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Abstract. Recently it has been clarified by Hoang and Regner that the long-
standing discrepancy between the CIPT and FOPT expansion approaches in «;
determinations from the 7 hadronic spectral function moments has been caused
by an inconsistency of CIPT with the standard OPE approach. This inconsis-
tency arises in the presence of IR renormalons in the underlying Adler func-
tion and is numerically dominated by the dimension-4 gluon condensate renor-
malon. In this talk we report on an approach to reconcile the CIPT based on a
perturbative definition of a renormalon-free and scale-invariant gluon conden-
sate scheme, called RF GC scheme. The scheme implies perturbative subtrac-
tions which eliminate the CIPT inconsistency for all practical applications of
the 7 hadronic spectral function moments. The scheme depends on the gluon
condensate renormalon norm N, as an independent input and on an IR subtrac-
tion scale R. We discuss three different approaches to determine N, which yield
consistent results and we apply the RF GC scheme in two full-fledged phe-
nomenological e, determinations based on the truncated OPE and the duality
violation model approach. In the RF GC scheme the long-standing CIPT-FOPT
discrepancy problem is gone and the CIPT and FOPT «, determinations can be
consistently combined. UWThPh 2022-16

1 Introduction

The comparison of weighted finite-energy sum rule integrals (spectral function moments)
over the experimental inclusive hadronic 7 decay invariant mass spectral functions with the
corresponding theory predictions represents one of the most precise methods to determine
the strong coupling ;. The method constrains the strong coupling at the low scale p?> ~ m?
with a precision of about 3-5%, which turns into a precision of 1% or below at the scale of
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the Z-boson mass. In the limit of massless quarks the theoretical expressions for the spectral
function moments can be dissected into the following individual contributions,

N,
(w) _ e 2 (0) (d) (DV)
R0 = = S V[ 555 + 0 (s0) + d§>4 5,4(50) + 800, (s0)] M

where Sy, denotes electroweak corrections and s is the upper bound of the weighted spectral
function squared invariant mass integrations. The term 6[° corresponds to the tree level
contribution and 5$)(s0) represents the perturbative QCD corrections. The index w refers to
the weight function w(x) which typically is a polynomial in x and where x = s/s¢ is the
fraction of the squared invariant mass with respect to its upper bound. The inclusive hadronic
7 decay rate, is the particular spectral function moments (called kinematic moment) where
the polynomial reads wyi, = (1 — x)*(1 + 2x) = 1 — 3x%> + 2x> and where we have sy = m?.
The term 6. (so) stands for non-perturbative higher dimensional corrections in the operator
product expansion (OPE). The last term in Eq. (1), 6f,)DV)(so), represents so-called duality
violation (DV) contributions which quantify non-perturbative effects that cannot be captured
by the OPE series in the vicinity of the positive real hadronic invariant mass axis. The DV
effects are suppressed for (’pinched’) weight functions with w(1) = 0 because the integration
endpoint is the only part of the contour integration that cannot be deformed away from the
real axis. The treatment of DV effects is based on Regge-theory inspired models since a first
principles treatment is currently not available [1, 2].

The QCD corrections are given by contour integrals of the form [W(x) = 2 fx ! dzw(z)]

000 = 5 P SW D), @)
|s|=s0

2mi s

involving the (reduced) partonic Adler function D(s), which is related to the vacuum polar-
ization function I(s) by the relation #[1 + D(s)] = —s%l’[(s),1

D(s) = D enr (B2, 3)
n=1
= () Y ke (). )
n=1 k=1

The contour integral is analytically related to an integration along the real positive s-axis over
the observable spectral function p(s) = %Im II(s + i0). The deformation away from the real
axis is the basis for the perturbative theoretical treatment for the spectral function moments.
The nonperturbative OPE terms 61(1',1)(s0) are obtained from an analogous integral over the
Adler function’s OPE corrections [a(u?) = a,(u*)Bo/47]

o

2 l-FBal=9)+... _ 1 5
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which represent an expansion in powers of AéCD/ s < 1. The leading d = 4 OPE correction

involves the renormalization scheme-invariant gluon condensate (GC) matrix_element (G?) =
(QI(% +...)G"G,,|€2). We call this commonly used form of the OPE the MS scheme OPE.
For spectral function moments with a weight function without a linear x term, such as wip,

IThe coefficients up to 5 loops, ¢y 1,..., c4,1 are known exactly [3], and for cs it is common practice to use
some estimate.
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the GC correction becomes strongly suppressed (and even vanishing when the higher order
corrections in its Wilson coefficient are neglected) upon the contour integration. Because
the value of the GC is — still — known only roughly [4] and otherwise represents a sizeable
source of uncertainty, state-of-the-art strong coupling determinations rely on GC-suppressed
moments.

