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Abstract
We show that if X is a first-countableUrysohn space where player II has a winning strategy in
the game Gω1

1 (O,OD) (the weak Lindelöf game of length ω1) then X has cardinality at most
continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and
Woods. It is also the best result of this kind since there areHausdorff first-countable spaces of
arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf
game of countable length. We also tackle the problem of finding a bound on the cardinality
of a first-countable space where player II has a winning strategy in the game Gω1

f in(O,OD),
providing some partial answers to it. We finish by constructing an example of a compact
space where player II does not have a winning strategy in the weak Lindelöf game of length
ω1.

Keywords Cardinality bounds · Cardinal invariants · First-countable · Lindelöf · Weakly
Lindelöf · Topological game

Mathematics Subject Classification 54A25 · 54D20 · 54D10

1 Introduction

All spaces are assumed to be Hausdorff. The letter κ denotes an infinite cardinal throughout
the paper.

One of the most intriguing open questions regarding cardinal functions in topology was
asked by Bell, Ginsburg and Woods [1] about 40 years ago.

B Santi Spadaro
santidomenico.spadaro@unipa.it

Leandro Aurichi
aurichi@icmc.usp.br

Angelo Bella
bella@dmi.unict.it

1 Instituto de Ciencias Matematicas e de Computacao (ICMC-USP), Universidade de Sao Paulo,
Avenida Trabalhador Sao-Carlense, 400, Centro, Sao Carlos, SP 13566-590, Brazil

2 Dipartimento di Matematica e Informatica, Università di Catania, viale A. Doria 6, 95125 Catania,
Italy

3 Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-021-01141-0&domain=pdf
http://orcid.org/0000-0001-5880-8799


    5 Page 2 of 10 L. Aurichi et al.

Question 1.1 Let X be a regular space. Is it true that |X | ≤ 2wL(X)·χ(X)?

Here χ(X) denotes the character of X and wL(X) denotes the weak Lindelöf number of
X , that is the minimum infinite cardinal κ such that, for every open cover U of X , there is a
subcollection V of U of cardinality at most κ such that X ⊂ ⋃V .

The authors of [1] proved that the answer toQuestion 1.1 is positive for normal spaces, thus
generalizing Arhangel’skii’s theorem that every compact first-countable Hausdorff space has
cardinality atmost continuum [13], and constructed an example of a first-countableHausdorff
space X such that wL(X) = ℵ0 and X can have arbitrary large cardinality.

Bell, Ginsburg and Woods’s main motivation to pose Question 1.1 was to find, at least
within the realm of regular spaces, a common generalization to Arhangel’skii’s Theorem
and the Hajnal-Juhász’s inequality stating that every first-countable space with the countable
chain condition has cardinality at most continuum. Such a generalization was eventually
found, even without assuming regularity, by the second and third author in [3].

The main reason why Question 1.1 is so hard to solve is that, unlike the Lindelöf number,
the weak Lindelöf number is not inherited by closed sets. To get around this difficulty,
Arhangel’skii proposed a relative version of the weak Lindelöf number: the weak Lindelöf
number for closed sets (wLc(X)) of X is defined as the least infinite cardinal κ such that
for every closed set F ⊂ X and for every open family U covering F there is a subfamily
V ⊂ U having cardinality at most κ such that F ⊂ ⋃V . Arhangel’skii proved that |X | ≤
2χ(X)·wLc(X), for every regular space X and asked the following natural question.

Question 1.2 Is |X | ≤ 2wLc(X)·χ(X) for every Hausdorff space X?

A fair amount of progress has been done on Questions 1.1 and 1.2 since 1978. For example,
in [4] Alas proved, among other things, that |X | ≤ 2wLc(X)·χ(X) for every Urysohn space X .
In [5] Bella and Carlson proved that Question 1.1 has a positive answer for locally compact
spaces and in [6] Gotchev proved that Question 1.1 has a positive answer for spaces with a
regular Gδ diagonal.

In [7], the second and the third author proposed an attack to Bell, Ginsburg and Woods’s
question using the scheme of topological games.

