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Abstract

This paper addresses a multi-attribute variant of the vehicle routing problem which
encompasses a heterogeneous fixed fleet, flexible time windows and stochastic travel
times. The objective is to minimize the sum of the transportation and the service
costs. The former comprises the vehicle fixed costs and route variable costs, and
the latter corresponds to the penalty costs for violating customer time windows.
The problem is formulated as a two-stage stochastic mixed-integer program with
recourse and solved by a granular local search matheuristic. The stochastic travel
times are approximated by a finite set of scenarios generated by Burr type XII dis-
tribution. Extensive computational tests are performed on 216 benchmark instances,
and the advantages of both flexible windows and stochastic travel times are stressed.
The experiments show that, compared to a state-of-art mathematical programming
solver, the developed matheuristic found better solutions in 81% of the instances
within shorter computational times. The proposed solution method also far outper-
formed an alternative decomposition algorithm based on the augmented Lagrangian
relaxation. Furthermore, the flexible time windows yielded overall cost savings for
68% of the instances compared to the solutions obtained for hard time window prob-
lems. Finally, explicitly modeling the stochastic travel times provided 66% more fea-
sible solutions than the adoption of a deterministic model with the random param-
eters fixed at their expected values.
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1 Introduction

The freight distribution industry is not only essential to modern society but also
responsible for significant revenues. For example, Fedex Ground reports revenue
of 18.395 billion US dollars stemming from the pickup and delivery of small
packages in the United States and Canada in 2018 (Fedex 2018). The vehicle
routing problem (VRP) lies at the center of this industry and focuses on provid-
ing a minimum-cost service to a set of geographically dispersed customers by
employing a limited and capacitated fleet of vehicles that is located at a central
depot. Each customer can only be visited once by a single vehicle and all routes
must start and finish at the depot (Dantzig and Ramser 1959). Given the VRP rel-
evance, academics have developed a large amount of work targeting this problem
and its extensions (Braekers et al. 2016; Golden et al. 2008; Toth and Vigo 2014).

The VRP becomes more realistic when the fleets are heterogeneous, i.e., vehi-
cles differ in their capacities and costs (Taillard 1999). Hoff et al. (2010) analyze
industrial aspects of heterogeneous fleets and stress that vehicles usually present
different characteristics in practice since fleets are acquired over long periods and
automotive technology continuously evolves. Moreover, companies often keep a
varied set of vehicle types due to the need for flexibility. For thorough reviews
on heterogeneous fleet VRP (HFVRP), see Baldacci et al. (2008) and Kog et al.
(2016).

Another important feature of the VRP is the time window constraints that impose
a time interval for collecting or delivering of goods at each customer (Desaulniers
et al. 2014). The literature classifies these constraints as hard or soft. In the first
case, vehicles can arrive early and wait, but the service must start within the time
windows. On the other hand, the second case represents a more realistic situation in
which the time windows can be violated at penalty costs for early or late customer
service. A particular case of the VRP with soft time windows (VRPSTW), which
intensifies its practical perspective, is the VRP with flexible time windows (VRP-
FlexTW). In this problem, introduced by Tas et al. (2014c), early and late service
deviations at each customer are bounded by an outer or flexible time window gener-
ated with respect to the length of the original or hard time window. The carrier pays
a penalty cost only if the arrival time takes place outside the hard time window, but
within its deviation bounds. The interested reader is referred to Salani and Battarra
(2018) for a recent survey of the VRPSTW.

Both HFVRP and VRPFlexTW assume that all the information necessary
to formulate the problems is known and readily available. However, in real-life
applications, there are situations where the parameters of such problems have a
stochastic nature (Gendreau et al. 2014). In particular, travel times are most sub-
ject to uncertainty caused by weather conditions, car accidents and traffic conges-
tion (Gendreau et al. 2016). This uncertainty entails further feasibility conditions
and additional costs. Therefore, ignoring the stochastic nature of travel times may
result in arbitrarily bad VRP solutions.

Despite the practical relevance of the previously mentioned VRP attributes,
namely heterogeneous fleets, flexible time windows and stochastic travel times,
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no research has simultaneously addressed all of them. The first HFVRP vari-
ant that incorporates flexible time windows is proposed by Firouzi et al. (2018),
whereas the only stochastic version of such a problem is the mixed fleet stochastic
VRP investigated by Teodorovi¢ et al. (1995). The latter involves an unlimited
fleet of heterogeneous vehicles and customers with stochastic demands.

Apart from these studies, the closest related literature focuses on the VRPSTW
under travel time uncertainty. Ando and Taniguchi (2006) suggest a model for this
problem where each vehicle can make multiple routes per day within a given sched-
uling horizon. The objective is to minimize the sum of vehicle fixed costs, oper-
ating costs and expected earliness and lateness costs. Triangular distributions are
estimated by using real data to describe the stochastic travel times, and a genetic
algorithm is devised to handle the problem.

Russell and Urban (2008) deal with a VRPSTW in which travel times are ran-
dom variables modeled with the Erlang distribution, a special case of the gamma
distribution with an integer shape parameter. The authors minimize a weighted
average of three objectives, specifically: the number of vehicles employed, the total
distance traveled, and the expected earliness and lateness penalties, calculated by
closed-form expressions that reflect constant, linear or quadratic costs. The problem
is solved in three phases. The first two phases build an initial solution and improve
it through tabu search algorithms, respectively, while the third optimizes the waiting
time before each customer using a generalized reduced gradient method.

Li et al. (2010) propose two formulations of a VRP variant in which both travel
and service times are normally distributed random variables. The first includes
hard time windows modeled as chance constraints, whereas the second considers
soft time windows and corresponds to a two-stage stochastic program with recourse
which designs routes in the first stage aiming to minimize the expected costs of
driver’s remuneration and late arrivals in the second stage. These models are solved
by a tabu search metaheuristic that incorporates a Monte Carlo simulation proce-
dure to estimate the expected values and probabilities of the stochastic parameters.
The assumption that travel times follow a normal distribution is also employed by
Thompson et al. (2011). The authors present alternative formulations based on sto-
chastic programming and robust optimization of the VRPSTW under travel time
uncertainty. Because the former requires expensive numerical integrations, the latter
is used in a case study conducted by the authors.

Another VRPSTW with stochastic travel and service times is analyzed by Zhang
et al. (2013). They suggest a new stochastic programming model that incorporates
service level constraints to ensure a minimum on-time arrival probability at each
customer and a hierarchical objective function to minimize three components,
namely: vehicle fixed costs, mean total travel time, and the weighted sum of costs
stemming from earliness, lateness and route duration excess. An approximation
method called a-discrete, which estimates the vehicle arrival time distributions at
customers, is embedded in an iterated tabu search algorithm to solve the problem.
Experiments were conducted with travel and service times following lognormal and
normal distributions, respectively.

