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With the help of Singer’s theorem we characterize the dual of P.(™E, F), the
compact type m-homogeneous polynomials. Using knowns results on nuclear and
integral polynomials we establish that the reflexivity of P(™E, F) is equivalent to
the coincidence of P(™E, F) with its subspace P.(™E, F), when E and F are re-
flexive Banach spaces.

§0 — Introduction

In early paper [1] we established a similar condition for the reflexivity of P(™E),
the space of m-homogeneous polynomials scalar valued, where we use a characteri-
zation of the dual P;(™E) due to S. Dineen [6].

For vector valued polynomials, we can follow the scalar case by introducing the
Bartle integral, where for the same vector measure we consider two kind of inte-
grands, scalar valued functions and vector valued functions which permit to apply
the Riesz representation theorem and the Singer theorem to characterize the dual of
P.(™E, F) establishing a preliminary result. The main result follows from the fact
that the spaces of nuclear and integral polynomials coincide when the dual space £°
has the Radon Nikodym property.

In the last paragraph we give some examples illustrating the results.

§1 — Notation and Definitions
E and F will represent Banach spaces, E* and F* their duals, Bg the closed
unit ball of E.
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L(™E, F) the space of continuous m-linear mappings from £ x---x E
(m-fold) to F. P(™E, F) the space of continuous m-homogeneous polynoini-
als from E to F with the sup norm on the unit ball Bp. We recall that if
P € P(™E, F) there is an unique symmetric m-linear mapping A € L(™(E, F)
such that A(z,z,...,z) = P(z) and in this case we denote A = P. P;("E,F) is
the subspace of P(™E, F) of finite type polynomials, i.e., if P € P,(™E, F) there
are finite sequences ¢; € B* , y; € F , j=1,...,r such that

¢
P(z) =Y ¢P(z)y; for all z€E.
i=1

P.(™E, F) denotes the closure of P}(™E, F) in P(™E, F), called the compact
type polynomials.
Pn(™E, F) is the space of all P € P(™E, F), that can be represented by

P(z)=3_¢[(z)y; where ¢;€E" , y;€F
i=1

Lad
with Y llo;lI™lly;ll < co. Pn(™E,F) endowed with the

i=1
o0
norm || P}~ =inf{Z|lp,-||"‘|lyj|l :over all representations},
3=1

is called the space cf nuclear polynomials.

Pi(™E, F) is the space of all P € P(™E, F) that can be represented by
P()= [ o (e)iule)

-where g is an F-valued regular o-additive Borel measure of bounded variation, on
the Borel sets of (Bg.,0(£°, E)). P/(™E, F) endowed with the norm,

IPlls = inf{|x|(Bg-) : over all representation g of P},
is called the space of integral polynomials.

As usual, if K is a compact Hausdorff space, C(I{} and C(I\, F) denote the Banach
space of continuous scalar-valued and F-valued functions respectively, endowed
with the sup norm.

§2 — Integration with respect to a vector measure
We shall limit ourselves to some basic facts on the Bartle integral in two special
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situations that fulfill our needs.

Let Q be a set and T a o-algebra of subsets of 2 and F a Banach space.

A vector measure pu : ¥ — F is a countably additive set function, i.e.: for all
sequences (A,)%2, of pairwise disjoint member of ¥, then

n=1
o0 o0
p(y An) = T (4n)
=1 n=1
where the convergence is in the norm of F.

Definition.

(a) the variation of p is the extended nonnegative function |¢| given by:
A€y, ul(4)=sup}lls(All,
i=1

where the supremum is taken over all partition {A;}7, , of A into finite disjoint
members of ¥_. '
If [1](R) < oo, then u will be called a vector measure of bounded variation.

(b) the semivariation of g is the extended nonnegative function [|u|| given by:
AeY , lIsli(4) =sup{lz"pl(4): =" € F~, |lz"ll <1},
where |z°y| is the variation of the scalar measure z°p.

If |[u]l() < oo, then  will be called a vector measure of bounded semivariation.
We notice that the semivariation is a subadditive set function and in general

ell($2) < 1ul(9).
We recall that a vector measure y defined on the Borel o-algebra of subsets of
a compact Hausdorff space is regular if for each Borel set A and € > 0 there exists

a compact set K and an open set O such that X C A C O and ||p]|(O\K) < e.
In the following we give the notion of Bartle integral [ f du in two special cases
(see for example [4]):
- f is a scalar function and p is an F-valued measure.
— f isa F-valued function and y is an F*-valued measure.

