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With the help of Singer's theorem we characterize the dual of 1'0(m E, F), the 
compact type m-homogeneous polynomials. Using knowns results on nuclear and 
integral polynomials we establish that the reflexivity of 1'(m E, F) is equivalent to 
the coincidence !>f 'P("' E, F) witn its subspace 1'.(m E, F), when E and F are re­
flexive Banach spaces. 

§0 - Introduction 
In early paper (l] we established asimilar condition for the reflexivity of 1'("' E), 

the apace of m-homogeneous polynomials scalar valued, where we use a characteri­
zation of the dual P;("' E) due to S. Dineen [6). 

For vector valued polynomials, we can follow the scalar case by introducing the 
Bartle integral, where for the same vector measure we consider two kind of inte­
grands, scalar valued functions a.nd vector valued functions which permit to apply 
the Riesz representation theorem and the Singer theorem to characterize the dual of 
1'0(• E, F) establishing a preliminary result. The main result follows from the fact 
that the spaces of nuclear and integral polynomials coincide when the dual space£• 
has the Radon Nikodym property. 

In the last paragraph we give some examples ilJustnting the results. 

§1 - Notation and Definitions 
E and F will represent Banach spaces, E" and P their duals, BE the closed 

unit ball of E. 
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L(• E, F) the space of continuous m-linear mappings from E x · · · x E 
(m-fold) to F. 'P(m E, F) the space of continuous m-ho{Tlogeneous polynomi• 
&ls from E to F with the sup norm on the unit ball Be. We recall that if 
P E P(m E, F) there is an unique symmetric m-lfoear mapping A E L("'(E, F) 
such that A(:r,:, ... ,:) = P(:r) and in this case we denote A= P. P1("'E,F) is 
the subspace of P(m E, F) of finite type polynomials, i.e., if P E P1(m E, F) there 
are finite sequences <p; EE• , 11; E F , j = 1, ... , r such that 

f' 

P(:r) = L v,J'(:r)y; for all :r E E. 
j=l 

'Pc("' E, F) denotes the closure of Pj("' E, F) in P(• E, F), called the compact 
type polynomials. 

'PN(rn E, F) is the space of all P E 'P("' E, F), that can be represented by 

CIO 

P(.c)"= L v,'j'(z)y; where <p; EE• , r; E F 
j=l 

00 

with L llv,;ll"'IIY;II < oo. 'PN("' E, F) endowed with the 
j=l 

norm IIPIIN = inr{t, ill";lrllY;II: over all representations}, 

ia called the space of nuclear polynomials. 

'P1("' E, F) is the space of all P E 'P("' E, F) that can be represented by 

P(:r) = I ip"'(x)dµ(<;,) ls,.. 

·whereµ is an F-valued regular u-additive Borel measure of bounded variation, on 
the Borel sets of (Bs•, u(E-, E)). 'P1("'E, F} endowed with the norm, 

IIPll1 = inf{l,,l(BE·): over all representation µ of P}, 

is called the space of integral polynomials. 

}J usual, if [( is a compact Hausdorff space, C(l() and C(l(, F) denote the Banach 
apace of continuous scalar-valued and F-valued functions respectively, endowed 
with the sup norm. 

§2 - Integration with respect to a vector measure 
We 1hall limit ourselves to some ha.sic facts on the Bartle integral in two special 
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1ituations tha.t fulfill our needs. 
Let fl be a set and E a u-algebra of subsets of n and F a Banach space. 

A vector measure µ : E -+ F is a countably additive set function, i.e.: for all 
■equences (A,.):_1 of pairwise disjoint member of E, then 

where the convergence is in the norm of F. 

Definition. 

(a) the variation ofµ is the extended nonnegative function IPI given by: 

• 
A e _E , lµl(A) = sup .E llµ(A.)11, 

i:d 

where the supremum is ta.ken over all partition {Ai}~=• , of A into finite disjoint 
members of E. · 

H jµj(O) < oo, then µ will be ca.I.Jed a. vector measure of bounded variation. 