The more recent studies on VRPSTW with stochastic travel times are from
Tas and colleagues (Tas et al. 2013, 2014a, b). Tas et al. (2013) develop a
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three-phase method. An initialization algorithm obtains a starting feasible solu-
tion in the first phase. A tabu search metaheuristic improves such a solution in
the second phase, and a post-optimization procedure is called in the third phase
to adjust the departure times of vehicles from the depot to minimize penalties
due to time window violations. The same problem is exactly solved by Tas et al.
(2014b) through a branch-and-price solution approach. Tas et al. (2014a) fur-
ther extended the VRPSTW to incorporate time-dependent and stochastic travel
times. They adapt the three-phase method given in Tas et al. (2013) and imple-
ment an adaptive large neighborhood search metaheuristic to tackle such a prob-
lem. In these three works, travel times are assumed to be gamma distributed.

This paper deals with the industrially relevant variant of VRP called hetero-
geneous fixed fleet VRP with flexible time windows and stochastic travel times
(HFFVRP-FlexTW-STT). The objective is to minimize the sum of the trans-
portation costs and service costs. The transportation costs comprise the vehicle
fixed costs and route variable costs, while service costs correspond to the pen-
alty costs for violating customer time windows. These two costs provide an easy
way of exploring the trade-offs between the expenses of the carrier company and
the customer service reliability as pointed out by Tas et al. (2013).

The main contributions of this paper are fivefold: i) to the best of our knowl-
edge, the proposition of the first mathematical formulation for the HFFVRP-
FlexTW-STT; ii) the development of a two-stage stochastic mixed-integer pro-
gram with recourse, where the assignment of customers to vehicles make up the
first stage, and recourse decisions are made in the second stage to find mini-
mum-cost routes for vehicles according to observed travel times; iii) the sugges-
tion of a scenario generation procedure which describes stochastic travel times
using the Burr type XII distribution (Burr 1942), which has been shown to rep-
resent variations in day-to-day travel times better than other distributions such
as lognormal, gamma, Weibull and normal (Susilawati et al. 2013; Taylor 2017);
iv) the design of a novel granular local search matheuristic to solve the problem;
v) extensive computational experimentation on benchmark instances and the
assessment of benefits gained by flexible windows and stochastic travel times.

The computational experiments show that our matheuristic outperforms a
state-of-art mathematical programming solver in terms of solution quality and
runtime. The proposed solution method also overcomes an alternative heuris-
tic algorithm based on the augmented Lagrangian relaxation. Furthermore, the
results underline the advantages of both flexible windows and stochastic travel
times. The former drastically reduce the solution’s overall cost, whereas the lat-
ter are critical for their feasibility in a stochastic environment.

The remainder of the article is organized as follows. Section 2 introduces the
problem description. Section 3 describes the granular local search matheuristic.
Computational results are reported in Sect. 4, and conclusions are outlined in
Sect. 5.
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2 Problem Description

The HFFVRP-FlexTW-STT is defined on a complete graph G = (N, £) where the node
set N'={0,1,..,n} consists of the depot {0} and the set of customers C = AM\{0},
while the set £ = {(i,j) : i,j € N,i#j} represents the edges between the nodes. A
heterogeneous fleet of vehicles is positioned at the depot in order to supply the custom-
ers. The set M = {1,...,m} represents the m distinct types of vehicles. The set
M, = { 1,.., m,} represents the vehicles available at the depot of type r € M, each
one having capacity Q, and an associated fixed cost f,. For each edge (7,j) € £ and for
each vehicle type r € M, a deterministic travel cost clfj = c;l. is given for which we
assume that the triangular inequality holds. Furthermore, let ?;}, (i,j))e&re M,be
stochastic travel times following a known probability distribution.

Each node i € N presents a demand g, a service time W,, a time window [ei, li] and
associated fractions f; and fl.l used to set the early and late service deviation bounds,
respectively. The time window [eo, lo] at the depot represents the planning horizon, and
qo = W, = 0 by definition. Following Tas et al. (2014c), we define flexible time win-
dows [¢’;, ;] for eachi € N with limits expressed by ¢/ = max {¢; — f*(I; — ¢;),0} and
I'=min {l,+f(I;— ¢;). 1y + f}(ly — €y) }- Servicing a customer within|¢’,, ¢, is penal-
ized by 6, for one unit of earliness, while servicing a customer within [ll-, r i] is penalized
by 6, for one unit of lateness.

Define the binary variables y;k, i€ N, re M, ke M,, such that, if the demand
of node i € \V is satisfied by vehicle 7%, r € M,k € M,, and y;k = 0, otherwise. The
decisions regarding the assignment of customers to available vehicles can formulated
as follows:

min z Z f,ygk + E Q(y,t(w)) (1)
reM keM.

Z q[y;k < eré reM,keM, 2)

ieC

> Y k=1 iec 3)

reMkeM,

> yE<m rem
keM,

“

y e (0,1} ieN,re MkeM, )

where ¢ is a random vector that defines the travel time distributions, w € € is an out-
come in sample space Q of random events, and Q(y,t(w)) is equal to the costs of
routes that vehicles will follow to service their assigned customers given realized
travel times t(w). The objective function (1) minimizes the carrier’s overall cost,

including vehicle fixed costs Y. Y f,y(’)k as well as expected traveling costs and
reMkeM,
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penalty costs for violating customer time windows E_Q(y,t(w)). Constraints (2) are
the vehicle capacity constraints, while constraints (3) require the assignment of a
single vehicle to each customer. Constraints (4) and (5) limit the number of vehicles
that leave the depot for each type r and impose the integrality requirements on
assignment variables, respectively.