Let p be a vector measure from ¥ into F (or F°) of bounded semivariation. Let
f be a scalar (or F-valued) simple function defined on § represented by

/= )_-:a.-xa.-
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where a; are nonzero scalars (or F-elements) and A,,..., A, are pairwise disjoint
members of ¥, then we define:

fiin=Lowta) (o [ () = Ttow i)

It can be checked that to above integral is well defined and induces a continuous
linear operator T, on the space of simple functions normed by the sup norm, given

by
TN =[rds. (oo [(r.d)

X B(Q) is the Borel o-algebra, of subsets of a compact Hausdorff space Q, then
every continuous scalar- valued {(or F-valued) function is an uniform limit of a
sequence of simple functions. Therefore we can extend the above definitions for f
a continuous, scalar vaiued (or F-valued) function, and we have also a continuous
operator '

LU= [ fdn fec@ (o [tfidw, fec@p)
Some basic properties are the following. »

1=l faf dull < 1IF1IelISR)
2 - g, F-valued, f € C(0)

forevery z™ ¢ F*, :“( jn jdy)..—_ fn fd(z"p)
8- p, F-valued, f(z)=T%,0i(z)yiv 6 €C(Q), weF

[i.d0) = 3 [ @i(eluida

=1
Now we recail two representation theorems.

The Singer Theorem.

“The dual C*(K, F) is isomorphic and isometric to the space of all F*-valued
regular, g-additive Borel measures g of bounded variation defined on the Borel sets
of K, endowed with the variation norm.”

The isomorphism is given by T' € C*(K, F) «— p, where T(f) = [;{f(z),dp).

The Riesz Representation Theorem.

“Let T be a bounded linear operator from C(K) into F. Then there is a
weak® o-additive measure p defined on the Borel sets of /i with values in F**
such that:
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(i) p(-)z" is a regular o-additive Borel measure for each z* € F~.

(ii) the mapping z* € F* — p(-)z", from F* into C*(K) is weak"-to-weak"
continuous.

(ii}) a°T(f) = [ fd(z"p), for each f € C(K) and each 2" € F™.
() 1T = ull(£)

Conversely, if u is an F*"-valued measure defined on the Borel sets of K for
v?hich (i) and (ii) hold, then (iii) defines a bounded linear operator from C(K)
to F which satisfies (iv)”.

Definition: Let T be a bounded linear operator from C(K) into F, then the mca-
sure p satisfying (i) to (iv) will be called the representing measure of T'.

The next theorem strengthens the utility of the Riesz Representation Theorem
if we know more about T or its representing measure.

The Bartle-Dunford-Schwartz Theorem
“Let T : C(X) — F be a bounded linear operator with representing measure
#. Any one of the following statements implies all the others.

(a) the operator T is weakly compact.
(b) the measure g takes all its values in F.

(c) the measure p is o-additive.
For the above results on vector measures, the Riesz Representation theorem
and the Bartle-Dunford-Schwartz theorem we refer to the book of Diestel and
Ukl ([5]). For the Singer Theorem we refer to the Singer’s paper ([9]) and also
to the book of Jean Schmets ([8]).

§8 — Priliminary Result (Application of Singer’s Theorem)

We start with the following remark: if 4 is an F-valued regular o-additive Borcl
measure of bounded variation, defined on the Borel sets of a compact Hausdorff space
K, then it defines a bounded lincar operator T' from C(J() into F given by

T(f)= [ fdu

where p is just the representing measure of T. This is straight forward if we look at
the Riesz Representation theorem and the Bartle- Dunford-Schwartz theorem.

Lemma: Let E and F be reflexive Banach spaces. Then Pi(™E*, F*) and
P;(™E, F) are isometric.
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Proof: first of all we notice that if P € Py(™E, F), then P is a( E, £~ )-continuous.
As-a consequence we have that the inclusion P(™E, F') — C{Bg, F) is continuous,
where Bg is endowed with the weak-topology. Therclore, if T € P(™E, F), T can
be extended via Hahn-Banach to some T on C{Bg, F), preserving the norm.

Now, by Singer’s theorem we can find an F*-valued measure p defined on the
Borel sets of Bg such that

T(F)= [ (di) forall fe€C(Be,F) sad Il = luBe).

Now, by the previous remark, g is the representing measure of the operator
1 :C(Bg) — F, given by

()= [ gl=Mu(@), with ljrll=lu(Bs).
Bg
Suppose ¢ € E”, then p™(z) = {p(z))™ defines a continuous function on B,

therefore
Qrle) = [ ¢™(z)dn(z)
5
defines a m-homogeneous polynomial and it’s clear that Qr € PH™E",F*). Fur-

thermore, we have, ) N
1Qrlir < lpl(Be) = IITI| = 1|T]I-
Conversely: Let Q be in P;(™E", F*), therefore Q can be represented by

Q)= [ ¢"(@intz).

Since Q € P(™E", F*) there is an unique symmetric B € L(™E", F*) such that
B=Q.