(b) the semivariation of µ is the extended nonnegative function llµII given by: 

A e L ' llµll(A) = sup{lz"µl(A): %
0 

€ r, llz"II $ I}, 

where lz"µI is the variation of the sea.Jar measure z•µ. 

H llµll(fl) < oo, then µ will be called a vector measure of bounded semivariation. 
We notice that the semivariation is a subadditive set function and in general 

IIPll(fl) •$ lµl(O) . 
We recall that a vector measure µ defined on the Borel u-algebra of subsets of 

a compact Hausdorff space is regular if for each Borel set A and t. > 0 there exists 

& compact set Kand an open set Osuch that KC AC O and llµ/1(O\J() < t.. 

In the following we give the notion of BarUe integral-J / dµ in two special cases 

(.ee for example 141): 

- / ii a aular function andµ is an F-valued measure. 

- / is a F-valued function andµ is an F•-vaJued measure. 

Letµ be a vector measure from E into F (or F") of bounded semivariation. Let 

/ be a ■ca.Jar (or F-valued) simple function defined on fl represented by 
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where o; are nonzero scalars (or F-elements) and Ai, ... , A,. are pairwise disjoint 
members of E, then we define: 

It can be checked that to above integral is well defined and induces a continuous 
linear operator T,. on the space of simple functions normed by the sup norci, given 
by 

Jf 8(0) is the Borel u-algebra, of sullsets of a compact Hausdorff space n, then 
ev.ery continuous scalar- valued (or F-valued) function is an uniform limit of a 
-sequence of simple functions. Therefore we can extend the above definitions for f 
a continuous, scalar valued (or F-valued) function, and_ we have also a continuous 
operator 

Some basic properties are the following. 

t - II I., I dµII ~ 11/llllµll(n) 
2 - p, F"-valued, f E C(n) 

forevery :r•·ep••, :r··(fnJdµ)= kfd(x""µ) 

3 - µ, F"-valued, f(:r) = Li=i g;(x)y;, g; E C(O), y; E F 

fn(f,dµ) = t.ln(g;(x)y;,dµ) 

Now we recail two representation theorems. 

The Singer Theorem. 
"The dual C"(/(, F) is isomorphic and isometric to the space of all F"-valued 

regular, u-additive Borel measuresµ of bounded variation defined on the Borel sets 
of K, endowed with the variation norm." 

The isomorphism is given by TE C"(l(,F) ~µ,where T(f) = f,.(/(x),dµ). 

The Riesz Representation Theorem. 
"Let T be a bounded linear operator from y"(/() into F. Then there is a 

weak• er-additive measure µ defined on the Borel sets of /( with values · in F·• 
1uch tha.t: 
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(i) µ(•)::• is a regular u-a.dditive Borel measure for each z• E P-. 

(ii) the mapping ::• e F" -+ µ(•)::•, from P- into C•(K) is wea.k•-terwcak" 
continuous. 

(iii) z•T(J) = fK fd(z"µ), for each/ E C(K) and each z• E P-. 

(iv) IITII = llµll(I() 

9<,nversely, ifµ is an F""-valued measure defined on the Borel sets of/( for 
which (i) and (ii) hold, then (iii) defines a bounded linear operator from C(J() 
to F which satisfies (iv)". 

Definition: Let T be a bounded linear operator from C(K) into F , then the mca­
•ure µ satisfying (i) to (iv) will be called the representing measure of T . 

The next theorem stren&thens the utility of the Riesz Representation Theorem 
if we know more about T or its representing measure. 

The Bartle-Dunford-Schwartz Theorem 
•Let T : C(K)-+ F be a bounded linear operator with representing measure 

p. Any one of the following statements implies all the others. 

(a) the operator Tis weakly' compact. 

(b) the measure p takes all its values in F. 

(c) the measureµ is u:..a.dditive. 

