (Burr 1942), which has been shown to properly 
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represent variations in day-to-day travel times (Susilawati et al. 2013; Taylor 2017). 
The cumulative distribution function of the 3-parameter version of Burr type XII 
distribution (Tadikamalla 1980) is

where x ≥ 0  is a random variable, Θ > 0  is a scaling parameter and 𝛾1 > 0 and 
𝛾2 > 0 are shape parameters.

Random variables t̂r
ij
 are approximated by a set S with 20 scenarios, each one 

with an associated probability Pr(s) = 1∕20 . For this purpose, we set E
(
t̂r
ij

)
= tr

ij
 

and chose values �1 = 2 and �2 = 1 for shape parameters, as suggested by Gómez 
et al. (2016). In this way, the scaling parameter is given by Θ = 0.6366tr

ij
 since

Based on this parameter configuration, the following sampling procedure is 
adopted. For each triplet (i, j, r) of each scenario s ∈ S , we first draw a random num-
ber U from a uniform distribution in the interval (0,1]. Then, the value of travel time 
trs
ij

 can be obtained by setting trs
ij
← F−1(U,Θ, �1, �2) , which gives

Because the employed probability distribution has very high variance and skew-
ness, the sampling procedure may output infeasible instances. It can even generate 
scenarios for which no feasible solution exists at all. Since no reasonable SMIP can 
be constructed in such a circumstance, we modify model (14) – (21) by allowing 
feasible solutions with unserved customers at a given penalty cost �u . More specifi-
cally, constraints (3) are replaced by

where ui is a binary variable such that ui = 1, if customer i ∈ C is left unserved, ui = 0,  
otherwise. Furthermore, a new term  ∑

ieN�{0}

�u ui is added to objective function (14) that 

becomes

Therefore, we use the modified MSDM (M-MSDM), given by (26), (2), (4), (15) 
– (21), (25), in the computational experiments of next sections. Following Wang and 
Lin (2017), we set pu = 200 . The full data set is publicly available at https://​sites.​

F
(
x,Θ, �1, �2

)
= 1 −

(
1 +

(
x

Θ

)�1
)−�2

E
(
t̂r
ij

)
=

Θ𝛾2Γ
(
𝛾2 −

1

𝛾1

)
Γ
(

1

𝛾1
+ 1

)

Γ
(
𝛾2 + 1

)

trs
ij
← Θ

�1

√
(1 − U)−1∕�2 − 1

(25)
∑

r∈M

∑

k∈Mr

yrk
i
+ ui = 1 i ∈ C

(26)

min
∑

r∈M

∑

k∈Mr

fry
rk
0
+
∑

i∈C

�uui

+
∑

�∈Ω

pr(�)

(
∑

i∈N

∑

j∈N,j≠i

∑

r∈M

∑

k∈Mr

cr
ij
xrk�
ij

+
∑

i∈N

∑

r∈M

∑

k∈Mr

(
���

rk�
i

+ ���
rk�
i

)
)
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google.​com/​view/​hffvrp-​flextw-​stt/​home. The instances themselves consist of a pos-
sible contribution of this paper is in the form of a freely available benchmark for the 
HFFVRP-FlexTW-STT.

4.2 � Parameter Setting

To tune the parameters employed in the granular local search matheuristic, we per-
form a number of preliminary tests involving a subset of 36 representative instances. 
This subset comprises instances R104, C103, RC101, R202, C204 and RC204, with 
sizes n = 25, 50 and 100, and vehicles of subclasses A and C.

The parameter setting occurred in two steps. In order to calibrate the LNS 
matheuristic, we started by only considering the expected value of scenario s∗ asso-
ciated with each instance. As shown in Table 1, the LNS parameters non-sensitive 
to the instance characteristics were tested in different ranges and the best configura-
tion of values was chosen. On the other hand, the LNS problem-dependent param-
eters are given by mathematical expressions imported from Fachini and Armentano 
(2020b). Such expressions are presented in Table 2. For a full description of LNS 
control parameters, see Fachini and Armentano (2020b).

In a second step, we carried out test runs including all 20 scenarios generated for 
each instance to calibrate the overall procedure of granular local search. After a sen-
sitivity analysis of intuitively selected value combinations, the following setting was 
adopted for the remaining parameters:

•	
(
LNS_time,PS_time,LS_time,�,�step,�max

)
= (1800, 800, 450, 4, 2.5, 5) , for instances 

with sizes n = 25 and n = 50;
•	

(
LNS_time,PS_time,LS_time,�,�step,�max

)
= (2400, 1200, 600, 2, 1.25, 5) , for instances 

with size n = 100.

