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Abstract

Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds
to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer
[Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130]
developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed
models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback,
we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space
than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived
under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation
models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster
sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies
to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Optimal estimation of average costs for hospitals that typically vary in size is an important practical problem because
of the impact in health care economics, and patient choice of hospital care (see http://www.healthgrades.com, for
example). In many cases, this is based on information obtained from patients (units) in hospitals (clusters) realized
under a two-stage sampling scheme.

The best linear unbiased predictor (BLUP) developed under a mixed model is often offered as a solution to this
problem (Searle et al., 1992). Although the mixed model accounts for unequal numbers of units in sample clusters,
it does not use often available information about their sizes. The superpopulation model of Scott and Smith (1969)
is an alternative that incorporates this information. Both models can be plausibly used to represent the problem of
interest, but neither is formally linked to the finite population from which the two-stage sample is drawn as is the finite
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Table 1
Population of hospital’s appendectomy patients in the past year and observed data
HO(S;)'taI M Mean | Variance Patient* (t)
s=1 ) i Y2
(County) 2 # ST
s=2 ) Yo Yo Vo3 Vs
(Central) | 4 # 2 $2100 $1400 | $2500
(Jane Blake) (Sam Evans)|(Hong Yao)
s=3 ) 5 Y31 V3 Vi3
G .......................................
(Mercy) #s : $1700 | $1900
(Mary Slokum)|(Juan Marcus)

* Names are fictitious

population mixed model recently proposed by Stanek and Singer (2004)! for situations where clusters are of equal
size. Under this model, predictors have smaller mean squared error (MSE) than the competitors, even when the variance
components are replaced by estimates as indicated in San Martino et al. (2008). We extend the approach of Stanek
and Singer (2004) by developing predictors under a new expanded finite population mixed model that outperforms the
competitors both in equal and unequal size two-stage cluster sampling problems.

Suppose our interest is in the average cost of appendectomies (the latent value) for each of three hospitals in the past
year (Table 1), and that such costs are known (without error) for some patients in two of the hospitals. When the data
are obtained from a stratified simple random sample of appendectomy patients, with hospitals as strata, the best linear
unbiased estimate is the average cost for the available patients in each hospital (i.e., $2000 for Central, and $1800 for
Mercy).

Now assume that a simple random sample of appendectomy patients is selected from each of a simple random sample
of hospitals (Table 2) according to a two-stage sampling scheme. We refer to a sample hospital as a primary sampling
unit (PSU) to distinguish it from a specific hospital, and to a sample patient as a secondary sampling unit (SSU) to
distinguish it from a specific patient. Under the usual mixed model, the sample appendectomy cost for SSU jin PSU i is

Yij =p+ B + Ejj, ey

where u is the overall mean, B; is the random effect for PSU i, and E; j 1s a random variable corresponding to the
deviation of the response of SSU j from the latent value of PSU i, namely 7; = p1+ B;. The random variables B; and E;;
are usually considered independent with null expected values, and variances given by ¢ and al.z, respectively. Model
(1) is an example of the general linear mixed model

Y =X« +ZB +E, 2)

where for the sample in Table 2, X =1,, Z = Ga?zllmi ,a=p,and B=(By,..., B,) with'= 1, , L= GB?:IJI.ZI,,,I.,
and var(Y) = Q = ZI'Z’ + X with 1, denoting an a x 1 vector with all elements equal to one, I, representing an
a X a identity matrix, and @?_,A; indicating a block diagonal matrix with blocks given by A; (Graybill, 1983). This
model has a long history (see for example Harville, 1978; Laird and Ware, 1982) and is the main topic in several recent
texts such as Brown and Prescott (1999), Verbeke and Molenberghs (2000), McCulloch and Searle (2001), Bryk and
Raudenbush (2002), Diggle et al. (2002), Singer and Willett (2003), Demidenko (2004), Littell et al. (2006), and Jiang
(2007). Under (1), the BLUP of the latent value for PSU i is

Pi=ju4 ki (Y; — ), 3)