Definition 1 Let X be a topological space. We define a game Gκ
1(O,OD) (respectively,

Gκ
f in(O,OD)) as follows: at inning α < κ , player I plays an open cover Uα of X and

player II plays an open set Uα ∈ Uα (respectively a finite subcollection Fα ⊂ Uα). Player II
wins if the collection {Uα : α < κ} has a dense union in X (respectively, if the collection⋃{Fα : α < κ} has a dense union in X ).

Recall that a strategy for Player II in Gκ
f in(O,OD) is a function σ : O<κ → [⋃O]<ω

such that for any s ∈ Oα+1 we have σ(s) ⊂ s(α). The strategy σ is a winning strategy if for
any function f ∈ Oκ the set

⋃{⋃ σ( f � α) : α < κ} is dense in X .
It is clear that if player II has a winning strategy in Gκ

1(O,OD) on X then player II also
has a winning strategy in Gκ

f in(O,OD) on X and that in turn implies that wL(X) ≤ κ . The
authors of [7] proved that if X is a first-countable regular space where player II has a winning
strategy in the game Gω1

1 (O,OD) then |X | ≤ 2ℵ0 .
In the first section of our paper we will prove that regularity can be relaxed to the Urysohn

separation property in the above result and show that this is the best possible result of this
kind, since there are Hausdorff spaces of arbitrarily large cardinality where player II even
has a winning strategy in Gω

1 (O,OD).
It is natural to ask whether a winning strategy for player II in Gω1

f in(O,OD) is enough
to bound the cardinality of a first-countable regular space. That’s open, but we prove that
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assuming that the space is Tychonoff and that the winning strategy for player II is monotone,
then the bound is the continuum.

A question from [7] asks whether there is a first-countable regular space where player II
does not have a winning strategy in Gω1

1 (O,OD). It turned out that no example of a weakly
Lindelöf space where player II does not have a winning strategy in Gω1

1 (O,OD) is known.
In the final section of our paper we will construct an example of a compact space where even
player I has a winning strategy in Gω1

1 (O,OD).
As usual the notation β X denotes the Čech-Stone compactification of a Tychonoff space

X . Undefined notionsmay be found in [8], although our notation regarding cardinal functions
mostly follows [9]. To streamline proofs we sometimesmake use of elementary substructures
of (H(θ), ε). The reader who is not familiar with this technique is referred to the first few
sections of [10].

2 The weak Lindelöf game and cardinality

Two games G and G ′ are said to be dual if (1) player I has a winning strategy in G if and
only if player II has a winning strategy in G ′ and (2) player II has a winning strategy in G if
and only if player I has a winning strategy in G ′. In [11] we proved that Gκ

1(O,OD) is the
dual of the following game.

Definition 2 Let G p
o (κ) denote the game in κ many innings where, at inning α < κ player

I picks a point xα and player II chooses an open neighbourhood Uα of xα . Player I wins if
{Uα : α < κ} has a dense union in X .

Recall that a space X is Urysohn if for every pair of distinct points x, y ∈ X there are
open neighbourhoods U of x and V of y such that U ∩ V = ∅. Given a set A ⊂ X , we
say that x is a θ -limit point of A if V ∩ A 
= ∅, for every open neighbourhood V of x . We
define the θ -closure of A (Clθ (A)) as the set of all θ -limit points of A. We say that A ⊂ X
is θ -closed if Clθ (A) = A and that A ⊂ X is θ -dense in X if Clθ (A) = X .

Theorem 3 Let (X , τ ) be a Urysohn space such that χ(X) < κ and player II has a winning
strategy in the game Gκ

1(O,OD). Then |X | ≤ 2<κ .

Proof Using the duality between Gκ
1(O,OD) and G p

o (κ) we can fix a winning strategy σ for
player I in G p

o (κ). Letμ be a large enough regular cardinal, let M be a< κ-closed elementary
submodel of H(μ) of cardinality 2<κ such that X , τ, σ ∈ M and κ + 1 ⊂ M .

Claim 1 X ∩ M is θ -closed.