Table 1   LNS non-sensitive parameters

a Instances of classes R2, C2 and RC2 with TWdensity ≤ 75%

Parameter Range of tested values Step size Selected value

General case Special casesa

�1 [0.30, 0.70] 0.01 0.55 0.40
�2 [0.30, 0.70] 0.01 0.45 0.60
� [0.00, 1.00] 0.10 0.40 0.40
� [0.00, 1.00] 0.50 0.00 0.00
�1 [0.00, 1.00] 0.10 0.00 0.30
�2 [0.00, 1.00] 0.10 1.00 0.70
� [0.00, 1.00] 0.50 0.00 0.50
D [30.00, 40.00] 5.00 35.00 35.00
K [8.00, 14.00] 1.00 12.00 12.00
q [10.00, 30.00] 5.00 15.00 15.00
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We note that, in our implementation, the stopping criterion of LNS is given by 
the parameter LNS_time , tuned in the second step.

4.3 � Comparison with a State‑of‑art MIP Solver

Since no other approach has been proposed for the HFFVRP-FlexTW-STT in the lit-
erature, we present a comparative analysis of results obtained by our granular local 
search matheuristic with those generated by the direct application of Gurobi v.6.05 
state-of-art MIP solver to tackle this problem. For all instances, we imposed a CPU 
time limit of 10,800 s (3 h). Table 3 summarizes the mean results for each subset of 
4 instances with the same size and belonging to the same class and subclass by using 
the following notation: “#Opt” (number of instances for which the optimal solution 
was found); “#Best” (number of instances for which the algorithm in question found 
the best upper bound); “Mean Gap%” (mean optimality gap 100(UB − LB)∕UB , 
where UB and LB are, respectively, the upper and lower bounds on the HFFVRP-
FlexTW-STT optimal cost); and “Mean CPU” (mean time in seconds). A bar “-” 
indicates that the optimality gap is unavailable because no valid lower bound was 
generated for the instances in question. We remark that the quality assessment of the 
solutions obtained by our matheuristic was based on the lower bounds returned by 
the MIP solver. The interested reader is referred to Section A of the Supplementary 
Electronic Material for the detailed results obtained by both methods.

The MIP solver found proven optimal solutions for 12 (5%) instances with up to 
50 customers and returned suboptimal solutions for 204 (95%) instances. Regard-
ing such suboptimal solutions, the optimality gaps range from 2.93% to 95.63% in 
180 (84%) instances and are unknown in 24 (11%) instances for which the linear 
relaxation of M-MSDM remained unsolved by the MIP solver after 10,800  s. In 
this last subset of 24 instances, Gurobi v.6.05 heuristically found an initial feasi-
ble solution before starting its presolve routine. The inherent difficulty of solving 
some M-MSDM linear relaxations at the root node can be accounted for the high 
dimensionality of the addressed problems, e.g., instance R101.100A presents 4 994 
049 constraints, 4 850 524 binary variables and 145 440 continuous variables for 
|S| = 20 scenarios.

The granular local search matheuristic found feasible solutions for all 216 
instances by expending a mean computational time of 5387 s. With respect to the 
192 instances for which the MIP solver has provided lower bounds, 186 (97%) of 

Table 2   LNS problem-dependent parameters

Parameter Description Expression

� Parameter used to build 
LNS starting feasible 
solution

−TWdensity
2 + 0.9TWdensity + 0.6

� Number of customers 
removed per LNS 
iteration

max

�
2,

�
4 ln

�
100TWdensity

��
n +

∑
r∈M

mr + TWwidth

���
+ 9

�
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these solutions are suboptimal with gaps ranging from 0.13% to 95.09%, and 6 (3%) 
correspond to optimal solutions with up to 50 customers.

The outcomes in Table 3 reveals that our matheuristic found better upper bounds 
for 175 (81%) instances, while the MIP solver generated better solutions for 34 
(16%) instances, with 7 (3%) ties. Such a comparison also points out that the advan-
tage of the granular local search matheuristic over the MIP solver increases with the 
instance size. As an example, 105 (73%) out of the 144 instances with sizes n = 25 
and n = 50 were better solved by our algorithm, while the same method was supe-
rior for 70 (98%) out of the remaining 72 instances with size n = 100.