I'We refer to such models as a finite population mixed models instead of random permutation models as in Stanek and Singer (2004) to avoid
confusion with the homonymous, but different, model considered in Hedayat and Sinha (1991).
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Table 2
Notation for common mixed model (sample) and superpopulation model (sample and remainder)
] S Latent Sample Patient SSU ())
Sample Hospital gmme Value
P ] 1ze . . . ;
SU (i) o \ur B = j=2 j=3 j=4
3 =1 3 u+ B Y, ¥, ¥y
g
3 i=2=n 5 |m*+B) Y, v,
N | i | .
3 (Cc?ntzra/) SR S : H
= 1= : :
(EB (Mercy) : : Yz}
) .
x i=3=N
(County) ¥, ¥,

where i = Y7 (w;/Y_ w)Y; is a weighted sample mean with w; = 1/(a® + ¢?/m;), ¥; = mL,Z;i]Yij’ and

ki = o2 / (02 + ‘71'2 /m;) (Goldberger, 1962; Henderson, 1984; McLean et al., 1991; Robinson, 1991). The predictor f’i
is a linear function of Y (i.e., 13,' =L'Y), is unbiased (i.e., E (ﬁi — T;) =0), and has minimum MSE. Using the realized
random variables represented in Table 1, and assuming that ¢ = 100, g1 = 300 and ¢, = 50, it follows that 1 = $1844,
k1 =0.25, k» =0.89, and the predictor of the latent value for the realized hospital corresponding to i =1 (i.e., Central)
is P; = $1883, while the predictor of the latent value for i =2 (i.e., Mercy) is P, = $1805.

The estimate of a realized hospital’s latent value derived from the stratified model or the corresponding predictor
obtained from the mixed model do not use additional information, such as the number of hospitals in the population,
or the number of appendectomy patients in each hospital, even though such additional information may be available
(as illustrated in the remainder in Table 2). The combined sample and remainder represents a superpopulation that is
constructed by first (conceptually) selecting a finite population (presumably from some larger population in time or
space), and then selecting a two-stage sample from it. Scott and Smith (1969) show that the latent value for a hospital
in the superpopulation, 7; = Z;w:’l Y;;j/M;, is predicted by

Pi= fiYi + (1 — f)li+ki(Y; — 1, 4)

where f; = m;/M;. Using the data in Table 1, the resulting predictor for i = 1 (i.e., Central) is 131 = $1971, and for
i =2 (i.e., Mercy) is P, = $1802.

The superpopulation model does not clearly separate the labeled clusters (as in Table 1) from random variables
that represent a sample of clusters (i.e., note how Central Hospital is uniquely associated with i = 1 in Table 2). This
separation is clear when the two-stage sampling process is represented with indicator random variables in the finite
population mixed model developed by Stanek and Singer (2004). The resulting predictor (limited to equal size clusters
and equal size cluster sample sizes) is

Pi=fY; + (1= Y +k(¥; — V)], )

where ¥ = %Zyzlf’i, f=3pk= a*?2/(c*? + 62/m), ¢*? = 0> — Gﬁg and 02 = %Zﬁ\lzlaf. With equal size clusters,
the predictor specified by (4) differs from (5) since variance components have different definitions. Theoretically, the
expected MSE of (5) is less than the expected MSE for (4) or (3) as shown by Stanek and Singer (2004), while the
empirical version of (5), formed by replacing variance components with their sample estimates, in general outperforms
the empirical versions of the other predictors, as summarized by San Martino et al. (2008). However, (5) cannot be
used for data like those in Tables 1 and 2 since cluster and sample sizes differ.
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When clusters are of equal size, the finite population mixed model can be used to represent the remaining random
variables (as in Table 2) without the need to identify the realized clusters for sample PSUs. When clusters differ in size,
we do not know how many SSUs remain since we do not know the size of the realized PSU. Other problems occur
with the representation in Table 2, as for example, the impossibility that the PSU i = 1 be County Hospital (Table 2),
even though the first stage sampling is assumed to be simple random sampling, or the apparent random nature of the
second stage sample size, PSU size, and SSU variance due to the first stage sampling.