For the above results on vector measures, the Riesz Representation theorem 
and the Bartle-Dunford-Schwartz theorem we refer to the book of Diestel and 
Uhl ([51). For i.he Singer Theorem we refer to the Singer's paper ([9]) and also 
to the book of Jean Schmets ([SJ). 

§8 - Priliminary Result (Application of Singer's Theorem) 
We start with the following remark: ifµ is an F-valued regular u-additive Borel 

measure of bounded variation, defined on the Borel sets of a compact Hausdorff spac~ 
K, then it defines a bounded linear operator T from C(I() into F given by 

T(f)= [fdµ 

where µ is just the representing measure of T . This is straight forward if we look at 
the Ricsz Representation theorem and the Bartle- Dunford-Schwartz theorem. 

Lemma: Let E and F be reflexive Banach spaces. Then 'Pr("' E", F") and 
1';("' E, F) &re isometric. 
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Proof: firsl of all we nolice lbat if P E 'P 1("' E, F), then P is u( E, £· )-continuous. 

As ·a. consequence we have that the inclusion -Pc(m E, F) <-+ C(BE, F) is continuous, 

where Bs is endowed with lhe weak-topology. Therefore, if TE -P;(m E, F), T can 
be exlended via Hahn-Banach to some f on C(B1,,F), preserving the norm. 

Now, by Sin·ger's theorem we can find an F"-valued measure µ defined on the 
Borel sets of BE such that 

T(F) ~ I {f,dµ) for all / E C(BE,F) and 117'1} = lµl(Bs). 
ls. 

Now, by the previous remark, µ is tlie representing measure of the operator 

T: C(BE)-+ F-, given by .~. 

T(g) = I g(.r)dµ(.r), with IITII = Jlµll(Bs). 
ls. 

Suppose I() E S-, then l()"'(.r) = (cp(.r))"' defines a continuous function on BE, 
therefore 

Qr(cp) = I l()"'(.r)dµ(.r) 
ls. 

defines am-homogeneous polynomial and it's clear that Qr E Pi('"E·,F•). Fur­
thermore, we have, 

IIQrllr ~ lµl(Bs) = 117'11 = IITII-

Conversely: Let Q be in _'Pr("' E-, F-), therefore Q can be represented by 

Q(ip) = I cp"'(.r)dµ{.r) . ls. 
Since Q E 'P(m E", F-) there is an unique symmetric B E L(m E· , F·) such that 

B=Q. 
Now, using the isomorphism isometric bet ween L(m E", F") and L(m E" x F) 

(the m + 1-linear scalar valued mappings), given B E L(m E", F") we can find 

/J E L("' E- x F) such that 

.8(1()1, . •• ,cp,..,y) = (y, B(r,,1, •.•. ,r,,,,.)}. 

By the universal property of tensor product there is an unique linear form S on 

E-®···E•®F such that 

B(<pi, ... ,ip,.,11) = S(i,o1 ® · · ·@r,,,.@y). 

Now, let P E 'P 1("' E, F) with the representation 

r 
P(.r) = El();'(.r)y;, JP; E S- and Y; E F, j = 1, . . . , r, 

; .. 1 
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there is an unique symmetric A E L ,("' E, F) such that A = P. It is clear that A 
can be represented by 

r 

A(:i, ... , :,,.) = E <p;(xi) · · · <p;(:,,.)y;. 
j:1 

On the other hand A can be viewed as an element of E" ® · · · ® E" ® F, represented 
by 

r 

A= E<p;®· · ·@cp;@Y;-
;:s1 

We define a linear mapping scalar valued Ton 'Pi("' E, F) by 

r r 

T(P) = S(A) = LS(<p;@· · ·@<r>;@Y;) = LB(cp;, ... ,cp;,Y;) 
j:1 j=l 

, r 

= L(Y;,B(<;>;, ... , cp;)) = L(Y;,Q(cp;)} 
j=l i=l 

= E{Y;, l cpj'(:r)dµ(x)) = l rtcpj'(x)y;,dµ(:)} 
js:1 Bs Bi; i=I 

= I {P(:),dµ(:)). 
ls~ 

This shows that T is well defined and we have 

IIT(P)II $ IIPlllµl(BE), 

for everyµ that represents Q, therefore TE 'Pj("'E,F) and IITII 5 IIQllr-
Now, T can be extended in an unique way to P,("' E, F) and the lemma follows. 