Another interesting trend can be seen in Fig. 3, which plots mean optimality gaps 
returned by both algorithms for each group of 36 instances of the same class, i.e., 
R1, C1, RC1, R2, C2 or RC2. What stands out in this chart is the propensity of the 
suggested matheuristic to provide greater gap reductions when compared to the MIP 
solver for instances with short scheduling horizons, i.e., those belonging to classes 
R1, C1 and RC1. This result suggests that longer scheduling horizons may entail 
additional complexity to the HFFVRP-FlexTW and, therefore, impact negatively on 
the performance of granular local search matheuristic.

Taken together, these results underline the advantage of the granular local search 
matheuristic over the MIP solver, which was outperformed both in terms of CPU 
time and solution quality for most of instances. Such an advantage is intensified for 
instances with short scheduling horizons

4.4 � Comparison with an Alternative Heuristic Method

Given the lack of benchmarks, in a second experiment to evaluate the granu-
lar local search performance, we have implemented a heuristic version of the 
Progressive Hedging Algorithm (PHA) (Rockafellar and Wets 1991) to the 
HFFVRP-FlexTW-STT.

Fig. 3   Effect of classes on MIP solver and granular local search matheuristic
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The PHA applies a scenario decomposition technique, in which the aug-
mented Lagrangian relaxation is used to partition a multi-scenario prob-
lem into individual scenario subproblems. For this purpose, we create a copy 
yrks
i

∈ {0, 1},i ∈ N, r ∈ M, k ∈ M
r
, s ∈ S of variables y for each scenario s ∈ S . 

Such variables, together with the addition to the problem of “nonanticipativity 
constraints”

ensure that the mathematical model decisions are not tailored for each particular 
scenario but reflect the complete original problem. Since the number of these con-
straints may be large, they are replaced by

which are then relaxed using an augmented Lagrangian strategy.
The main idea of PHA is to iteratively solve |S| deterministic subproblems until 

the algorithm converges by obtaining a consensus between all the optimized sce-
narios, i.e., if the gap between all variables yrks

i
 f and the consensus parameter ȳrk

i
 

falls below a given threshold value, e.g., � = 0.0001 . After each algorithmic iteration 
there are two parameter vectors called Lagrangian multiplier and penalty parameter 
that are updated by enabling the convergence of y variables to the values of consen-
sus parameters. For more details on the implementation of similar approaches, see 
Crainic et al. (2011, 2016) Lamghari and Dimitrakopoulos (2016) and Quddus et al. 
(2017).

Our PHA implementation adopts the same parameters to initialize and update the 
Lagrangian multiplier and the penalty parameter as in Crainic et al. (2011). We con-
sidered � = 0.0001 as the threshold value for consensus evaluation. For each itera-
tion, the deterministic scenarios are solved by the LNS matheuristic of Fachini and 

Armentano (2020b) under a time limit of 
�
125 ln

�
n +

∑
r∈M

mr

�
− 400

�
 seconds.

For the algorithmic comparison, we selected a subset of 9 representative instances 
from our test bed with diverse characteristics. These instances were solved by PHA 
under the same CPU time limit of 10,800 s (3 h), which had been also imposed to 
the granular local search matheuristic. Since PHA might not converge within this 
time limit, we adopted the following two step strategy: (i) PHA runs at most for 
10,200 s; (ii) the variables yrks

i
 for which a consensus has been obtained among the 

scenarios within this time limit are fixed in their obtained values, and the resultant 
partially fixed model (26), (2), (4), (15) – (21), (25) is then solved by Gurobi v.6.05 
in the remaining processing time.

Table 4 compares, for each instance, the solutions generated by both methods. Column 1 
shows the instance name. Columns 2 and 3 show, respectively, the results of the granular local 
search matheuristic and of the PHA. The last column refer to the percentage differences Δ% 
between the total costs obtained by granular local search matheuristic (GLSM) ( TCGLSM ) 
and those obtained by PHA ( TCPHA ), i.e., Δ% = 100

(
TCPHA − TCGLSM

)/
TCGLSM .  

A bar ‘-’ indicates that no feasible solution was found for the pair algorithm/instance in 
question. The bottom of the table reports average results

yrks
i

= yrkh
i
i ∈ N, r ∈ M, k ∈ M

r
, s, h ∈ S, s ≠ h

yrks
i

= ȳrk
i
i,∈ N, r ∈ M, k ∈ M

r
, s ∈ S,
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As can be seen from Table  4, the advantage of the granular local search 
matheuristic becomes clear. Such method found better solutions for all instances, 
yielding percentage differences Δ% in the interval from 7% to 100%, 53% on aver-
age. For 3 out of 9 instances (33%) the PHA algorithm could not even find a feasible 
solution within the 10,800 s time limit. Such results reinforce the effectiveness of 
the proposed matheuristic.