Model (1) — (5) is a two-stage stochastic mixed-integer program with recourse (Birge
and Louveaux 2011) based on the cluster-first and route-second approach (Fisher and
Jaikumar 1981). In the first stage, customers are grouped in clusters and assigned to
vehicles before the stochastic travel times being revealed. After these times are realized,
recourse decisions related to the route of each vehicle are made in the second stage.
The second stage recourse function can be formulated as a set of independent routing
problems over the customers assigned to each vehicle, presenting the special structure
of the traveling salesman problem with flexible time windows (TSPFlexTW) (Fachini
and Armentano 2020a):

Q(y,t(co)):minz Z Z Z " ’k+2 Z Z 5ai’k+5ﬂﬂirk) )

iEN jEN j#i re M keM, ieN re M keM,

IEZA:/xU_y JENj#ire Mike M, )

zx;"=y;k ieN,i#jre Mke M,

®)

w;k+Wi+z;j(a))— [M(w)(1 —xg‘)] SW;k Lj€ENi#jj#0,re Mke M,

©)
e<wi<ll ieNreMkeM, (10)
*>e—wr ieNre MkeM, (11)
p>wk—1 ieNre MkeM, (12)

(Wi, a p) € Ry, (w3t ) €10.1) ij e Ni#jir e MikeM,  (13)

where x is a binary variable such that x’k =1, if vehicle r € M,k € M, travels
directly from node i € N to node j €N, i i 7é J, otherwise, x] =0, and continuous

variables (w/*, a¥, p*) denote service start time, earliness and lateness at node i € '
when serviced by vehicle kre M ke M,, respectively. The objective function (6)
minimizes the sum of traveling costs, called route variable costs, and service penalty
costs. Constraints (7) and (8) guarantee that every node is visited exactly once when
y;" = land y* = 1. Constraints (9), in which M () = max {l',- — e+ (@) + W, 0}

(see Desrosiers et al. (1995)), ensure that the service start time at a customer must be
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greater or equal to the sum of the service start time with the service time and the
traveling time of its immediate predecessor. Constraints (10) impose the flexible time
windows at nodes, while constraints (11) and (12) connect their service start times
with the service earliness and lateness, respectively. Constraints (13) indicate the
domain of the variables.

Let S C Q define a set of scenarios for the random event obtained by a sampling
procedure. One can approximate formulation (1) — (13) through the following multi-
scenario deterministic model (MSDM):

MSDM =min 2 Z fry6k+ ZPr(s)(Z Z Z Z c;jx;.’“

reM keM, = ieNjeN j#i re M keM,
(14)
rks rks
£ (8.0 + 6,8 )>
iENre M keM,
Constraints (2) — (4)
D=yt jeNjEire Mke M, s€S (15)
ieN ‘
Y=yt ieNitjre M ke M, seS (16)
JEN

Wi+ W+ 12 = [MP( =X < Wi jeNi#)j.j#0,re Mke M,,s€S

(17)
&<wt <l ieNreMkeM,seS (18)
> —wh ieNre MkeM,seS (19)
prE>whk -1 ieNre Mke M,,s€S (20)

(W, @, ) € Ry, (3 x) € (0.1} i €Ni #jr € Mk E M, s €S
2D
where Pr(s) defines the probability of scenario s € S and Ml.’js = max {l’ =€ i+
1+ W, O}. Note that the second stage variables <x;"~", wiks, al.”“, ﬂ;”“) and the, now
deterministic, travel times t;.s are scenario specific. MSDM is a large-scale mixed-

integer programming (MIP) model whose solution provides a customer-vehicle
assignment y that minimizes vehicle fixed costs as well as expected route variable
costs and penalty costs.
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3 Granular Local Search Matheuristic for the HFFVRP-FlexTW-STT

We propose a solution method for the HFFVRP-FlexTW-STT based on the local search
matheuristic devised by Agra et al. (2016, 2018) to handle stochastic production and
inventory routing problems. Following the local branching concept of Fischetti and
Lodi (2003), such a procedure iteratively tries to improve the best current solution for a
stochastic MIP (SMIP) by searching a neighborhood induced by the addition in SMIP
of general linear inequalities called local branching constraints.

The main framework of the matheuristic of Agra et al. (2016, 2018) is summarized
in Fig. 1. Initially, a simplified version of the SMIP is solved by considering a sin-
gle scenario in which all stochastic parameters are set to their expected values (line
1). Once a starting solution has been obtained, a local branching constraint is added to
the SMIP with all scenarios (line 3), and the resulting model is solved by a MIP solver
within a time limit of LS_time seconds (line 4). If a better solution is found, the current
solution is updated (line 5) and the procedure is repeated, otherwise, the local search
stops.

The algorithm developed in this section modifies the one of Agra et al. (2016, 2018)
through two significant adaptations: (i) additional steps are performed to generate
the starting solution; and (ii) the local search moves are restricted to a list of prom-
ising neighbors using the reduction technique of granular neighborhoods (Toth and
Vigo 2003). These adaptations are included in our heuristic to address difficulties of
HFFVRP-FlexTW-STT not present in problems studied by Agra et al. (2016, 2018),
namely the absence of complete or relatively complete recourse and the presence of
second stage discrete variables. In the following sections, the local branching con-
straints are defined first, followed by the description of the aforementioned adaptations.

3.1 Local Branching Constraints

Assume that y represents the values of the first stage variables y in a given reference
solution of MSDM and, for each node i € NV, let S‘,- = {(r, kyebB: )‘{k = 1} denote
the binary support of y. We define the following local branching constraint for the
HFFVRP-FlexTW-STT:

Ay.y) <« (22)

where A(y,¥) is the Hamming distance function expressed by

Algorithm Local search matheuristic

Solve a simplified SMIP considering a single scenario in which all stochastic parameters are set to their expected values
Repeat

Add a local branching constraint to the SMIP with all scenarios

Solve the resulting model using a MIP solver for LS time seconds

Update the current solution

Until no improvement in the objective fimction is observed

A B W N =

Fig. 1 Local search matheuristic
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ApH= X, D=y + X DM 23)

(rh)ES; iEN (rk)EB\S; iEN

and x is an integer positive parameter that defines the neighborhood size. The latter
should be calibrated to yield a neighborhood sufficiently small to be explored within
reasonable computing time, but large enough to improve the best current solution.

3.2 Starting Solution

As in Agra et al. (2016, 2018), a starting solution is generated by solving the model
MSDM considering a single scenario s* in which the stochastic travel times tirj?'* are

set to their expected values E <?;> The resulting problem is a deterministic hetero-

geneous fixed fleet VRP with flexible time windows (HFFVRP-FlexTW), which is
solved by the large neighborhood search (LNS) matheuristic proposed by Fachini
and Armentano (2020b). In this method, a feasible solution is obtained by an exten-
sion of the Solomon’s I1 heuristic (Solomon 1987), and further improved by the
alternated application of destruction and reconstruction procedures. The former
comprises four customer removal operators devised by Prescott-Gagnon et al.
(2009), whereas the latter rebuilds ruined solutions using a logic-based Benders
decomposition (LBBD) method (Hooker and Ottosson 2003). Because LNS was
originally designed for the deterministic heterogeneous fixed fleet VRP with hard
time windows (HFFVRPTW), the following adjustments are made to take into
account the flexible time windows:

e The hard time windows are replaced by the flexible time windows in all required
calculations;

e The LBBD subproblems, which present the special structure of TSPFlexTW, are
solved by an extension of the heuristic dynamic programming algorithm of Balas
and Simonetti (2001) that incorporates a label-correcting strategy called EL, as
suggested by Fachini and Armentano (2020a).