Proof of Claim 1 Let x ∈ Clθ (X ∩ M) and let {Uα : α < μ} be a local base at x , where
μ < κ . For every α < μ choose a point xα ∈ Uα ∩ M and let S = {xα : α < μ}. Note that
x ∈ Clθ (S) and hence x ∈ Clθ (S∩Uα), for every α < μ. Moreover, since M is a< κ-closed
elementary submodel, S ∩ Uα ∈ M and hence Clθ (S ∩ Uα) ∈ M .

The fact that X is a Urysohn space implies that
⋂{Clθ (Uα ∩ S) : α < μ} = {x}. Now,

using the < κ-closedness of M again, we gather that {x} = ⋂{Clθ (Uα ∩ S) : α < μ} ∈ M .
Hence x ∈ X ∩ M , which proves that X ∩ M is θ -closed. �

Claim 2 X ∩ M is θ -dense.
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Proof of Claim 2 If that weren’t true, therewould exist an open set V such that V ∩X ∩M = ∅.
In the first inning, playing according to the strategy σ , player I picks a point x0 = σ(∅) ∈ M .
Since x0 ∈ M and χ(X) < κ we can choose a local base {V ′

α : α < μ} ∈ M for x0, where
μ < κ . Since κ + 1 ⊂ M we have {V ′

α : α < μ} ⊂ M . Since x0 /∈ V we can choose α0 < μ

such that V ′
α0

∩ V = ∅. Let player II play V0 = V ′
α0

in the first inning.
Let now β < κ and suppose that, at inning α < β, player II played an open set Uβ ∈ M

such that Uβ ∩ V = ∅. Since M is < κ-closed, player I’s choice at inning β, i.e. xβ =
σ((Uα : α < β)) is an element of X ∩ M . Reasoning as in the previous paragraph, player II
can play an open set Vβ ∈ M such that Vβ ∩ V = ∅.

At the end of the game, since σ is a winning strategy for player I in G p
o (κ) we have that⋃{Vα : α < κ} is dense in X , but that contradicts the fact that V ∩ Vα = ∅, for every α < κ .

�
Since X ∩ M is both θ -closed and θ -dense, we have X ∩ M = X and hence |X | =

|X ∩ M | ≤ 2<κ , as we wanted. �

Corollary 4 Let X be a Urysohn first-countable space where player II has a winning strategy
in Gω1

1 (O,OD). Then |X | ≤ 2ℵ0 .

The following example shows that Theorem 3 is sharp.

Example 5 A first-countable Hausdorff space of arbitrarily large cardinality where player II
has a winning strategy in Gω

1 (O,OD).

Proof Let D1 be a countable dense subset of the reals and let D2 = R\ D1 be its complement.
Define a topology τ on X = D1 ∪ (D2 × κ) as follows: a basic neighbourhood of the point
(x, α) ∈ D2 × κ has the form (U ∩ D2) × {α}, where U is an open neighbourhood of
x in the euclidean topology. A basic neighbourhood of the point x ∈ D1 has the form
(U ∩ D1) ∪ ((U ∩ D2) × κ), where U is a euclidean open neighbourhood of x . It is easy to
see that X is a Hausdorff first-countable space.

We now describe a winning strategy for player II in Gω
1 (O,OD). Let {xn : n < ω} be an

enumeration of D1. At inning n < ω, player I chooses an open cover On for X . Let player
II pick an open set On ∈ On such that xn ∈ On . It was proved in [1] that every open set
containing D1 is dense in X , therefore

⋃{On : n < ω} is dense in X . �

However, if we assume the space to be countably compact we can trade the Urysohn

property for the Hausdorff property.

Theorem 6 Let (X , τ ) be a first-countable countably compact Hausdorff space where player
II has a winning strategy in Gω1

1 (O,OD). Then |X | ≤ 2ℵ0 .

Proof Let σ be a winning strategy for player I in G p
o (ω1). Let μ be a large enough regular

cardinal and let M be an ω-closed elementary submodel of H(μ) of cardinality 2ω such that
X , τ, σ ∈ M .