For the calculation of the perturbative contribution 653)(&)) two different kinds of renor-
malization scale settings for the strong coupling are used. In the fixed-order (FOPT) approach
6;?,)(s0) is treated in an expansion in powers of a,(sp) and the coefficients arise from integrals
over the logarithmic polynomials in Eq. (4). For the contour-improved (CIPT) approach [5]
the expansion of Eq. (3) in powers of a;(—s) is employed so that a non-trivial integration over
the strong coupling’s renormalization scale is carried out in the contour integral. So the se-
ries for 6. (so) is not a power series. When determining the strong coupling from 7 hadronic
spectral function moments the FOPT and CIPT prescriptions lead to differences that are larger
than the uncertainty estimates of each individual series. In general, CIPT leads to smaller val-
ues for 6(‘,?,)(so), which means that ozx(mz) extractions based on CIPT expansion are system-
atically larger. This CIPT-FOPT discrepancy has been discussed controversially [6, 7], and
had constituted one of the dominant uncertainties in the determination of «, from hadronic 7
decays.

2 Inconsistency of CIPT with the OPE and RF Gluon Condensate
Scheme

Recently it was shown by Hoang and Regner [8, 9] that the CIPT-FOPT discrepancy can
be caused by a difference concerning the infra-red (IR) sensitivity that emerges from the
(factorially divergent) IR renormalon contributions in the ¢, ; perturbative coefficients of the
underlying Adler function. Each term in the OPE series of Eq. (5) formally compensates for a
particular IR renormalon contribution, where the lower dimensional terms are associated to a
stronger factorially divergent contribution. It was demonstrated in Ref. [8, 9] that using CIPT
for 65,(,))(s0) upsets this one-to-one correspondence between IR renormalons and the terms
in the OPE. In particular, for weight functions where a particular OPE term from Eq. (5)
becomes suppressed, the corresponding IR renormalon in the Adler function still survives the
contour integration. In contrast, for FOPT this problem does not arise. The effect, which
can be quantified analytically (called the "asymptotic separation"), is particularly sizeable
for GC-suppressed moments and can nicealy explain the CIPT-FOPT discrepancy problem.
Since all strong coupling determinations from 7 hadronic spectral function moments are based
on GC-suppressed moments, the work of Hoang and Regner implies that all previous analyses
based on CIPT are incorrect, if one accepts the natural view that the known coefficients ¢,
(n = 3,4) already have a sizeable contribution from the GC renormalon. The analogue
issue for the d < 6 OPE corrections is much smaller numerically and can be ignored in
practice — at least for the 7 hadronic spectral function moments. So even though it is not
possible to fully remedy the CIPT method, it may be cured practically focusing on the GC
renormalon only. Still, the CIPT expansion resums logarithmic phase corrections associated
to the contour path (essentially powers of In(xpi)) which may have some valuable use in
phenomenological applications, so that it is worth to consider such a cure and to not simply
abandon the CIPT method. Furthermore some valuable additional insights may be gained
on the way, particularly if the cause behind this problematic behavior is understood more
thoroughly.

The results of Refs. [8, 9] imply that, if the GC renormalon is eliminated from Adler func-
tion, also the CIPT-FOPT discrepancy should be eliminated (at least for phenomenological
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applications). In Ref. [10] we have achieved this aim through a redefinition of the GC matrix
element of the form

(G* = (GHYR) - R* Y N, 10 (R, ©)

=1
where (G?) is the MS scheme GC and the coefficients rf’o) of the subtraction series contain
the divergent asymptotic series related to a pure O(A4QCD) renormalon. In the C-scheme for
the strong coupling [11] (here we always use C = 0 and indicate the C-scheme coupling by

a bar)?, the coefficients can be given in closed form and read r§,4’0) = () ;Ef:—jg‘;. he
1

in principle arbitrary scale R* acts as an infrared cutoff scale and, eventually, has to be set
of the order of the physical dynamical scale of the observable (which is sy for 6(,,)0)(50)). The
term N, is the GC renormalon norm and needs to be provided through a separate analysis.
The subtraction series is combined with the series for (52?)(s0). For either CIPT or FOPT, it
is mandatory to consistently expand the combined series coherently in powers of a‘(-s) or
a’(so), i.e. using the strong coupling at a common renormalization scale. The latter ensures
the systematic removal of the GC renormalon from the Adler function, and any scheme for a;
can be used for this expansion. This defines the renormalon-free GC matrix element (G*)(R?).