LNS stops as soon as it reaches LNS_time seconds of CPU time, generating ini-
tial reference values y for variables y. However, these values do not ensure second
stage feasibility because our problem does not have complete or relatively complete
recourse (Birge and Louveaux 2011). Therefore, before local search starts, an auxil-
iary routine is performed to update vector y with values that guarantee the feasibility
of all second stage problems. The idea is to move from the first stage solution found
for the single scenario s* to a nearby one, which is feasible for all scenarios. This
routine exploits a proximity function similar to that used by Fischetti and Monaci
(2014) in the heuristic proximity search (PS). More specifically, the objective func-
tion (14) is replaced by

min A(y,y) (24)

where A(y,¥y) is the Hamming distance defined in (23), and y is the first stage solu-
tion vector generated by LNS matheuristic. The resulting formulation, called LNS
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model (LNSM), is given by objective function (24) and MSDM constraints. Such
model is then solved by a MIP solver within a time limit PS_time. With the com-
pletion of this step, the reference vector y is updated with the best feasible solution
found by the solver and original objective function (14) is restored. Since LNSM
takes into account every HFFVRP-FlexTW-STT scenario, the new values obtained
for vector y ensure the feasibility of all second stage problems.

3.3 Granular Neighborhood

Granular neighborhoods were proposed by Toth and Vigo (2003) in the context of a
tabu search algorithm for the VRP. Their purpose is to decrease the computational
effort of local search through a candidate list strategy (Glover 1997). The key fea-
ture of this technique is to replace the original complete graph G = (N, £) by a new
sparse one, denoted by G’ = (/\/, 5’) with |€'| < |£|, which induces neighborhoods
that can be quickly examined without affecting the quality of solutions found. The
restricted edge set & should contain only promising or “short” edges whose costs do
not exceed a granularity threshold value.
In our implementation, the granularity threshold value 9 is given by

VC*

(n+ zm)

where VC* represents the variable costs of routes in the solution found by LNS for
scenario s%, ¢ is a sparcification parameter that controls the size of granular neigh-
borhood, 7 is the number of customers and ) m, is the total of heterogeneous vehi-

9=¢

remM
cles. Therefore, the restricted edge set can be defined as & = {(i, J) € €, max,

ij
depot and those belonging to the best solution found by LNS for s*.

Since HFFVRP-FlexTW-STT presents second stage discrete variables, the solu-
tion of model (14) — (21) is time-consuming even with the addition of local branch-
ing constraints (22). Thus, to accelerate our local search matheuristic, the above-
mentioned granular neighborhood discards the high-cost or “long” edges (i, j) € E\E
of MSDM, producing a restricted MIP formulation with a smaller number of con-
straints and variables. More specifically, the removal of an edge (i,j) € £\& has the
following implications for the model: (i) exclusion of variables xg“ related to the

{c(} < 8} UZ, where 7 is a set of important edges, i.e., those connected to the

removed edge for all r € M,k € M,,s € S; and (ii) exclusion of constraints (17)
associated with the removed edge.

Following previous studies (Branchini et al. 2009; Toth and Vigo 2003; Schneider
et al. 2017), the cardinality of set £ is dynamically adjusted to diversify the search
procedure. For this purpose, we do not fix the value of ¢. Instead, we first set ¢ = ¢
and, whenever a local optimum is found, we make ¢ < ¢ + ¢
eter reaches the maximum value ¢

step
step UNLL such a param-

max*
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3.4 Algorithm Implementation

Figure 2 shows the pseudo-code of the granular local search matheuristic proposed
for the HFFVRP-FlexTW-STT. Initially, MSDM is solved considering the single
scenario s*, in which ti’]?'* =F <?;> (lines 1 — 2). Parameter ¢ is initialized (line 3),
enabling the calculation of granularity threshold & (line 4) and the construction of a
restricted edge set £ (line 5). As soon as these steps have been carried out, the multi-
scenario version of MSDM is built by taking into account the sparse graph G’ (line
6), and the auxiliary routine described in Sect. 3.2 is triggered to generate a refer-
ence solution feasible for all scenarios (lines 7 — 10). The granular local search

Algorithm granular local search matheuristic for the HFF VRP-FlexTW-STT

// Solution of MSDM considering single scenario s*

—

Generate scenario s* suchthat 7" « E(7;)

2 Solve the resulting HFFVRP-FlexTW by applying LNS matheuristic for LNS time seconds and obtain (VC*, 5)
// Construction of sparse graph G'= (,\',5 ')

3 4t

4 8(—¢VC’/[V!+ ml,]
rem

5¢& <—{(i,j) €&, max, {c,}} < 9} vl
6 Build MSDM by taking into account the sparse graph G'=(\,€")
// Generation of a starting feasible solution
7 Replace objective function (14) by expression (24) i order to generate LNSM
8 Solve LNSM by using a MIP solver for PS time seconds
9 Update y with the best solution found by the MIP solver
10 Restore original objective function (14), ie., MSDM
// Granular local search procedure
11 While ¢ < ¢ .. do
12 Repeat
13 Add constramt (22) to MSDM
14 Solve (14), (2) — (4), (15) — (22) using a MIP solver for LS time seconds

15 Update the current reference solution

£

16 Until no improvement in the objective function is observed
17 // Sparse graph update

18 gg+4,,

19 If ¢<g,. then

9(—¢CV”/[H+ Zm,_)

re M
2 5'(—{(i,j) €&,max, {c;}ﬁ S}UI
22 Update model MSDM
23 End If
24 End While
25 Output the minimum-cost solution found for the HFFVRP-FlexTW-STT

2

>

[y

Fig.2 Granular local search matheuristic for the HFFVRP-FlexTW-STT
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procedure (lines 11 — 24) is analogous to that one presented in Fig. 1. The main dif-
ference is that the search does not stop when a local optimum is reached. Instead, the
value of ¢ is increased (line 18), the granularity threshold 9 is recalculated (line 20),
and both the restricted edge set £ and the model MSDM are updated (lines 21 — 22).
Once a local optimum has been found by using the maximum value allowed for the
sparcification parameter, i.e., ¢ = ¢ the algorithm stops and outputs the mini-
mum-cost solution found (line 25).

max?

4 Computational Experiments

This section describes the computational results of the proposed algorithm that was
coded in C# and run on a CPU Intel® Core™ i7-4790 CPU at 3,6 GHz with 16 GB
RAM. As MIP solver, we used the Gurobi v.6.05 software. We start by presenting
the benchmark instances and the parameters used within our algorithm in Sects. 4.1
and 4.2, respectively. In Sect. 4.3, we compare the proposed matheuristic with the
direct application of Gurobi v.6.05 to solve the HFFVRP-FlexTW-STT model. Sec-
tion 4.4 evaluates the solutions obtained by the granular local search with respect to
those obtained by an alternative decomposition algorithm based on the augmented
Lagrangian relaxation. To highlight the benefits gained by flexible time windows, in
Sect. 4.5, we assess the results found by LNS matheuristic for the HFFVRP-FlexTW
associated with scenario s* against corresponding HFFVRPTW solutions. Finally,
in Sect. 4.6, we analyze the advantage of solving the suggested stochastic model
rather than its deterministic counterpart.