Claim 1. X ∩ M is countably compact.

Proof of Claim 1 Let C be a countable subset of X ∩ M . Since X is countably compact, the
set C has an accumulation point in X . Since M is countably closed, we have C ∈ M . But
then elementarity implies that C has an accumulation point in X ∩ M and hence we’re done.
�
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We will prove that X ∩ M = X . Suppose that this is not the case, and let p ∈ X \ M .
Claim 2. There is an open collection U ⊂ M such that X ∩ M ⊂ ⋃U and p /∈ ⋃U .
Proof of Claim 2 Fix a countable decreasing local base {Vn : n < ω} at p. For every x ∈ X∩M
fix a countable decreasing local base {U x

n : n < ω} at x . Without loss of generality we can
assume {U x

n : n < ω} ∈ M and hence ω ⊂ M implies that {U x
n : n < ω} ⊂ M . By the

Hausdorff property of X there must be an integer n(x) < ω such that U x
n(x) ∩ Vn(x) = ∅.

Then {U x
n(x) : x ∈ X ∩ M} is an open cover of X ∩ M . Let On = ⋃{U x

n(x) : n(x) = n}.
Then {On : n < ω} is also an open cover of X ∩ M and hence, since X ∩ M is countably
compact, there is an integer n0 < ω such that X ∩ M ⊂ ⋃{On : n ≤ n0}. Then U = {U x

n(x) :
n(x) ≤ n0} is the open collection required by the Claim, since U ⊂ M , U covers X ∩ M and
Vn0 ∩ ⋃U = ∅. �

Wewill now play a game ofG p
o (ω1)where player I plays according to thewinning strategy

σ . In the first inning player I picks a point x0 = σ(∅) ∈ M . Player two then selects an open
set U0 ∈ U such that x0 ∈ U0.

Let now β < ω1 and suppose that, at inning α < β, player II picked the open set
Uα ∈ U ⊂ M . Since M is ω-closed, player I’s choice at inning β, i.e. xβ = σ((Uα : α < β))

in an element of X ∩ M . Let player II select an open set Uβ ∈ U such that xβ ∈ Uβ .
At the end of the game, since σ is a winning strategy for player I in G p

o (ω1) we have that⋃{Uα : α < ω1} is dense in X , but that contradicts the fact that p /∈ ⋃U . �

Question 2.1 Let X be a Urysohn (or even regular) first-countable space such that player
II has a winning strategy in Gω1

f in(O,OD) (or even in the corresponding game of countable

length). Is it true that |X | ≤ 2ℵ0?

While in Arhangel’skii’s theorem |X | ≤ 2χ(X)·L(X) it is possible to replace the character
with the product of the tightness and the pseudocharacter, that is not the case with Theorem 3.
Indeed, Bell, Ginsburg and Woods constructed in [1] an example of a regular space with
countable tightness and countable pseudocharacter X , containing a countable set D with the
property that, if U ⊂ X is an open set containing D, then U is dense in X . The argument
from Example 5 then shows that player II has a winning strategy in Gω

1 (O,OD) on X .
However, we were not able to answer the following question.

Question 2.2 Is there a bound on the cardinality of normal spaces of countable tightness and
countable pseudocharacter where player II has a winning strategy in Gω

1 (O,OD)?

3 Allowing the second player to choose finitely many open sets

Theorem 3 suggests a natural question.

Question 3.1 Let X be a first-countable regular space where player II has a winning strategy
in Gω1

f in(O,OD). Is |X | ≤ 2ℵ0?

We will offer some partial answers to the above question. To start with, we will consider
a game which appears to be close to Gω1

f in(O,OD).
Recall the following definition.

Definition 7 An open coverO for a topological space X is said to be a K -cover if, for every
compact set K ⊂ X there is an open set O ∈ O such that K ⊂ O . We will denote the set of
all open K -covers of X by OK .
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The games Gκ
f in(O,O) and Gκ

1(OK ,O) are equivalent (for regular spaces), so it is natural
to ask the following question:

Question 3.2 Are the games Gκ
f in(O,OD) and Gκ

1(OK ,OD) equivalent?