It is now advantageous to define in a second step a scale-invariant GC matrix element
(G*)RF through the relation

(GP)(R*) = (GHRF + N, ¢o(R?), (7

where ¢,(R?) satisfies the same R-evolution equation as the subtraction series on the RHS
in Eq. (6) and thus of (G?Y(R?). Because the subtraction series contains a pure O(A4QCD)
renormalon this R-evolution equation is a convergent series [12] and can even be given in
closed form [10]. A suitable choice is (131 = ,81/2[33,[30 =11-2/3ng, 81 =102 - 38ny/3)

4 -
e =~ Re[e4"f"ir(— 421,—i)}, ®
(a(R*))* a
which is the Borel sum of the subtraction series itself in the C-scheme using the common
PV prescription. The ¢y(R?) term must be treated strictly as a tree-level term (i.e. not being
reexpanded again at any later point and numerically evaluated in the C-scheme for the strong
coupling). This defines the renormalon-free and scale-invariant GC matrix element (G*)RF,
called RF GC scheme. When employing the RF GC scheme in practical applications, apart
from the cancellation of the GC renormalon contributions, the R-dependence formally van-
ishes at large orders in analogy to the renormalization scale dependence. The RF GC scheme
furthermore automatically takes care of the resummation of large logarithms when the GC
is extracted from quantities with widely separated dynamical scale, since the term &o(R?)
provides a solution of the R-evolution equation for the GC renormalon series [12] (see also
Sec. 3.1 in [10]). In addition, the definition ensures that uncertainties in the knowledge of N,
are naturally suppressed. As we see in Sec. 3, the uncertainty in determinations of N, is (still)
rather large, so that the latter feature is particularly useful for high precision applications of
the RF GC scheme.
It was shown in Ref. [10] for concrete renormalon models of the Adler function (where
a concrete form for the Borel transform of the Adler function is employed and N, has a def-
inite value) that using the RF GC scheme for the GC-suppressed moments indeed leads to a

2Numerically, for C = 0, the C-scheme for the strong coupling is very close to the MS scheme, see the appendix
of Ref. [10] for details.



EPJ Web of Conferences 274, 06005 (2022) https://doi.org/10.1051/epjconf/202227406005
XV'" Quark Confinement and the Hadron Spectrum

substantial modification of the CIPT series so that the CIPT-FOPT discrepancy is eliminated.
Furthermore, it was demonstrated that using the RF GC scheme for GC-enhanced moments
(for which w(x) contains a linear term x) leads to a considerably improved and mutually
consistent perturbative behavior for CIPT and FOPT since the factorically diverging contri-
butions from the GC renormalon are eliminated. Thus GC-enhanced moments may now be
employed for high-precision phenomenological analyses.

3 Gluon Condensate Renormalon Norm

In practice one cannot rely on Borel function models, and the GC renormalon norm N, can
only be determined approximately based on the assumption that known perturbative correc-
tions (up to 5 loops) contains sizeable GC renormalon contributions. The consistency of the
N, determinations using different approaches serves as an essential reconfirmation of that
assumption. In Ref. [13] we have used three different methods to determine N,,.

The first method, called Borel model approach, is based on the construction of models for
the Adler function’s Borel function B[D](u) using the known coefficients ¢,,; (n = 1,2,3,4)
and estimates for ¢s; as an input. Using the natural assumption [14] that the (IR and UV)
renormalons close to the origin of the Borel plane are most relevant a typical Borel model
function ansatz consists of sum of non-analytic term for the renormalons accounted for and a
polynomial. The free parameters are the renormalons norms and the polynomial coefficients
which are fixed by the values the input ¢, ;’s. Variations of the concrete ansatz and the range
of input values for cs; allow to determine N, with an uncertainty. We obtained N, = 0.64
with a relative uncertainty of +40% that is dominated by the variation ¢s;. This method
allows to determine the ball park of N, values one should expect, but it relies strongly on cs
which is still unknown. It can therefore only serve as a starting point.