§4 - The Reflexivity of 'P("' E, F). 
Now we recall some specific results on nuclear and integral polynomials. 
The coincidence of Integral and Nuclear polynomials. 

Theorem 1. (1). If £• has the Ra.don Nikodym property then 'PN("' E, F) and 
Pi("' E, F) are isomorphic form = 1, 2, • • • and all F. 

The characterization of the dual 'Pi.("' E", F"). 

Theorem 2. (7). Suppose E and F with the approximation property, then the 
apaces 'Pi,,("' E", F) and 'P("' E, F") are isomorphic and isometric. 
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Now we prove the result: 

Theorem 3. Let E and F be reflexive Banach spaces E and F" with the approxi­
mation property. Then -P(m E, F) is reflexive if and only if -P(m E, F) coincide with 
its subspace Pc(!" E, F) . 

Proof: first of all we notice that E has the Radon Nikodym property since E is 
reflexive therefore by Theorem 1 we have that °PN(m E", F") = -P,{m E", F") isomor-· 
phically. Now, combining this with Theorem 2 and the lemma we get the identities: 

To conclude it's enough to observe that -Pc{m E, F) is a closed subspace of -P(m E, F). 

§5 - Examples. 

1 - In early papers (2] and (3] we showed that if r is the space discovered by 
B. S. Tsirelson then the spaces -P("T") and P("T", t,) are reflexive for all 
n = 1, 2, ... and all p, 1 < p < oo. Therefore by Theorem 3 we have that the 
elements of those spaces are in fact polynomials of compact type. 

2 - Now we apply the theorem 3, in negative form, to some concrete space of 
polynomials. Now we consider only real t, spaces. 

(a) Scalar valued polynomials 
For p a.n even integer we have that -P('l,) is not a reflexive space: 
Let z = (z;) E t, and define a p-homogeneous polynomial P by, 

00 

P(z)= I>r 
o::l 

It is clear that IP(z)I = llzll: and P E -P('l,). Now if Q E P1('l,), Q has 
the form 

l 
Q(z) = I:a;<,?;(z) where <p; Et; and a; ER, j = 1, . . . ,k. 

j•l 

We can choose y = (y;) E nt=i t,,;'(O) such that IIYII, = 1, therefore Q(y) = 0 
and P(y) = IIYII; = l hence IIP - QII ~ l for all Q E P1('l,), then it follows 
that 'P,('l,) :/; P('l,) and by theorem 3 -P('l,) is not reflexive. 

(b) Vector valued polynomials 
For n a positive integer a.nd p a positive real number such that p/n ~ l we 
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have that 'P("l,,t,,,.) is not a reflexive space. 
Let z = (:i:;) E t, and define a n-homogeneous polynomial P by 

It is clear that P(z:) Et,,,. and PE 'P("l,,l,1,.)-
As in the scalar case, if Q E 'P1("l,, t,,,.), Q has the form Q(z) = 
!j,;,t'i";'(:i:)a;, where cp; Et; and a; Et,,,., j = l , ... ,k. 
Therefore we can find y = (y;) E l, such that IIYII, = 1 and Q(y) = 0. From 
the definition of P we have that 

IIP(y)II,, .. = ll(Y:')11,,,. = IIYII; = 1. 

Hence IIP - QII ~ 1 and 'Pc("t,,t,,,.) ::f. 'P("l,, l,1,.) and by Theorem 3 
'P("l, ,t,,,.) is not reflexive. 

The author acknowledges useful conversations with professors Mario Matos and 
Jorge Mujica. 
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