We extend the expanded model used by Stanek et al. (2004) for simple random sampling to two-stage unbalanced
sampling to overcome these problems. The expanded model simultaneously retains the cluster identity and the PSU
position, and for each PSU, distinguishes the relevant contribution of both sampled SSUs, and non-sampled SSUs
to a target random variable such as a PSU mean. For such purposes, we first define an expanded set of random
variables, and subsequently show that a lower dimensional (collapsed) set can adequately represent the problem with-
out loss of information. Following the steps in Stanek and Singer (2004), we specify the expanded finite population
mixed model in Section 2, derive the corresponding BLUP along with its theoretical expected MSE in Section 3,
and compare the proposed predictor to others via simulation studies in Section 4, and conclude with discussion in
Section 5.

2. An expanded mixed model for a finite clustered population

Let a finite population be defined (as in Table 1) by a listing of units, labeled by ¢ = 1, ..., Mj, in each cluster,
labeled by s = 1, ..., N, where the non-stochastic potentially observable response for unit # in cluster s is given by
vs:. The finite population mean and variance for clusters are respectively defined as p, = M%Zﬁwz‘l vsr and (M —

1)/M, S)af = MLA f”zfl (yst — ,uS)z. Similarly, the population mean, and between cluster variance are respectively defined

as u= %Zi\;l U, and (N — 1)/N Yol = %Z?/:] (ug — 1)>. We represent the potentially observable response for unit
t in cluster s as y; = pu + fi; + & wWhere i, = (u;, — p) is the deviation of the mean for cluster s from the overall
mean, and & = (ys; — U,) is the deviation of the response for unit ¢ (in cluster s) from the mean for cluster s. Letting
Y=, ¥y -+ yy)whereys = (ys1 2 -+ Ysm,), the reparameterized finite population can be summarized as

y=Xu+7Zp+¢ (©6)

where X = 1y, Znyy = OV 1y, N= Zivles, B=(B, B, --- By),andeis defined similarly to y. None of the
terms in (6) are random variables.

2.1. The expanded set of random variables

We define a vector of random variables to represent equally likely two-stage random permutations of the population
(i.e., with probability 1/(N !]_[iv: 1 M;!), as in Cochran, 1977). Without loss of generality, we assume that the sample
clusters are in the first n positions in a permutation of clusters and that the sample units in cluster s correspond to the
units in the first m; positions in a permutation of that cluster’s units. The ordering of the random variables is important,
since any realization can be re-ordered to exactly match the finite population values.

We use indicator random variables to relate the response for unit # in cluster s, namely, y;, to the response for SSU
Jjin PSU i. To do so, we let Uj(.f) be an indicator random variable that takes on a value of one when SSU j in cluster s

is unit ¢, and zero otherwise, so that the response for SSU j in cluster s may be expressed as Y, j = ?4:51 U;f) vsi- We

include a fixed non-stochastic weight wy; for SSU j in cluster s, and define the weighted response as Y,5; = wy; Yy; so
that the sum, ZIIWZS 117,“ j» will correspond to a cluster total when wy; =1 forall j =1,..., Mj, or to a cluster mean

when wy; = MLY forall j =1, ..., M, for example. Letting U;‘Y) = (U](.‘;) U](‘;) ... UJ(X[ )’, it follows that ?wsj =

Wy y;U;S) . The vector sz = (17 ws1 Y, ws2 - Y, ws M )'represents a permutation of weighted responses for the SSUs in
cluster s.

