

INTERNATIONAL GEOLOGICAL CORRELATION
PROGRAMME (IGCP) PROJECT 315

CORRELATION OF RAPAKIVI GRANITES AND
RELATED ROCKS ON A GLOBAL SCALE

**SYMPOSIUM ON RAPAKIVI
GRANITES AND RELATED ROCKS**

AUGUST 2 - 5, 1995

Belém - Brazil

ABSTRACTS VOLUME

Edited by
Roberto Dall'Agnol,
Moacir J. B. Macambira and
Hilton Túlio Costi

Center for Geosciences
University Federal of Para

552.3211
S989
1995.a

Belém 1995

STRUCTURAL AND GEOCHRONOLOGICAL DATA BEARING ON THE PALEOPROTEROZOIC G_2 GRANITOIDS IN THE SERIDÓ BELT, NE BRAZIL: SYNOROGENIC OR RAPAKIVI-TYPE ANOROGENIC INTRUSIONS ?

JARDIM DE SÁ, E.F. - *Federal University of Rio Grande do Norte, Brazil*

FUCK, R.A. - *University of Brasília, Brazil*

MACEDO, M.H.F. - *Federal University of Rio Grande do Norte, Brazil*

KAWASHITA, K. - *University of São Paulo, Brazil*

SOUZA, Z.S. - *Federal University of Rio Grande do Norte, Brazil*

PEUCAT, J.J. - *Université de Rennes 1, France*

The Seridó Belt (SB) belongs to the Brasiliano/ Pan-African Borborema/Trans-Sahara orogenic chain (BTSB). It is considered as part of a continental microplate, preserving a controversial record of Paleoproterozoic crustal evolution. Granitic augen gneisses dated at 2.0-1.9 Ga (the G_2 granitoids) have been interpreted as anorogenic intrusions contemporaneous with deposition of the Seridó Group lower supracrustals, later deformed in the Brasiliano orogeny (Caby *et al.* 1991). Together with other, slightly younger (1.8-1.7 Ga old) assemblages in NE Brazil and Africa, they were compared to rift-related or to classical rapakivi-type suites. On the other hand, these plutonic suites are regarded as synorogenic intrusions (Jardim de Sá 1994 and references therein), defining a polycyclic evolution in the SB.

The G_2 plutons display a S+L, originally flat-lying fabric correlated to the D_2 event in the SB. The contractional, crustal thickening nature of this deformation is evidenced by stratigraphic inversions which may involve the gneiss-migmatite basement of the Seridó Group. Furthermore, medium pressure, relict kyanite-bearing paragenesis occur in the supracrustal country rocks. The D_2 fabric in the G_2 plutons is systematically of high temperature type, with very penetrative, homogeneous S-C structures (dominantly asymmetric tails of the K-feldspar augen) defining a simple or general shear flow pattern with top to the south. Occasionally preserved viscous flow criteria record the same

shear sense. Such a fabric is typically developed following the cooling path of syntectonic intrusions.

Other field relations and radiometric data relevant to the tectonic setting of the G_2 plutons include: a) the subhorizontal, sheet-like shape of the intrusions, consistent with their control by the D_2 tangential deformation; their interpretation as syn-sedimentary sills is discarded in view of the absence of associated volcanic or subvolcanic facies; b) in some cases, D_2 structural inversions pre-date the emplacement of the G_2 plutons; c) besides intruding the lower metasediments of the Seridó Group (the Jucurutu Formation) and the gneiss basement, a few plutons are hosted by the upper, flysch-type Seridó micaschists; one of these has been dated at 1.99 ± 0.01 Ga by the Pb/Pb zircon evaporation method; d) metric-sized apophyses, aptitic and pegmatitic sheets intrude alongside the axial planes of D_2 folds; metapegmatites with such structural relations have been dated at 1.80 ± 0.03 Ga ($I_{Sr} = 0.7063 \pm 4$) by a Rb-Sr whole rock isochron; e) a 1.94 ± 0.06 Ga Rb-Sr whole rock isochron ($I_{Sr} = 0.7067 \pm 14$) was calculated including augen gneisses (dated at 1.93 ± 0.01 Ga by the U-Pb zircon method; Legrand *et al.* 1991) and some of their mylonitic to ultramylonitic equivalents sampled along a D_2 shear zone.

Such data support our interpretation of the G_2 suites as synorogenic intrusions and define the time interval 1.9 ± 0.1 Ga (probably, 1.95 ± 0.05 Ga) for the coeval D_2 event.

REFERENCES

CABY, R. *et al.* (1991) *in* The West African Orogenes and Circum-Atlantic Correlatives. Springer-Verlag: 373-397.

JARDIM DE SÁ, E.F. (1994) Doctorate Thesis, Univ. Brasília: 804 p.

LEGRAND, J.M. *et al.* (1991) Atas 14º Simp. Geol. Nordeste: 276-279.