4.1 Instance Generation

Our data set was derived from 216 benchmark instances proposed by Fachini and
Armentano (2020b) for the HFFVRPTW. Each instance combines: customer param-
eters derived from Solomon’s instances (Solomon 1987), which comprise both short
scheduling horizon classes R1, C1 and RC1 and long scheduling horizon classes R2,
C2 and RC2, vehicle parameters derived from Liu and Shen (1999b) subclasses A, B
and C, and fixed fleets obtained by Liu and Shen (1999a) for the corresponding fleet
size and mix vehicle routing problem with time windows. There are problems with
different time window densities TW,,,,, 1.e., percentage of customers that have
time windows, and various time window widths TW, ;. = [; —e;, i € C. Moreover,
the data set includes instances with sizes n=25, 50 and 100. The name of each one
specifies its attributes of class, identification number in class, number of customers
and subclass, e.g., R104.25A is the fourth instance of class R1, with 25 customers
and vehicles of subclass A. For further details, see Fachini and Armentano (2020b).

We adapt each instance to the HFFVRP-FlexTW-STT context by means of two
modifications. First, as in Tag et al. (2014c¢), we set costs (5a, 5ﬂ) to (0.50, 1.00) and
fractions (ff, fl.l ) to (0.10,0.10) for all i € N/. Second, we change the deterministic
travel time ti’j of each edge (i,j) € £ to a random variable ?l.rj following the Burr type

XII probability distribution (Burr 1942), which has been shown to properly
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represent variations in day-to-day travel times (Susilawati et al. 2013; Taylor 2017).
The cumulative distribution function of the 3-parameter version of Burr type XII
distribution (Tadikamalla 1980) is

i\ "2
F(x,@,yl,yz) =1- <1 + (%) )

where x > 0 is a random variable, ® > 0 is a scaling parameter and y, > 0 and
7, > 0 are shape parameters.
Random variables ?iri are approximated by a set S with 20 scenarios, each one

with an associated probability Pr(s) = 1/20. For this purpose, we set E <i;> = ti’j

and chose values y; = 2 and y, = 1 for shape parameters, as suggested by Gémez
et al. (2016). In this way, the scaling parameter is given by © = 0.6366tl.’j since

E<t> _ orr(r - %)FG N 1)

i C(y, +1)

Based on this parameter configuration, the following sampling procedure is
adopted. For each triplet (i, j, r) of each scenario s € S, we first draw a random num-
ber U from a uniform distribution in the interval (0,1]. Then, the value of travel time
ti’f can be obtained by setting ti’].s «~ F71(U,®,y,,7,), which gives

0 —0y/(1-U)"n -1

Because the employed probability distribution has very high variance and skew-
ness, the sampling procedure may output infeasible instances. It can even generate
scenarios for which no feasible solution exists at all. Since no reasonable SMIP can
be constructed in such a circumstance, we modify model (14) — (21) by allowing
feasible solutions with unserved customers at a given penalty cost p,. More specifi-
cally, constraints (3) are replaced by

reMkeM,

where u; is a binary variable such that u; = 1, if customer i € C is left unserved, u; = 0,
otherwise. Furthermore, anew term ¥ p 4, is added to objective function (14) that

ieM\{0}
becomes
min )% N L+ Y o,
reMkeM, ieC
+ Zpr(a))(Z Z Z Z c;x;{“" + Z Z Z (éaal.’k‘” + 5ﬁﬂi”“")>
weQ ieNJEN j#i re M keM, iEN reM keM,

(26)

Therefore, we use the modified MSDM (M-MSDM), given by (26), (2), (4), (15)
—(21), (25), in the computational experiments of next sections. Following Wang and
Lin (2017), we set p, = 200. The full data set is publicly available at https://sites.
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google.com/view/hffvrp-flextw-stt/home. The instances themselves consist of a pos-
sible contribution of this paper is in the form of a freely available benchmark for the
HFFVRP-FlexTW-STT.

4.2 Parameter Setting

To tune the parameters employed in the granular local search matheuristic, we per-
form a number of preliminary tests involving a subset of 36 representative instances.
This subset comprises instances R104, C103, RC101, R202, C204 and RC204, with
sizes n=25, 50 and 100, and vehicles of subclasses A and C.

The parameter setting occurred in two steps. In order to calibrate the LNS
matheuristic, we started by only considering the expected value of scenario s* asso-
ciated with each instance. As shown in Table 1, the LNS parameters non-sensitive
to the instance characteristics were tested in different ranges and the best configura-
tion of values was chosen. On the other hand, the LNS problem-dependent param-
eters are given by mathematical expressions imported from Fachini and Armentano
(2020b). Such expressions are presented in Table 2. For a full description of LNS
control parameters, see Fachini and Armentano (2020b).

In a second step, we carried out test runs including all 20 scenarios generated for
each instance to calibrate the overall procedure of granular local search. After a sen-
sitivity analysis of intuitively selected value combinations, the following setting was
adopted for the remaining parameters:

® (LNS_time,PS_time,LS_time, k¢, ) = (1800,800,450,4,2.5,5), for instances
with sizes n = 25 and n = 50;

. (LNS_lime,PS_lime,LS_time,K,¢7
with size n = 100.

) = (2400, 1200, 600, 2, 1.25,5), for instances

step ’d)max

Table 1 LNS non-sensitive parameters

Parameter Range of tested values Step size Selected value
General case Special cases®

78 [0.30, 0.70] 0.01 0.55 0.40
W, [0.30, 0.70] 0.01 0.45 0.60
n [0.00, 1.00] 0.10 0.40 0.40

[0.00, 1.00] 0.50 0.00 0.00
o [0.00, 1.00] 0.10 0.00 0.30
a, [0.00, 1.00] 0.10 1.00 0.70
u [0.00, 1.00] 0.50 0.00 0.50
D [30.00, 40.00] 5.00 35.00 35.00
K [8.00, 14.00] 1.00 12.00 12.00
q [10.00, 30.00] 5.00 15.00 15.00

“Instances of classes R2, C2 and RC2 with TW,,,,;;,, < 75%
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Table2 LNS problem-dependent parameters

Parameter Description Expression
0 Parameter used to build —TW dmm? +0.9T Wi, + 0.6
LNS starting feasible
solution
é Number of customers
removed per LNS max { 2, |41n | 100TW,,,,, / ( n+ rez‘\/l m,+TW, +9
iteration

We note that, in our implementation, the stopping criterion of LNS is given by
the parameter LNS_time, tuned in the second step.