4.5 � Effect of Accounting Flexible Time Windows

To evaluate the benefits obtained when flexible time windows are considered, in this sec-
tion,  we conduct a numerical comparison between the solutions generated by LNS 
matheuristic for the deterministic HFFVRP-FlexTW associated with scenario s∗ , and for 
the corresponding HFFVRPTW. To address the latter problem, we used the same setting 
of parameters as in Fachini and Armentano (2020b) and, therefore, the CPU time limit of 
LNS matheuristic was given by expression 

�
1295 ln

�
n +

∑
reM

mr

�
− 3400

�
 in both experiments.

Table 5 summarizes the results obtained. Columns 1 – 3 show the sizes, classes and 
subclasses of the instances. The next three columns refer to the solutions generated for 
the HFFVRPTW, which encompasses their total cost (“TC”), the corresponding vehicle 
fixed costs (“FC”) and route variable costs (“VC”). The following four columns present 
the results obtained when solving the HFFVRP-FlexTW related to scenario s∗ , including 
penalty costs for violating customer time windows (“PC”). Column 11 displays the per-
centage difference Δ1% between the total costs of HFFVRPTW and HFFVRP-FlexTW, 
i.e., 100

(
TCHFFVRPTW−TCHFFVRP−FlexTW

)
∕TCHFFVRP−FlexTW. Columns 12 and 13 show, respec-

tively, the percentage differences Δ2% and Δ3% between fixed and variables costs obtained 
for such VRP variants, i.e.,100

(
FCHFFVRPTW−FCHFFVRP−FlexTW

)
∕FCHFFVRP−FlexTW 

and 100
(
VCHFFVRPTW−VCHFFVRP−FlexTW

)
∕VCHFFVRP−FlexTW . Each entry in this table 

corresponds to mean results for each subset of four instances with the same size and 
belonging to the same class and subclass. Detailed results, for each instance, can be 
found in Section B of the Supplementary Electronic Material.

Considering the 54 subsets of instances analyzed in Table 5, flexible time win-
dows leaded to lower total costs for 40 (74%), lower vehicle fixed costs for 23 (43%) 

Table 4   Granular local search 
matheuristic versus PHA – total 
costs and mean percentage 
differences

Instance TCGLSM TCPHA Δ %

R101.25A 2688.13 3116.08 16%
C101.25A 2891.05 3492.35 21%
RC102.25A 1811.73 2106.16 16%
R101.50A 5839.40 6234.13 7%
C101.50A 5360.63 7662.31 43%
RC102.50A 3351.73 - 100%
R101.100A 10,790.56 - 100%
C101.100A 11,240.70 19,670.71 75%
RC102.100A 12,338.07 - 100%
All (9) 6256.89 7046.96 53%
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and lower route variables costs for 38 (70%) subsets. On the other hand, higher total 
costs were found for  14 (26%) subsets and solutions with higher fixed and vari-
ables costs were obtained for 16 (30%) subsets as a counterpart of the flexibility. 
Ties occurred for 15 (27%) subsets with reference to vehicle fixed costs. The bottom 
of this table shows that lower costs “TC”, “FC” and “VC”, and therefore, positive 
mean percentage differences Δ1% , Δ2% and Δ3% were obtained for the whole set of 
instances.

In Table 6, we provide a further assessment of the gains stemming from the 
flexible time windows. This table presents the number of instances and its per-
centage relative to the total of 216 instances for which positive (“ > 0”), null 
(“ = 0”) or negative (“ < 0”) percentage differences were obtained. It also displays 
the maximum and the minimum values of Δ1% , Δ2% and Δ3% . We have positive 
percentage differences Δ1% (68%) and Δ3% (61%) for most of instances, pointing 
out that HFFVRP-FlexTW yields fewer total costs and route variable costs than 
HFFVRPTW. In contrast, null values prevail in the data set for Δ2% (51%), which 
evince a reduced gain in terms of vehicle fixed costs. For each of the examined 
percentage differences, negative values were obtained for approximately 20% of 
the instances.

From Tables 5 and 6, it is possible to attest that, in general, the use of flexible 
time windows is beneficial and promotes relevant total cost savings. Moreover, 
the values found for percentage differences Δ2% and Δ3% outline that such sav-
ings mostly arise from reductions in the route variable costs.