We also let U;,; be an indicator random variable that takes on a value of one when PSU i is clusters, and a value of
zero otherwise. If all clusters were equal in size, we could represent a permutation of SSUs for PSU i by Z?/:l Uis Yus.
When cluster sizes differ, this sum is not defined, since the dimensions of the vectors composing it cannot all be
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equal. We solve this problem by expanding the set of random variables associated to PSU i into the N x 1 vector

?w,» = ((UisYos)) = (Uilf(;m Uiz?,/ﬂz e U,-NS?ZUN)’ so that a two-stage random permutation of the population is
then represented by the NN x 1 vector, (S_()w = ((?wi)) =Yy Yy -+ Yyn) ,where the jth element of ?w that

corresponds to Uj is Ujs Yy

2.2. The expanded finite population mixed model

<>
We construct a mixed model for the expanded response vector Y ,, next. Indexing expectation with respect to
permutations of clusters with the subscript &; and expectation with respect to permutations of units in a cluster with
the subscript &,, and for PSU i, we let

pas pas pas pas pas
Yy = Eflcfl (Ywi) + [Eézlél (Ywi) - Eélél (Ywi)] + Eyi»

< LN - N PN - PN
where Eélfz(Ywi) = N(@s=1W‘V)“” E§2|§1 (Yyui) = (@Szlwslux)Uiv Eui=Yuw — Elefl (Yuwi)s
Wy = ((wsj)) = (ws1 wy2 --- wsMS)/v =)=y tp -+- :uN)/,

U; = ((Uiy)) = (U;; U -+ U;y) and Ewi denotes the deviation of response from the expected response within a
<~
PSU. The fixed effects are given by p, the vector of cluster means, while the random effects correspond to E¢, ¢, (Yyi) —

E¢ ¢ (?wi). In the finite population mixed model of Stanek and Singer (2004), the random effect for PSU i was defined

as Zivzl UisPs, = Z?/:] (Uispg — UisZﬁ:] %,us*), with the random variables U explicitly linking the clusters to PSU
i. In the finite expanded mixed model, random effects are defined for SSU j in PSU i as wy;u; (Uis — E¢ (Uis)). For
example, when w;; = M% forall j =1,..., M (corresponding to the PSU mean), it follows that Zj”; | Wsjtts (Uis —

E¢ (Uis)) = Uisps — % . For both models, the expected value of the random effects (with respect to &) is zero. We
combine the fixed and random effects to define the expanded finite population mixed model as

< 1 N N <
Y= [ﬁl’v ® ( % W)] a [‘N © ( 9 WS“S)] veell = £ D+ o "
S= S=

where U = (U; U, --- Uyp). The covariance matrix of the random effects is vargléz([IN ® (EBivzlws,us)]vec(U —
<>

E¢ (U))) = ﬁPN ® [(@Nzlwsus)PN(GBﬁV:lwsus)] while the covariance matrix of E,, is

N

<> N O'Az, Ms M.v
Varfl@z(Ew):IN(g) sejl N jejl wsj | P, jejl Wy j >

where P, =1, — cllJ“ and J, denotes an a x a matrix with all elements equal to one.
2.3. Defining target quantities

Model (7) is an expanded version of a finite population mixed model that retains the identity of clusters, while
<>
accounting for a two-stage random permutation. Our interest is to predict target linear combinations defined by T=g'Y,,,
where g is non-stochastic. For simplicity, we limit discussion to the case

g =c®1j (8)

where ¢ is an N x 1 vector of constants. In particular, we focus on the setting where ¢ = e;, i.e., an N x 1 vector with
all elements equal to zero, except for element i which has the value of one. The principal interest lies in the setting
where i <n, i.e., in the clusters realized in the sample. When wy; = ML foralls=1,...,N,j=1,..., M;, the target,

T = Z?’ZIU,‘X(Z?/[:"IQU‘V?YJ) is the mean of PSU i; when wy; = 1foralls =1,..., N, j =1,..., My, the target,
T = vaz 1Uis (Z?’I:‘l w;; Ys;) is the total of PSU i. Note that in both cases, the target is a random variable.
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3. Predicting a PSU mean in the expanded finite population mixed model

To obtain the BLUP, we adopt the basic strategy employed by Scott and Smith (1969), Royall (1976), Bolfarine and
Zacks (1992), Valliant et al. (2000), and Stanek and Singer (2004), among others. We assume that the elements in the

sample portion of ?w will be observed, and express the target T as the sum of two parts, one which is a function of the
sample, and the other, a function of the remaining random variables. Then, requiring the predictor to be a linear function
of the sample random variables and to be unbiased, we obtain coefficients that minimize the MSE. While in theory, an
optimal predictor can be obtained via this recipe, in practice, the high dimensionality of the expanded random vectors
may result in singularities that lead to multiple solutions as discussed in Stanek et al. (2004). For this reason, we explore
projections of the expanded random variables into lower dimensional spaces that retain the necessary information for
an optimal solution.