The second method, called conformal mapping approach, uses that the non-analytic struc-
ture of B[D](u) related to the IR renormalons and the location of the UV renormalons (i.e. the
structure of the renormalon cuts in the u-plane) is known from the dimensional dependence
of the OPE corrections and the UV power corrections (i.e. all effects that are integrated out
in the low-energy ny = 3 QCD effective theory used to calculate (52?)(s0)). Using a confor-
mal mapping in the u-plane that leaves the origin invariant, one can move the GC renormalon
branch cut located at u = 2 and the other renormalon branch cuts such that that the GC branch
cut is the one closest to the origin. On can then extract the norm N, from a (convergent!) per-
turbation series using the coefficients ¢, ; (n = 1,...,5) as input. This method, first applied
in this context by Lee [15], is substantially less model-independent than the first approach,
but it relies on a good choice of the mapping so that truncating the N, series at order 5 is al-
ready close to the final answer. We found for the models designed above that Lee’s mapping
function z = u/(1 + u) yields a particularly slowly converging series for N,, which yields at
order 5 results substantially lower than the model value. We found that the mapping functions
w(u,p) = (V1 +u— /1 —u/p)/(V1 +u+ /1 —u/p), with integer values p > 5 [16], yield
much better convergence and N, results within 10% of the true model value at order 5. We
found 0.45 < N, < 0.96. The conformal mapping approach is more reliable than the Borel
model approach, but still has a substantial dependence on the input value of cs ;.

The third method, called optimal subtraction approach, encodes the two major improve-
ments the RF GC scheme achieves over the previously used MS GC scheme for the Ow.vja(S0):
(1) the reduction of the CIPT-FOPT discrepancy for GC-suppressed moments and (2) the im-
provement of the badly behaved perturbation series for GC-enhanced moments. The basis of
the optimal subtraction approach is therefore completely orthogonal from the previous two
approaches. For the proper choice of N, these two types of improvements are realized simul-
taneously for any possible choice of GC-suppressed (GCS) or GC-enhanced (GCE) moments.




EPJ Web of Conferences 274, 06005 (2022) https://doi.org/10.1051/epjconf/202227406005
XV'" Quark Confinement and the Hadron Spectrum

We devised a function x;,(Ny) = X2, gcs(Ng) + X, gop(Ng) Which encodes conditions (1) and
(2) for five GCS and five GCE moments for linearly-independent order 7 polynomials with
w(1) = 0, which covers the polynomial orders used in phenomenological analyses. The ex-
act form of these polynomials does not matter for the analysis, since they essentially form a
complete basis for pinched weight functions. The optimal subtraction approach shows a mi-
nor dependence on the choice of renormalization scale and moreover very little dependence
on the value of c¢s; so that the known 5-loop coefficients already provide reliable results.
Furthermore, we have tested that the central value for N, is very close to the Borel function
models used for the Borel model approach above. The final result reads

N, =0.57+0.23, &)

where the uncertainties come from renormalization scale variation and using only the known
5-loop coeflicients as input. We consider this result as more reliable than the results from
the first and second method, but the mutual agreement of the outcome of the three methods,
all of which are based on completely different aspects and starting points, is essential for our
confidence in this result for N,. For the following analysis we therefore adopt Eq. (9) as the
currently best estimate for the GC renormalon norm N,,.

4 Strong coupling predictions in the RF GC scheme

To demonstrate the improvements that can be achieved using the RF scheme for the GC
instead of the original MS scheme in realistic a; analyses of 7 hadronic spectral function
moments, we exemplarily carry out in Ref. [13] two full-fledged phenomenological determi-
nations of a(m?) closely following the analysis setups employed in the recent references by
Pich and Rodriguez-Sanchez [17] and by Boito, Golterman, Maltman, Peris, Rodrigues and
Schaaf [18]. These two analyses are representatives of the two major approaches concern-
ing the treatment of non-perturbative corrections currently used in the literature, the former
employing a truncated OPE approach (referred to as tOPE), and the latter relying besides
the OPE corrections on DV contributions (referred to as DVM). The two approaches are dis-
cussed controversially among the respective groups. Both determinations exclusively rely on
GC-suppressed spectral function moments. We refer to Ref. [13] for all details and refer-
ences.