4.6 � Effect of Accounting Travel Time Uncertainty

In this section, we evaluate the advantage of explicitly modeling travel time 
uncertainty through the HFFVRP-FlexTW-STT model compared to solving its 
deterministic counterpart, i.e., HFFVRP-FlexTW. For this purpose, we use the 
well-known stochastic programming measure called the value of the stochastic 
solution (VSS) (Birge 1982; Birge and Louveaux 2011).

We first state a problem called expected value (EV), a deterministic approxi-
mation of the proposed recourse problem (RP) in which only the expected value 
scenario s∗ is considered:

Table 6   HFFVRPTW versus HFFVRP-FlexTW – summary of percentage differences

Percentage 
difference

 > 0  = 0  < 0 Maximum
value

Minimum
value

# % # % # %

Δ1% 147 68 16 7 53 25 23.64 -33,57
Δ2% 65 30 110 51 41 19 50.00 -42.55
Δ3% 132 61 34 16 50 23 33.47 -31.78
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where E
(
t̂r
ij

)
  denotes the expectation of stochastic travel times, i.e., trs∗

ij
 . Then, we 

define the expected value of using the EV solution (EEV) as the solution value of 
model (26), (2), (4), (15) – (21), (25) with the first stage decision variables fixed at 
the optimal values 𝐲̄ obtained by solving EV, i.e.,

The VSS can be written as follows:

Whenever this measure presents large positive values, there is a potential benefit 
from solving RP over EV (Birge and Louveaux 2011). 

We selected instance RC201.25A to illustrate the VSS calculation. For such an 
instance, it is possible to solve EV to proven optimality using a MIP solver. This 
software returns the optimal cost EV = 2080.69 and, from Table A.2 of the Supple-
mentary Electronic Material, we have that RP = 2620.33 is the best solution found 
by our granular local search matheuristic for RP.

Turning now to EEV computation, when the first stage decision variables y are 
fixed at the optimal values obtained for EV, i.e., y = y

EV
 , no feasible solution exists for 

second stage decision variables (x,w,�, �) . Therefore, EEV = +∞ (see Birge (1982))  
and, from (27), we have VSS → +∞ . It means that travel time uncertainty really 
matters in our context. Figure 4 depicts clusters of customers H̄EV

1
= {0, 1, 2, 3, 4, 5,

6, 7, 8, 13, 17} and H̄EV

2
= {0, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25} , 

associated with solution vector y
EV
, and clusters H̄

RP

1
= {0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 13, 17} and H̄RP

2
= {0, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25} , related to  

y values obtained for RP. Despite pairs 
(
H̄

EV

1
, H̄

RP

1

)
 and 

(
H̄

EV

2
, H̄

RP

2

)
 present many 

customers in common, the assumption of deterministic travel times leads to HFFVRP-
FlexTW-STT infeasibility.

To compute the VSS measure to a broader set of instances, we have proceeded  
as follows. First, we have calculated EEV by solving model (26), (2), (4), (15) – (21), 
(25) with its first stage variables y fixed at their corresponding values returned  
by LNS matheuristic of Fachini and Armentano (2020b) for the deterministic 
HFFVRP-FlexTW associated with scenario y . In this step, the resultant problems 
were solved by Gurobi v.6.05 within a CPU time limit of 10,800 s (3 h). Second, we 
have assumed the RP value as the best solution found by our granular local search 

EV = min
∑

r∈M

∑

k∈Mr

fry
rk
0
+ E𝜀

[
Q
(
y,E

(
t̂r
ij

))]

Constraints (2) − (5)

EEV = Objective (26)

Constraints (2), (4), (15) − (21), (25)

y = ȳ

(27)VSS = EEV − RP
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matheuristic to model (26), (2), (4), (15) – (21), (25) under the same time limit. 
Third, we calculate VSS as the difference EEV and RP. Given the inherent difficulty 
of solving the HFFVRP-FlexTW-STT by using Gurobi v.6.05 for instances with 
n = 100, we limited the scope of VSS calculations to the 144 instances with sizes 
n = 25 and n = 50. Table 7 displays aggregated results grouped by instance size, sub-
class and feasibility of EEV problem by using the following notation: ‘‘#Instances’ 
(number of instances belonging to the group), and “VSS %” (VSS mean percent-
ages, i.e., s∗ ). Detailed results, for each instance, can be found in Section C of the 
Supplementary Electronic Material.