3.1. Partial collapsing of the expanded finite population mixed model random variables

Following Rao and Bellhouse (1978), we provide a way of determining whether the optimal linear unbiased predictor

of a target random variable, T = g’?w can be obtained as the optimal linear unbiased predictor of T = g; ?wp based
<~ </ <
on a vector of collapsed random variables that spans a lower dimensional space defined by Y,,, = C ?w, where C is a

matrix of dimension NN x ¢ with ¢ < NN. We take

!
L=
P@=
—_
-
<

/<
and g;, =g [8(8 C) ™', so that the effect of collapsing is the generation of sums of the SSUs for the sample and for
the remainder in each cluster for each PSU, thus reducing the number of random variables from NN to 2N 2, Since
< < o/ < < < < oo </ < < o/ < < <
Y,=[C(C C )_I]pr+P<6Yw, where PE>=INN —C(Cc ¢)~'c,wecanwriteg'Y,=g'[C(C C )_I]pr+g/PE>Yw.
Using (8), it follows that g, =1, ®[c'®@ 1} ], g’Pg ?w =0and T =g, ?w - Let L prepresentann N x 1 vector of constants,
and ?wl be the first nN random variables (corresponding to the sample) in ? wp- Then letting f‘p =I:;,? w1 be the optimal

linear unbiased predictor of 7'based on ?w p» and B » be alinear unbiased predictor of g’ PE ?1 » =0, it follows from Rao

andBellhouse(1978,Theorem1.1)thatf will be optimal for T = ’? ifandonlyif E¢ ¢ [(f“ —T)é 1=0. Expressin
P p gYy Y Eg Uy P p g

<>

E¢ ¢, [(f“p — T)1§’] as a function of E¢ ¢, (?wY/w), and simplifying terms, it follows that E¢ ¢, [(fp — T)ép] =0 when
wgj = wy forall j =1,..., M (see details at http://www.umass.edu/cluster/). This implies that we can obtain the

optimal predictor using the partially collapsed random variables as long as within each cluster, the weights are equal
for all SSUs.

<>
Having this in mind, we assume that wy; = w, forall j =1, ..., My and develop the BLUP of T = g;pr based
<> -
on the 2N?2 collapsed random variables contained in Y, - The first N2 of them are of the form U; wgm, Y1, while the
remaining N are of the form U;swy (M — my) Y1, where Yy = %Z?él?sj and Yy = mzl}gms+l?ﬁ'

3.2. Predicting linear combinations of PSU latent values using the expanded finite population mixed model

<> <~
We partition Y,,,, into the first nN random variables corresponding to the sample, Y,,;, and the N (N — n) remaining

<> <> <>
random variables, Y,,1, and write the target as 7 =g Y, +&}; Yy, Where gj=c;® 1)y and g/ = (ch ®1), | ' ®1) )



E.J. Stanek 111, J.M. Singer / Journal of Statistical Planning and Inference 138 (2008) 2991 —3004 2997

Explicitly, the partitioned expanded finite population mixed model is

Y X Y Y E
( wl) (XIII>/J,+ [Eéz <<_>wl> _EéléQ <<_>IUI>} + ((_)wl) . (9)
Yun Yun Yuu Eun