Let Gk
o(κ) be the game in κ many innings where at inning α < κ player I plays a compact

set Kα ⊂ X , player II plays an open set Uα ⊃ Kα and player I wins if
⋃{Uα : α < κ}

is dense in X . The proof of the following lemma is a simple modification of the proof of
Theorem 3.8 from [11].

Lemma 8 The games Gκ
1(OK ,OD) and Gk

o(κ) are dual.

Theorem 9 Let X be a regular first-countable space such that player II has a winning strategy
in the game Gω1

1 (OK ,OD). Then |X | ≤ 2ℵ0 .

Proof By Lemma 8 we can fix a winning strategy σ for player I in Gk
o(κ). Also, since X

is first-countable, by Arhangel’skii’s Theorem every compact subset of X has cardinality at
most continuum. Denote by K the set of all compact subsets of X . It turns out that every
K ∈ K has an outer base of size continuum (i.e., a family B of open sets such that given an
open set V ⊃ K , there is a member B ∈ B such that K ⊂ B ⊂ V ). So, for every compact
subset K ⊂ X , let BK be an outer base for K . Now, fix M a countably closed elementary
submodel containing everything we need (σ , X , and etc.) and such that |M | = 2ω. Our goal
is to show that X ⊂ M . Since X is first countable, X ∩ M is closed in X . If we can prove
that X ∩ M is dense in X we are done.

Claim. X ∩ M is dense in M .

Proof of Claim Suppose that X ∩ M is not dense. Since X is regular, there is a non-empty
closed set F such that F ∩ (X ∩ M) = ∅. Fix K ∈ K ∩ M . Note that K ⊂ M (since K has
cardinality at most continuum) and hence F ∩ K = ∅. Also we can assume that the outer
base BK belongs to M and since |BK | ≤ 2ℵ0 we have that BK ⊂ M .

We can now play a game of Gk
o(ω1)where player I uses the winning strategy σ and player

II picks an open set V ∈ M such that V ∩ F = ∅. The second player would win such a game
and that is a contradiction. �

We will say that a strategy for player II is monotone if whenever C1 refines C2 then⋃
σ(s�C1) ⊂ ⋃

σ(s�C2) for every s ∈ O<ω1 . We will say that a set K ⊂ X is good if
there is an s ∈ O<ω1 such that K = ⋂{Clβ X (

⋃
σ(s�C)) : C ∈ O}. It is clear that every

good set is compact.

Lemma 10 Let σ be a monotone strategy for player II in Gω1
f in(O,OD) over the space X. If

K = ⋂{Clβ X (
⋃

σ(s�C)) : C ∈ O}, for some s ∈ O<ω1 and K is contained in an open set
V ⊂ X, then there is some C ∈ O such that σ(s�C) ⊂ V .

Proof Let W be an open subset of β X such that W ∩ X = V . By compactness there are
C0, . . . Cn ∈ O such that:

⋂

i≤n

Clβ X (
⋃

σ(s�Ci )) ⊂ W

From this it follows that
⋂

i≤n
⋃

σ(s�Ci ) ⊂ V . Now, since σ is monotone it suffices to
take an open cover C which refines C1, . . . Cn . �
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Lemma 11 Let X be a sequential space such that χ(X) ≤ 2ω and let K be a compact subset
of X. Then there is a sequence {Vα : α < 2ω} of open subsets of X which forms an outer
base for K in X.

Proof First note that each compact subset of X has cardinality at most continuum (see, for
example, [12], Theorem 3.2). Hence |K | ≤ 2ω. For every x ∈ K , let Ux be a local base for
x having cardinality at most continuum. Let B = {⋃W : W ∈ [⋃{Ux : x ∈ K }]<ω, K ⊂⋃W}. Note that B is an outer base for K in X having cardinality at most continuum. �


Let S be a subset of a topological space X . We say that a collection D of subsets of X is
a local network for S in X provided that for every open set V ⊂ X such that S ⊂ V there is
a set D ∈ D such that S ⊂ D ⊂ V .