We note from Table 7 that it clearly pays off to use the stochastic solution rather 
than the deterministic mean value solution. The latter resulted in infeasible problems  
regarding the second stage decision variables 100(VSS)∕RP for 95 out of 144 instances  
(66%), which entails (x,w,�, �) . By contrast, as a counterpart of the increased com-
plexity of solving RP rather than of successively tackling EV and EEV, we found 

Fig. 4   Clusters of customers obtained for EV and RP – instance RC201.25A
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negative mean VSS% values for instances with feasible EEV problems. Such negative  
values benefit the deterministic mean solution instead of the stochastic one. Regarding 
this result, there are two important remarks: (i) it is only possible to obtain negative 
values of VSS% because the adopted solutions of RP stems from a heuristic approach 
and therefore are not necessarily optimal, otherwise such metric would be always non- 
negative since RP takes into account the minimization of the expected costs over all sce-
narios, including VSS → +∞ ; and (ii) despite the negative mean VSS% results generated 
for these instances, their absolute values range from -6.95% to -15.96%, demonstrating 
that even in such few situations the losses associated with the increased complexity of the  
stochastic model are low.

From the examination of Table 7, a last conclusion can be drawn. The advantage  
of the stochastic solution over the deterministic mean value solution increases 
with the instance size. For example, 41 (57%) out of the 72 instances with size s∗ 
resulted in infeasible EEV problems, while this number increases to 54 (75%) out  
of the remaining 72 instances with size n = 25 . This trend reinforces the practical 
importance of explicitly modeling the stochastic travel times, since real-life VRP 
problems tend to be large scaled.

5 � Conclusions

This paper has introduced a new variant of the VRP that includes a heterogeneous 
fixed fleet of vehicles, flexible time windows and stochastic travel times. We devel-
oped a two-stage stochastic mixed-integer model with recourse to this problem. Cus-
tomers’ assignment to vehicles makes up the first stage, while recourse decisions are 
made in the second stage to find minimum-cost routes for vehicles given realized 

Table 7   Value of the stochastic 
solution

a Negative values of VSS% are possible because the adopted solu-
tions of RP stems from a heuristic approach

n Subclass EEV feasibility #Instances VSS%a

25 A feasible 10 -6.95
infeasible 14  + ∞

B feasible 10 -8.73
infeasible 14  + ∞

C feasible 11 -9.67
infeasible 13  + ∞

50 A feasible 6 -15.53
infeasible 18  + ∞

B feasible 5 -7.17
infeasible 19  + ∞

C feasible 7 -15.96
infeasible 17  + ∞

All feasible 49 -10.28
infeasible 95  + ∞
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travel times. The objective is to minimize the sum of transportation costs and ser-
vice costs. The former comprise the vehicle fixed costs and route variable costs, and 
the latter correspond to the penalty costs for violating customer time windows.

We developed a scenario generation algorithm that describes stochastic travel 
times using the Burr type XII distribution (Burr 1942), and an effective granular 
local search matheuristic was devised to tackle the problem. Extensive computa-
tional results obtained for 216 benchmark instances attest the effectiveness of our 
approach. It outperformed Gurobi v.6.05 MIP solver, finding better solutions for 175 
(81%) instances and consuming a mean CPU time around 48% lower. The proposed 
matheuristic also far outperformed an alternative decomposition algorithm based on 
the augmented Lagrangian relaxation.

The advantages of both flexible windows and stochastic travel times have been 
also assessed. Flexible time windows yielded overall cost savings for 68% of the 
instances compared to the solutions obtained for hard time window problems. Fur-
thermore, an in-depth analysis of the well-known stochastic programming measure 
VSS illustrated the potential benefits of considering stochastic travel times over 
solving an approximated deterministic model. Explicitly modeling the stochastic 
travel times showed to be a critical issue, since the adoption of a deterministic prob-
lem with the random parameters fixed at their expected values resulted in infeasible 
solutions for 66% of the tested instances.

Future research may develop of an exact method for the HFFVRP-FlexTW-
STT.  Another research avenue involves applying the algorithmic techniques sug-
gested here to other stochastic VRP variants, which have received much less atten-
tion from academics than their deterministic counterparts. Finally, other interesting 
research direction would be to integrate the proposed method into the location and 
routing problem with stochastic travel times, since it has been proven that solving 
the location and routing problem is superior to solving the facility location problem 
and VRP separately (Salhi and Rand 1989).

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11067-​021-​09553-6.
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