<>
Requiring the predictor of 7 to be a linear function of Y,,| to be unbiased, and to have minimum MSE, the BLUP of T
in (9) is

p—Zcz(Y —Y)+c— <Zl (Mws m) +CHN

i=1 s=1

<Zl (M fsws sI)) (10)

s=1

N 1 1— k* szdsz
whereYizz lU,_&Mwbk Y],Y— Zl IYl,ké—k _dN s* 1( )dé,d —MU)A,LLS,]( —m
2.2
(see a: http://www.umass.edu/cluster/ for details), k = stzlkx, o = ﬁZlN:ani, vse = f;(1 — fs)%,

c= %Z,N:lci and I = Z?:l Ui, is an indicator ‘inclusion’ random variable for cluster s in the sample (see derivation
in Appendix A). An expression for the MSE of the predictor can be developed directly using expressions for the
variance, and simplifies to

7 - k*2 2 Né 2 N -
varg ¢, (T = T) = (Z(Ci — 51)2> ( — 20kd,d + — Z 72 ) ( nC) < Z l;j‘)
i=1 : z

s=1 s=1

N _

Nc _

+ |:Z cl-2 + T(NC — 2ncl):| 0(21,
i=1

where ¢y = 121 1Cis Ha = 3 Lsidss g = 3 Logmikids, 0y = g ooy (ki ds — ) 05 = g 2y (ds — 1)’
and oyq.q = N—l ZS: ((k¥dy — ) (ds — py) (see b. http://www.umass.edu/cluster/ for details).

When predicting a PSU mean, i.e., using wy = MLS’ (10) simplifies to f"p =Y+ (}A’i — ;) if i <n, and to fl, =Y when
i >n, where ¥; = Z?/:l U;sY,1. The MSE for a sample PSU mean predictor (when i <n) simplifies to

N 2

N
A n—1 1 1
Varflcfz(Tp —T)= ( . ) N1 <(k;k — Dy, — N Z(k: — 1),[15)
s=1

. o2
S Bl LERCE I (R AR

s=1

(see c. http://www.umass.edu/cluster/ for details) while the MSE for a PSU not in the sample is given by
A n+1
Variléz(TP_T)=< ) +_Z(1_fs)_~

4. Comparison of predictors

We compare the MSE of (10) to that of the simple mean, and of predictors (3) and (4). When clusters are of equal size,
have homogeneous unit variances, and sample sizes are equal, the MSE for each predictor can be explicitly calculated.
In this setting, we also compare the results with the MSE for predictor (5). For the sample mean,

N

- 1 N o2 A o2 n—1
K . e 2
MSE(Y;) = ﬁ E (1— fS)m_’ while for (5), MSE(Tgp) = (1 — f) |:n_m + < " ) (1—-k)o ] .
s=1
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Fig. 1. Percent increase in MSE for the finite population mixed model (FP), superpopulation model (SP), mixed model (MM), and sample mean (Mean) predictors relative to finite expanded mixed

model predictor of a realized PSU mean where N = 100, n = 30, and M = 20 for all clusters. Equal size clusters and equal unit sampling fractions per cluster. Source: ced07p34.xls.
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Fig. 2. Percent increase in MSE for the finite population mixed model (FP), superpopulation model (SP), mixed model (MM), and sample mean
(mean) predictors relative to finite expanded mixed model predictor of a realized PSU mean by unit intra-class correlation and unit sampling fraction
where N = 100, n = 30, and M = 20 for all clusters. Equal size clusters and equal unit sampling fractions per cluster. Source: ced07p38.sas.

The MSE for predictors (3) and (4) are given by MSE(pr) =((n —1)/nk) (6% — O'?/M)(C —-[f+a- f)k])2 with
¢ =ma?/(ma* + ag) for 3)and ¢ = f + (1 — f)ma?/(ma?* + ag) for (4) as shown in Stanek and Singer (2004).
Although we have explicit expressions for the MSE of these predictors, the difference between them is a complicated
function of the population parameters. Since shrinkage constants for the expanded predictor depend on the cluster latent
values, we compare the MSE relative to the expanded finite population mixed model predictor in four settings with
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Fig. 3. Percent increase in MSE for the finite population mixed model (FM), superpopulation model (SP), mixed model (MM), and sample mean
(mean) predictors relative to finite expanded mixed model predictor of a realized PSU mean with probability proportional to size SSU sampling and
for equal SSU size sampling for different cluster sizes where N = 100, n = 30, and M = 20 for all clusters. Source: ced07p41.xls.