Now, using the isomorphism isometric between L(™E*, F*) and L(™E" x F)
(the m + 1-linear scalar valued mappings), given B € L(™E",F") we can find
B e L(™E" x F) such that

B(Pn- .. )‘vay) = (yaB(‘Ph e :‘r’m»'

By the universal property of tensor product there is an unique linear form S on
E*®---E*®F such that

é(‘?h--'i'l"my) = S(¢ ®"‘®’Pn ®y)

Now, let P € Py(™E, F) with the representation

r
P(z) = Zgo;-"(z)y,, ¢;EE and y;€F, j=1,...,7
i=1
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there is an unique symmetric A € Ly(™E, F) such that A = P. It is clear that A
can be represented by

.

A(:h et lsz) = Z V’J’(Il) ot 'Pj(;m)yi'

i=1
On the other hand A can be viewed as an elementof E°® - -- @ E* @ F, represented
by
r
A=3"0; QR Qv Qyj-
i=1

We define a linear mapping scalar valued T on P;(™E, F) by

T(P)

S(A) = 25(%‘@- Qv Qui) = Zr:f?(%u---,w;.y,')

i=1

r

= t(y,-,B(ga,-,...,qa,-)) = 3 {v; Qi)

i=1 s
= ?(?h‘:/}h S"T(:)dﬂ(t)) = -/Bs(g QO;P(I)y,',dﬂ(:c))
& /B (P(z),du(z))

This shows that T is well defined and we have

IT(P| < |IPl1sl(Be)

for every u that represents @, therefore T € P;(™E, F) and |[T|| < [|@]lr-
Now, T can be extended in an unique way to 'Pc('“E, F) and the lemma foliows.

§4 - The Reflexivity of P("E, F).
Now we recall some specific results on nuclear and integral polynomials.
The coincidence of Integral and Nuclear polynomials.

Theorem 1. [1]. If E* has the Radon Nikodym property then Pn(™E, F) and
Pi(™E, F) are isomorphic for m = 1,2,--- and all F.

The characterization of the dual Py (™E", F*).

Theorem 2. [7]. Suppose E and F with the approximation property, then the
spaces Py(™E", F) and P(™E, F*) are isomorphic and isometric.
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Now we prove the result:

Theorem 3. Let E and F be reflexive Banach spaces E and F* with the approxi-
mation property. Then P(™E, F) is reflexive if and only if P(™E, F) coincide with
its subspace P.(™E, F).

Proof: first of all we notice that E has the Radon Nikodym property since E is
reflexive therefore by Theorem 1 we have that Py(™E*, F*) = P({™E*, F*) isomor-
phically. Now, combining this with Theorem 2 and the lemma we get the identitics:

P("E,F)=Py("E",F") = Pi(mE°,F*)=P*(™E,F).
To conclude it's enough to observe that P.(™E, F) is a closed subspace of P(™E, F).

§5 — Examples.

1 - In early papers [2] and [3] we showed that if T is the space discovered by
B. S. Tsirelson then the spaces P("T*) and P("T",{,) are reflexive for all
n=1,2,...and all p, 1 < p < co. Therefore by Theorem 3 we have that the
elements of those spaces are in fact polynomials of compact type.

2 - Now we apply the theorem 3, in negative form, to some concrete space of
polynomials. Now we consider only real £, spaces.

(a) Scalar valued polynomials
For p an even integer we have that P(P{,) is not a reflexive space:
Let z = (z;) € ¢, and define a p-homogeneous polynomial P by,

P(z) = izf.

Rt is clear that |P(z)] = [|z]|? and P € P(P{,). Now if Q € P(?,), Q has
the form

!
Q(z) = a;pf(z) where ;€L and a;€R, j=1,...,k
i=l
We can choose y = (y;) € ﬂf=, cp;"((]) such that ||vll, = 1, therefore Q(y) =0

and P(y) = |lyl|[2 = 1 hence ||P — Q|| 2 1 for all Q € P;(P4;), then it follows
that P.(?¢,) # P(?{,) and by theorem 3 P(?¢,) is not reflexive.

(b) Vector valued polynomials
For n a positive integer and p a positive real number such that p/n > 1 we
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have that P("£,,{,/s) is not a reflexive space.
Let z = (z;) € £, and define a n-homogeneous polynomial P by

P(z) = (a})

It is clear that P(z) € &/, and P € P("(,, L)

As in the scalar case, if @ € Py("¢,, (,/,.), Q has the form Q(z) =
):"_“p, z)a;, where p; € £; and a; € &pn, j=1,...,k.

Therefore we can find y = (y.) € ¢, such that [ly||, =1 and Q(y) = 0. From
the definition of P we have that

HPWlpra = N1 lasm = llyllp = 1.

Hence ||[P—- Q|21 and P 4. L) # P("%,4m) and by Theorem 3
P( Ly, Lyn) s Dot reflexive.

The author acknowledges useful conversations with professors Mario Matos and
Jorge Mujica.
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