4.3 Comparison with a State-of-art MIP Solver

Since no other approach has been proposed for the HFFVRP-FlexTW-STT in the lit-
erature, we present a comparative analysis of results obtained by our granular local
search matheuristic with those generated by the direct application of Gurobi v.6.05
state-of-art MIP solver to tackle this problem. For all instances, we imposed a CPU
time limit of 10,800 s (3 h). Table 3 summarizes the mean results for each subset of
4 instances with the same size and belonging to the same class and subclass by using
the following notation: “#Opt” (number of instances for which the optimal solution
was found); “#Best” (number of instances for which the algorithm in question found
the best upper bound); “Mean Gap%” (mean optimality gap 100(UB — LB)/UB,
where UB and LB are, respectively, the upper and lower bounds on the HFFVRP-
FlexTW-STT optimal cost); and “Mean CPU” (mean time in seconds). A bar “-”
indicates that the optimality gap is unavailable because no valid lower bound was
generated for the instances in question. We remark that the quality assessment of the
solutions obtained by our matheuristic was based on the lower bounds returned by
the MIP solver. The interested reader is referred to Section A of the Supplementary
Electronic Material for the detailed results obtained by both methods.

The MIP solver found proven optimal solutions for 12 (5%) instances with up to
50 customers and returned suboptimal solutions for 204 (95%) instances. Regard-
ing such suboptimal solutions, the optimality gaps range from 2.93% to 95.63% in
180 (84%) instances and are unknown in 24 (11%) instances for which the linear
relaxation of M-MSDM remained unsolved by the MIP solver after 10,800 s. In
this last subset of 24 instances, Gurobi v.6.05 heuristically found an initial feasi-
ble solution before starting its presolve routine. The inherent difficulty of solving
some M-MSDM linear relaxations at the root node can be accounted for the high
dimensionality of the addressed problems, e.g., instance R101.100A presents 4 994
049 constraints, 4 850 524 binary variables and 145 440 continuous variables for
|S| = 20 scenarios.

The granular local search matheuristic found feasible solutions for all 216
instances by expending a mean computational time of 5387 s. With respect to the
192 instances for which the MIP solver has provided lower bounds, 186 (97%) of
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these solutions are suboptimal with gaps ranging from 0.13% to 95.09%, and 6 (3%)
correspond to optimal solutions with up to 50 customers.

The outcomes in Table 3 reveals that our matheuristic found better upper bounds
for 175 (81%) instances, while the MIP solver generated better solutions for 34
(16%) instances, with 7 (3%) ties. Such a comparison also points out that the advan-
tage of the granular local search matheuristic over the MIP solver increases with the
instance size. As an example, 105 (73%) out of the 144 instances with sizes n = 25
and n = 50 were better solved by our algorithm, while the same method was supe-
rior for 70 (98%) out of the remaining 72 instances with size n = 100.

Another interesting trend can be seen in Fig. 3, which plots mean optimality gaps
returned by both algorithms for each group of 36 instances of the same class, i.e.,
R1, C1, RC1, R2, C2 or RC2. What stands out in this chart is the propensity of the
suggested matheuristic to provide greater gap reductions when compared to the MIP
solver for instances with short scheduling horizons, i.e., those belonging to classes
R1, CI and RCI1. This result suggests that longer scheduling horizons may entail
additional complexity to the HFFVRP-FlexTW and, therefore, impact negatively on
the performance of granular local search matheuristic.

Taken together, these results underline the advantage of the granular local search
matheuristic over the MIP solver, which was outperformed both in terms of CPU
time and solution quality for most of instances. Such an advantage is intensified for
instances with short scheduling horizons

4.4 Comparison with an Alternative Heuristic Method

Given the lack of benchmarks, in a second experiment to evaluate the granu-
lar local search performance, we have implemented a heuristic version of the
Progressive Hedging Algorithm (PHA) (Rockafellar and Wets 1991) to the
HFFVRP-FlexTW-STT.

80
70 67.56 g
59.85 — —
o — —
50 B = = 5.5
2 = 44.04 = =
Q40 = = B= s =
& E=3081 = —_ =
W E— B = =
0 = =132 = =
= = = =
+0 = % = =
=
0 =
Cc1 RC1 R2 C2 RC2
E MIP solver Granular local search matheuristic

Fig.3 Effect of classes on MIP solver and granular local search matheuristic

@ Springer



52 R. F. Fachini et al.

The PHA applies a scenario decomposition technique, in which the aug-
mented Lagrangian relaxation is used to partition a multi-scenario prob-
lem into individual scenario subproblems. For this purpose, we create a copy
y”“ e{0,1},ieN,re M,k e /\/l s € S of variables y for each scenario s € S.
Such variables, together with the addition to the problem of ‘“nonanticipativity
constraints”

ye=ytieNre MkeM,sheSs#h

ensure that the mathematical model decisions are not tailored for each particular
scenario but reflect the complete original problem. Since the number of these con-
straints may be large, they are replaced by

y{ks:)_);ki,EMVEM,kEM,’SES’

which are then relaxed using an augmented Lagrangian strategy.

The main idea of PHA is to iteratively solve |S| deterministic subproblems until
the algorithm converges by obtaining a consensus between all the optimized sce-
narios, i.e., if the gap between all variables y;"“ f and the consensus parameter )‘{"
falls below a given threshold value, e.g., ¢ = 0.0001. After each algorithmic iteration
there are two parameter vectors called Lagrangian multiplier and penalty parameter
that are updated by enabling the convergence of y variables to the values of consen-
sus parameters. For more details on the implementation of similar approaches, see
Crainic et al. (2011, 2016) Lamghari and Dimitrakopoulos (2016) and Quddus et al.
(2017).

Our PHA implementation adopts the same parameters to initialize and update the
Lagrangian multiplier and the penalty parameter as in Crainic et al. (2011). We con-
sidered € = 0.0001 as the threshold value for consensus evaluation. For each itera-
tion, the deterministic scenarios are solved by the LNS matheuristic of Fachini and
Armentano (2020b) under a time limit of [125 In({n+ Y m,) - 400] seconds.

remM
For the algorithmic comparison, we selected a subset of 9 representative instances

from our test bed with diverse characteristics. These instances were solved by PHA
under the same CPU time limit of 10,800 s (3 h), which had been also imposed to
the granular local search matheuristic. Since PHA might not converge within this
time limit, we adopted the following two step strategy: (i) PHA runs at most for
10,200 s; (ii) the variables y;"“ for which a consensus has been obtained among the
scenarios within this time limit are fixed in their obtained values, and the resultant
partially fixed model (26), (2), (4), (15) — (21), (25) is then solved by Gurobi v.6.05
in the remaining processing time.