For the tOPE approach a number of linearly independent integrated spectral function mo-
ments calculated at sy = m? are used, all based on (at least) doubly-pinched weight functions
intended to suppress DV effects. This entails that the polynomial weight functions w(x) con-
tain X" powers so that the number of OPE terms that would be needed to consistently account
for all non-perturbative corrections it too large to carry out an «,-fit (since they have to be
fitted as well). In the tOPE approach one therefore truncates the tower of OPE condensates
in order to have a manageable number of parameters in the fit procedure. This is based on
the argument that the contributions from the neglected higher power OPE corrections are hi-
erarchical and small. Concretely we have followed Sec. 5.3 of Ref. [17] using ALEPH V+A
data. (The five double-pinched GCS moments used in this analysis were also employed for
the term an’GCS(Ng) used for the optimal subtraction approach discussed in Sec. 3.)

The DVM approach avoids the truncation of the OPE by adopting weight functions with
less (or even no) pinching. This allows to employ low-degree polynomial weight functions
w(x) which strongly suppress higher-dimension (or even all) OPE corrections. But it also
enhances the DV contributions 62}[)‘\,//11(50), which therefore are included included in the fit
analysis. This is done with a paraﬁletrization ansatz based on general QCD arguments. The
fits can be carried out using moments for the same weight function using different values for
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Figure 1. Left panel: Results for a,(m?) in FOPT (red) and CIPT (blue) in the MS GC scheme,
following the strategies of Ref. [17] (Pich et al.), based on the tOPE strategy applied to the V + A
ALEPH data [19], and Ref. [18] (Boito et al.), based on the DV-model strategy applied to the new
vector spectral function of Ref. [18]. Right panel: Results for a,(m?) in FOPT (red) and CIPT (blue)
and their average (black) in the RF GC scheme for the same analysis set-ups. The substantial reduction
in the CIPT-FOPT discrepancy is clearly evident.

S0 < m% under the assumption that the ansatz function is adequate. Concretely, we followed
analysis of Ref. [18] using the weight function w(x) = 1 and an updated V spectral function
that includes information from recent e*e~™ — hadrons cross-section data related by isospin
symmetry.

The result of our analysis is displayed in Fig. 1. The left panel shows the results in
the original MS GC scheme. We can clearly see the discrepancy between the CIPT (blue)
and FOPT (red) results for both analyses, which largely exceeds the size of the individual
theoretical uncertainties based on variations of the renormalization scale and cs ;. For the
combination of CIPT and FOPT results it has been argued in Ref. [17] that a conservative
way to account for the additional uncertainty related to the CIPT-FOPT discrepancy is to
quadratically add half the CIPT-FOPT discrepancy to the smallest of the individual uncer-
tainties. Given that the CIPT results are inconsistent, however, any averaging with the FOPT
results is meaningless and inconsistent as well irrespective of the way how the CIPT-FOPT
discrepancy is accounted for. The «; result from CIPT in the original MS GC scheme is
simply incorrect.

The right panel shows the outcome for the analogous determinations in the RF GC
scheme. While the FOPT results are virtually unchanged (because in FOPT the major ef-
fects of the GC scheme change are eliminated through contour integration), the CIPT results
have shifted downward significantly. For CIPT the effects of the scheme change are not
eliminated through the contour integration, but remain significant and instead eliminate the
inconsistency of CIPT in the MS OPE scheme (at least for the dominant and most relevant
GC renormalon effects). The CIPT error bars slightly increase due to the additional variations
of the IR subtraction scale R and the error in the GC renormalon norm », in Eq. (9). The
effects of these additional two sources of uncertainty are, however, very mild. Only at this
point the CIPT and FOPT results can be consistently combined. Using the prescription of
from Ref. [17] already mentioned in the previous paragraph, the outcome is shown in black.

Comparing the results obtained in the MS GC scheme with those in the RF GC scheme,
we see that that the outcome of a CIPT-FOPT combination in the MS GC scheme leads to
a result for @ (m?) that is too large. Furthermore, the error of the combination (based on
quadratically adding half of the CIPT-FOPT discrepancy) may not cover the individual cen-
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tral values. So if the MS GC scheme is used, only FOPT should be used in phenomenological
analyses. In contrast, a combination of the a, determinations from CIPT and FOPT is per-
fectly meaningfull in the RF GC scheme.
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