different values of the unit intra-class correlation coefficient, p, = a2 / (02 + af). In each setting, the cluster latent values
are set equal to evenly spaced quantiles from some specified distribution. The results, expressed as percent increase in
MSE relative to the MSE of (10) are presented in Fig. 1, and illustrate that in all settings considered, using (10) results
in a substantial reduction in MSE (over 40% when f < 0.2). This is true even for (5), illustrating that a smaller MSE
can be achieved for the BLUP derived under the expanded finite population mixed model as compared to the BLUP
obtained under the finite population mixed model of Stanek and Singer (2004). There were little differences in the
MSE comparisons with different distributions of the cluster latent values. The results illustrate that predictor (3) has
larger MSE relative to the other predictors when f > 0.5. The MSE for predictors (4) and (5) are similar, and differ
more from the MSE of (10) when fis small.
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Fig. 2 summarizes increases in MSE for different intra-class correlation coefficients; quantiles of a uniform distri-
bution were used to determine cluster latent values and unit parameters. The results illustrate that for low intra-class
correlation coefficients, the relative increase in MSE can be dramatic. Once again, for low sampling fractions, similar
patterns in MSE are evident for (3)—(5).

In Fig. 3, we compare predictors of the sample mean, for (3) and (4) in two settings where cluster sizes differ.
Predictor (5) is not applicable in such settings. These results are based on simulation studies (with 5000 trials each) that
repeat a two-stage sampling process from a finite population. The MSE is estimated by the average squared difference
between the predictor and the latent PSU value in each case. In the left column, cluster sizes differ by 10-fold, with
sample sizes for clusters proportional to the cluster size. The results illustrate the performance of the predictors for
different sampling fractions. The right column in Fig. 3 compares the MSE of predictors when the sample size per
cluster is constant.

5. Discussion

The expanded finite population mixed model uses a larger set of 2N? random variables than the N random variables
typically used in superpopulation models or in the finite population mixed model of Stanek and Singer (2004). These
random variables are fewer than the N? random variables resulting from an expansion that retains the identity of units
and SSUs, and even fewer than the very general representation of the model used by Godambe (1955). We show that
this intermediate set of random variables allows a clear representation of a two-stage sample, while accounting for
details on different cluster and sample sizes. Other approaches do not appear to connect the potentially observable data
to the random variables in the stochastic model. Since more than one finite population mixed model can be used, we
have shown how they can be compared by considering them in a hierarchy, and identifying whether the additional set
of orthogonal random variables adds to the information about the target quantity. Further reductions in the number of
random variables from the expanded finite population mixed model were considered (Appendix B), each of which lead
to loss of information.

It is valuable to note that these results depend on selection of the target quantity. For example, if there is interest in
the relationship between two variables among units (in a cluster), the collapsed expanded set of 2N? random variables
is not likely to be sufficient.

The BLUP obtained under the new model offers substantial gains over previous predictors. These gains are likely
mitigated by the need to estimate shrinkage constants for use in practical setups. Simulation studies comparing the
performance of the empirical predictors (3)—(5) in the equal cluster size/sample size settings indicate some loss in
efficiency, but with a similar ordering of MSE (San Martino et al., 2008). Limited simulation studies have been
conducted using the expanded model predictor and have indicated that there is a greater loss in the MSE of (10) relative
to the other predictors. Iterative estimation procedures may be possible, and are currently being investigated. This area
requires more study.
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Appendix A.

Consider the partitioned expanded finite population mixed model in (9) where

1 N
—1, ,® (@ vagj
N s=1 °

N
X, =[L1 ®(@wm ﬂ and X, =
N n so1 SS 1 N
—1N®(®WS(MS—mS)j
N s=1
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and the random effects are given by

with

<> <> <>
(Ewl)_(YwI)_E (le)
<~ = <~ 52 <~ 5
E.un Yun Yun
and U= (U Uy ,U=(U;))=U; Uy --- Uy) and Uy = ((U;)) = (Upg1 Upgz -+ Up).