From the previous two lemmas we immediately get the following:

Lemma 12 Let X be a sequential space such that χ(X) ≤ 2ω and let σ be a monotone
strategy for player II in Gω1

f in(O,OD). If K = ⋂{Clβ X (
⋃

σ(s�C)) : C ∈ O}, for some

s ∈ O<ω1 , then there is O′ ⊂ O such that |O′| ≤ 2ω and {⋃ σ(s�C) : C ∈ O′} is a local
network for K in X.

Theorem 13 Let X be a sequential space with χ(X) ≤ 2ω such that player II has a monotone
winning strategy σ for the game Gω1

f in(O,OD). Then |X | ≤ 2ω.

Proof Let θ be a large enough regular cardinal and let M be an elementary submodel of H(θ)

such that |M | ≤ 2ω, X , σ ∈ M and [M]ω ⊂ M . LetK = {K ⊂ X : K ∈ M and K is good }.
Since X is sequential and every compact subset of X has cardinality continuum, it is enough
to show that

⋃K is dense in X .
Assuming the contrary, there is a non-empty open set H such that H ⊂ X \ ⋃K. Let

K0 = ⋂{Clβ X (
⋃

σ(C)) : C ∈ O}. Note that K0 ∈ M and hence K0 ∈ K. By Lemma 12 and
elementarity we can find a subset O′ ⊂ O such that |O′| ≤ 2ω, O′ ∈ M and D = {σ(C) :
C ∈ O′} is a local network for K0. Thus there is C0 ∈ O′ such that σ(C0) ⊂ X \ H . Since
c + 1 ⊂ M we actually have D ⊂ M and hence

⋃
σ(C0) ∈ M .

We now proceed by induction. Assume you have already defined open covers {Cα : α <

β} ⊂ M and define s : β → O by letting s(α) = Cα , for all α < β. Since M is ω-closed,
we have s ∈ M . Therefore Kβ = ⋂{⋃ σ(s�C) : C ∈ O} ∈ M and hence Kβ ∈ K. Then,
reasoning as before, we obtain Cβ ∈ O ∩ M such that H ∩ σ(s�Cβ) = ∅.

This defines a play of Gω1
f in(O,OD) where player I wins, in contradiction with the fact

that σ is a winning strategy for player II. �


4 A compact spacewhere player I has awinning strategy inG!1
1 (O,OD)

In [7], the second and the third author asked whether there is an example of a weakly Lindelöf
first-countable space X where player II does not have a winning strategy in Gω1

1 (O,OD).
This question remains open, and if no such example existed, the approach of [7] would lead
to a complete solution to Bell, Ginsburg and Woods’s question.

It turned out that the above question was open even without the first-countability assump-
tion.We now exhibit an example of a (non-first countable) compact space where it even holds
that player I has a winning strategy in Gω1

1 (O,OD). By modifying an argument of Dias and
Tall [13], we will show that the space 2ω2 with the lexicographic order topology is such an
example.
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Given f , g ∈ 2ω2 , let 
( f , g) = min{α < ω2 : f (α) 
= g(α)}. We define an order on
2ω2 by saying that f < g if and only if f (
( f , g)) < g(
( f , g)).

Lemma 14 Let f , g ∈ 2ω2 be two functions such that f < g. Then the open interval ( f , g)

is empty if and only if for every α > 
( f , g) we have f (α) > g(α).

Proof Suppose there is α > 
( f , g) such that f (α) ≤ g(α). Then one of the following
cases can occur:

(1) If f (α) = 0 = g(α), then let h ∈ 2ω2 be any function such that h(α) = 1 and h(γ ) =
f (γ ), for every γ < α. We have f < h < g.

(2) If f (α) = 1 = g(α), then let h ∈ 2ω2 be any function such that h(α) = 0 and h(γ ) =
g(γ ), for every γ < α. We have f < h < g.

(3) If f (α) = 0 and g(α) = 1, let h be any function such that h(γ ) = f (γ ), for every γ < α

and h(α) = 1. We have f < h < g.