Table 4 compares, for each instance, the solutions generated by both methods. Column 1
shows the instance name. Columns 2 and 3 show, respectively, the results of the granular local
search matheuristic and of the PHA. The last column refer to the percentage differences A%
between the total costs obtained by granular local search matheuristic (GLSM) (T'C; s1s)
and those obtained by PHA (T'Cppy), ie., A% = 100(TCpys — TCqran1) /TColrsm
A bar ‘-’ indicates that no feasible solution was found for the pair algorithm/instance in
question. The bottom of the table reports average results
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As can be seen from Table 4, the advantage of the granular local search
matheuristic becomes clear. Such method found better solutions for all instances,
yielding percentage differences A% in the interval from 7% to 100%, 53% on aver-
age. For 3 out of 9 instances (33%) the PHA algorithm could not even find a feasible
solution within the 10,800 s time limit. Such results reinforce the effectiveness of
the proposed matheuristic.

4.5 Effect of Accounting Flexible Time Windows

To evaluate the benefits obtained when flexible time windows are considered, in this sec-
tion, we conduct a numerical comparison between the solutions generated by LNS
matheuristic for the deterministic HFFVRP-FlexTW associated with scenario s*, and for
the corresponding HFFVRPTW. To address the latter problem, we used the same setting
of parameters as in Fachini and Armentano (2020b) and, therefore, the CPU time limit of
LNS matheuristic was given by expression [1295 n ( ) _3 400] in both experiments.

n+ Yy m,
reM

Table 5 summarizes the results obtained. Columns 1 — 3 show the sizes, classes and
subclasses of the instances. The next three columns refer to the solutions generated for
the HFFVRPTW, which encompasses their total cost (“TC”), the corresponding vehicle
fixed costs (“FC”) and route variable costs (“VC”). The following four columns present
the results obtained when solving the HFFVRP-FlexTW related to scenario s, including
penalty costs for violating customer time windows (“PC”). Column 11 displays the per-
centage difference A% between the total costs of HFFVRPTW and HFFVRP-FlexTW,
1.6.,100(TCripyrprw =T Crprvip—rierw ) | TCriprvrp—riesrw- Columns 12 and 13 show, respec-
tively, the percentage differences A, % and A; % between fixed and variables costs obtained
for such VRP variants, ie.l OO(F Chrryrerw—F CHFFVRP—FlexTW) /FCrrrpvrp—Fiexrw
and 100(V Crrpyrprw=V Crirrver-riestw) !V Crirpvep—riesrw- Each entry in this table
corresponds to mean results for each subset of four instances with the same size and
belonging to the same class and subclass. Detailed results, for each instance, can be
found in Section B of the Supplementary Electronic Material.

Considering the 54 subsets of instances analyzed in Table 5, flexible time win-
dows leaded to lower total costs for 40 (74%), lower vehicle fixed costs for 23 (43%)

Table 4 Granular local search

matheuristic versus PHA — total Instance TCorsm TCrrn A%

costs and mean percentage R101.25A 2688.13 3116.08 16%

differences
C101.25A 2891.05 3492.35 21%
RC102.25A 1811.73 2106.16 16%
R101.50A 5839.40 6234.13 7%
C101.50A 5360.63 7662.31 43%
RC102.50A 3351.73 - 100%
R101.100A 10,790.56 - 100%
C101.100A 11,240.70 19,670.71 75%
RC102.100A 12,338.07 - 100%
All (9) 6256.89 7046.96 53%
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and lower route variables costs for 38 (70%) subsets. On the other hand, higher total
costs were found for 14 (26%) subsets and solutions with higher fixed and vari-
ables costs were obtained for 16 (30%) subsets as a counterpart of the flexibility.
Ties occurred for 15 (27%) subsets with reference to vehicle fixed costs. The bottom
of this table shows that lower costs “TC”, “FC” and “VC”, and therefore, positive
mean percentage differences A, %, A,% and A;% were obtained for the whole set of
instances.

In Table 6, we provide a further assessment of the gains stemming from the
flexible time windows. This table presents the number of instances and its per-
centage relative to the total of 216 instances for which positive (“>0), null
(“=07) or negative (“<0”) percentage differences were obtained. It also displays
the maximum and the minimum values of A;%, A,% and A;%. We have positive
percentage differences A% (68%) and A;% (61%) for most of instances, pointing
out that HFFVRP-FlexTW yields fewer total costs and route variable costs than
HFFVRPTW. In contrast, null values prevail in the data set for A,% (51%), which
evince a reduced gain in terms of vehicle fixed costs. For each of the examined
percentage differences, negative values were obtained for approximately 20% of
the instances.

From Tables 5 and 6, it is possible to attest that, in general, the use of flexible
time windows is beneficial and promotes relevant total cost savings. Moreover,
the values found for percentage differences A,% and A;% outline that such sav-
ings mostly arise from reductions in the route variable costs.

4.6 Effect of Accounting Travel Time Uncertainty

In this section, we evaluate the advantage of explicitly modeling travel time
uncertainty through the HFFVRP-FlexTW-STT model compared to solving its
deterministic counterpart, i.e., HFFVRP-FlexTW. For this purpose, we use the
well-known stochastic programming measure called the value of the stochastic
solution (VSS) (Birge 1982; Birge and Louveaux 2011).

We first state a problem called expected value (EV), a deterministic approxi-
mation of the proposed recourse problem (RP) in which only the expected value
scenario s* is considered:

Table6 HFFVRPTW versus HFFVRP-FlexTW — summary of percentage differences

Percentage >0 =0 <0 Maximum Minimum
difference —_— O — value value

% # % # %
A% 147 68 16 7 53 25 23.64 -33,57
A% 65 30 110 51 41 19 50.00 -42.55
A% 132 6l 34 16 50 23 33.47 -31.78

@ Springer



58 R. F. Fachini et al.

EV = min Z 2 frygk tE, [Q(yE(?Z))]

reMkeM,

Constraints (2) — (5)

where E (?;) denotes the expectation of stochastic travel times, i.e., t;S Then, we

define the expected value of using the EV solution (EEV) as the solution value of
model (26), (2), (4), (15) — (21), (25) with the first stage decision variables fixed at
the optimal values y obtained by solving EV, i.e.,

EEV = Objective (26)

Constraints (2), (4), (15) — (21), (25)

The VSS can be written as follows:
VSS = EEV — RP 27

Whenever this measure presents large positive values, there is a potential benefit
from solving RP over EV (Birge and Louveaux 2011).