The corresponding covariance matrix is given by
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(see a. http://www.umass.edu/cluster/ for details) which we partition as

Yut Vi Vin o7

E & <~ = ’ ’ h - 1
varg, ¢, (Y ) (Vill \ ) where v = fs( fv) N

wll
(seeb. http://vz)ww.umass.edu/cluster/ for details). Letting L be a vector of constants, it follows that L’ §)wl —T=({(L -
g) —gp (X“’I > and the unbiased constraint is given by (I — g) X1 — g;;Xn = 0. Using Lagrange multipliers, we
1
minimize vargllg2 r ?wl — T') while accounting for the unbiased constraint results and obtain the familiar solution,
L=g + [Vf1 - VfIXI(XinIXI)_lXinl]Vl,ngn + VfIXI(Xinlxl)_IXﬁgu.

This result simplifies to

L=(P &5 Nl & 1)1
“(reo[& 7))+ Belue (G 7))+

(see c. http://www.umass.edu/cluster/ for details) where k) =k, — d— 11, ?i 1 ((A=kg) /(1 —k))dy+, ks _f2dZ/(f2dA2 +
(N — l)v ) (see d. http://www.umass.edu/cluster/ for details), k= v ZS 1ks, = Nl_n ZlN:ani and c = NZ[:lci-

—n
cu(1, ® 1y)

The predictor Tp = L’YwI can then be expressed as (10) (see e. http://www.umass.edu/cluster/ for details).
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Appendix B.

We discuss whether several other plausible reductions in the dimension of the set of expanded random variables
(given by NN), including a reduction to the set of 2N random variables used by Stanek and Singer (2004) may be

considered without loss of information. First, it is natural to consider whether it is sufficient to predict 7 =g pY using

the 2N collapsed random variables defined by Y,, = C*/ Y.,p- This set of random variables is similar to that used by
Stanek and Singer (2004) for a population with equal size clusters and equal size samples per cluster with no response

error. Since g¥' = g,[C*(C" cH 1= 1, ® ¢/, the target T = g* ?w defines a linear combination of PSU means.

First, let 7 = L/ Y,,1 where L represents an n x 1 vector of constants, and le represents the first n random variables
(corresponding to the sample) in Y. In this case, the bias E¢ ¢, (L'Y 1 —T)=(L'1,)m; — (c¢'1 ) (Ms —my) is zero only
if sampling of clusters is conducted with probability proportional to size (PPS) (see a. http://www.umass. edu/cluster/)

Now assume a PPS samphng scheme, and notice that since g’ » (Pes+ pr) 0, we may write T =g*Y,, +¢g/ » (PC* pr)
Letting B= b’(I ® PN)le be a linear unbiased predictor of g’ P P+ Yw p) based on the sample part of Pc= pr given

by (I, ® PN)YwI, the predictor T will be optimal if and only if Egvléz[(T —T)B]=0. Simplifying this expectation,
we find

. . . 1 N N .
E: &, [(T = T)Bl=[f(fL' —¢) ® 1] |:In ® <ﬁ ( o ds) Py ( o ds) PN)i| b

+ [#(ﬁ/ +¢) ® |:1/N ( éjal Mswfaf) PN:|:| b,

where dy = Mswgp,, ¢ = (ci cil)/ , ¢ is an n x 1 vector and f denotes the common sampling fraction (see b.
http://www.umass.edu/cluster/). This expression is not equal to zero, even when the population consists of equal
size clusters with homogeneous variances, and equal size samples are taken from sample clusters. By Theorem 1.1 in

Rao and Bellhouse (1978), this result implies that some efficiency is lost in prediction when collapsing ?wp to Yy

The predictor based on ? wp Will have smaller MSE than the predictor based on Yy, even in the settings considered by
Stanek and Singer (2004) with no response error when clusters are of equal size, and equal size samples are selected.
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