In any case, h ∈ ( f , g) and hence the interval ( f , g) is not empty.
�


Lemma 15 Let f ∈ 2ω2 and let A ⊂ 2ω2 be a set of cardinality ℵ1.

(1) If f = sup A and A has no greatest element, then the set {β < ω2 : f (β) = 1} has
cardinality ≤ ℵ1.

(2) If g = inf A and A has no least element, then the set {β < ω2 : g(β) = 0} has cardinality
≤ ℵ1.

Proof Assume A has no greatest element. Then f /∈ A. Let δ = sup{
(h, f ) : h ∈ A}+1 <

ω2. We claim that f (α) = 0, for every α > δ. Indeed, suppose by contradiction that there
is an ordinal β > δ such that f (β) = 1. Let y ∈ 2ω2 be defined as follows: y(γ ) = f (γ ),
for every γ < β and y(γ ) = 0, for every γ ≥ β. Then y < f and h < y, for every h ∈ A,
contradicting the fact that f is the least upper bound of A. The proof of the second item is
similar. �


Recall that a space X is called an almost Pω2 -space if for every ≤ ω1-sized family
{Uα : α < ω1} open subsets of X such that

⋂{Uα : α < ω1} 
= ∅ we have I nt(
⋂{Uα : α <

ω1}) 
= ∅.
Lemma 16 The space 2ω2 with the lexicographic order topology is an almost Pω2 -space.

Proof Let {Uα : α < ω1} be an ω1-sequence of open sets whose intersection is non-empty
and fix h ∈ ⋂{Uα : α < ω1}. Then we can find open intervals {( fα, gα) : α < ω1} such that
h ∈ ( fα, gα) ⊂ Uα , for every α < ω1. If we can prove that there is r ∈ 2ω2 such that r 
= h
and r ∈ ⋂

α<ω1
( fα, gα) then we are done, because we’d have (min {h, r},max {h, r}) ⊂⋂

α<ω1
( fα, gα).

Suppose by contradiction that
⋂

α<ω1
( fα, gα) = {h} and let f = sup { fα : α < ω1} and

g = inf {gα : α < ω1}. We have f ≤ h ≤ g.
We can’t have f < h < g, because that would imply both ( f , h) = ∅ and (h, g) = ∅, but

these can’t happen at the same time because that would contradict Lemma 14. Also, we can’t
have f = h = g because that would contradict Lemma 15. Therefore we must have either
f = h < g, which implies (h, g) = ∅ and therefore, along with Lemma 14 it contradicts the
second item of Lemma 15 or otherwise we must have f < h = g, which implies ( f , h) = ∅
and therefore, along with Lemma 14 it contradicts the first item of Lemma 15. �
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Theorem 17 Let X be a compact almost Pω2 -space without isolated points. Then player I
has a winning strategy in Gω1

1 (O,OD).

Proof The usual proof of the Čech-Pospišil Theorem shows that in a compact almost Pω2 -
space there is a family of closed sets {Fs : s ∈ 2≤ω1} such that:

(1) I nt(Fs) 
= ∅, for every s ∈ 2≤ω1 .
(2) s ⊂ t implies Ft ⊂ Fs .
(3) Fs�(0) ∩ Fs�(1) = ∅.
(4) For β ∈ Lim(ω1 + 1) and s ∈ 2β , Fs = ⋂

α<β Fs�α .

Let now Us = X \ Fs , for every s ∈ 2≤ω1 . We now describe a winning strategy for player
I in Gω1

1 (O,OD). At the first inning, player I chooses the open cover {U(0), U(1)}. Let now
α < ω1 and let s ∈ 2α be a function such that player II’s move at inning i was Us�i for every
i < α. Then player I chooses the open cover {Us�(0), Us�(1)} at inning α. At the end of the
game, let f ∈ 2ω1 be the function such that U f �α is the open set chosen by player II at inning
α. Then

⋃{U f �α : α < ω1} = U f is not dense, since its complement, F f has non-empty
interior. �

Question 4.1 Is there a first-countable regular space X such that player II does not have a
winning strategy in Gω1

1 (O,OD)?
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