We selected instance RC201.25A to illustrate the VSS calculation. For such an
instance, it is possible to solve EV to proven optimality using a MIP solver. This
software returns the optimal cost EV=2080.69 and, from Table A.2 of the Supple-
mentary Electronic Material, we have that RP=2620.33 is the best solution found
by our granular local search matheuristic for RP.

Turning now to EEV computation, when the first stage decision variables y are
fixed at the optimal values obtained for EV, i.e., y =y, no feasible solution exists for
second stage decision variables (x, w, a, f#). Therefore, EEV = +oo (see Birge (1982))
and, from (27), we have VSS — +oco. It means that travel time uncertainty really
matters in our context. Flgure 4 depicts clusters of customers HEV ={0,1,2,3,4,5,
6,7,8,13,17} and H ={0,9,10,11,12,14,15,16,18, 19, 20 21,22,23,24,25},
associated with solutlon vector ygy, and clusters HRP ={0,1,2,3,4,5,6,7,8,
9,10, 13, 17}andH ={0,11,12,14,15,16, 18,19, 20, 21 ,22,23,24,25}, related to
y values obtained for RP. Despite pairs (HIIW, 7:[11“)> and (7:[]25\/, ﬂ§P> present many
customers in common, the assumption of deterministic travel times leads to HFFVRP-
FlexTW-STT infeasibility.

To compute the VSS measure to a broader set of instances, we have proceeded
as follows. First, we have calculated EEV by solving model (26), (2), (4), (15) — (21),
(25) with its first stage variables y fixed at their corresponding values returned
by LNS matheuristic of Fachini and Armentano (2020b) for the deterministic
HFFVRP-FlexTW associated with scenario Y. In this step, the resultant problems
were solved by Gurobi v.6.05 within a CPU time limit of 10,800 s (3 h). Second, we
have assumed the RP value as the best solution found by our granular local search
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Fig. 4 Clusters of customers obtained for EV and RP — instance RC201.25A

matheuristic to model (26), (2), (4), (15) — (21), (25) under the same time limit.
Third, we calculate VSS as the difference EEV and RP. Given the inherent difficulty
of solving the HFFVRP-FlexTW-STT by using Gurobi v.6.05 for instances with
n=100, we limited the scope of VSS calculations to the 144 instances with sizes
n=25 and n=>50. Table 7 displays aggregated results grouped by instance size, sub-
class and feasibility of EEV problem by using the following notation: ‘‘#Instances’
(number of instances belonging to the group), and “VSS %” (VSS mean percent-
ages, i.e., ¢*). Detailed results, for each instance, can be found in Section C of the
Supplementary Electronic Material.

We note from Table 7 that it clearly pays off to use the stochastic solution rather
than the deterministic mean value solution. The latter resulted in infeasible problems
regarding the second stage decision variables 100(VSS)/RP for 95 out of 144 instances
(66%), which entails (x, w, a, B). By contrast, as a counterpart of the increased com-
plexity of solving RP rather than of successively tackling EV and EEV, we found
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Table7 Value of the stochastic Subclass  EEV feasibility  #Instances  VSS%®

solution
25 A feasible 10 -6.95
infeasible 14 + 00
B feasible 10 -8.73
infeasible 14 + o0
C feasible 11 -9.67
infeasible 13 + o0
50 A feasible 6 -15.53
infeasible 18 +o00
B feasible 5 -7.17
infeasible 19 + 00
C feasible 7 -15.96
infeasible 17 + 00
All feasible 49 -10.28
infeasible 95 + 00

*Negative values of VSS% are possible because the adopted solu-
tions of RP stems from a heuristic approach

negative mean VSS% values for instances with feasible EEV problems. Such negative
values benefit the deterministic mean solution instead of the stochastic one. Regarding
this result, there are two important remarks: (i) it is only possible to obtain negative
values of VSS% because the adopted solutions of RP stems from a heuristic approach
and therefore are not necessarily optimal, otherwise such metric would be always non-
negative since RP takes into account the minimization of the expected costs over all sce-
narios, including VSS — +o0; and (ii) despite the negative mean VSS% results generated
for these instances, their absolute values range from -6.95% to -15.96%, demonstrating
that even in such few situations the losses associated with the increased complexity of the
stochastic model are low.

From the examination of Table 7, a last conclusion can be drawn. The advantage
of the stochastic solution over the deterministic mean value solution increases
with the instance size. For example, 41 (57%) out of the 72 instances with size s*
resulted in infeasible EEV problems, while this number increases to 54 (75%) out
of the remaining 72 instances with size n = 25. This trend reinforces the practical
importance of explicitly modeling the stochastic travel times, since real-life VRP
problems tend to be large scaled.

5 Conclusions

This paper has introduced a new variant of the VRP that includes a heterogeneous
fixed fleet of vehicles, flexible time windows and stochastic travel times. We devel-
oped a two-stage stochastic mixed-integer model with recourse to this problem. Cus-
tomers’ assignment to vehicles makes up the first stage, while recourse decisions are
made in the second stage to find minimum-cost routes for vehicles given realized
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travel times. The objective is to minimize the sum of transportation costs and ser-
vice costs. The former comprise the vehicle fixed costs and route variable costs, and
the latter correspond to the penalty costs for violating customer time windows.

We developed a scenario generation algorithm that describes stochastic travel
times using the Burr type XII distribution (Burr 1942), and an effective granular
local search matheuristic was devised to tackle the problem. Extensive computa-
tional results obtained for 216 benchmark instances attest the effectiveness of our
approach. It outperformed Gurobi v.6.05 MIP solver, finding better solutions for 175
(81%) instances and consuming a mean CPU time around 48% lower. The proposed
matheuristic also far outperformed an alternative decomposition algorithm based on
the augmented Lagrangian relaxation.

The advantages of both flexible windows and stochastic travel times have been
also assessed. Flexible time windows yielded overall cost savings for 68% of the
instances compared to the solutions obtained for hard time window problems. Fur-
thermore, an in-depth analysis of the well-known stochastic programming measure
VSS illustrated the potential benefits of considering stochastic travel times over
solving an approximated deterministic model. Explicitly modeling the stochastic
travel times showed to be a critical issue, since the adoption of a deterministic prob-
lem with the random parameters fixed at their expected values resulted in infeasible
solutions for 66% of the tested instances.

Future research may develop of an exact method for the HFFVRP-FlexTW-
STT. Another research avenue involves applying the algorithmic techniques sug-
gested here to other stochastic VRP variants, which have received much less atten-
tion from academics than their deterministic counterparts. Finally, other interesting
research direction would be to integrate the proposed method into the location and
routing problem with stochastic travel times, since it has been proven that solving
the location and routing problem is superior to solving the facility location problem
and VRP separately (Salhi and Rand 1989).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11067-021-09553-6.
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